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Abstract
Increasingly, experimental economists, when eliciting risk preferences using a set of
pairwise-choice problems (between two risky lotteries A and B), have given subjects
a third choice (in addition to ‘I prefer A’ and ‘I prefer B’), namely that of saying,
for example, ‘I am not sure about my preference’ or ‘I am not sure what to choose’.
The implications for subjects of choosing this third option (which we call the ‘mid-
dle column’) vary across experiments depending upon the incentive structure. Some
experiments provide no direct financial implications: what is ‘played out’ at the end
of the experiment is not influenced by subjects choosing this middle column. In other
experiments, if the middle column has been checked, then the payoff is determined
by a randomisation of A and B. I report on an experiment, which adopts this latter
incentive mechanism, and ask the question as to why people might choose this option,
that is “why do they prefer randomisation?” I explore four distinct stories and compare
their goodness-of-fit in explaining the data. My results show that the two of the four
have the most empirical support. I conclude with a discussion of whether my results
have anything to say about preference imprecision.

Keywords Individual preferences · Randomisation · Risk · Laboratory experiment

1 Introduction

Increasingly, experimental economists, when eliciting risk preferences using a set of
pairwise-choice problems (between two risky lotteries A and B), have given subjects
a third choice (in addition to ‘I prefer A’ and ‘I prefer B’), namely, for example, that
of saying ‘I am not sure about my preference’ or ‘I am not sure what to choose’. We
call this choice ‘choosing the middle column’. Some experimental economists use
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this design to investigate the difficulty in making a straight choice (either Option A or
Option B), while some use it to explore the possibility of a preference for randomisa-
tion.

The implications for subjects of choosing this middle column vary across exper-
iments—it depends on the incentive mechanism. In some experiments, for example
Cubitt et al. (2015), there are no financial implications: what is ‘played out’ at the end
of the experiment is not influenced by subjects choosing this middle column. Cubitt
et al. use this procedure to associate the subjects’ choice of the middle column with
preference imprecision. In other experiments, for example, Cettolin and Riedl (2019),
if the middle column has been checked, then the payoff is determined by randomisa-
tion of Option A and Option B (a mixture of A and B). Recent literature adopts this
procedure to allow the investigation of a preference for randomisation (Dwenger et al.
2018) and stochastic choice (Agranov and Ortoleva 2017).

I report on an experiment that adopts this latter incentive mechanism, and ask
the question as to why people might choose this option, that is “why do they prefer
randomisation?” I explore four distinct stories and compare their goodness-of-fit in
explaining the data: the random-convex preference story, the tremble story, the thresh-
old story, and the delegation story. The first story is that the decision-maker (DM)
has convex indifference curves within the Marschak–Machina Triangle (MMT) and
actually prefers a mixture of A and B. To make it operational, this story is embedded
in the Random Preferences Model (Loomes and Sugden 1995; Loomes et al. 2002)
in which the risk-aversion parameter varies randomly from problem to problem. My
second story is that the DM prefers a mixture of A and B only if it gives the highest
utility; however, the DM simply makes a mistake in expressing their preferences. By
this, the DM is assumed to be able to calculate the subjective utility of an alternative
but that does not guarantee him or her choosing the optimal choice. This stochastic
specification follows the tremble specification as in Harless and Camerer’s (1994),
Moffatt, and Peters (2001). My third story is that the DM cannot distinguish between
A and B unless their difference exceeds some threshold. This story follows the same
logic as inKhrisnan (1977). Here theDMprefers an alternative if he or she subjectively
perceives the utility of an alternative exceeding another one by at least some threshold
(a minimum perceivable difference). Otherwise, the DM perceives that he or she is
indifferent between the two alternatives. So the choice of a mixture A and B depends
on the magnitude of the threshold—the higher is the threshold, the more likely is the
choice of a mixture of A and B. I also add in a tremble. Lastly, the delegation story
follows Vickers (1985) and Armstrong and Vickers (2010). The DM will delegate
decisions if it gives the highest utility. Hence, I assume that the DM gets an additional
utility when stating their preference with “I am not sure what to choose”—delegating
the decision to the coin toss. Again, I add in a tremble.

I note that my incentive mechanism is different from that in Cubitt et al. The latter
was concerned with preference imprecision; this paper is concerned with preference
for randomisation. These are different things, but this paper may have something to
tell us about preference imprecision—this depends upon how subjects view the choice
problem and the incentive mechanism. We shall have more to say on this in Sects. 4.2
and 5.
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This paper is organised as follows: the next section discusses the experimental
design; Sect. 3 describes the four stories in detail; Sect. 4 presents the empirical
results and analyses; Sect. 5 discusses and concludes.

