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Abstract
This article analyzes rent seeking with multiple additive efforts for each of two

players. Impact on rent seeking occurs even when a player exerts only one effort.

This contrasts with models of multiplicative efforts with impact on rent seeking only

when a player exerts all its available efforts. An analytical solution is developed

when the contest intensities are below one, and equal to one for one effort. Then,

additional efforts causing interior solutions give players higher expected utilities

and lower rent dissipation, which contrasts with earlier findings for multiplicative

efforts. Players cut back on the effort with contest intensity equal to one, and exert

alternative efforts instead. Accounting for solutions which have to be determined

numerically, a Nash equilibrium selection method is provided. For illustration, an

example with maximum two efforts for each player is provided. Equilibria are

shown where both players choose both efforts, or one player withdraws from its

most costly effort. Both players may collectively prefer to exclude one of their

efforts, though in equilibrium, they may prefer both efforts. When all contest

intensities are equal to one or larger than one, only the one most cost-effective effort

is exerted, due to the logic of linear or convex production. Rent dissipation increases

in the contest intensity, and is maximum when the players are equally advantaged

determined by unit effort cost divided by impact.

Keywords Rent seeking � Additive efforts � Contest success function � Rent
dissipation

1 Introduction

1.1 Background

Earlier rent seeking research has mostly assumed one effort for each player, which

is limiting given the plethora of possible efforts. The literature gradually expands to
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account for multiple efforts for each player. How multiple efforts interact to impact

rent seeking is currently poorly understood. This article intends to improve this

understanding. Examples of rents are R&D budgets, promotions, licenses,

privileges, monopoly opportunities, election opportunities, struggles for government

support between different industries, competition for budgets by interest groups, and

government distribution of public goods. Examples of efforts to obtain rents are

multifarious, e.g. lobbying, influence strategies, interference struggles, litigation,

strikes and lockouts, political campaigns, commercial efforts to raise rivals’ costs

(Salop and Scheffman 1983), economic and political maneuvers (Hirshleifer 1995),

coaxing, prompting, inducing, urging, extorting, exacting, persuasion techniques,

pressure methods, promotions, briberies, skirmishes, battle, combat, and fighting

with or without violence.

1.2 Contribution

This article acknowledges that each player may have available arbitrarily many

efforts which may or may not overlap with the contending player’s available efforts.

Each effort may be of different nature and operate according to its own logic.

Analyzing multiple additive efforts supplements the earlier literature which

commonly assumes one effort, or usually assumes multiplicative efforts which all

have to be exerted to ensure impact. Formally in this article, efforts may have three

different characteristics, i.e. different unit costs, different impacts, and different

contest intensities. Efforts operate additively in the contest success function, which

has been insufficiently analyzed in the literature. The model is chosen to enable each

player to incur a different cost of effort, and have a different impact with a different

contest intensity for each effort.

In the rent seeking literature, the contest intensity or decisiveness parameter is

generally a parameter at the contest level, and thus equivalent for both or all players.

The authors are not aware of literature modeling different contest intensity

parameters for different players. In this article, each effort operates according to its

own logic with an intensity, scaling and impact independent of the other efforts.

Hence, the contest intensity parameters generally differ across players. Specific

efforts by one player are thus not matched against specific efforts by the other

player. Instead, each player’s efforts are added up into an effort production function

which competes against the other player’s effort production function.

In the contest success function, additive efforts are substitutable while multi-

plicative efforts are complementary. However, when accounting for both the contest

success function and the cost of exerting efforts, a new function emerges. For this

new function, multiple efforts with different production functions and unit effort

costs can generally be of the same kind or nature, can be substitutes for each other,

or can complement each other in various ways. All these kinds are possible with

additive efforts in the contest success function (Proposition 3) since the subtraction

of effort costs in the players’ expected utilities causes linkages between the players’

efforts.

To illustrate the prevalence of additive efforts and how they differ from single

efforts, consider two examples. The first illustrates how a lobbying firm may hire
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different kinds of professionals to be able to exert multiple additive efforts, one

effort for each professional. The lobbying firm evaluates hiring any combination of

professionals with substitutable training causing different production functions

operating additively, with different unit effort costs, e.g. professionals with any

degree and experience in economics versus political science, a man versus a woman,

human effort versus machine effort, etc. Since the efforts are not of the same kind, a

close look at how the efforts substitute or complement each other is needed. For

example, an office clerk can manually compile statistics to support a rent

application, or advanced computers and software can be employed to do the same

work.

Second, consider multiple players interpreted to interact statically. Each player

hires multiple professionals with various kinds of expertise, to enable each player to

exert multiple additive efforts. The players compete for an elected office position,

e.g. US president. Each player hires professionals with various kinds of expertise,

i.e. political analysts to develop views and positions on issues, media professionals

for spin control, social media operatives, business people to recruit donors,

telephone operators to convince voters, geographically dispersed ground troops

knocking on people’s doors, speech writers to tune messages for big rallies and local

meetings, gossip developers, and specialists in negative campaigning. These efforts

may jointly and independently add up to a campaign’s effort production function

which impacts the contest with the other player(s). It is quite possible for a player’s

campaign to be successful even if some efforts are missing, e.g. due to strategic

choice, oversight, lacking competence, or deficient funding. For example, a player

may decide to eliminate negative campaigning and ground troops. Alternatively, a

player may rely on big colorful rallies applying hitherto unknown influence

techniques that the other players are unable or unwilling to apply. Combining the

additive contest success function with the subtraction of efforts’ costs may cause

independence, substitutability, or complementarity between efforts.

One alternative to additive efforts is multiplicative efforts of the Cobb–Douglas

type analyzed by Arbatskaya and Mialon (2010), extended to a two-stage contest by

Arbatskaya and Mialon (2012). One of their examples, also provided by Tullock

(1980) and Krueger (1974), is that ‘‘firms may be able to obtain rents from the

government not only by improving their efficiency, but also by lobbying or even

bribing government officials’’ (Arbatskaya and Mialon 2010). Multiplicative efforts

can be descriptive of this phenomenon when both improved efficiency and lobbying

are mandatory for successful rent seeking. That is, improved efficiency without

lobbying guarantees no success, and lobbying without improved efficiency

guarantees no success. For some phenomena such as career promotions, requiring

all efforts to be mandatory can be realistic even as the number of efforts increases.

For other phenomena, as the number of efforts increases, Cobb–Douglas type

multiplicative efforts may become increasingly unrealistic since each effort must be

strictly positive to ensure success. The current article opens for the possibility that

improved efficiency without lobbying, or lobbying without improved efficiency,

may both constitute successful rent seeking, although both operating additively may

be even more successful. The different assumptions of additive and multiplicative

efforts cause different results regarding efforts, expected utilities, and rent
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dissipation. For example, for additional efforts, Arbatskaya and Mialon (2010) find

increased rent dissipation when the contest becomes more balanced, whereas we

find decreased rent dissipation caused by players optimizing more cost effectively

across efforts.

1.3 Literature

The rent seeking literature has developed fruitfully for half a century (Congleton

et al. 2008). Early developments are by Krueger (1974), Posner (1975) Tullock

(1980), etc., reviewed by Nitzan (1994). Skaperdas (1996) considers symmetric

contests, Clark and Riis (1998) analyze asymmetric contests, Cubel and Sanchez-

Pages (2016) assess difference-form contest success functions, Bozbay and

Vesperoni (2018) evaluate contest success functions for networks and Münster

(2009) examines group contests. Rai and Sarin (2009) allow multiple types of

investments.

Rai and Sarin (2009) exemplify multiple types of investments with a linear

production function and the Cobb–Douglas production function. Their linear

production function involves two additive efforts which contestants may substitute

between. They treat one investment as fixed which causes the contest success

function analyzed by e.g. Nti (2004) and Hausken and Zhuang (2012). Another

example of efforts, but not of the Cobb–Douglas type, are by Epstein and Hefeker

(2003). Assuming two efforts for each player, the first is conventional rent seeking.

The second effort may be absent, or it may reinforce the first effort. They find that

two efforts strengthen the player with the higher stake and decreases relative rent

dissipation.

Influenced by Dixit’s (1987) analysis of precommitment in contests, Yildirim

(2005) analyzes a two-period game where both players simultaneously choose one

effort each in period 1, which becomes public knowledge, and both players

simultaneously choose whether to add one effort in period 2, so that the probability

of winning depends on the cumulative effort levels. Melkonyan (2013) considers

hybrid contests where the players forfeit one resource each ex-ante, and commit one

resource each ex-ante which is expended ex-post by the winning player. He finds no

rent overdissipation, and that more players cause less ex-ante and more ex-post

expenditures by individual players, and more ex-ante and ex-post expenditures

across all players. Hausken (2020) analyzes additive efforts for arbitrarily many

players assuming contest intensity one for each effort in the contest success

function. That is, each effort has proportional impact since the exponent to each

effort equals one. He finds that 50% of the rent is dissipated when the players have

equal ratios of unit cost divided by impact, and that rent dissipation decreases as the

players’ ratios become more unequal. Clark and Konrad (2007) evaluate contests in

multiple dimensions. Winning a certain number of contests is required to win the

prize.

Osorio (2018) analyzes a model with multiple efforts and two allocation systems.

The I-system is a sum of independent contests where each player exerts one effort

for each prize. The A-system resembles the approach in the current article where the

players’ multi-issue efforts are aggregated additively into a single outcome.
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Assuming the same contest intensity for both players and across all efforts, he finds

that the A-system tends to induce higher total efforts than the I-system. With

decreasing returns to effort, the players distribute their efforts over all issues, while

with increasing returns to effort, the players focus on only one issue.

Supplementing rent seeking with sabotage is another example of multiple efforts.

Konrad (2000) assumes that one effort improves the player’s contest success,

whereas a second effort decreases the rival players’ success, which may increase

lobbying efforts and rent dissipation. Chen (2003) considers competition for

promotion involving efforts to enhance one’s own performance and efforts to

sabotage the opponents’ performance. He finds that abler competitors are subject to

more attacks. Amegashie and Runkel (2007) study sabotage in a three-stage

elimination contest between four players. They find one equilibrium where only the

most able contestant engages in sabotage, and one equilibrium without sabotage.

Krakel (2005) assumes that each player in the first stage chooses help, sabotage, or

no action, and in the second stage chooses effort to win the tournament, which

causes a variety of equilibria. See Chowdhury and Gürtler (2015) for a survey.

Multiple efforts, i.e. production and appropriation, are also present in the conflict

models by Hirshleifer (1995), Skaperdas and Syropoulos (1997), and Hausken

(2005), but contest success depends only on appropriation.

Chowdhury and Sheremeta (2015) propose a procedure to identify strategically

equivalent contests which generate the same equilibrium efforts but different

equilibrium payoffs. That procedure may potentially be used to compare the

equilibrium efforts in this article with efforts in other contests to identify

strategically equivalent contests.

Section 2 presents the model assuming multiple additive efforts. Section 3 solves

the model generally and presents the structure of the solutions. Section 4 analyzes

the model when all contest intensities except maximum one are less than one.

Section 5 analyzes the model when all contest intensities are equal to or larger than

one. Section 6 compares results of when rent dissipation, efforts and expected

utilities increase or decrease. Section 7 concludes.

2 The model

The nomenclature is shown in ‘‘Appendix A’’. This article analyzes the simulta-

neous interaction between players 1 and 2 in a one-period game. Define xi ¼
xi1; . . .; xiKi
ð Þ as the vector of player i’s Ki efforts, x ¼ x1; x2ð Þ as the vector of the

two players’
P2

i¼1 Ki efforts, x�i as the vector of player j’s Kj efforts,

i; j ¼ 1; 2; i 6¼ j, and x�ik as the vector of the two players’
P2

i¼1

Ki

� �

� 1 efforts

aside from player i’s effort k 2 1; . . .;Kif g. Player i 2 1; 2f g exerts Ki efforts xik,

k 2 1; . . .;Kif g at unit cost cik [ 0 to increase its probability pi ¼ pi x1; x2ð Þ of

winning a rent with value S� 0. A risk neutral player i’s winning probability pi can

also be interpreted as the fraction of the rent earned by player i if the rent is

sharable. Player i’s Constant Elasticity of Substitution production (impact) function

is
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fi xið Þ ¼
XKi

k¼1

dikxmik

ik ; ð1Þ

where dik [ 0 is a proportional scaling parameter for impact, and mik � 0 is player

i’s contest intensity or decisiveness which scales as an exponent the impact of each

effort xik. This model is chosen since it is sufficiently flexible and encompassing to

enable each player i to incur a different cost cik for each effort xik, where each effort

xik has a different impact dik, with a different contest intensity mik, on player i’s
probability pi of winning the rent S, k ¼ 1; 2; . . .;Ki. When mik ¼ 0, the effort has

no impact. When 0\mik\1, the effort has less than proportional impact. When

mik ¼ 1, the effort has proportional impact. When mik [ 1, the effort has more than

proportional impact. Each type of effort xik is characterized by the vector (cik, dik,

mik), i.e. the unit effort cost cik, the proportional scaling parameter dik for impact,

and the contest intensity mik. Applying the ratio-form contest success function

(Skaperdas 1996) pi ¼ pi x1; x2ð Þ for player i’s winning probability, and inserting

(1), player i’s expected utility is

ui ¼ ui x1; x2ð Þ ¼ pi x1; x2ð ÞS �
XKi

k¼1

cikxik

¼

S
PKi

k¼1 dikxmik

ik
PKi

k¼1 dikxmik

ik þ
PKj

k¼1 djkx
mjk

jk

�
XKi

k¼1

cikxik if x1k 2 R1
þþor x2k 2 R1

þþ

S

2
if x ¼ 0; 0ð Þ

8
>>><

>>>:

ð2Þ

Equation (2) states that if player i exerts at least one strictly positive effort, then

its winning probability is strictly positive regardless of its other efforts and the other

player’s efforts. This contrasts with Arbatskaya and Mialon’s (2010) model of

multiplicative efforts where mik ¼ dik ¼ 1. First, they require that all the Ki efforts

by at least one player have to be strictly positive in order for its winning probability

to be strictly positive regardless of the other player’s efforts. Technically, they

require all player i’s Ki efforts to be strictly positive, giving xi 2 RKi
þ nRKi

þþ which is

a collection of coordinate hyperplanes (in the positive orthant), whereas we require

at least one of player i’s Ki efforts to be strictly positive, which gives the singleton

xik 2 R1
þnR1

þþ ¼ 0f g.
Second, Arbatskaya and Mialon (2010) do not require all winning probabilities to

sum to one, whereas we do so that the entire prize S gets allocated under all

circumstances. Thus, (2) states that if player i exerts at least one strictly positive

effort, while all efforts by the other player equal zero, then player i’s winning

probability is one, and the other player’s winning probability is zero. Accordingly, if

player i exerts no efforts, and the other player exerts at least one strictly positive

effort, then player i’s winning probability is zero. If both players withdraw from

exerting effort, then their winning probabilities are equal and sum to one. Rent

dissipation is defined as
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D ¼ 1

S

X2

i¼1

XKi

k¼1

cikxik: ð3Þ

3 Solving the model

3.1 The first-order conditions

This solution involves determining Nash equilibria (Nash 1951), from which no

player has an incentive to deviate unilaterally.1 A Nash equilibrium is a combination

of strategies x�1; x
�
2

� �
such that2

u1 x�1; x
�
2

� �
� u1 x1; x

�
2

� �
8 x1;

u2 x�1; x
�
2

� �
� u2 x�1; x2

� �
8x2:

ð4Þ

Differentiating (2), the first-order condition if mik 6¼ 0 and dik 6¼ 0 is

oui

oxik
¼

Smikdikxmik�1
ik

PKj

k¼1 djkx
mjk

jk

PKi

k¼1 dikxmik

ik þ
PKj

k¼1 djkx
mjk

jk

� �2 � cik ¼ 0

,
S
PKj

k¼1 djkx
mjk

jk

PKi

k¼1 dikxmik

ik þ
PKj

k¼1 djkx
mjk

jk

� �2 ¼
cik

mikdikxmik�1
ik

; i; j ¼ 1; 2; i 6¼ j:

ð5Þ

If dik ¼ 0, effort xik has no impact on fi xið Þ in (1), causing the corner solution

xik ¼ 0. Inserting mik ¼ 0 into (5) gives oui

oxik
¼ �cik\0, which also causes xik ¼ 0.

3.2 The structure of the solutions

Section 4 determines the general solution when 0�mi1 � 1 and 0�mik\1

8 k ¼ 2; . . .;Ki, i ¼ 1; 2, where player i’s production
PKi

k¼1 dikxmik

ik is concave in

effort xik, or linear in xi1 when mi1 ¼ 1. Hence, player i generally exerts more than

one effort since the marginal benefit of effort decreases when effort xik increases.

1 If miq ¼ mik and diq ¼ dik for at least one q; k ¼ 1; . . .;Ki; q 6¼ k; then at least one other effort, xiq; has
the same contest intensity and impact as xik: To avoid redundant efforts, the least costly of these efforts is

retained. That is, if cik � ciq, effort xiq is removed, efforts xi;qþ1; . . .; xiKi
are relabeled as efforts

xiq; . . .; xi;Ki�1, and Ki is decreased by 1. Conversely, if cik [ ciq; effort xik is removed, efforts

xi;kþ1; . . .; xiKi
are relabeled as efforts xik; . . .; xi;Ki�1, and Ki is decreased by 1. This procedure is repeated

until the occurrence miq ¼ mik and diq ¼ dik does not occur, miq 6¼ mik; q; k ¼ 1; . . .;Ki; q 6¼ k.
2 Although each player i has Ki available efforts, it may not be optimal to employ all efforts. All
PKi

Zi¼1

Ki

Zi

� �

combinations of player i’s Ki efforts xi1; . . .; xiKi
should be assessed, matched against all

PKj

Zj¼1

Kj

Zj

� �

combinations of player j’s Kj efforts xj1; . . .; xjKj
; i; j ¼ 1; 2; i 6¼ j. For example, Ki ¼ 4 gives

15 combinations for player i and Ki ¼ 5 gives 31 combinations for player i.
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Section 5 determines the general solution when mik � 1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2,

where player i’s production
PKi

k¼1 dikxmik

ik is convex or linear in effort xik. Convex

production causes player i to exert only one effort since the marginal benefit of

effort increases when effort xik increases. Linear production,

mik ¼ 1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2, also causes player i to exert only one effort, as

shown by Hausken (2020). When player i’s production
PKi

k¼1 dikxmik

ik is concave in

effort xik, while player j’s production
PKj

k¼1 djkx
mjk

jk is convex in effort xjk, then player

i generally exerts multiple efforts, while player j exerts one effort. When 0�mik � 1

for k ¼ 1; . . .;Kiq\Ki, while mik [ 1 for k ¼ Kiq þ 1; . . .;Ki, for player i, more

specialized analyses are required. ‘‘Appendix B’’ determines the solution when

Ki ¼ Kj ¼ 1.

4 Solution when 0£mi1 £1 and £mik < 1 8k = 2,. . .,Ki, i = 1,2

Section 4.1 provides the general solution. Section 4.5 assumes equal contest

intensities across efforts, mik ¼ mi, k ¼ 1; 2; . . .;Ki; and thereafter also across

players, mik ¼ m, k ¼ 1; 2; . . .;Ki. Section 4.2 assumes Ki efforts against Kj efforts.

Section 4.3 assumes one effort against Kj efforts. Corner solutions are presented in

Appendices. Section 4.4 considers an example.

4.1 General solution

When 0�mi1 � 1 and 0�mik\1 8 k ¼ 2; . . .;Ki, i ¼ 1; 2, player i’s production
PKi

k¼1 dikxmik

ik across its Ki efforts is concave in each effort xik, or linear in xi1 when

mi1 ¼ 1. Hence, player i’s marginal benefit from increasing its effort xik decreases.

‘‘Appendix C’’ shows that the stationary point is a global maximum. Equation (5)

allows expressing all efforts for each player as functions of one effort for that

player. Without loss of generality, we choose that one effort to be xi1 for player i,
and thus, we also assume di1 [ 0 so that xi1 has impact, i ¼ 1; 2. Solving (5) gives

cik=dik

mikxmik�1
ik

¼ ci1=di1

mi1xmi1�1
i1

, xik ¼ x
1�mi1
1�mik

i1

mikci1=di1

mi1cik=dik

� � 1
1�mik

; k ¼ 2; . . .;Ki ð6Þ

Inserting (6) into (5) and solving gives

xmi1

i1 ¼
Scj1m2

i1di1mj1dj1x
1�mj1

j1

mj1ci1dj1x
1�mi1

i1 þ mi1cj1di1x
1�mj1

j1

� �2 �
XKi

k¼2

dik

di1
x

mikð1�mi1Þ
1�mik

i1

mikci1=di1

mi1cik=dik

� � mik
1�mik

; ð7Þ

which are two equations with two unknowns xi1 and xj1. Although (6) and (7) are

numerically solvable, they are not analytically solvable for all mik.

Explanation 1 Assume that 0�mik � 1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2. When solving (6)

and (7) gives xik [ 0 8 k ¼ 1; . . .;Ki, an interior equilibrium solution is determined

by (6) and (7). The players’ expected utility ui, i ¼ 1; 2, and rent dissipation D
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follow from inserting (6) and (7) into (2) and (3). The corner solution is presented in

‘‘Appendix D’’.

Proof Follows from (2), (3), (5)–(7), and ‘‘Appendix C’’. h

4.2 Ki efforts against Kj efforts when mi1 = 1,i,j = 1,2, i „ j

Although (6) and (7) are numerically solvable, two simple assumptions enable

analytical solution. First, we assume the common choice of contest intensity one for

one of the efforts, without loss of generality effort xi1, i.e. mi1 ¼ 1. Second, to avoid

division with zero, we exclude mik ¼ 0 and mik ¼ 1 for the other efforts. This still

enables mik to be arbitrarily close to 0 or 1. This gives

Assumption 1 mi1 ¼ 1, 0�mik\1; k ¼ 2; . . .;Ki, i ¼ 1; 2.

Inserting mi1 ¼ 1 into (6) and (7) gives the efforts

xi1 ¼
S ci1=di1

cj1=dj1

ci1 1þ ci1=di1

cj1=dj1

� �2 �
XKi

k¼2

dik

di1

mikci1=di1

cik=dik

� � mik
1�mik

;

xik ¼
mikci1=di1

cik=dik

� � 1
1�mik

; k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j;

ð8Þ

which are inserted into (2) and (3) to yield player i’s expected utility

ui ¼
S

1þ ci1=di1

cj1=dj1

� �2 þ
XKi

k¼2

cik
1

mik
� 1

� �
mikci1=di1

cik=dik

� � 1
1�mik

; ð9Þ

and rent dissipation

D ¼ 1

S

X2

i¼1

S ci1=di1

cj1=dj1

1þ ci1=di1

cj1=dj1

� �2 �
XKi

k¼2

cik
1

mik
� 1

� �
mikci1=di1

cik=dik

� � 1
1�mik

0

B
@

1

C
A: ð10Þ

Equation (8) for xi1 shows one positive term consisting of the characteristics ci1,

cj1, di1, dj1 of the first efforts in the contest between players i and j, and one negative

term consisting of the characteristics of all the other efforts of player i. This

subtraction illustrates how player i cuts back on effort xi1 if it can more cost

effectively utilize its other efforts. However, the subtraction cannot cause negative

effort xi1. This gives

Assumption 2 xi1 [ 0 ,
S

ci1=di1
cj1=dj1

ci1 1þci1=di1
cj1=dj1

� �2 [
PKi

k¼2

dik

di1

mikci1=di1

cik=dik

� � mik
1�mik ; i; j ¼ 1; 2; i 6¼ j.

Summing up, Assumption 1 assumes that player i’s effort xi1, i ¼ 1; 2, has contest
intensity mi1 ¼ 1, and that player i’s Ki � 1 other efforts xik have contest intensities
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mik weakly above zero and strongly below one. Assumption 2 assumes that an

interior solution exists, by requiring player i’s effort xi1 to be positive, i.e. xi1 [ 0.

We next apply Assumptions 1 and 2 in Explanation 2 and in several propositions

and lemmas.

Explanation 2 WhenAssumptions 1 and 2 are satisfied, an interior equilibrium solution

is determined by (8). The players’ expected utility ui, i ¼ 1; 2, and rent dissipation D are

determined by (9) and (10). The corner solution is presented in ‘‘Appendix E’’.

Proof Follows from (8)–(10), ‘‘Appendix C’’. Assumption 2 ensures xi1 [ 0. h

Proposition 1 When Assumptions 1 and 2 are satisfied, then
oxi1

oKi
\0; oxi1

oci1
\0; oxi1

ocik
[ 0; oxi1

odik
\0; oxi1

oS [ 0; oxi1

odjk
¼ oxi1

ocjk
¼ oxi1

omjk
¼ 0, k ¼ 2; . . .;Ki; i; j ¼

1; 2; i 6¼ j.

Proof Appendix F.

Proposition 1 states that player i’s effort xi1 decreases as the number Ki of efforts

increases. Increasing the dimensionality of Ki in Propositions 1, 2, 4, 5 means that

the counting parameter k in the summation increases. Thus, the conditions on the

parameters involving k are automatically preserved for successively higher k.
Additional available efforts xik enable player i to optimally and thus, cost effectively

choose among these additional efforts, and thus cut back on the extent to which the

effort xi1 is utilized. But limits exist. Equation (8) shows that xi1 can decrease

towards a corner solution xi1 ¼ 0 as considered in ‘‘Appendix E’’. Player i’s effort
xi1 decreases, eventually reaching xi1 ¼ 0, when its unit cost ci1 increases, or the

impact dik of player i’s other efforts xik increases. Conversely, xi1 increases when the

rent S or the unit costs cik of player i’s other efforts xik increases. Furthermore, xi1 is

independent of djk, cjk, and mjk. ‘‘Appendix F’’ presents all the derivatives.

Proposition 2 When Assumptions 1 and 2 are satisfied, then
oxik

oKi
¼ 0; oxik

ocik
\0,oxik

odik
[ 0,oxik

oci1
[ 0; oxik

odi1
\0, oxik

odj1
¼ oxik

odjk
¼ oxik

ocj1
¼ oxik

ocjk
¼ oxik

omjk
¼ oxik

oS ¼ 0,

k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j.

Proof Appendix F.

Proposition 2 shows that player i’s effort xik increases in its impact dik and unit

cost ci1, and decreases in its unit cost cik and impact di1. That xi1 decreases in Ki

(Proposition 1) follows since the marginal return of additional efforts xik is high at

low effort levels. These additional efforts will be used until a constant return on xi1

is reached. Any further effort exertion would require an increase in xi1. Furthermore,

xik is independent of dj1, djk, cj1, cjk, mjk, and S. Whereas xi1 decreases in Ki and xik

is independent of Ki, Arbatskaya and Mialon (2010) find that adding additional

efforts decreases the effort amounts for the efforts already in play if the added

efforts unbalance the contest, i.e. makes one player sufficiently stronger or more

advantaged. However, Epstein and Hefeker (2003) find that if both players use their

second efforts, they will invest less in their first efforts, which is more in accordance

with our finding.
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Definition Two efforts xik and xiq, i ¼ 1; 2, k; q ¼ 1; . . .;Ki, k 6¼ q, are substitutes

for each other if exerting more (less) of effort xik decreases (increases) the need for

effort xiq. The two efforts xik and xiq are complements for each other if exerting

more of effort xik increases the need for effort xiq.

Proposition 3 The efforts xik and xi1,k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j, can be substi-

tutes due to variation in the parameter a when oxik

oa [ 0 and oxi1

oa \0, or oxik

oa \0 and
oxi1

oa [ 0; can be complements due to variation in the parameter a when oxik

oa [ 0 and
oxi1

oa [ 0, or oxik

oa \0 and oxi1

oa \0; and otherwise can be neither substitutes nor

complements, where a ¼ ci1; cj1; di1; dj1; cik; cjk; dik; djk, mik;mjk, Ki;Kj; S:

Proof Whether xik and xi1 in Proposition 3 are substitutes, complements, or neither

substitutes nor complements, follows from the signs of the derivatives in ‘‘Appendix F’’.

The opposite signs oxik

oci1
[ 0 and oxi1

oci1
\0, opposite signs oxik

odik
[ 0 and oxi1

odik
\0, and opposite

signs oxik

ocik
\0 and oxi1

ocik
[ 0, imply that xik and xi1 can be substitutes for each other.Whereas

oxik

ocj1
¼ oxik

odj1
¼ 0, oxi1

ocj1
[ 0 and oxi1

odj1
\0 if ci1

cj1
[ di1

dj1
. Hence, changing cj1 and dj1 may increase

or decrease xi1 while xik remains unchanged. Hence, xik and xi1 may be neither

complements nor substitutes for each other. Whereas oxik

odi1
\0, (45) in ‘‘Appendix F’’

specifies the parameter valueswhen oxi1

odi1
\0which causes xik and xi1 to be substitutes, and

when oxi1

odi1
[ 0 which causes xik and xi1 to be complements. ‘‘AppendixG’’ exemplifies.h

Proposition 4 When Assumptions 1 and 2 are satisfied, then oui

oKi
[ 0,

oui

ocik
\0; oui

odik
[ 0; oui

oS [ 0, oui

odjk
¼ oui

ocjk
¼ oui

omjk
¼ 0; k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix F.

Proposition 4 shows that player i’s expected utility ui increases in the number Ki of

available efforts due to increased cost effectiveness. This useful result combined with

Proposition 1means that if a player’ rent seeking is moderately successful by focusing

solely on improved efficiency as its single effort, increased success can be obtained by

adding e.g. lobbying or bribing as a second effort, and cutting back on the first effort.

Further, ui increases in the rent S and the impact dik, and decreases in the unit cost cik.

Proposition 5 When Assumptions 1 and 2 are satisfied, then oD
oKi

\0,
oD
ocik

[ 0; oD
odik

\0; oD
oS [ 0, k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix F.