2 Experimental design

I used 72 ‘response tables’. In each of these, subjects were presented with a num-
ber (which varied from table to table) of pairwise-choice problems (we refer this to
problem) between a certainty and a (two- or three-outcome) lottery. In every response
table, the lottery remained unchanged, while the certain amount varied from the high-
est amount in the lottery, in steps of 25 pence to the lowest amount in the lottery. This
determines the number of rows or problems in each response table.

These tables were similar to those used in Cubitt et al. (giving subjects choices
which spanned most possible preferences), though I duplicated the tables (to have
a sufficient number of problems for estimation). There are seven lottery sequences:
payoff scale (Seq. 1), mean preserving spread (Seq. 2), risky common consequence
(Seq. 3), safe common consequence (Seq. 4), safe common ratio (Seq. 5), risky com-
mon ratio (Seq. 6) and betweenness (Seq. 7). Subjects were given three alternative
answers to state their preference on a particular problem in each response table: (1)
I choose Option A; (2) I am not sure what to choose; or (3) I choose Option B. Fig-
ure 1 illustrates a response table used in the experiment. In the Instructions, these were
called ‘Preference Sheets’.

As Fig. 1 shows, a short explanation of what subjects are asked to do is written
at the top of the table. There is a description of Option A and Option B. Option A is

You are asked to state your preference between certain money proposed in the first column 
(Option A) and a lottery (Option B). There are 3 answer options to represent your preference: (i) I 
choose Option A; (ii) I am not sure what to choose; (iii) I choose Option B. You should click 
CONFIRM once you have finished completing this Preference Sheet, otherwise click CLEAR to 
modify your answer. The CONFIRM button will appear after 10 seconds. Please notice that you 
cannot go back to the previous Preference Sheet.

Option A: You will receive a proposed amount of money for sure.
Option B: You will have a chance of 0.65 to win £30.00 and a chance of 0.35 to win £15.00.

No. Proposed certain money I choose Option A I am not sure what 
to choose I choose Option B

1 For £30.00
2 For £29.75
3 For £29.50

⋮ ⋮ ⋮ ⋮ ⋮

59 For £15.50
60 For £15.25
61 For £15.00

Fig. 1 A response table in the experiment
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always a sure amount of money whereas Option B is a fixed lottery in any one table.
There were five columns in each table: the first column was the problem number in
the particular response table; the second column was the certain amount of money in
Option A; the third to the fifth columns are the three answer boxes.

The response table is implemented as follows. Subjects had to choose one answer in
each row of the table. Unlike Cubitt et al. (who forced subjects not to switch between
columns as theymoved down the table). I did not restrict the subjects in anyway. There
were two buttons to confirm and to modify the answer. The confirm button became
active after 10 s; before that it was inactive. However, there was no maximum time
to complete the tasks, so subjects were free to think as long as they wished. Subjects
were given the instructions (paper and on-screen) and two practice tables prior to the
main tasks. The experimental software was written (mainly by Alfa Ryano) in Python
2.7.

Monetary incentiveswere provided to reveal the subjects’ true preferences. Subjects
were told in the instructions that one of the problems from one of the tables would
be the basis of their payment (additionally they were given a show-up fee of £2.50).
The subject’s response in a randomly chosen problem would be played out for real.
First, the subject drew a disk from a closed bag containing the numbered disks from
1 to 72—this identified a particular response table. Then, the subject drew another
disk from a different closed bag to choose the problem in the selected table to play
out—the number of disks depending upon the number of rows or problems in the
randomly chosen table. For the selected problem, the following rules were used to
determine the subjects’ payment: (1) if a subject chose Option A, then he or she would
get the sure amount of money; (2) if a subject chose Option B, then he or she would
play the lottery in that particular response table; (3) if a subject stated that he or she
was unsure, then he or she would flip a coin to determine which option to play—then
either rule (1) or rule (2) would be applied for the chosen option from the coin toss.
This payment mechanism implied that the choice of the middle column was a choice
for randomisation. Note that this is a different incentive mechanism than that used by
Cubitt et al.1 as we are specifically interested in a preference for randomisation.

The experimentwas conducted in theEXECLabat theUniversity ofYork. Invitation
messages were sent through hroot (Hamburg registration and organization online tool)
to all registered subjects in the system. There were 77 subjects who participated in the
main experiment; this was preceded by a pilot experiment; I do not report its results
here. They were all members of the University of York: 73 subjects were students
and 4 subjects were staff members. The gender composition was such that 32 subjects
were male and 45 subjects were female. Subjects read the instructions together and
were free to ask anything about the experiment before starting the experiment. After
subjects had completed all tasks, they were paid as previously explained. Then they
were free to leave. The average payment to the subjects was £11.72 and the average
duration of the experiment (including reading the instructions) was a little below one
and a half hours. Communication was prohibited during the experiment.