Proposition 5 shows that rent dissipation D decreases in the number Ki of

available efforts, and the impact dik, since players with more efforts optimize more

cost effectively across efforts. Adding more efforts xik with lower contest intensities

0\mik\1 allows the effort xi1, mi1 ¼ 1, to decrease, which decreases rent

dissipation. This result is reminiscent of the well-known result [e.g. Hausken (2005)

and the references therein] for single-effort rent dissipation which decreases as the

contest intensity decreases. Rent dissipation D increases in the unit effort cost cik,
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and the rent S. Arbatskaya and Mialon (2010) also find that additional efforts

decrease rent dissipation, but only when the contest becomes more unbalanced

(asymmetric), so that one player is advantaged. However, when the contest becomes

more balanced contests, additional efforts tend to increase rent dissipation since

they increase the contest’s discriminatory power defined as the sum of the contest

intensities (equal for both players) across all efforts (both players have equally many

efforts). Their result follows from multiplication of efforts in the contest success

function. They thus find that sufficiently symmetric players prefer to eliminate

additional efforts, but in equilibrium, they utilize the additional efforts.

4.3 One effort Ki = 1 against Kj ‡ 1 efforts when 0£mi1 £ 1
and mj1 = 1,i,j = 1,2,i „ j

Different efforts may require different technologies, kinds of competence, and

training. Some efforts may be unavailable for judicial reasons, because certificates

are lacking, or fees have not been paid. Even if several efforts are available, a player

may prefer one effort to avoid cognitive overload, to ensure simplicty, or due to

various individual preferences. This section assumes that one player has available or

chooses only one effort. Assume Ki ¼ 1 without loss of generality. Thus, player i
chooses one effort xi1. We thus seek replacements for Assumptions 1 and 2 that

enable analytical solution as an alternative to the numerical solutions based on (6)

and (7). We do not require mi1 ¼ 1 for player i’s one and only effort, i.e.

0�mi1 � 1, but we do require mj1 ¼ 1 for player j’s first effort xi1, and furthermore,

0�mjk\1 for player j’s other efforts to avoid division with zero. This gives

Assumption 3 Ki ¼ mj1 ¼ 1; 0�mi1 � 1; 0�mjk\1; k ¼ 2; . . .;Kj, i; j ¼ 1; 2; i 6¼ j.

Hence, Assumption 3 is equivalent to Assumption 1 for player j, whereas for

player i, we simply require 0�mi1 � 1 for its Ki ¼ 1 effort. Inserting mj1 ¼ 1 and

Ki ¼ 1 into (6) and (7) gives

xmi1

i1 ¼
S ci1=di1

mi1cj1=dj1

ci1
x
1�mi1
i1

ci1=di1

mi1cj1=dj1
þ 1

� �2
;

xj1 ¼
S

x
1�mi1
i1

ci1=di1

mi1cj1=dj1

cj1
x
1�mi1
i1

ci1=di1

mi1cj1=dj1
þ 1

� �2
�
XKj

k¼2

djk

dj1

mjkcj1=dj1

cjk=djk

� � mjk
1�mjk

;

xjk ¼
mjkcj1=dj1

cjk=djk

� � 1
1�mjk

; k ¼ 2; . . .;Kj; i; j ¼ 1; 2; i 6¼ j;

ð11Þ

which simplifies to (8) when mi1 ¼ 1.3 Inserting (11) and Ki ¼ mi1 ¼ mj1 ¼ 1 into

(2) and (3) yield

3 When mi1 ¼ 1=2; the first equation in (11) becomes a third order equation in xi1 which impacts xj1.
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ui ¼
S

1þ ci1=di1

cj1=dj1

� �2 ; uj ¼
S ci1=di1

cj1=dj1

� �2

1þ ci1=di1

cj1=dj1

� �2 þ
XKj

k¼2

cjk
1

mjk
� 1

� �
mjkcj1=dj1

cjk=djk

� � 1
1�mjk

;

D ¼
2

ci1=di1

cj1=dj1

1þ ci1=di1

cj1=dj1

� �2 �
1

S

XKj

k¼2

cjk
1

mjk
� 1

� �
mjkcj1=dj1

cjk=djk

� � 1
1�mjk

:

ð12Þ

Just as for (8) causing Assumption 2, (11) for xj1 shows one positive term

consisting of characteristics of the first efforts in the contest between players i and j,
and one negative term consisting of the characteristics of player j’s other efforts.

The subtraction analogously illustrates how player j cuts back on effort xj1 if it can

more cost effectively utilize its other efforts. As in Assumption 2, the subtraction

cannot cause negative xj1. This gives

Assumption 4 xj1 [ 0 ,
S

x
1�mi1
i1

ci1=di1

mi1cj1=dj1

cj1

x
1�mi1
i1

ci1=di1

mi1cj1=dj1
þ1

� �2 [
PKj

k¼2

djk

dj1

mjkcj1=dj1

cjk=djk

� � mjk
1�mjk ; i; j ¼ 1; 2; i 6¼ j.

Summing up, Assumption 3 assumes that player i has only one effort xi1 with a

contest intensity mi1 weakly above zero and weakly below one, that player j’s effort
xj1 has contest intensity mj1 ¼ 1, that player j’s Kj � 1 other efforts xjk have contest

intensities mjk weakly above zero and strongly below one. Assumption 4 assumes

that an interior solution exists, by requiring player j’s effort xj1 to be positive, i.e.

xj1 [ 0. We next apply Assumptions 3 and 4 in Explanation 3 and Proposition 6.

Explanation 3 When Assumptions 3 and 4 are satisfied, an interior equilibrium

solution is determined by (11). When mi1 ¼ 1, i ¼ 1; 2, the players’ expected

utilities ui and uj and rent dissipation D are determined by (12). The corner solution

is presented in ‘‘Appendix H’’.

Proof Follows from (11), (12), ‘‘Appendix C’’. h

Proposition 6 When Assumptions 3 and 4 are satisfied, then
oxi1

oKj
¼ oxi1

ocjk
¼ oxi1

odjk
¼ 0; oxi1

oS [ 0, k ¼ 2; . . .;Kj; i; j ¼ 1; 2; i 6¼ j.

Proof Follows from (11).

Proposition 6 states that player i’s single effort xi1 does not depend on the number

Kj of efforts exerted by player j. Economically, player i, exerting only one effort xi1,

is concerned about the summed up efforts of player j, not how player j chooses

between its various efforts. This follows since player j optimizes cost effectively

across efforts so that Kj does not impact player i.
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4.4 An example: maximum two efforts for each player

This section assumes Ki � 2;mi1 ¼ 1; 0\mi2\1; i ¼ 1; 2: Maximum two efforts for

each player can illustrate an interior solution and a corner solution. Inserting Ki ¼ 2

and xi1 ¼ 0 into (8) and solving with respect to ci2 gives

ci2 ¼ mi2di2
ci1

di1

di2 ci1=di1 þ cj1=dj1

� �2

Scj1=dj1

 !1�mi2
mi2

; i; j ¼ 1; 2; i 6¼ j: ð13Þ

Figure 1 assumes ci1 ¼ cj1 ¼ di1 ¼ dj1 ¼ di2 ¼ dj2 ¼ mi1 ¼ mj1 ¼ 1 and S ¼ 10

and plots ci2 ¼ cj2 as a function of mi2 ¼ mj2 when xi1 ¼ xj1 ¼ 0.

Above and to the left of the convex curve the unit costs ci2 ¼ cj2 of efforts xi2 and

xj2 are sufficiently high, and the contest intensities mi2 ¼ mj2 are sufficiently low,

making it worthwhile for the players to exert the efforts xi1 and xj1 additionally in an

interior solution. Conversely, below and to the right of the convex curve, the corner

solution xi1 ¼ xj1 ¼ 0 applies.

Aside from ci1 which varies, Fig. 2 makes the same assumptions as in Fig. 1, i.e.

cj1 ¼ di1 ¼ dj1 ¼ di2 ¼ dj2 ¼ mi1 ¼ mj1 ¼ 1 and S ¼ 10. Additionally, Fig. 2

assumes ci2 ¼ cj2 ¼ 1 and mi2 ¼ mj2 ¼ 0:5. Figure 2 plots the players’ efforts

xi1; xi2; xj1; xj2; etc. and expected utilities ui; uj, etc. as functions of player i’s unit

cost ci1 of effort xi1.

Player i’s effort xi1 decreases as its unit effort cost ci1 increases (oxi1

oci1
\0 in

Proposition 1) eventually reaching zero when ci1 ¼ 2:09. Player i cannot afford the

high unit effort cost. This gives the corner solution xi1 ¼ 0 when ci1 [ 2:09.

Conversely, player i’s effort xi2 increases as ci1 increases (
oxi2

oci1
[ 0 in Proposition 2).

Player i’s expected utility ui decreases convexly to 2.14 as ci1 increases to 2:09,
while player j’s expected utility uj increases to 4.83. When ci1 is low, to the

advantage of player i, the first term in the expression for player j’s effort xj1 in (8) is

low and cannot compensate for the negative second term. The given parameter

values cause the corner solution xj1 ¼ 0 when ci1\0:06.

Table 1 applies (4) to illustrate Nash equilibrium determination, by presenting a

3� 3 matrix accounting for each player’s three possibilities. That is, player i can
choose two efforts xi1 and xi2 where mi1 ¼ 1 and mi2 ¼ 1=2, one effort xi1 where

mi1 ¼ 1, or one effort xi2 where mi2 ¼ 1=2. Analogously, player j can choose two

efforts xj1 and xj2 where mj1 ¼ 1 and mj2 ¼ 1=2, one effort xj1 where mj1 ¼ 1, or one

effort xj2 where mj2 ¼ 1=2.
oui

oKi
[ 0 and

ouj

oKj
[ 0 in Proposition 4 and (9) in Sect. 4.2 imply that each player

prefers the second effort in addition to the first effort when the first effort has contest

intensity mi1 ¼ mj1 ¼ 1. Thus, ui [ ui1s and uj [ uj1s in Fig. 2. Each player’s

second effort as a single effort is not covered by Sect. 4.2 since mi2 ¼ 1=2 or

mj2 ¼ 1=2. Player i’s second effort as a single effort against player j exerting both

efforts is expressed as xi2sd shown in the lower left cell in Table 1. The first

subscript s means ‘‘single effort’’ by player i. The second subscript d means ‘‘double

effort’’ by player j. Player i’s second effort as a single effort against player j exerting
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only the first effort is expressed as xi2ss shown in the lower middle cell in Table 1.

Proposition 5 implies xi2sd ¼ xi2ss, and xj2sd ¼ xj2ss which is player j’s second effort

as a single effort against player i exerting both efforts or only the first effort.

An expected utility shown in bold in Table 1 means that this expected utility is

highest for at least one value of ci1. When both expected utilities are in bold within a

given cell in Table 1 for the same value of ci1, then the two expected utilities are

Nash equilibrium expected utilities as defined in (4).

For the intermediate range 0:44� ci1 � 1:55 in Fig. 2, ui; uj
� �

is the equilibrium

which means that both players choose both efforts. For the upper range

Fig. 1 Regions for the interior solution xi1 ¼ xj1 [ 0 and corner solution xi1 ¼ xj1 ¼ 0 separated by

plotting ci2 ¼ cj2 as a function of mi2 ¼ mj2 according to (13)

Fig. 2 Efforts xi1; xi2; xj1; xj2, etc. and expected utilities ui; uj, etc. as functions of ci1 when

cj1 ¼ ci2 ¼ cj2 ¼ di1 ¼ dj1 ¼ di2 ¼ dj2 ¼ mi1 ¼ mj1 ¼ 1, mi2 ¼ mj2 ¼ 0:5, S ¼ 10
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1:55� ci1 � 2:09, the high unit effort cost ci1 makes effort xi1 too costly for player i
which prefers only the second single effort xi2sd with low contest intensity

mi2 ¼ 1=2. Player j still prefers both efforts causing the equilibrium uisd; ujds
� �

.

Conversely, for the lower range 0:06� ci1 � 0:44, the low unit effort cost ci1 makes

player i advantaged. Player j can no longer compete cost effectively with both

efforts, and settles for the single second effort xj2sd with low contest intensity

mj2 ¼ 1=2. This causes the equilibrium uids; ujsd
� �

.

Between the two dashed vertical lines in Fig. 2, 0:66� ci1 � 1:45, the players

collectively prefer to exert only their second efforts xi2s and xj2s as single efforts

causing ðui2s; uj2sÞ, in the lower right cell in Table 1, which is not an equilibrium.

For it to arise, coordination is needed. Two examples are ‘‘burning one’s bridges in

war’’ (Schelling 1960) or mutually agreeing on low intensity interaction with

mi2 ¼ mj2 ¼ 1=2.

4.5 Equal contest intensities mik =mi and mik =m across efforts and players

‘‘Appendix I’’ shows that inserting equal contest intensities 0�mik ¼ mi\1 across

efforts for player i, i ¼ 1; 2, k ¼ 1; 2; . . .;Ki, into (7) causes one equation with one

unknown xj1 for player j expressed on implicit form, from which xi1 for player i

follows on explicit form. ‘‘Appendix I’’ further shows that inserting the same contest

intensity 0�mik ¼ m\1, k ¼ 1; 2; . . .;Ki, for both players i ¼ 1; 2 across all their

Ki efforts into (6) and (7) causes the explicit form solution

xj1 ¼
Sm

Qm
i

cj1

dj1
1þ ci1=di1

cj1=dj1
Q1�m

i

� �2
Vi

; xi1 ¼ Qixj1;

Qi ¼
Vjcj1=dj1

Vici1=di1
;Vi �

XKi

k¼1

dik
ci1=di1

cik=dik

� � m
1�m

;

Vj �
XKj

k¼1

djk
cj1=dj1

cjk=djk

� � m
1�m

; xik ¼ xi1
ci1=di1

cik=dik

� � 1
1�m

; k ¼ 2; . . .;Ki;

ð14Þ

which is inserted into (2) and (3) to yield player i’s expected utility

Table 1 3� 3 matrix for the players’ efforts xi1; xi2; xj1; xj2; etc: and expected utilities ui; uj, etc

Player j

Kj ¼ 2 Kj ¼ 1, mj1 ¼ 1 Kj ¼ 1, mj2 ¼ 1=2

Player i Ki ¼ 2 xi1; xi2; xj1; xj2; ui; uj xi1; xi2; xj1s;ui; uj1s xi1ds; xi2; xj2sd ;uids;ujsd

Ki ¼ 1, mi1 ¼ 1 xi1s; xj1; xj2; ui1s; uj xi1s; xj1s; ui1s; uj1s xi1ss; xj2ss; ui1ss; uj2ss

Ki ¼ 1, mi2 ¼ 1=2 xi2sd; xj1ds; xj2; uisd; ujds xi2ss; xj1ss; ui2ss; uj1ss xi2s; xj2s; ui2s; uj2s
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ui ¼
S 1þ 1� mð Þ ci1=di1

cj1=dj1
Q1�m

i

� �

1þ ci1=di1

cj1=dj1
Q1�m

i

� �2 ; ð15Þ

and rent dissipation

D ¼ m
X2

i¼1

ci1=di1

cj1=dj1
Q1�m

i

1þ ci1=di1

cj1=dj1
Q1�m

i

� �2 ; i; j ¼ 1; 2; i 6¼ j: ð16Þ

Differentiating (5), player i’s second-order condition if mik 6¼ 0 and dik 6¼ 0 is

o2ui

ox2ik
¼

Smdikxm�2
ik m � 1ð Þ

PKi

k¼1 dikxm
ik þ

PKj

k¼1 djkxm
jk

� �
� 2dikxm

ik

� �PKj

k¼1 djkxm
jk

PKi

k¼1 dikxm
ik þ

PKj

k¼1 djkxm
jk

� �3 ;

ð17Þ

which is satisfied as negative since m\ 1.

Proposition 7 When 0�mik ¼ m\1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2, then
oxi1

oci1
\0; oxi1

ocik
[ 0; oxi1

odik
\0; oxi1

oS [ 0, k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j.

Proof Appendix J.

The four inequalities in Proposition 7 confirm the same inequalities in

Proposition 1, where the contest intensity mik varies across players and efforts.

This emphasizes the robustness of the results.

Proposition 8 When 0�mik ¼ m\1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2, then
oxik

ocik
\0; oxik

oci1
[ 0; oxik

odi1
\0; oxik

oS [ 0, k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j.

Proof Appendix J.

The first three inequalities in Proposition 8 confirm the same inequalities in

Proposition 2. The inequality oxik

odik
[ 0 holds when the condition in (61) in

‘‘Appendix J’’ holds. The inequality oxik

oS [ 0 differs from oxik

oS ¼ 0 in Proposition 2

since mi1 ¼ 1 causes xik to be independent of xi1 in (6) and (8), but not in (14).

Proposition 9 The efforts xik and xi1,k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j, can be substi-

tutes due to variation in the parameter a when oxik

oa [ 0 and oxi1

oa \0, or oxik

oa \0 and
oxi1

oa [ 0; and can be complements due to variation in the parameter a when oxik

oa [ 0

and oxi1

oa [ 0, or oxik

oa \0 and oxi1

oa \0; where a ¼ ci1; cj1; di1; dj1; cik; cjk; dik; djk; S:

Proof Whether xik and xi1 in Proposition 9 are substitutes or complements, follows

from the signs of the derivatives in ‘‘Appendix J’’. The opposite signs oxik

oci1
[ 0 and

oxi1

oci1
\0, opposite signs oxik

odik
[ 0 (when the condition in (61) in ‘‘Appendix J’’ holds)

and oxi1

odik
\0, and opposite signs oxik

ocik
\0 and oxi1

ocik
[ 0, imply that xik and xi1 can be
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substitutes for each other. Whereas oxik

odi1
\0, (60) in ‘‘Appendix J’’ specifies the

parameter values when oxi1

odi1
\0 which causes xik and xi1 to be substitutes, and when

oxi1

odi1
[ 0 which causes xik and xi1 to be complements. h

Proposition 9 confirms the finding in Proposition 3 that the efforts xik and xi1,

k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j; can be substitutes or complements to each other.

Proposition 10 When 0�mik ¼ m\1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2, then oui

oci1
\0,

oui

ocj1
[ 0, oui

ocik
\0, oui

ocjk
[ 0, oui

odi1
[ 0, oui

odj1
\0, oui

odik
[ 0, oui

odjk
\0, oui

oS [ 0;

k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix J.

Proposition 10 confirms the two inequalities oui

ocik
\0 and oui

odik
[ 0 in Proposition 4,

where player i’s expected utility ui increases in the impact dik, and decreases in the

unit cost cik, of effort xik. More generally, in Proposition 10 ui also increases in the

impact di1, and decreases in the unit cost ci1, of effort xi1. Furthermore, and

conversely, player i’s ui decreases in the impacts djk and dj1, and increases in the

unit costs cjk and cj1, of efforts xjk and xj1 for player j. These results follow since ui

in (15), where mik ¼ m\1 8 k, is analytically more straightforward than ui in (9).

4.6 Exemplifying the sensitivity of assuming mi1 = 1 in Sect. 4.2, i,j = 1,2,i „ j

The benchmark contest intensity in the rent seeking literature is mik ¼ 1

8 k ¼ 1; . . .;Ki, i ¼ 1; 2. Generally, players have different contest intensities, and

player i may have different contest intensities for its Ki efforts. Given that player i has
different contest intensities for its Ki efforts, it may be plausible that one of these

efforts is close to one, or can be approximated to be close to one. Without loss of

generality, we assume that mi1 ¼ 1 for player i’s effort xi1, i ¼ 1; 2. To the extent

mi1 ¼ 1 is not plausible, the analytical solution in the previous Sect. 4.5 for equal

contest intensities 0�mik ¼ m\1, which can be much lower than mik ¼ m, can be

used as an approximation. Alternatively, if the contest intensities are larger than one,

i.e. mik � 1; k ¼ 1; . . .;Ki, i ¼ 1; 2, the analytical solution in the next Sect. 5 applies.
Since only mi1 ¼ 1 in Sect. 4.2, while 0�mik\1; 8 k ¼ 2; . . .;Ki, i ¼ 1; 2,

player i exerts more than one effort, in contrast to mik � 1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2,
where player i exerts only one effort, as shown in the next section. To assess the

sensitivity of assuming mi1 ¼ 1 for effort xi1, let us assume mik ¼ m for all the other

efforts xik, 8 k ¼ 2; . . .;Ki, for both players i ¼ 1; 2. Furthermore, to focus solely on

the sensitivity of m, assume that both players have equally many efforts Ki ¼ K, and

the same unit cost cik ¼ c and impact dik ¼ d for all their efforts, 8 k ¼ 1; . . .;Ki,

i ¼ 1; 2. This is assumed since
ci1=di1

cik=dik
has straightforward impact on xik in (8), and

ci1=di1

cik=dik
¼ 1 implies xik ¼ m

1
1�m in (8). Inserting into (8), (9), (10) givesxi1, xik, ui and D

in the middle column in Table 2. As comparison, replacing mi1 ¼ 1 with mi1 ¼ m,

and otherwise inserting the same parameter values mik ¼ m 8 k ¼ 2; . . .;Ki, Ki ¼ K,

cik ¼ c, dik ¼ d, i ¼ 1; 2, into (14), (15), (16) gives the right column in Table 2.
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The right column in Table 2, assuming the same contest intensity m for all the K
efforts for both players, shows how each effort xi1 ¼ xik increases in the contest

intensity m and rent S, and decreases in the number K of efforts and the unit effort

cost c. Furthermore, player i’s expected utility ui decreases in m and increases in S,
while the rent dissipation D increases in m. In contrast, when mi1 ¼ 1 in the middle

column, player i’s effort xi1 increases in the rent S and decreases in the unit cost c

(due to the positive term S
4cÞ, decreases in the number K � 1 of other efforts, and

increases in the contest intensity m for these other efforts (due to the negative term

K � 1ð Þm m
1�m ¼ K�1ð Þ

m xik). That is, higher m causes not only higher effort xik for the

K � 1 other efforts, but also higher effort xi1. This also follows from Lemma 2 in

‘‘Appendix F’’ where oxi1

omik
[ 0 if ln mikð Þ\mik � 1. The right column and middle

column in Table 2 are equivalent when K ¼ mi1 ¼ 1, i.e. xi1 ¼ S
4c, ui ¼ S

4
, D ¼ 1

2
.

Figure 3 plots xi1, xik, ui and D as functions of the contest intensity m when

mi1 ¼ 1 (filled symbols) and mi1 ¼ m (unfilled symbols), mik ¼ m 8 k ¼ 2; . . .;Ki,

Ki ¼ K, cik ¼ c, dik ¼ d, i ¼ 1; 2. The rent is S ¼ 4 and each player’s unit effort

cost is c ¼ 1. Division of the expected utility ui with 4, ui=4, is for scaling purposes.

Panel a assumes K ¼ 2 efforts for each player. When mi1 ¼ 1, as the contest

intensity decreases from m ¼ 1 to m ¼ 0, player i’s first effort xi1 decreases

concavely from xi1 ¼ 0:63 to xi1 ¼ 0, while its second effort xi2 decreases concavely

from xi2 ¼ 0:37 to xi2 ¼ 0. These two efforts when m ¼ 1 sum to

xi1;m¼1 þ xi2;m¼1 ¼ 1, which also is player i’s effort when K ¼ 1. As the contest

intensity decreases from m ¼ 1 to m ¼ 0, player i’s expected utility increases

convexly from ui ¼ 1 to ui ¼ 2, while the rent dissipation decreases concavely from

D ¼ 0:5 to D ¼ 0. When mi1 ¼ mi2 ¼ m, applying the right column in Table 2,

Fig. 3 panel a shows, as the contest intensity decreases from m ¼ 1 to m ¼ 0, that

player i’s two efforts, and the rent dissipation, decrease linearly from xi1 ¼ xi2 ¼
D ¼ 0:5 to xi1 ¼ xi2 ¼ D ¼ 0, while its expected utility increases linearly from

ui ¼ 1 to ui ¼ 2. These two efforts when m ¼ 1 also sum to xi1;m¼1 þ xi2;m¼1 ¼ 1.

Figure 3 panel b increases player i’s number of efforts to K ¼ 3. When mi1 ¼ 1,

that causes the negative term impacting player i’s first effort xi1 in (8) to be higher in

absolute value, so that more is subtracted from S
4c. Hence, xi1 is lower in panel b than

in panel a. As the contest intensity decreases from m ¼ 1 to m ¼ 0:5, player i’s first
effort xi1 decreases concavely from xi1 ¼ 0:26 to xi1 ¼ 0, while its second and third

efforts xi2 ¼ xi3 decrease concavely from xi2 ¼ xi3 ¼ 0:37 to xi2 ¼ xi3 ¼ 0:25,
which xi2 also does in panel a, in accordance with Table 2. These three efforts when

m ¼ 1 also sum to xi1;m¼1 þ xi2;m¼1 þ xi3;m¼1 ¼ 1. As the contest intensity decreases

from m ¼ 1 to m ¼ 0:5, player i’s expected utility increases convexly from ui ¼ 1 to

Table 2 Comparing xi1, xik, ui

and D when mi1 ¼ 1 (middle

column) and mi1 ¼ m (right

column), mik ¼ m
8 k ¼ 2; . . .;Ki, Ki ¼ K, cik ¼ c,
dik ¼ d, i ¼ 1; 2

mi1 ¼ 1 mi1 ¼ m

xi1
S
4c � K � 1ð Þm m

1�m Sm
4Kc

xik; k ¼ 2; . . .;K m
1

1�m
Sm
4Kc

ui S
4
þ K � 1ð Þc 1

m � 1
� �

m
1

1�m
S 2�mð Þ

4

D 1
2
� 2 K�1ð Þc

S
1
m � 1
� �

m
1

1�m
m
2
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ui ¼ 1:5, while the rent dissipation decreases concavely from D ¼ 0:5 to D ¼ 0:25.
As m decreases below m ¼ 0:5, Assumption 2 is no longer satisfied, as xi1 in (8)

would be negative. Hence, a corner solution applies where xi1 ¼ 0, and xi2 and xi3

are determined in a model with K ¼ 2 efforts. Applying the right column in Table 2

for K ¼ 2, these two efforts are xi2 ¼ xi3 ¼ m
2
. Hence, as the contest intensity

decreases from m ¼ 0:5 to m ¼ 0, player i’s second and third efforts xi2 ¼ xi3

decrease linearly from xi2 ¼ xi3 ¼ 0:25 to xi2 ¼ xi3 ¼ 0, while its expected utility

increases linearly from ui ¼ 1:5 to ui ¼ 2, and the rent dissipation decreases linearly

from D ¼ 0:25 to D ¼ 0. When mi1 ¼ mi2 ¼ m, Fig. 3b shows, as the contest

intensity decreases from m ¼ 1 to m ¼ 0, that player i’s three efforts decrease

linearly from xi1 ¼ xi2 ¼ xi3 ¼ 0:33 to xi1 ¼ xi2 ¼ xi3 ¼ 0. As in panel a, player i’s
expected utility increases linearly from ui ¼ 1 to ui ¼ 2, and the rent dissipation

decreases linearly from D ¼ 0:5 to D ¼ 0.

5 Solution when mik ‡ 18k = 1,. . .,Ki, i = 1,2

Section 5.1 provides the general solution. Section 5.2 assumes equal contest

intensities for players i and j.

5.1 General solution

When mik [ 1; k ¼ 1; . . .;Ki, i ¼ 1; 2, player i’s production
PKi

k¼1 dikxmik

ik across its

Ki efforts is convex in each effort xik. Since the marginal utility thus increases in

each effort xik, higher effort xik for each k has higher impact on player i’s probability
pi of winning the rent S. Hence, player i will choose one positive effort xij ið Þ [ 0,

j ið Þ ¼ 1; . . .;Ki, where the impact on winning the rent S is highest, and choose zero

effort for all the other Ki efforts, i.e. xik ¼ 0 for k 6¼ j ið Þ, k ¼ 1; . . .;Ki, which also

can be written as k ¼ 1; . . .; j ið Þ � 1; j ið Þ þ 1; . . .;Ki Define j ið Þ, j ið Þ ¼ 1; . . .;Ki,

as the one effort player i chooses to exert. The j ið Þ is chosen so that

jðiÞ ¼ argmaxjðiÞ¼1;...;Ki
di1x

mi1

i1 ; di2x
mi2

i2 ; . . .; diKi
x

miKi
iKi

� �
, which depends on cik,

dik,mik, and the other parameters. Hence,
PKi

k¼1 dikxmik

ik simplifies to
PKi

k¼1 dikxmik

ik ¼ dij ið Þx
mij ið Þ
ij ið Þ , which is inserted into (5) to yield the two first-order

conditions

Fig. 3 xi1, xik , ui and D when mi1 ¼ 1 (filled symbols) and mi1 ¼ m (unfilled symbols), mik ¼ m
8 k ¼ 2; . . .;Ki, Ki ¼ K, cik ¼ c, dik ¼ d, i ¼ 1; 2, S ¼ 4, c ¼ 1. Panel a K ¼ 2. Panel b K ¼ 3
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Sdjj jð Þx
mjj jð Þ
jj jð Þ

dij ið Þx
mij ið Þ
ij ið Þ þ djj jð Þx

mjj jð Þ
jj jð Þ

� �2 ¼
cij ið Þ

mij ið Þdij ið Þx
mij ið Þ�1

ij ið Þ

;

Sdij ið Þx
mij ið Þ
ij ið Þ

dij ið Þx
mij ið Þ
ij ið Þ þ djj jð Þx

mjj jð Þ
jj jð Þ

� �2 ¼
cjj jð Þ

mjj jð Þdjj jð Þx
mjj jð Þ�1

jj jð Þ

;

ð18Þ

for the two players i and j. Solving (18) gives

xij ið Þ ¼
mij ið Þcjj jð Þ
mjj jð Þcij ið Þ

xjj jð Þ;

x
1þmjj jð Þ�mij ið Þ
jj jð Þ ¼

Smij ið Þ
mjj jð Þcij ið Þ
mij ið Þcjj jð Þ

� �mij ið Þþ1djj jð Þ
dij ið Þ

cij ið Þ x
mij ið Þ�mjj jð Þ
jj jð Þ þ mjj jð Þcij ið Þ

mij ið Þcjj jð Þ

� �mij ið Þdjj jð Þ
dij ið Þ

� �2 ;

xik ¼ 0 for k 6¼ j ið Þ; k ¼ 1; . . .;Ki; xjk ¼ 0 for k 6¼ j jð Þ; k ¼ 1; . . .;Kj;

ð19Þ

where xij ið Þ appears on explicit form as a function of xjj jð Þ, and xjj jð Þ appears on

implicit form. To identify the optimal effort xjj jð Þ, player j determines its xjj jð Þ
numerically for all the Kj efforts, and uses

j jð Þ ¼ argmaxj jð Þ¼1;...;Kj
dj1x

mj1

j1 ; dj2x
mj2

j2 ; . . .; djKj
x

mjKj

jKj

� �
. Analogously, player i uses

(19) to determine its xij ið Þ numerically for all the Ki efforts, and uses

j ið Þ ¼ argmaxj ið Þ¼1;...;Ki
di1x

mi1

i1 ; di2x
mi2

i2 ; . . .; diKi
x

miKi
iKi

� �
.