1 In that, therewas no incentive for choosing themiddle column: subjectswere additionally asked to indicate
the row on which their preference changed from A to B, and their payment depended on the position of this
row relative to the randomly-chosen row.
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3 Modelling the choice

I bring four stories to try to explain the subjects’ decisions: the random-convex prefer-
ence story (henceforth the RCP story), the tremble story, the threshold story, and the
delegation story. These four stories have different ways of interpreting a statement of
choosing the middle column; hereafter we use A, B, and M to refer Option A, Option
B and the mixture of A and B (the middle column), respectively. To model the stories
in this paper I use either the Expected Utility (EU) or the Rank-Dependent Expected
Utility (RDEU) functional as the DM’s preference function; so that the DM chooses
the option with the highest expected (rank-dependent) utility. This is crucial as I put
important assumptions on the DM’s preference within the MMT; these I describe later
in this section. EU has a risk-aversion parameter (r) while RDEU has two parameters
(risk aversion, r, and probability-weighting-function parameter, g). I use the Constant
Absolute Risk Aversion (CARA) and the Constant Relative Risk Aversion (CRRA) to
specify the DM’s utility function in both EU and RDEU. In addition, I use the Power
function2 to specify the probability-weighting function in RDEU to rationalise the
strictly convex preference, which is necessary for the RCP story.3

All stories share the common assumption that the subjects answer each pairwise-
choice problems independently.4 So crucially, all stories can rationalise the DM’s
decision to switch between columns as he or she moves down the table. We should
notice thatAfirst-order stochastically dominatesB in thefirst problem in each table, and
vice versa in the last problem in each table. Hence, these two problems are dominance
problems, since, using either theEUor theRDEU, they should be chosenwith certainty.
I also assume that the DM perceives M as a single lottery through the use of the
reduction of compound lotteries (ROCL). This may raise an issue as I use RDEU in
some ofmy stories (the RCP story and the tremble story).5 For example, Harrison et al.
(2015) find the violation of ROCL as they assume RDEU preference and implement
random lottery incentive mechanism. This violation occurs since their subjects attach
additional value to the compound lottery hence evaluate it differently problem to
problem. However, to keep my stories as simple as possible, I assume ROCL.

The first story is that the decision-maker (DM) has strictly convex indifference
curves within the MMT—this can rationalise the choice of M. The second is that
the DM simply makes a mistake though he or she is fully able to determine the best
choice. The third is that the DM cannot distinguish between A and B unless their
utility difference exceeds some threshold; if not, the DM chooses M6; I specify the
threshold in two ways, a random and a fixed threshold. The fourth is that the DM
actually prefers to delegate the choice (to the coin), shifting the ‘responsibility’ to the

2 f(p) � pg.
3 Other specifications, i.e. the Quiggin and Prelec functions, cannot rationalise a strictly convex preference
within MMT as they produce an S-shape form. Detailed specifications can be found in the Appendix 2.
4 I have to assume this as I allowed subjects to switch between columns as they moved down a table: in
fact, in 253 out of 5544 Tables (4.56%) from 27 subjects saw such switches.
5 Other evaluations are possible to used, for example the compound independence (Segal 1990), in the case
of RDEU preference.
6 This idea is different than that of noisy preference; here I assume that the DM can calculate precisely if
the utility difference between two alternatives exceeds some threshold.
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Table 1 A short explanation of each story

Story Preference within
MMT

Source(s) of
stochasticity

Why the DM states
that he or she prefers
randomising

The random-convex
preference

Strictly convex The DM picks risk
parameters randomly

If it gives the highest
utility

The tremble It can be convex,
concave or linear

Mistake in expressing
the preference
function

If it gives the highest
utility or if the DM
trembles

The threshold Strictly linear The threshold to make
a precise calculation
on the preference
function; and
mistake in
expressing the
preference function
when the DM is able
to calculate precisely

a. Fixed threshold:
randomly chosen if
the utility difference
of A and B is less
than some threshold

b. Random threshold:
strictly chosen if the
utility difference of
A and B is less than
some threshold

The delegation Strictly linear Mistake in expressing
either the DM’s or
other preference
function

If delegating the
choice gives the
highest utility

coin; here the DM receives an extra utility from delegating the choice. The details will
be explained later. In each story, there is inevitably some randomness (Table 1).

I apply RDEU to the RCP and the tremble stories as it allows the indifference curves
(IC) in the MMT to be non-linear in probability, hence these stories can explain why
randomising might be preferable. The DM prefers the mixture of A and B if it gives the
highest utility. This may occur if the indifference curves are strictly convex7 within the
MMT (Starmer 2000). Figure 2 illustrates concave preferences (left panel) and convex
preferences (right panel) within the MMT.8 In the left panel, A and B are preferred to
M, while in the right panel, M is preferred to both A and B.