5.2 Equal contest intensities for players i and j

Let us illustrate for equal contest intensities mij ið Þ ¼ mjj jð Þ for players i and j, which

enables expressing xjj jð Þ in (19) on explicit form, i.e.

xij ið Þ ¼
cjj jð Þ
cij ið Þ

xjj jð Þ; xjj jð Þ ¼
Smjj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

cjj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �2
;

xik ¼ 0 for k 6¼ j ið Þ; k ¼ 1; . . .;Ki; xjk ¼ 0 for k 6¼ j jð Þ; k ¼ 1; . . .;Kj:

ð20Þ

Inserting (20) into (2) and (3), player i’s expected utility is

ui ¼
S 1þ 1� mjj jð Þ

� � c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �2
; ð21Þ

and the rent dissipation is
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D ¼
2mjj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �2
: ð22Þ

Differentiating (5) and inserting (20), player i’s second-order condition if mik 6¼ 0

and dik 6¼ 0 is

o2ui

ox2ij ið Þ
¼ �

Smjj jð Þ
c

mjj jð Þþ2

ij ið Þ =dij ið Þ

c
mjj jð Þþ2

jj jð Þ =djj jð Þ
1þ mjj jð Þ þ 1� mjj jð Þ

� � c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

x2jj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
: ð23Þ

Requiring that player i’s expected utility in (21) is positive, ui � 0, and that player

i’s second-order condition in (23) is negative, o
2ui

ox2
ik

� 0, imply that the solution in (20)

is valid when Assumption 5 is satisfied.

Assumption 5

mij ið Þ ¼ mjj jð Þ � 1;

1þ 1� mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� 0;

1þ mjj jð Þ þ 1� mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� 0;

j ið Þ ¼ argmax
j ið Þ¼1;...;Ki

di1xmi1

i1 ; di2xmi2

i2 ; . . .; diKi
x

miKi
iKi

� �
;

j jð Þ ¼ argmax
j jð Þ¼1;...;Kj

dj1x
mj1

j1 ; dj2x
mj2

j2 ; . . .; djKj
x

mjKj

jKj

� �
; i; j ¼ 1; 2; i 6¼ j:

The solution in (20), (21), (22), which applies when the three inequalities in

Assumption 5 are satisfied, is equivalent to the solution in ‘‘Appendix B’’ for one

effort Ki ¼ 1 by player i against one effort Kj ¼ 1 by player j, i; j ¼ 1; 2; i 6¼ j. The
two differences are that in ‘‘Appendix B’’, each player i has only one available

effort, Ki ¼ 1, i ¼ 1; 2, and mi1 ¼ mj1 � 1 is not required.

When mij ið Þ ¼ mjj jð Þ ¼ 1, Eqs. (20), (21), (22) are equivalent to Hausken’s

(2020) Eqs. (6), (7), (10), respectively. Then the requirement j ið Þ ¼
argmaxj ið Þ¼1;...;Ki

di1xmi1

i1 ; di2xmi2

i2 ; . . .; diKi
x

miKi
iKi

� �
simplifies to

dij ið Þ=cij ið Þ ¼ maxi¼1;...;Ki
di1=ci1; di2=ci2; . . .; diKi

=ciKi
ð Þ, which is equivalent to
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Hausken’s (2020) Eq. (9), which identifies the one optimal effort xij ið Þ player i

exerts when mij ið Þ ¼ mjj jð Þ ¼ 1.

Proposition 11 Assume that Assumption 5 is satisfied. oxij ið Þ=o c
mjj jð Þ
ij ið Þ =dij ið Þ

� �
\0,

oui=o c
mjj jð Þ
ij ið Þ =dij ið Þ

� �
\0. If cij ið Þ=dij ið Þ [ cjj jð Þ=djj jð Þ, then oxij ið Þ=o c

mjj jð Þ
jj jð Þ =djj jð Þ

� �

[ 0 and oui=o c
mjj jð Þ
jj jð Þ =djj jð Þ

� �
[ 0, and oD=o c

mjj jð Þ
ij ið Þ =dij ið Þ

� �
\0, i; j ¼ 1; 2; i 6¼ j.

Proof Hausken’s (2020) Appendix A.

Proposition 11 states that player i’s effort xij ið Þ and expected utility ui decrease as

player i becomes disadvantaged with a higher ratio cij ið Þ=dij ið Þ of unit effort cost

divided by the scaling parameter dij ið Þ for player i’s impact on the contest with

player j. Player i’s effort xij ið Þ thus becomes less worthwhile, and it earns lower

expected utility ui. Furthermore, if player i is disadvantaged with a higher unit cost

to impact ratio cij ið Þ=dij ið Þ [ cjj jð Þ=djj jð Þ than player j, then its effort xij ið Þ and

expected utility ui increase in player j’s ratio c
mjj jð Þ
jj jð Þ =djj jð Þ. Being disadvantaged

induces player i to exert higher effort xij ið Þ, causing higher expected utility ui.

Finally, if player i is disadvantaged with high ratio cij ið Þ=dij ið Þ [ cjj jð Þ=djj jð Þ, then

the rent dissipation D decreases in player i’s ratio c
mjj jð Þ
ij ið Þ =dij ið Þ. That follows since the

players then become more unequally matched, expressed with player i’s ratio

c
mjj jð Þ
ij ið Þ =dij ið Þ becoming more different from player j’s ratio c

mjj jð Þ
jj jð Þ =djj jð Þ. That insight is

expanded upon in Proposition 12.

Proposition 12 Assume that Assumption 5 is satisfied. Rent dissipation is

maximum, i.e. D ¼ mjj jð Þ
2
, when the players have equal ratios cij ið Þ=dij ið Þ ¼

cjj jð Þ=djj jð Þ of unit cost cij ið Þ divided by impact dij ið Þ, and minimum, i.e. D ¼ 0, in

two extreme circumstances. The first is that player i is maximally advantaged

expressed as cij ið Þ ¼ 0 causing lim
cij ið Þ!0

xij ið Þ ¼ S
dij ið Þcjj jð Þ=djj jð Þ

when mjj jð Þ ¼ 1 and

lim
cij ið Þ!0

xij ið Þ ¼ 0 when mjj jð Þ [ 1. The second is that player i is maximally

disadvantaged expressed as cij ið Þ ¼ 1 causing lim
cij ið Þ!1

xij ið Þ ¼ 0.

Proof Straightforward generalization of Hausken’s (2020) Proposition 4 from

mjj jð Þ ¼ 1 to mjj jð Þ � 1. The positive limit value is determined using L’Hopital’s

rule.

Proposition 12 specifies maximum rent dissipation D ¼ mjj jð Þ
2

when the players are

equally matched with equal unit cost to impact ratios cij ið Þ=dij ið Þ ¼ cjj jð Þ=djj jð Þ. Then

they fight or compete especially fiercely, and even more fiercely as the contest

intensity mjj jð Þ increases. That insight is expanded upon in Proposition 13.
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Proposition 13 Assume that Assumption 5 is satisfied. oD
omjj jð Þ

[ 0 and
oxij ið Þ
omjj jð Þ

[ 0

when f
cij ið Þ
cjj jð Þ

� �
¼ 1þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

þ 1�
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

Ln
c

mjj jð Þ
ij ið Þ

c
mjj jð Þ
jj jð Þ

� �

[ 0, and oui

omjj jð Þ
\0

when g
cij ið Þ
cjj jð Þ

� �
¼

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

Ln
c

mjj jð Þ�1

ij ið Þ

c
mjj jð Þ�1

jj jð Þ

 !

� 1

 !

þ Ln
c

mjj jð Þþ1

ij ið Þ

c
mjj jð Þþ1

jj jð Þ

 !

� 1\0, where

f 0ð Þ ¼ lim
cij ið Þ=cjj jð Þ!1

f
cij ið Þ
cjj jð Þ

� �
¼ g 0ð Þ ¼ �1, f 1ð Þ ¼ 1þ djj jð Þ

dij ið Þ
, g 1ð Þ ¼ �2, and

g
cij ið Þ
cjj jð Þ

� �
\0 , mjj jð Þ [Max 1; 1

Ln
cij ið Þ
cjj jð Þ

� �þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

�1

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

þ1

0

B
B
B
@

1

C
C
C
A
:

Proof Appendix K.

Proposition 13 states that rent dissipation D and player i’s effort xij ið Þ increase

when the contest intensity mjj jð Þ increases, provided that player i is neither too

advantaged expressed with low
cij ið Þ
cjj jð Þ

, nor too disadvantaged expressed with high
cij ið Þ
cjj jð Þ

.

In particular, for equally matched players expressed as cij ið Þ=dij ið Þ ¼ cjj jð Þ=djj jð Þ and

dij ið Þ ¼ djj jð Þ, both rent dissipation D and player i’s effort xij ið Þ increase in mjj jð Þ.

Mathematically, f
cij ið Þ
cjj jð Þ

� �
is inverse U shaped in

cij ið Þ
cjj jð Þ

, and negative when
cij ið Þ
cjj jð Þ

is low or

high.

Player i’s expected utility ui decreases when the contest intensity mjj jð Þ increases,

with one exception expressed in the last inequality in Proposition 13. First, player i

must be sufficiently disadvantaged expressed as cij ið Þ [ cjj jð Þ so that Ln
cij ið Þ
cjj jð Þ

� �
[ 0.

Second, mjj jð Þ must be low (though mjj jð Þ � 1) so that the last inequality in

Proposition 13 is not satisfied. As mjj jð Þ increases above this low value, even a

disadvantaged player i’s expected utility ui decreases in mjj jð Þ.

Fig. 4 Parameter values mik ¼ mjk ¼ 1
2
; ci1 ¼ cj1 ¼ dj1 ¼ cik ¼ cjk ¼ dik ¼ djk ¼ 1, S ¼ 4;Ki ¼ 2. Panel

a xi1, xik, ui, and D as functions of di1. Division of ui with 4 is for scaling purposes. Panel b xi1 as a
function of xik
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6 Comparing results of when rent dissipation, efforts and expected
utilities increase or decrease

Conflicting results exist in the literature for when rent dissipation increases or

decreases, which depends on how players exert efforts. Two influential factors are

whether the contest is of the Cobb–Douglas type or not, and whether the contest is

or becomes more balanced (symmetric) or unbalanced (asymmetric, i.e. one player

is sufficiently stronger or more advantaged than the other player).

Arbatskaya and Mialon (2010) assume the Cobb–Douglas type contest. They find

that when adding efforts (activities, arms) to a contest which makes the overall

contest more (less) balanced, then rent dissipation increases (decreases), expected

utilities decrease (increase), and the current efforts increase (decrease). These

results differ from the current article where adding efforts, when mi1 ¼ 1,

0�mik\1; k ¼ 2; . . .;Ki, i ¼ 1; 2, causes rent dissipation and current efforts to

decrease, so that the players earn higher expected utilities, regardless of whether the

added efforts cause the overall contest to be more or less balanced. The two articles

give the same result only when adding efforts makes the overall contest less

balanced, i.e. more asymmetric. But making a contest more asymmetric can be

expected to cause similar results for a variety of different models since the

advantaged player can be expected to withdraw effort due to superiority (i.e.

strength), while the disadvantaged player can be expected to withdraw effort due to

inferiority (i.e. weakness), thus intuitively causing less rent dissipation and higher

expected utilities. The main reason for the different results when adding efforts

makes the contest more balanced or symmetric is that Cobb–Douglas type

multiplicative efforts require each effort to be strictly positive to ensure success. For

example, for the multiplicative approach the products 0� 10 ¼ 0, 1� 9 ¼ 9,

5� 5 ¼ 25, 9� 1 ¼ 9, 10� 0 ¼ 0 illustrate that multiplying the equally large

numbers 5 and 5 gives the highest product 25. Thus, in symmetric contests, the

players are more strongly induced to ensure that all their efforts are above a certain

level. In contrast, with additive efforts analyzed in this article, adding efforts

(regardless of whether the overall contest is or becomes more or less balanced) gives

each player more opportunities to choose the preferred efforts cost effectively. For

example, for the additive approach the sums 0þ 10 ¼ 10, 1þ 9 ¼ 10, 5þ 5 ¼ 10,

9þ 1 ¼ 10, 10þ 0 ¼ 10 give the same sum 10, and hence, do not require the

players to choose efforts above a certain level. Instead, the players strike balances

optimally between their efforts, depending on each effort’s unit effort cost, impact,

and contest intensity. If mij ið Þ ¼ mjj jð Þ � 1, as in Sect. 5.2, each player’s one current

effort remains unchanged if it remains cost effective for both players, which causes

unchanged rent dissipation and expected utilities, or is replaced with a more cost-

effective effort, the impact of which has to be analyzed in each particular case.

Epstein and Hefeker (2003) consider a contest, not of the Cobb–Douglas type,

assuming maximum two efforts for each player. The first effort is conventional rent

seeking. The second effort may be absent, or may reinforce the first effort. They find

that if both players use their second of two available efforts, they will invest less in

their first efforts, regardless of whether the contest is or becomes more symmetric or
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asymmetric. This result is more compatible with the current article. The result is

caused by the same reason that the second effort does not have to be above a certain

level, as in the Cobb–Douglas type contest, but can be absent. Thus, each player has a

choicewhether or not to exert the second effort. Given this choice, each player chooses

the second effort only when it is cost effective to do so, and then cuts back on its first

effort. Epstein and Hefeker (2003) find that if at least one player exerts both efforts,

compared with both players exerting only one effort, rent dissipation increases when

the players’ stakes are sufficiently symmetric, and otherwise decreases. This result

differs from the current article where rent dissipation inevitably decreases when more

efforts become available. Summing up, Arbatskaya andMialon (2010) find decreased

rent dissipation when adding efforts causes a more asymmetric (unbalanced) contest,

Epstein and Hefeker (2003) find decreased rent dissipation when adding at least one

effort in asymmetric contests, and this article finds inevitably decreased rent

dissipation when more efforts become available.

7 Conclusion

This article analyzes a static rent seeking model where two players exert multiple

additive efforts simultaneously in a one-period game. The model assumes exerting

one effort to be sufficient to win a rent, since efforts are substitutable in the contest

success function. In contrast, the multiplicative Cobb–Douglas production function

analyzed e.g. by Arbatskaya and Mialon (2010) requires that a player exerts all its

efforts, since efforts are complementary in the contest success function.

Assuming arbitrarily many efforts for each player, the article distinguishes

between contest intensities below one, equal to one, or larger than one. Analyzing

contest intensities below one, and maximum one contest intensity equal to one, is

challenging since when production is concave in effort (and linear for at most one

effort), then more than one effort is exerted, since the marginal benefit of effort

decreases when effort increases. An analytical solution is determined when the

contest intensity for one effort for each player equals one, while the contest

intensities for the other efforts are strictly below one. Additional efforts causing

interior solutions enable each player to optimize cost effectively across efforts,

cutting back on the effort with contest intensity equal to one. Adding new efforts

eventually causes the new efforts to decrease towards zero. This result is due to a

heavier reliance of each player on efforts with diminishing returns (contest intensity

less than one) rather than constant return (contest intensity equal to one). Similarly,

Epstein and Hefeker (2003) find that if both players use their second of two

available efforts, they will invest less in their first efforts, assuming that their second

efforts reinforce their first efforts. Interestingly, both Epstein and Hefeker (2003)

and the current article generate this result, with different approaches. Additional

efforts causing corner solutions have to be analyzed specifically, since they may not

be used, and may thus not improve a player’s equilibrium expected utility.

We find that if one player exerts one effort, this effort does not depend on the

number of efforts exerted by the other player which optimizes across efforts. Cost

optimization across multiple additive efforts causes lower rent dissipation and
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higher expected utilities as the number of efforts increases. That is, a higher

dimensionality of the contest results in less rent dissipation. This contrasts with

Arbatskaya and Mialon’s (2010) finding that additional efforts that balances a

contest (makes it more symmetric) increases rent dissipation when efforts are

multiplicative of the Cobb–Douglas type. It also contrasts with Epstein and

Hefeker’s (2003) finding of increased rent dissipation when the players’ stakes are

sufficiently symmetric.

A Nash equilibrium selection method is provided for the event that it may not be

optimal for both players to exert all their available efforts, accounting for solutions

which have to be determined numerically. An example is provided with maximum

two efforts for each player. Nash equilibria are determined where both players

choose both efforts, or one player withdraws from its most costly effort to exert only

the least costly effort. We also illustrate how both players may collectively prefer to

exclude one of their efforts, though in equilibrium they prefer both efforts.

When all contest intensities are equal to one or larger than one, only the one most

cost effective effort is exerted, since linear or convex production causes the

marginal benefit of effort to be zero or increase when effort increases. Rent

dissipation increases in the contest intensity, and is maximum when the players are

equally matched in terms of their unit effort cost divided by impact of their effort.

Furthermore, rent dissipation and a player’s effort increase when the contest

intensity increases, provided that the player is neither too advantaged nor too

disadvantaged compared with the other player. Being advantaged or disadvantaged

causes decreased efforts due to superiority and inferiority, respectively.

Whereas Arbatskaya and Mialon (2010) as policy implications find that

additional socially unproductive efforts may unbalance contests causing increased

rent dissipation and decreased expected utilities, we find that both social and non-

social additional efforts decrease rent seeking and increase expected utilities due to

players’ optimization across efforts. For policy, careful analysis is required to

determine whether multiple efforts are additive or multiplicative. Future research

should analyze increasingly general functional forms for the contest success

function and analyze empirically which forms are descriptive.

Future research may also proceed beyond multiple additive efforts analyzed in

this article, and multiplicative efforts analyzed in the earlier literature, by assuming

that a player’s production (impact) function depends in a less separable way on the

multiple efforts exerted by multiple players. For example, if two teams play

football, one team’s success may (in part) depend on how the strength of its

attacking line is matched by the defense of the other team.
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Appendix A: Nomenclature

xik player i’s effort, i ¼ 1; 2, k ¼ 1; . . .;Ki

Ki number of efforts for player i
S rent

cik player i’s unit cost of effort xik

dik scaling parameter for player i’s impact of effort xik

mik contest intensity or decisiveness for player i’s effort xik

pi probability that player i wins the rent

ui player i’s expected utility

Appendix B: One effort against one effort

Inserting Ki ¼ Kj ¼ 1 into (5) and solving gives xi1 ¼ mi1cj1

mj1ci1
xj1 causing (5) to be

analytically solvable when mi1 ¼ mj1, which gives

xi1 ¼
cj1

ci1
xj1; xj1 ¼

Smj1
c

mj1
i1

=di1

c
mj1
j1

=dj1

cj1 1þ c
mj1
i1

=di1

c
mj1
j1

=dj1

� �2
;D ¼ 2cj1xj1

S
;

ui ¼
S 1þ 1� mj1

� � c
mj1
i1

=di1

c
mj1
j1

=dj1

� �

1þ c
mj1
i1

=di1

c
mj1
j1

=dj1

� �2
; i; j ¼ 1; 2; i 6¼ j;

ð24Þ

which is consistent with (8), (9), and (10) when mi1 ¼ mj1 ¼ 1. Differentiating (5)

when Ki ¼ Kj ¼ 1, mi1 ¼ mj1, and xi1 ¼ cj1

ci1
xj1, the second-order conditions are

o2ui

ox2i1
¼ �

Smj1
c

mj1þ2

i1
=di1

c
mj1þ2

j1
=dj1

1þ mj1 þ 1� mj1

� � c
mj1
i1

=di1

c
mj1
j1

=dj1

� �

x2j1 1þ c
mj1
i1

=di1

c
mj1
j1

=dj1

� �3
� 0; ð25Þ

which is satisfied when the second inequality in Assumption B1 is satisfied. The first

inequality in Assumption B1 requires that the expected utility ui � 0 in (23) is

positive.
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Assumption B1 Ki ¼ Kj ¼ 1, mi1 ¼ mj1, i; j ¼ 1; 2; i 6¼ j;

1þ 1� mj1

� � c
mj1

i1 =di1

c
mj1

j1 =dj1

� 0;

1þ mj1 þ 1� mj1

� � c
mj1

i1 =di1

c
mj1

j1 =dj1

� 0; i; j ¼ 1; 2; i 6¼ j:

Explanation B1 When Assumption B1 is satisfied, an interior equilibrium solution is

determined by (24), which also specifies the players’ expected utilities ui and uj and

rent dissipation D, i; j ¼ 1; 2; i 6¼ j.

Proof Follows from (24) and (25). When the two inequalities in Assumption B1 are

satisfied, ui [ 0 and uj [ 0, and hence, corner solutions are impossible. h

Appendix C: Guaranteeing that the stationary point is a global
maximum

Assume 0�mik � 1; k ¼ 1; . . .;Ki. The author has shown (available upon request)

that the Hessian matrix is negative semi-definite when 1�Ki � 5. For Ki � 6 the

analysis is increasingly labor intensive. Fortunately the following simpler approach

is possible. Define player i’s output as

Ai �
XKi

k¼1

dikxmik

ik ; ð26Þ

Player i’s output Ai and aggregate cost
PKi

k¼1 cikxik in (2) are additively separable

in each dimension k ¼ 1; . . .;Ki, and respectively concave and linear in xik. For any

given level of output Ai [ 0, player i must exert efforts to minimize the aggregate

cost, i.e. minimize

K ¼ cikxik � kidikxmik

ik ; ð27Þ

where ki [ 0 takes the unique value such that A�
i kið Þ ¼ Ai, and superscript *

expresses optimum. Differentiating (27), equating with zero, and solving, gives

oK
oxik

¼ cik � kidikmikxmik�1
ik ¼ 0 , x�ik kið Þ � x�ik �

kimik

cik=dik

� � 1
1�mik

; ð28Þ

which is inserted into (26) to yield

A�
i kið Þ � A�

i �
XKi

k¼1

dik
kimik

cik=dik

� � mik
1�mik

: ð29Þ

Hence, player i’s expected utility maximization problem reduces to a single

dimension by identifying the ki that maximizes
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u�
i ki; kj

� �
¼ SA�

i

A�
i þ A�

j

�
XKi

k¼1

cikx�ik: ð30Þ

For mik � 1=2 we straightforwardly see that the win probability A�
i is concave in

ki. As the aggregate cost
PKi

k¼1 cikx�ik is convex in ki, u�
i ki; kj

� �
is concave in ki.

Hence, a first-order condition identifies the unique maximizer of u�
i ki; kj

� �
and

implicitly defines a best-response function k�i kj

� �
. More generally for 0�mik � 1,

differentiating (30) twice gives

ou�
i ki; kj

� �

oki
¼

SA�
j

ki A�
i þ A�

j

� �2 � 1

0

B
@

1

C
A
XKi

k¼1

Bik ¼ 0;Bik �
dikmik

1� mik

kimik

cik=dik

� � mik
1�mik

;

ð31Þ

and (after some tedious calculations)

o2u�
i ki; kj

� �

ok2i
¼

SA�
j

PKi

k¼1
2mik�1
1�mik

Bik

k2i A�
i þ A�

j

� �2 �
2SA�

j

PKi

k¼1 Bik

� �2

k2i A�
i þ A�

j

� �3 � 1

ki

XKi

k¼1

mik

1� mik
Bik: ð32Þ

The first-order equation in (31) is solved to yield

A�
i þ A�

j

� �2
¼

SA�
j

ki
; ð33Þ

which is inserted into (32) to yield

o2u�
i ki; kj

� �

ok2i
¼ 1

ki

XKi

k¼1

2mik � 1

1� mik
� mik

1� mik

� �

Bik �
2SA�

j

PKi

k¼1 Bik

� �2

k2i A�
i þ A�

j

� �3 : ð34Þ

A sufficient but not necessary requirement for (34) to be negative is 0�mik � 1.

To show that the best-response functions of the two players intersect each other,

supplementing (33) with the first-order equation for player j and solving gives

A�
i þ A�

j

� �2
¼

SA�
j

ki
¼ SA�

i

kj
) ki ¼

A�
j

A�
i

kj: ð35Þ

Hence, the players’ best-response functions are

k�i kj

� �
¼

A�
j kj

� �

A�
i k�i kj

� �� � kj; k�j kið Þ ¼ A�
i kið Þ

A�
j k�j kið Þ
� � ki; ð36Þ

which intersect each other. As an example, inserting Ki ¼ Kj ¼ 1 and mik ¼ 1=2

into (29) gives
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A�
i kið Þ ¼ ki

2ci1
; A�

j kj

� �
¼ kj

2cj1
; ð37Þ

which is inserted into (36) to yield

k�i kj

� �
¼

ffiffiffiffiffiffi
ci1

cj1

r

kj; k�j kið Þ ¼
ffiffiffiffiffiffi
cj1

ci1

r

ki ð38Þ

which intersect each other. As an example, inserting Ki ¼ Kj ¼ 1 and mik ¼ 2=3

into (28) gives

A�
i kið Þ ¼ dik

2kidik

3cik

� �2

; A�
j kj

� �
¼ djk

2kj

3cjk=djk

� �2

; ð39Þ

which is inserted into (36) to yield

k�i kj

� �
¼ c

2=3
ik =dik

c
2=3
jk =djk

kj; k�j kið Þ ¼
c
2=3
jk =djk

c
2=3
ik =dik

ki; ð40Þ

which intersect each other. h

Appendix D: Corner solution for the general solution in Sect. 4.1

Procedure When the conditions for Explanation 1 are not satisfied, Ki corner

solutions are possible where exactly one effort xik, k ¼ 1; . . .;Ki, by player i equals

zero, and all other efforts by both players are strictly positive. Define
Ki

Zi

� �

as the

binomial coefficient for the number of ways in which an integer Zi can be selected

among an integer Ki. Generally,
Ki

Zi

� �

corner solutions are possible where exactly

Zi efforts by player i equal zero, and all other efforts by both players are strictly

positive. Generally,
K1 þ K2

Z1 þ Z2

� �

corner solutions are possible where exactly Z1

efforts by player 1 equal zero and exactly Z2 efforts by player 2 equal zero, and all

other efforts by both players are strictly positive. We exclude Zi ¼ Ki since both

players must have at least one strictly positive effort to enable a game. We also

exclude Z1 ¼ Z2 ¼ 0 which is the interior solution in the previous Sect. 4.1 where

all K1 þ K2 efforts are strictly positive. Hence, Zi ¼ 0; . . .;Ki � 1,

1� Z1 þ Z2 �K1 þ K2 � 2. This gives
P2

i¼1

P

Zi ¼ 0; . . .;Ki � 1;
1� Z1 þ Z2 �K1 þ K2 � 2

K1 þ K2

Z1 þ Z2

� �

possible corner solutions which we identify with the three digits Z1Z2k, separated by
commas when needed, where k is a counting parameter.

The corner solutions are straightforward but tedious and extremely space

consuming to set up. We thus sketch the procedure. One convenient approach is to
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relabel the subscripts of the variables to use (6) and (7) as combinations of strategic

choice variables are systematically set to zero for each corner solution. We illustrate

this for the Ki possible corner solutions where exactly one xik, k ¼ 1; . . .;Ki, equals

zero. We start with xi1 ¼ 0. To determine xi2; . . .; xiKi
using (6) and (7), we replace

all subscripts k ¼ 2; . . .;Ki with subscripts k ¼ 1; . . .;Ki � 1, thus determining

xi1; . . .; xi;Ki�1 using (6) and (7). If, analogously to Explanation 1, xik [ 0 8 k ¼
1; . . .;Ki � 1 and xjk [ 0 8 k ¼ 1; . . .;Kj, i; j ¼ 1; 2; i 6¼ j, all subscripts k ¼
1; . . .;Ki � 1 for player i are changed back to subscripts k ¼ 2; . . .;Ki, thus shifting

xi1; . . .; xi;Ki�1 back to xi2; . . .; xiKi
so that xi1 ¼ 0 is part of the corner solution.

We next set xi2 ¼ 0. To determine xi1; xi3; . . .; xiKi
using (6) and (7), we replace

all subscripts k ¼ 1; 3; . . .;Ki with subscripts k ¼ 1; . . .;Ki � 1, thus determining

xi1; . . .; xi;Ki�1 using (6) and (7). If xik [ 0 8 k ¼ 1; . . .;Ki � 1 and xjk [ 0

8 k ¼ 1; . . .;Kj, i; j ¼ 1; 2; i 6¼ j, all subscripts k ¼ 1; . . .;Ki � 1 for player i are

changed back to subscripts k ¼ 1; 3; . . .;Ki, thus shifting xi1; . . .; xi;Ki�1 back to

xi1; xi3; . . .; xiKi
so that xi2 ¼ 0 is part of the corner solution. We continue the

procedure for xi3 ¼ 0,…, xKi
¼ 0. This causes maximum K1 þ K2 corner solutions.

We next set two efforts to zero, either one effort by each player or two efforts by

one of the players. We start with xi1 ¼ xi2 ¼ 0. To determine xi3; . . .; xiKi
using (6)

and (7), we replace all subscripts k ¼ 3; . . .;Ki with subscripts k ¼ 1; . . .;Ki � 2,

thus determining xi1; . . .; xi;Ki�2 using (6) and (7). Continuing as above gives the

various solutions, etc.

Explanation D1 Assume that 0�mik � 1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2. When solving (6)

and (7), and using the Procedure described above, gives xik ¼ 0 for at least one

k ¼ 1; . . .;Ki, i ¼ 1; 2, and all other efforts are strictly positive, xiq [ 0

8q ¼ 1; . . .;Ki, q 6¼ k, a corner equilibrium solution is determined by (6) and (7).

The players’ expected utility ui, i ¼ 1; 2, and rent dissipation D follow from

inserting (6) and (7) into (2) and (3).