I apply EU to the threshold story and to the delegation story; with EU the DM’s
indifference curves are linear within the MMT. For the threshold story, in particular,
one can assume other preference functions to calculate the utility, but I assume that the
DM is an EU agent to have the simplest version of this story; I explain these in each
story’s specification. Building on these four stories, I have sixteen variants depending
upon the stochastic specification and the utility function. I fit the various stories using
maximum likelihood.

7 Of course, one can assume other preference functions that allow for non-linear preference within MMT
to explain why the mixture of A and B might be preferable.
8 I specify the MMT accordingly with p1 is the probability of the highest outcome and p3 is the probability
of the lowest outcome.
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Fig. 2 Indifferences curve within MMT

3.1 The random-convex preference story

In this story, I assume that the DM’s preference function is that of RDEU and the
DM has strictly convex indifference curves within the MMT. This convex preference
implies the possibility that the DM prefersM. Given this, I assume that the DM always
chooses the option with the highest expected rank-dependent utility. I also assume the
RandomPreferenceModel (Loomes and Sugden 1995) in which the DM’s preferences
vary randomly from problem to problem. By this, I mean that the DM’s risk-aversion
parameter varies randomly from problem to problem.

Let me explain how I implement this story. Let V (A) be the RDEU value of A,
V (B) be the RDEU value of B and V (M) be the RDEU value of M. To proceed to
a decision, the DM makes the following comparisons: (i) V (A, M) � V (A)–V (M) to
compare A and M; (ii) V (B, M) � V (B)–V (M) to compare B and M. Therefore, the
DM’s preferences on each comparison are given by:

A
(�∼≺

)
M ⇔ V (A, M)

(
>�
<

)
0 and B

(�∼≺
)
M ⇔ V (B, M)

(
>�
<

)
0. (1)

I specify the r (risk-aversion parameter) in theRDEU to be randomacross problems,
while the g (probability-weighting parameter) is fixed; that is why I call this the
random-convex preference story. So there will be an r* in every comparison indicating
that the DM is indifferent between two options for any given fixed g; V (A, M)� 0 and
V (B, M) � 0. This setup is to simplify the estimation.9 I arbitrarily assume that the r
has a normal distribution with parameters (μ and σ )—mean and standard deviation.

Each comparison, V (A, M) and V (B, M), defines a function between r and g. Since
I assume random r and fixed g, this implies a unique r for each comparison. I define
r*1 and r*2 as follows: r*1 ⇐⇒ V (B, M) � 0 and r*2 ⇐⇒ V (A, M) � 0. These must
satisfy r*1 ≤ r*2 since the DM must be less risk-averse to be indifferent between B and
M than when he or she is indifferent between A andM. The implication is that the DM

9 However, it is possible to allow both r and g random, and find a combination of r* and g* on each V (A,
M) and V (B, M)—when the DM is indifferent between A andM, and between B andM respectively. Thus,
to make it operational, it needs a joint distribution to define the simultaneous relationship of r* and g* .
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chooses A if r≥ r*2; that the DM chooses B if r≤ r*1; and that the DM chooses M if r*1
< r< r*2. As the preferences are convex, so that 0<g<1, there exists the solution for r

*
1

and r*2. However, I exclude the dominance problems, for which r*1 and r
*
2 do not exist.

It follows that this story has fewer observations than the other stories by excluding the
first and the last row in each response table since they are dominance problems.10

Using these two ‘boundary’ risk attitudes (r*1 and r*2), I can now specify the log-
likelihood function. Let y ε {1, 2, 3} be the DM’s decision in any problem; taking the
value 1, 2 and 3 if the DM chooses A,M, and B, respectively. The contribution to the
log-likelihood of the observation y in any problem is:

(y − 3)(y − 2) log(1 − Φ2)

2
+ (3 − y)(y − 1) log(Φ2 − Φ1) +

(y − 2)(y − 1) logΦ1

2
(2)

where Φ2 is the cumulative distribution function (cdf ) of a normal distribution with
parametersμ and σ given an observation r*2, andΦ1 is the cdf of a normal distribution
with parametersμ and σ given an observation r*1.

11 However, I will report s� 1/σ , the
precision. I implement this story with two variants—being the two utility functions
CARA and CRRA.

3.2 The tremble story

As with the RCP story, I use RDEU to specify the DM’s preference function and
assume that he or she always prefers the option that yields the highest expected rank-
dependent utility. I assume that r and g are fixed across the problems. For this story,
I assume that the DM is able to make a correct calculation but he or she sometimes
trembles when expressing his or her preference. Hence, I involve a tremble parameter,
which I denote by ω, in this story to capture the DM’s mistake.

I specify this story in two ways: the tremble 1 and the tremble 2. The former
specification assumes that the tremble is the same in all possible non-optimal decisions.
The tremble parameter for this specification takes a value 0≤ω≤0.5. The probability
distribution of all decisions within this sub-story therefore is:

Optimal decisions (y*)

A M B

Actual decisions (y)

A 1–2ω ω ω

M ω 1–2ω ω

B ω ω 1–2ω

10 I could include these problems within the RCP story by involving a tremble in its specification, but I
want to keep this story as simple as possible.
11 Strictly, Φ2 is the probability that a variable with the given distribution takes value less than r2.
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Following table above, the contribution to the log-likelihood of the observation y
conditional to y* is:

P( y � y∗|r , g, ω) � log(1 − 2ω)

P( y �� y∗|r , g, ω) � log(ω)
(3)

The tremble 2 specification assumes that the error can be different across the non-
optimal decisions. The probability distribution of all decisions within this sub-story
therefore is:

Optimal decisions (y*)

A M B

Actual decisions (y)

A 1–ω1–ω2 ω1 ω2

M ω1 1–2ω1 ω1

B ω2 ω1 1–ω1–ω2

It is not necessarily the case that ω1>ω2 in the tremble 2 specification. The tremble
parameters in this particular specification take values 0≤ω1, ω2≤0.5. I assume that
the tremble is shared equally if the optimal decision is choosing M, otherwise, it is
not necessary. As with the tremble 1 specification, this specification has two variants
depending upon the utility function (CARA or CRRA) in the RDEU. Following the
table above, the contribution to the log-likelihood of the observation y conditional to
y* is:

y∗ ��M

{
P( y � y∗|r , g, ω1, ω2) � log(1 − ω1 − ω2)

P( y �� y∗|r , g, ω2) � log
(
ω|y∗−y|

)

y∗ �M

{
P( y � y∗|r , g, ω1, ω2) � log(1 − 2ω1)

P( y �� y∗|r , g, ω1) � log(ω1)
(4)

This story has four variants from the implementation of the tremble specification
and the utility function in the EU.

3.3 The threshold story

Unlike the two previous stories, I assume that the DM has a limitation in making a
precise calculation of a straight option (either A or B). The implication is that the
DM can clearly distinguish between A and B only if the difference in their evaluation
exceeds some threshold, otherwise the DM’s optimal decision is to choose M. Here
is a simple example: someone is shown two bars, they are similar in length with a
difference of 0.5 mm. Those bars are seen from a distance of 1 m. It is highly likely
that someone would say that those bars are exactly identical. So he or she thinks that
those bars give the same level of utility.
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For this story, I use the EU to specify theDM’s preference function. TheDMprefers
A if EU(A)–EU(B)>ϕ and prefers B if EU(B)–EU(A)>ϕ, where ϕ is the threshold of
the EU difference. Additionally, I will have to involve a tremble (ω) to capture the
DM’s mistake in expressing the EU when the DM is fully able to calculate the EU
precisely; the DM cannot express the EU preference if the EU difference is less than
the threshold.

I specify this story in two ways according to the DM’s threshold: a random and
a fixed threshold. The random threshold specification assumes that the DM has a
different calculation ability across problems because he or she may understand each
problem differently—that the ϕ may be different across problems. Here I assume that
the DM cannot distinguishA andB if he or she prefersM. So the choice of eitherA orB
implies that the DM can clearly distinguish A and B. The fixed threshold specification
assumes that the DM has fixed calculation ability across problems—that the ϕ is fixed
across problems. I arbitrarily assume that the DM can choose any option when he or
she cannot distinguish A and B with a probability of 1/3.

I involve tremble in both specifications to capture the DM’s mistake in expressing
his or her preference. However, since the two specifications have key differences, they
will have a different probability distribution of the DM’s decision. For the random
threshold specification, the probability distribution of the DM’s decisions where he or
she does not choose M is:

Optimal decisions (y*)

A B

Actual decisions (y)

A 1 − ω ω

B ω 1 − ω

The tremble parameter takes value 0≤ω≤1 in this specification. To proceed to the
estimation I have to assume the distribution ofϕ as it is assumed to be randomacross all
problems. I use the exponential and log-normal distribution of ϕ. Both distributions
take into account the non-negative nature of ϕ. The exponential distribution has a
parameter of λ (the inverse of the mean), whereas the log-normal distribution has two
parameters: log(μ) and log(σ ). Instead, I will report the mean of ϕ (Λ � 1/λ) for the
exponential distribution, and the mean (μ) and the precision (s � 1/σ ) of ϕ to make it
easy to read—the higher is the precision, the less is the noise. Following the decision
matrix above, the contribution to the log-likelihood of the observation y conditional
to y* is:

P( y � M|r , δ) � log(1 − Θ[ϕ])

y �� M

{
P( y � y∗|r , ω, δ) � log{P(1 − ω)Θ[ϕ]}
P( y �� y∗|r , ω) � log(ω)

(5)

where 
 is cdf of the ϕ following either a log-normal or exponential distribution,
and δ is a set of parameter(s) of either a log-normal or an exponential distribution.
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This random threshold specification has four variants from the implementation of
the threshold distribution and the utility function in the EU. So I have: (i) the log-
normal threshold combined with CRRA and CARA, and (ii) the exponential threshold
combined with CRRA and CARA.