Proof Follows from (2), (3), (5)–(7), ‘‘Appendix C’’, and the Procedure in ‘‘Ap-

pendix D’’. h

Appendix E: Corner solution for Sect. 4.2

Assuming that Assumption 2 is not satisfied for one of the players, i.e. xi1 � 0 for

player i without loss of generality, but is satisfied for the other player, xj1 [ 0 for

player j, is written as follows:

Assumption E1

xi1 � 0 ,
S ci1=di1

cj1=dj1

ci1 1þ ci1=di1

cj1=dj1

� �2 �
XKi

k¼2

dik

di1

mikci1=di1

cik=dik

� � mik
1�mik

;

xj1 [ 0 ,
S

cj1=dj1

ci1=di1

cj1 1þ cj1=dj1

ci1=di1

� �2 [
XKj

k¼2

djk

dj1

mjkcj1=dj1

cjk=djk

� � mjk
1�mjk

; i; j ¼ 1; 2; i 6¼ j:
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When Assumption E1 is satisfied, we set xi1 ¼ 0 for player i according to (8) to

cause a corner solution. Assuming xi1 ¼ 0 and inserting mi1 ¼ mj1 ¼ 1 into (5) for

player i for k ¼ 2 gives

xi1 ¼ 0;

dj1xj1 þ
PKj

k¼2

djk
mjkcj1=dj1

cjk=djk

� � mjk
1�mjk

di2xi2 þ
PKi

k¼3

dikx
mik ð1�m2k Þ

1�mik

i2
mikci2=di2

mi2cik=dik

� � mik
1�mikþdj1xj1 þ

PKj

k¼2

djk
mjkcj1=dj1

cjk=djk

� � mjk
1�mjk

 !2

¼ ci2x
1�mi2

i2

Smi2di2
:

ð41Þ

The solution for player i for k ¼ 3; . . .;Ki is determined by (6), i.e.

xik ¼ x
1�m2k
1�mik

i2

mikci2=di2

mi2cik=dik

� � 1
1�mik

; k ¼ 3; . . .;Ki: ð42Þ

The solution for player j for k ¼ 1 is determined by (5) by relabeling subscripts

and superscripts, i.e.

S
PKi

k¼2 dikxmik

ik

PKi

k¼2 dikxmik

ik þ
PKj

k¼1 djkx
mjk

jk

� �2 ¼
cj1

dj1
: ð43Þ

The solution for player j for k ¼ 2; . . .;Kj is determined by (6) by relabeling

subscripts and superscripts, i.e.

xjk ¼
mjkcj1=dj1

cjk=djk

� � 1
1�mjk

; k ¼ 2; . . .;Kj ð44Þ

Solving (42) with respect to xj1 and inserting (43) gives

xj1 ¼

1

dj1

ffiffiffiffiffiffiffiffi
dj1S

cj1

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XKi

k¼2

dikx
mik ð1�m2k Þ

1�mik

i2

mikci2=di2

mi2cik=dik

� � mik
1�mik

v
u
u
t

0

@

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XKi

k¼2

dikx
mik ð1�m2kÞ

1�mik

i2

mikci2=di2

mi2cik=dik

� � mik
1�mik

v
u
u
t

� 1

dj1

XKj

k¼2

djk
mjkcj1=dj1

cjk=djk

� � mjk
1�mjk

¼ xj1c when xj1c [ 0

0 otherwise

:

8
>>>>>>><

>>>>>>>:

ð45Þ

Although (45) expresses xj1 analytically as a function of xi2, xi2 is not analytically

solvable since mj2\1 (Assumption 1). If we change Assumption 1 by setting

mj2 ¼ 1, (41)–(45) are analytically solvable, after which the procedure in

‘‘Appendix D’’ is applicable. Reversing both inequalities in Assumption E1 implies

xj1 ¼ 0 which, together with mi1 ¼ mj1 ¼ 1, imply equations analogous to (41)–

(45). Reversing both inequalities in Assumption 2 implies that also xi1 ¼ xj1 ¼ 0 has
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to be checked. Since analytical solution is impossible, numerical solution and the

general procedure in ‘‘Appendix D’’ are appropriate.

Appendix F: First-order derivatives and lemmas for Sect. 4.2

Differentiating (8) when k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j, gives

oxi1

oKi
\0;

oxi1

odi1
¼ cj1dj1ðci1dj1 � cj1di1ÞS

cj1di1 þ ci1dj1

� �3 þ 1

d2
i1

XKi

k¼2

dik

ð1� mikÞ
mikdikci1

di1cik

� � mik
1�mik

;

oxi1

odj1
¼ cj1di1ðcj1di1 � ci1dj1ÞS

cj1di1 þ ci1dj1

� �3 ;
oxi1

odik
¼ �1

di1ð1� mikÞ
mikdikci1

di1cik

� � mik
1�mik

\0;

oxi1

odjk
¼ 0;

oxi1

oci1
¼

�2cj1di1d
2
j1S

cj1di1 þ ci1dj1

� �3 �
1

c2i1

XKi

k¼2

cik

1� mikð Þ
mikdikci1

di1cik

� � 1
1�mik

\0;

oxi1

ocj1
¼ di1dj1ðci1dj1 � cj1di1ÞS

cj1di1 þ ci1dj1

� �3 ;

oxi1

ocik
¼ 1

ci1ð1� mikÞ
mikdikci1

di1cik

� � 1
1�mik

[ 0;

oxi1

ocjk
¼ 0;

oxi1

omik
¼

�dik 1� mik þ ln mikdikci1

di1cik

� �� �

di1ð1� mikÞ2
mikdikci1

di1cik

� � mik
1�mik

;

oxi1

omjk
¼ 0;

oxi1

oS
¼ cj1di1dj1

cj1di1 þ ci1dj1

� �2 [ 0;

ð46Þ

and

oxik

oKi
¼ 0;

oxik

odi1
¼ �1

di1ð1� mikÞ
mikdikci1

di1cik

� � 1
1�mik

\0;

oxik

odj1
¼ 0;

oxik

odik
¼ 1

dikð1� mikÞ
mikdikci1

di1cik

� � 1
1�mik

[ 0;
oxik

odjk
¼ 0;

oxik

oci1
¼ 1

ci1ð1� mikÞ
mikdikci1

di1cik

� � 1
1�mik

[ 0;
oxik

ocj1
¼ 0;

oxik

ocik
¼ �1

cikð1� mikÞ
mikdikci1

di1cik

� � 1
1�mik

\0;
oxik

ocjk
¼ 0;

oxik

omik
¼

1� mik þ mik ln
mikdikci1

di1cik

� �� �

mikð1� mikÞ2
mikdikci1

di1cik

� � 1
1�mik

;
oxik

omjk
¼ 0;

oxik

oS
¼ 0:

ð47Þ
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The inequality oxi1

oKi
\0 occurs since a minus sign appears before the summation

sign with Ki as the upper bound. Since the expression within the summation is

positive, increasing the upper bound Ki causes lower xi1. Differentiating (9) gives

oui

oKi
[ 0;

oui

odi1
¼

2ci1c
2
j1di1dj1S

cj1di1 þ ci1dj1

� �3 �
XKi

k¼2

cik

mikdi1

mikdikci1

di1cik

� � 1
1�mik

;

oui

odj1
¼

�2ci1c
2
j1d

2
i1S

cj1di1 þ ci1dj1

� �3 \0;
oui

odik
¼ ci1

di1

mikdikci1

di1cik

� � mik
1�mik

[ 0;

oui

odjk
¼ 0;

oui

oci1
¼

�2c2j1d2
i1dj1S

cj1di1 þ ci1dj1

� �3 þ
XKi

k¼2

dik

di1

mikdikci1

di1cik

� � mik
1�mik

;

oui

ocj1
¼ 2ci1cj1d2

i1dj1S

cj1di1 þ ci1dj1

� �3 [ 0;
oui

ocik
¼ � mikdikci1

di1cik

� � 1
1�mik

\0;
oui

ocjk
¼ 0;

oui

omik
¼

cik ln
mikdikci1

di1cik

� �

mikð1� mikÞ
mikdikci1

di1cik

� � 1
1�mik

;
ou

omjk
¼ 0;

ou

oS
¼

c2j1d
2
i1

cj1di1 þ ci1dj1

� �2 [ 0:

ð48Þ

The inequality oui

oKi
[ 0 occurs since a plus sign appears before the summation

sign with Ki as the upper bound. Since the expression within the summation is

positive, increasing the upper bound Ki causes higher ui. Differentiating (10) gives

oD

oKi
\0;

oD

odi1
¼

ci1cj1dj1 ci1dj1 � cj1di1

� �

cj1di1 þ ci1dj1

� �3 þ
XKi

k¼2

cik

di1mikS

mikdikci1

di1cik

� � 1
1�mik

;

oD

odik
¼ � ci1

di1S

mikdikci1

di1cik

� � mik
1�mik

\0;
oD

oci1
¼

cj1di1dj1 cj1di1 � ci1dj1

� �

cj1di1 þ ci1dj1

� �3

�
XKi

k¼2

dik

di1S

mikdikci1

di1cik

� � mik
1�mik

;

oD

ocik
¼ 1

S

mikdikci1

di1cik

� � 1
1�mik

[ 0;
oD

omik
¼ �

cik ln
mikdikci1

di1cik

� �

mikð1� mikÞS
mikdikci1

di1cik

� � 1
1�mik

;

oD

oS
¼ 1

S2

XKi

k¼2

cik
1

mik
� 1

� �
mikdikci1

di1cik

� � 1
1�mik

[ 0:

ð49Þ

The inequality oD
oKi

\0 occurs since a minus sign appears before the summation

sign with Ki as the upper bound. Since the expression within the summation is

positive, increasing the upper bound Ki causes lower D.
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Lemma 1 When Assumptions 1 and 2 are satisfied and ci1

di1
[ cj1

dj1
, then oxi1

ocj1
[ 0 and

oxi1

odi1
[ 0.

Proof Appendix F.

Lemma 1 assumes that player i is disadvantaged in terms of ci1=di1 being high

compared with cj1=dj1 for player j. Then player i benefits from player j’s unit effort
cost cj1 increasing, and benefits from its own scaling parameter di1 for impact

increasing.

Lemma 2 When Assumptions 1 and 2 are satisfied, then
oxi1

omik
[ 0 if ln

mikci1=di1

cik=dik

� �
\mik � 1, k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j.

Proof Appendix F.

The if-condition in Lemma 2 follows since the dependence of player i’s effort xi1

on the contest intensity mik depends on both the characteristics ci1 and di1, and on

the characteristics mik, cik, and dik when k ¼ 2; . . .;Ki.

Lemma 3 When Assumptions 1 and 2 are satisfied, then
oxik

omik
[ 0 if ln

mikci1=di1

cik=dik

� �
[ 1� 1

mik
, k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix F.

The if-condition in Lemma 3 follows since the dependence of player i’s effort xik

on the contest intensity mik depends on the characteristics of these contests.

Lemma 4 When Assumptions 1 and 2 are satisfied, then oui

omik
[ 0 if ln mikci1=di1

cik=dik

� �
[ 0,

k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix F.

The if-condition in Lemma 4 follows since the dependence of player i’s expected
utility ui on the contest intensity mik depends on the characteristics of the contests.

For example when dikci1

di1cik
¼ 1 which causes negative logarithm, ui decreases in the

contest intensity mik.

Lemma 5 When Assumptions 1 and 2 are satisfied, then oD
omik

\0 if ln
mikci1=di1

cik=dik

� �
[ 0,

k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix F.

The if-condition in Lemma 5 follows since the dependence of rent dissipation D
on the contest intensity mik depends on the characteristics of the contests. For

example when
ci1=di1

cik=dik
¼ 1 which causes negative logarithm, D increases in the contest

intensity mik.
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Lemma 6 When Assumptions 1 and 2 are satisfied, and ci1=di1 ¼ cj1=dj1, then
oD
oci1

\0 and oD
odi1

[ 0, i; j ¼ 1; 2; i 6¼ j.

Proof Appendix F.

The if-condition ci1dj1 ¼ cj1di1 in Lemma 6 follows since the dependence of rent

dissipation D on di1 and ci1 is complicated.

Appendic G: Examples of xik and xi1 being substitutes
and complements for each other, k = 2,. . .,Ki,i = 1,2

Inserting mik ¼ mjk ¼ 1
2
; ci1 ¼ cj1 ¼ dj1 ¼ cik ¼ cjk ¼ dik ¼ djk ¼ 1, and S ¼ 4,

k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j, into oxi1

odi1
in (46) in ‘‘Appendix F’’, (8)–(10) gives

oxi1

odi1
¼ 4ð1� di1Þ

1þ di1ð Þ3
þ 1

d3
i1

; xi1 ¼
4di1

1þ di1ð Þ2
� 1

2d2
i1

; xik ¼
1

4d2
i1

;

ui ¼
4d2

i1

1þ di1ð Þ2
þ Ki � 1

4d2
i1

;D ¼ 1

4

X2

i¼1

4di1

1þ di1ð Þ2
� Ki � 1

4d2
i1

 !

;

k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j:

ð50Þ

Figure 4 panel a plots xi1, xik, ui, and D as functions of di1 when Ki ¼ 2, and thus

k ¼ 2. Division of ui with 4 is for scaling purposes. The efforts xik and xi1 are

substitutes due to oxi1

odi1
[ 0 in (50) when 0:72\di1\1:89. In contrast, xik and xi1 are

complements due to oxi1

odi1
\0 in (50) when di1 [ 1:89. Thus oxi1

odi1
¼ 0 when di1 ¼ 1:89

shown with the rightmost vertical dashed line. The inverse U shape for xi1 follows

since player i exerts low effort xi1 when impact di1 is low. That’s also when player i
substitutes from xi1 to xik. No need exists to exert high effort when impact di1 is

high. The need to exert high effort xi1 is when impact di1 is intermediate. Solving the

two equations for xik and xi1 in (50) to eliminate di1 gives

xi1 ¼
8
ffiffiffiffiffi
xik

p

1þ 2
ffiffiffiffiffi
xik

p� �2 � 2xik ð51Þ

which is plotted in Fig. 4b. xik and xi1 are substitutes when xik [ 0:0698, and

otherwise complements.

Inserting ci1 ¼ cik ¼ dik ¼ 1 into oxi1

omik
in (46) and oxik

omik
in (47) gives
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oxi1

omik
[ 0 and

oxik

omik
[ 0 when di1 ¼ 1 and 0\mik\1;

oxi1

omik
[ 0 and

oxik

omik
[ 0 when di1 ¼ 2 and 0\mik\0:37;

oxi1

omik
[ 0 and

oxik

omik
\0 when di1 ¼ 2 and 0:37\mik\1:

ð52Þ

Hence, mik variation causes xik and xi1 to be substitutes in the third instance, and

complements in the first two instances.

Appendix H: Corner solution for Sect. 4.3

Assuming that Assumption 4 is not satisfied for player j’s first effort, i.e. xj1 � 0

according to (11), is written as follows:

Assumption H1 xj1 � 0 ,
S

x
1�mi1
i1

ci1=di1

mi1cj1=dj1

cj1

x
1�mi1
i1

ci1=di1

mi1cj1=dj1
þ1

� �2 �
PKj

k¼2

djk

dj1

mjkcj1=dj1

cjk=djk

� � mjk
1�mjk ; i; j ¼ 1; 2; i 6¼ j.