Move on to the fixed threshold specification, the probability distribution of all
decisions within this sub-story therefore is:

Actual decisions (y)

A M B

What the DM reveals (y*)

EU(A)–EU(B)>ϕ 1–2ω ω ω

EU(A)–EU(B)≤ϕ and EU(B)–EU(A)≤ϕ 1/3 1/3 1/3

EU(B)–EU(A)>ϕ ω ω 1–2ω

As in the decision matrix above, each option shares an equal probability to be
optimal decision when the DM cannot distinguish A and B. I assume that ω is the
same in all possible non-optimal decisions when the DM can distinguish A and B.
This is to keep this story as simple as possible.12 The tremble parameter takes value
0≤ω≤0.5. The contribution to the log-likelihood of the observation y conditional to
y* is:

|EU (A) − EU (B)| ≤ ϕ ⇔ P( y � A, M, B|r , ϕ) � log
(
1/
3

)

|EU (A) − EU (B)| > ϕ

{
P( y � y∗|r , ϕ, ω) � log{P(1 − 2ω)}
P( y �� y∗|r , ϕ, ω) � log(ω)

(6)

This fixed threshold story has two variants depending on the specification of the
utility function: the fixed threshold with CRRA and the fixed threshold with CARA.

3.4 The delegation story

As in the threshold story, I assume that the DM is the EU agent so he or she always
prefers the option that yields the highest expected utility. In addition, I assume that the
DM receives an extra utility if he or she chooses M—delegating the decision to the
coin toss. Therefore, the expected utility of M is defined as: EU(M) � 0.5{EU(A)} +
0.5{EU(B)} + a where EU(M) is the expected utility of M, and a is an extra utility.
This setup differentiates this story from the tremble story.

Also, I involve a tremble to capture the DM’s mistake in expressing his or her
preference. I specify the tremble in twoways: tremble 1 and tremble 2 as in the tremble
story. Since there is always the best of all decisions in this story, the probability
distribution of the DM’s decision in both tremble 1 and tremble 2 specifications is
identical to that one in the tremble story; likewise the contribution to the log-likelihood.

12 Of course one can assume that the tremble can be different across non-optimal decisions when the DM
can distinguish A and B.

123



84 Y. Permana

Fig. 3 The percentage of choosingM

This story has four variants arising from variations of the tremble specification and of
the utility function in the EU.

4 Results and analyses

I start with some simple descriptive statistics. Then I proceed to amore formal analysis.

4.1 Descriptive statistics

I have already noted that I allowed subjects to switch between columns as they moved
down a table.We observed 253 (4.56%) such switches in 5544 tables from 27 subjects.
This means that the entries in the middle columnmay not have been continuous. There
are 114 (2.06%) of 5544 tables from 10 subjects see a non-continuous range in the
choice of the middle column. However, in either case, I can measure the percentage
of middle column responses in each table. This I call PROPMID. Note that this is not
the same as INTSIZE as used in Cubitt et al., though it is closely related to it.

First, I report the subjects’ behaviour when they chooseM. There are 14,761 cases
(6.22%) out of 237,314 decisions in which subjects choose M—with 47 subjects
choosing M at least once. Figure 3 below shows the histogram of PROPMID in all
problems. It is clear that some subjects hardly ever choose the middle column, while
a few choose it rather often.

Now we break down PROPMID by the lottery sequence—there are seven basic
lottery sequences following the design in Cubitt et al. The percentage of choosing M
is slightly different between the seven sequences, and there is a slight tendency for
PROPMID to be lower when the problems are repeated: in the first half (problems
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Fig. 4 The percentage of subjects choosingM by sequence in each half of the problem set

1–36) PROPMID averages 6.95% compared to 5.49% in the second half (problems
37–72).13

Note that, not only does PROPMID decrease when the lottery sequences are
repeated, but also the subjects show different pattern across lotteries within sequence.
We can use this to seewhether there is any connection between our subjects’ behaviour
and those ofCubitt et al. Let us focus attention onSequences 3–6whereCubitt et al. find
that the size of the imprecision decreases as the lotteries approach certainty. The left
panel in Fig. 4, for problems 1–36, shows that only Sequences 3 and 6 have an apparent
decrease in PROPMID as the lotteries approach certainty; however, Sequences 4 and
5 do not have a systematic pattern across lotteries. Different results are shown in the
right panel, for problems 37–72, where there is an apparent decrease of PROPMID
as the lotteries approach to certainty in Sequence 3–6. These findings are different
from those in Cubitt et al, since subjects do not show a strong systematic pattern
of in Sequences 3–6. The differences almost certainly arise because of the different
incentive mechanism: a point that is reinforced by our regression results below.