When Assumption H1 is satisfied, we set xj1 ¼ 0. Inserting xj1 ¼ 0 and Ki ¼
mi1 ¼ mj1 ¼ 1 into (5) gives

xj1 ¼ 0;
di1xi1

dj2xj2 þ
PKj

k¼3 djkx

mjk 1�mj2ð Þ
1�mjk

j2
mjkcj2=dj2

mj2cjk=djk

� � mjk
1�mjkþdi1xi1

0

@

1

A

2
¼

cj2x
1�mj2

j2

Smj2dj2
;

xjk ¼ x

1�mj2
1�mjk

j2

mjkcj2=dj2

mj2cjk=djk

� � 1
1�mjk

; k ¼ 3; . . .;Kj;

PKj

k¼2 djkx
mjk

jk

di1xi1 þ
PKj

k¼2 djkx
mjk

jk

� �2 ¼
ci1

Sdi1
:

ð53Þ

Solving the last equation in (53) with respect to xi1 and inserting the third

equation gives

xi1 ¼

1

di1

ffiffiffiffiffiffiffiffi
di1S

ci1

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XKj

k¼2

djkx

mjk 1�mj2ð Þ
1�mjk

j2

mjkcj2=dj2

mj2cjk=djk

� � mjk
1�mjk

v
u
u
t

0

B
@

1

C
A

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PKj

k¼2

djkx

mjk 1�mj2ð Þ
1�mjk

j2

mjkcj2=dj2

mj2cjk=djk

� � mjk
1�mjk

v
u
u
t ¼ xi1c when xjkc [ 0

0 otherwise

8
>>>>>>>>><

>>>>>>>>>:

: ð54Þ
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Analogously to (45), (54) expresses xi1 analytically as a function of xj2, but xj2 is

not analytically solvable since mjk\1 (Assumption 3). Thus numerical solution and

the procedure in ‘‘Appendix D’’ are appropriate.

Appendix I: Special cases mik =mi and mik =m of the general solution
in Sect. 4.1

Inserting mik ¼ mi, k ¼ 1; 2; . . .;Ki, into (6) and (7) gives

xik ¼ xi1
ci1=di1

cik=dik

� � 1
1�mi

; k ¼ 2; . . .;Ki; ð55Þ

and

xmi

i1

XKi

k¼1

dik
ci1=di1

cik=dik

� � mi
1�mi

¼
Scj1m2

i d2
i1mjdj1x

1�mj

j1

mjdj1ci1x
1�mi

i1 þ midi1cj1x
1�mj

j1

� �2 ; ð56Þ

Expressing (56) for both players i and j gives

mjdj1ci1x1�mi

i1 þ midi1cj1x
1�mj

j1

� �2

Smimjdi1dj1
¼

cj1midi1x
1�mj

j1

xmi

i1

PKi

k¼1 dik
ci1=di1

cik=dik

� � mi
1�mi

;

mjdj1ci1x1�mi

i1 þ midi1cj1x
1�mj

j1

� �2

Smimjdi1dj1
¼ ci1mjdj1x1�mi

i1

x
mj

j1

PKj

k¼1 djk
cj1=dj1

cjk=djk

� � mj
1�mj

;

ð57Þ

which is solved to yield

xi1 ¼ Qixj1;Qi �
micj1=dj1

mjci1=di1

PKj

k¼1 djk
cj1=dj1

cjk=djk

� � mj
1�mj

PKi

k¼1 dik
ci1=di1

cik=dik

� � mi
1�mi

; i; j ¼ 1; 2; i 6¼ j ð58Þ

which is inserted into (56) and solved to yield

Qmi
i xmi

j1

XKi

k¼1

dik
ci1=di1

cik=dik

� � mi
1�mi

¼
Scj1m

2
i d2

i1mjdj1x
1�mj

j1

mjdj1ci1Q1�mi
i x1�mi

j1 þ midi1cj1x
1�mj

j1

� �2 : ð59Þ

Equation (59) is one equation with one unknown xj1 expressed on implicit form.

Once xj1 is determined (numerically or otherwise), xi1 follows from (58) and xik

follows from (55), k ¼ 2; . . .;Ki, i ¼ 1; 2. The most plausible approach to express

xj1 in (59) on explicit form is to assume mi ¼ mj ¼ m, which is inserted into (59) to

yield (14), where (58) and (55) have been inserted. Osorio (2018) considers a
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special case of (14) where cik ¼ ci ¼ cj ¼ c, k ¼ 1; 2, Ki ¼ 2, which is inserted into

(14) to yield

xj1 ¼
Smd

1
1�m

j1

c d
1

1�m

j1 þ d
1

1�m

j2

� �
d

1
1�m

i1 þ d
1

1�m

i2

� �m�1

d
1

1�m

j1 þ d
1

1�m

j2

� �m�1

d
1

1�m

i1 þ d
1

1�m

i2

� �m�1

þ d
1

1�m

j1 þ d
1

1�m

j2

� �m�1
� �2

; xi1 ¼ Qixj1;

Qi ¼
d

1
1�m

i1 d
1

1�m

j1 þ d
1

1�m

j2

� �

d
1

1�m

j1 d
1

1�m

i1 þ d
1

1�m

i2

� � ; xi2 ¼ xi1
d

1
1�m

i2

d
1

1�m

i1

;

ð60Þ

which is equivalent to Osorio’s (2018) Eq. (8) Proposition 3 when xj1 ¼ xj Að Þ,
di1 ¼ k1, di2 ¼ k2, dj1 ¼ 1� k1, dj2 ¼ 1� k2, m ¼ a, S ¼ v, c ¼ 1.

Appendix J: First-order derivatives and lemma for Sect. 4.5

Differentiating (14) when k ¼ 2; . . .;Ki; i; j ¼ 1; 2; i 6¼ j, gives

Vi2 �
XKi

k¼2

dik
ci1=di1

cik=dik

� � m
1�m

;

oxi1

odi1
¼

dj1Qmþ1
i m Vi2 Vj þ Vi2Q

m
i

� �
þ di1 Vj � di1Q

m
i

� �
1� mð Þ þ Vi2Q

m
i m

� �� �
S

cj1di1 Vj þ ViQm
i

� �3
1� mð Þ

;

oxi1

odj1
¼

di1Qm
i m �Vj þ ViQ

m
i

� �
S

ci1 Vj þ ViQ
m
i

� �3 ;

oxi1

odik
¼ �

ci1=di1

cik=dik

� � m
1�m

dj1Q
mþ1
i m ViQ

m
i 2� mð Þ þ Vjm

� �
S

cj1 Vj þ ViQ
m
i

� �3
1� mð Þ

\0;

oxi1

odjk
¼

cj1=dj1

cjk=djk

� � m
1�m

di1Q
m
i m �Vj þ ViQ

m
i

� �
S

ci1 Vj þ ViQ
m
i

� �3 ;

oxi1

oci1
¼ �

dj1Qmþ1
i m Vi2 Vj þ Vi2Qm

i

� �
þ di1 di1Qm

i þ Vi2Qm
i

� �
1� mð Þ2þVi2Qm

i þ Vj 1� m2ð Þ
� �� �

S

ci1cj1 Vj þ ViQm
i

� �3
1� mð Þ

\0;

oxi1

ocj1
¼

di1dj1Q
m
i m2 Vj � ViQ

m
i

� �
S

ci1cj1 Vj þ ViQm
i

� �3 ;

oxi1

ocik
¼

ci1=di1

cik=dik

� � m
1�m

dikdj1Q
mþ1
i m2 Vjm þ ViQ

m
i 2� mð Þ

� �
S

cikcj1 Vj þ ViQm
i

� �3
1� mð Þ

[ 0;

oxi1

ocjk
¼

cj1=dj1

cjk=djk

� � m
1�m

di1djkQm
i m2 Vj � ViQ

m
i

� �
S

ci1cjk Vj þ ViQm
i

� �3 ;
oxi1

oS
[ 0;

ð61Þ

and
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oxik

odi1
¼ �

ci1=di1

cik=dik

� � 1
1�m

dj1Q
mþ1
i m Vjm þ ViQ

m
i 2� mð Þ

� �
S

cj1 Vj þ ViQm
i

� �3
1� mð Þ

\0;

oxik

odj1
¼

ci1=di1

cik=dik

� � 1
1�m

di1Qm
i m �Vj þ ViQ

m
i

� �
S

ci1 Vj þ ViQ
m
i

� �3 ;

oxik

odik
¼

ci1=di1

cik=dik

� � 1
1�m

dj1Qmþ1
i m ci1Vi Vj þ ViQ

m
i

� �
� cikdi1

ci1=di1

cik=dik

� � 1
1�m

ViQ
m
i 2� mð Þ þ Vjm

� �
� �

S

cj1ci1dik Vj þ ViQ
m
i

� �3
1� mð Þ

;

oxik

odjk
¼

ci1=di1

cik=dik

� � 1
1�m cj1=dj1

cjk=djk

� � m
1�m

di1Qm
i m �Vj þ ViQ

m
i

� �
S

ci1 Vj þ ViQm
i

� �3 ;

oxik

oci1
¼

ci1=di1

cik=dik

� � 1
1�m

di1dj1Q
mþ1
i m2 Vjm þ ViQ

m
i 2� mð Þ

� �
S

ci1cj1 Vj þ ViQm
i

� �3
1� mð Þ

[ 0;

oxik

ocj1
¼

ci1=di1

cik=dik

� � 1
1�m

di1dj1Q
m
i m2 Vj � ViQ

m
i

� �
S

ci1cj1 Vj þ ViQm
i

� �3 ;

Wij � dik
ci1=di1

cik=dik

� � m
1�m

1� mð Þ2þ
XKi

q ¼ 1;

q 6¼ k

diq
ci1=di1

ciq=diq

� � m
1�m

;

oxik

ocik
¼ �

ci1=di1

cik=dik

� � 1
1�m

dj1Q
mþ1
i m ci1 Vj þ ViQ

m
i

� �
Wij þ 2cikdi1

ci1=di1

cik=dik

� � 1
1�m

Vj 1� mð Þm
� �

S

cj1ci1cik Vj þ ViQm
i

� �3
1� mð Þ

\0;

oxik

ocjk
¼

ci1=di1

cik=dik

� � 1
1�m cj1=dj1

cjk=djk

� � 1
1�m

di1dj1Q
m
i m2 Vj � ViQ

m
i

� �
S

ci1cj1 Vj þ ViQ
m
i

� �3 ;

oxik

oS
[ 0:

ð62Þ

Differentiating (15) gives
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Xij �
ci1dj1 1� mð Þ þ cj1di1 1þ mð ÞQm�1

i

� �
S

Vi ci1dj1 þ cj1di1Qm�1
i

� �3 ;
oui

odi1
¼ ci1cj1di1dj1Q

m�1
i Xij [ 0;

oui

odj1
¼ �c2j1d2

i1Qm�2
i Xij\0;

oui

odik
¼ ci1cj1di1dj1

ci1=di1

cik=dik

� � m
1�m

Qm�1
i Xij [ 0;

oui

odjk
¼ �c2j1d2

i1

cj1=dj1

cjk=djk

� � m
1�m

Qm�2
i Xij\0;

oui

oci1
¼ �cj1d

2
i1dj1mQm�1

i Xij\0;

oui

ocj1
¼ cj1d

2
i1dj1mQm�2

i Xij [ 0;
oui

ocik
¼ �cj1d

2
i1dj1

ci1=di1

cik=dik

� � 1
1�m

mQm�1
i Xij\0;

oui

ocjk
¼ cj1d

2
i1dj1

cj1=dj1

cjk=djk

� � 1
1�m

mQm�2
i Xij [ 0;

oui

oS
[ 0:

ð63Þ

Differentiating (16) gives

oD

odi1
¼

2VjQ
m
i m Vj � ViQ

m
i

� �

Vj þ ViQ
m
i

� �3 ;
oD

odik
¼

2Vici1dj1
ci1=di1

cik=dik

� � m
1�m

mQm
i Qi Vj � ViQ

m
i

� �

cj1di1 Vj þ ViQ
m
i

� �3 ;

oD

oci1
¼

2di1VjQ
m
i m2 �Vj þ ViQ

m
i

� �

ci1 Vj þ ViQ
m
i

� �3 ;
oD

ocik
¼

2Vidi1dj1
ci1=di1

cik=dik

� � 1
1�m

m2Qm
i Qi �Vj þ ViQ

m
i

� �

cj1di1 Vj þ ViQ
m
i

� �3 ;

oD

oS
¼ 0:

ð64Þ

oQi

oKi
\0 since Ki appears in (14) as the upper bound of a summation in the

denominator. oVi

oKi
[ 0. The derivatives oxi1

oKi
, oxik

oKi
, oui

oKi
, oD
oKi

have no clear signs. oxi1

om ,
oxik

om ,
oui

om,
oD
om are too voluminous to analyze analytically.

Lemma 7 When 0�mik ¼ m\1 8 k ¼ 1; . . .;Ki, i ¼ 1; 2 and Vj\ViQ
m
i , then

oD
ocik

[ 0; oD
oci1

[ 0; oD
odik

\0, oD
odi1

\0, k ¼ 2; . . .;Ki; i ¼ 1; 2.

Proof Appendix J.

Lemma 7 confirms the two inequalities oD
ocik

[ 0 and oD
odik

\0 in Proposition 5

whenVj\ViQ
m
i is satisfied.

Appendix K: First-order derivatives for Sect. 5.2

Differentiating (20) gives
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oxij ið Þ
oS

[ 0;
oxij ið Þ
ocij ið Þ

¼
Smjj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

�1þ mjj jð Þ � 1þ mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

c2ij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oxij ið Þ
ocjj jð Þ

¼
Sm2

jj jð Þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� 1

� �

cij ið Þcjj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oxij ið Þ
odij ið Þ

¼
Smjj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� 1

� �

cij ið Þdij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oxij ið Þ
odjj jð Þ

¼
Smjj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1�
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

cij ið Þdjj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oxij ið Þ
omjj jð Þ

¼
S

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

þ 1�
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

Ln
c

mjj jð Þ
ij ið Þ

c
mjj jð Þ
jj jð Þ

� �� �

cij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

ð65Þ

Differentiating (21) gives
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oui

oS
[ 0;

oui

ocij ið Þ
¼ �

Smjj jð Þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ mjj jð Þ þ 1� mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

cij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oui

ocjj jð Þ
¼

Smjj jð Þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ mjj jð Þ þ 1� mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

cjj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oui

odij ið Þ
¼

S
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ mjj jð Þ þ 1� mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

dij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oui

odjj jð Þ
¼ �

S
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ mjj jð Þ þ 1� mjj jð Þ
� � c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

djj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oui

omjj jð Þ
¼

S
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

Ln
c

mjj jð Þ�1

ij ið Þ

c
mjj jð Þ�1

jj jð Þ

 !

� 1

 !

þ Ln
c

mjj jð Þþ1

ij ið Þ

c
mjj jð Þþ1

jj jð Þ

 !

� 1

 !

1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
:

ð66Þ

Differentiating (21) gives
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oD

oS
¼ 0;

oD

ocij ið Þ
¼

2m2
jj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1�
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

cij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oD

ocjj jð Þ
¼

2m2
jj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� 1

� �

cjj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oD

odij ið Þ
¼

2mjj jð Þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

c
mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� 1

� �

dij ið Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oD

odjj jð Þ
¼

2mjj jð Þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1�
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

djj jð Þ 1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
;

oD

omjj jð Þ
¼

2
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

þ 1�
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �

Ln
c

mjj jð Þ
ij ið Þ

c
mjj jð Þ
jj jð Þ

� �� �

1þ
c

mjj jð Þ
ij ið Þ =dij ið Þ

c
mjj jð Þ
jj jð Þ =djj jð Þ

� �3
:

ð67Þ
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