4.2 Formal analyses

Now I report formal results investigating my stories. There are sixteen variants of the
four stories to try to explain why subjects choose M. I estimate subject-by-subject
using maximum likelihood. Below is a summary of the stories. Following that are the
results.

I separate the formal analysis into two parts. The first part is the main analysis of
this paper where it tries to find the best story to account for the subjects’ behaviour.
I do this subject-by-subject. For this, I run a horse-race between the four stories
and their some descriptive statistics, before proceeding to some more formal analyses.
Second, I perform a regression analysis that serves as a complement to the first part and
tries to identify the connection between preference for randomisation and preference
imprecision (Table 2).

13 Sequence 5 has six lotteries with lottery 2 is a slightly different kind of lottery 1 in this sequence. Lottery
1 is certain lottery while lottery 2 is close-to-certainty lottery.
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Table 2 Summary of the stories

Story Preference
functional

Random variable Number of
variants

Estimated
parameters

The RCP RDEU The risk parameter 2 μ and s of r, and g
in all variants

The tremble RDEU n.a. in both
tremble
specifications

4 r, g, ω for the
tremble 1

r, g, ω1 and ω2 for
the tremble 2

The threshold EU The threshold in
the random
threshold
specification

4 r, Λ, ω for the
exponential
threshold
specification in
all variants

r, μ, s, ω for the
log-normal
threshold
specification in
all variants

n.a. in the fixed
threshold
specification

2 r, ϕ, ω in all
variants

The delegation EU n.a. in all variants 4 r, a, ω for the
delegation with
tremble 1
specifications

r, a, ω1, ω2 for the
delegation with
tremble 2
specifications

To find the best-fitting variant and story, I compare the individual average-corrected
log-likelihood in each model. Note that the RCP story has fewer observations than
other stories due to exclusion of the dominance problems in this story.14 So this
compares the contribution of the corrected log-likelihood from each problem. I use
the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC),
and Hannan-Quinn Information Criterion (HQC) for that.15

Based on the variant comparisons, the RCP with CARA and the fixed threshold
with CARA receive the most empirical support. These two variants best explain the
choice of the majority of the subjects. Within the story comparison, it follows that the
RCP story and the threshold story receive the most empirical support.16 The results
show that 38 subjects are best explained by the threshold story; 33 subjects are best
explained with the RCP story.

14 This leaves the RCP story to have 2694 observations for each subject compared to 3082 observations
for each subject in other stories.
15 AIC is given by 2 k – 2LL; BIC is given by ln(n)k – 2LL; HQC is given by -2LL+ 2ln(ln(n))k; where k
is the number of parameters, LL is the maximised log-likelihood and n is the number of observations.
16 The overall comparisons to find the best variant and the best story are in Appendix 3 and 4 respectively.
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Now I turn to the subjects’ risk aversion. All variants used involve risk aversion, and
it is obvious that different subjects have different attitudes to risk.17 All variants show
that most of the subjects are risk-averse. The details of each variant can be seen in
Appendix 6. I report the tremble (ω) from variants within those stories in Appendix 7
following the tremble parameter used in the tremble, the threshold, and the delegation
stories to capture the mistake in expressing the subjects’ preference. I also report the
extra utility parameter within the delegation story in Appendix 8.

4.3 Regression analyses of the choice on themixture of A and B

This section’s main purpose is to see whether there is a connection between preference
for randomisation and preference imprecision. I follow the regression model as in
Cubitt et al. to explore what determines the choice of M. Since we saw switching
amongst the subjects, I collect the percentage (PROPMID) of the choice ofM in each
response table—this differs from Cubitt et al. who use the range of the choice of M
as measured in a monetary sum (INTSIZE). I use the lottery characteristics and the
subjects’ experience as the determinant of PROPMID for each regression. Outcomes
in the particular lottery are constructed through the MMT: each lottery has three
outcomes with corresponding probabilities. x1 is the highest outcome with probability
p1, x2 is the middle outcome with probability p2, and x3 is the lowest outcome with
probability p3. For any lottery with two outcomes, I interpret it as having x3 zero with
p3 zero. I also involve the ratio of the middle to the highest outcome (RATIO_x2x1),
the expected value of each lottery (EV ), and the range between the highest and the
lowest outcome stated in the lottery (RANGE) as the lottery characteristics in the
regression. To capture the subjects’ experience, I involve the number of response
table that the subjects had completed (ORDER) and a dummy variable to indicate
the repeated response table (REPEAT ). I report the significant variables only from
stepwise regression in Eq. 7 below18:

PROPMI D � 5.317
(1.099)∗∗ + 0.284x1

(0.078)∗∗
− 1.456p1

(0.586)∗
+ 0.354RAT I O_x2x1

(0.104)∗∗
− 0.051ORDER

(0.009)∗∗

(7)

The regression model shows reasonable results as all coefficients are jointly dif-
ferent from zero.19 The regression results show that both x1 and RATIO_x2x1 have a
positive effect on PROPMID; the higher are x1 and RATIO_x2x1, the higher is PROP-
MID.Meanwhile, both p1 andORDER have a negative effect onPROPMID; the higher
are p1 and ORDER, the lower is the PROPMID. One interesting finding here is that
of experience (ORDER) is negatively significant to PROPMID. This implies that ran-
domising behaviour is a temporary phenomenon; there is a tendency of the choice of
M to decrease as subjects continued to the next tables. This confirms the descriptive

17 The detail results can be seen in Appendix 5.
18 Standard errors are in parentheses; * and ** denote significance at the 5% and 1% levels respectively.
19 Stepwise deletion (p value≤0.2) and stepwise addition (p value≥0.2) produce identical results. I also
report results from simple regression. The detail of all regression results can be seen in Appendix 9.
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analysis in the previous sub-section where the subjects are found to have different
behaviour of choosing M when the problems were repeated.

Below I reproduce the same regression from Cubitt et al. (the only difference being
the definition20 of the dependent variable)21:

I NT SI Z E � 0.294
(0.315)

+ 2.211p1
(0.280)∗∗

− 0.841p3+
(0.377)∗

0.206RANGE
(0.013)∗∗ − 0.049EV

(0.016)∗∗ (8)

Comparing these two equations (Eqs. 7 and 8), it is seen that, not only does signifi-
cance change, but also the magnitudes of the coefficients. The conclusion seems to be
that preference for randomisation and preference imprecision are two different things.
The incentive mechanismwould appear to be the key reason for these different results.

5 Discussion and conclusion

Themotivation for this paper is to explore possible stories to help understand subjects’
behaviour when they are given an additional option when stating their preference
between two options, namely, “I am not sure what to choose”, and when, if they chose
this option, their payment would depend upon the tossing of a coin. It means that
this choice has a direct financial implication through randomisation, and leads to the
discussion of preference for randomisation.

The main contribution of this paper is to try to understand the nature of preference
for randomisation. I propose four storieswhy someonemay randomise the choice. This
complements previous studies that rarely provide a formal model to account for this
behaviour. My analysis shows, that of the four stories, the random-convex preference
story and the threshold story receive the most empirical support in behaviour. Further
research, of course, is necessary to disentangle these two since they have clearly
different reasons for why the DM may randomise the choice.

The four stories in this paper consider that preference for randomisation is a deliber-
ate choice.Cettolin andRiedl (2019) investigated if the subjects prefer to randomise the
choice between risky and uncertain options, and between risky and sure options. They
found that randomisation is a deliberate decision and is consistent across problems
since their subjects’ behaviour does not change with the magnitude of the incentives.
An investigation by Dwenger et al. (2018) shows a similar pattern; they conducted
experiments where the subjects’ choice is implemented (in the payout rule) with a
certain known probability. In one treatment, subjects were allowed to make a choice
twice, the idea being that subjects with a strict preference will have the same choice in
both attempts. However, the results show that a significant proportion of the subjects
have choice reversals, indicating deliberate randomisation. A different approach was
followed by Dominiak and Schnedler (2011) who tried to challenge the classical pre-
diction in which an uncertainty-averse individual is supposed to prefer randomisation.
The experiment elicited both randomisation and uncertainty attitudes, and identified
their connection. Their findings show that randomisation and uncertainty attitude are

20 My PROPMID is the percentage of responses usingM; Cubitt et al’s INTSIZE is the interval size of the
choice ofM as measured in a monetary sum.
21 I reproduce the detail of regression results from Cubitt et al in Appendix 9.
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not negatively associated; it is either that randomising-averse subjects are uncertainty-
averse or vice versa.

An interesting exploration has been made by Agranov and Ortoleva (2017) that
is related to one concern of my stories: the source of the stochastic process. They
ran an experiment to find the relationship between preference for randomisation and
stochastic choice. In their experiment, the subjects faced repeated problems in two
treatments: far repetition and in-a-row repetition. The treatments differed in how the
binary-problems were presented. The far repetition treatment repeated the same prob-
lems far apart and the subjects were not told about that, whereas the in-a-row repetition
treatment repeated the same problems in a row and the subjects were told about that.
Moreover, subjects were allowed to randomise the choice in both treatments at a fixed
cost. They found that subjects who randomise the choice are significantly more likely
to report inconsistent choice in both treatments. This indicates that the desire to ran-
domise plays an important role in driving the stochastic choice.

One recent popular topic that may have a connection with a preference for randomi-
sation is preference imprecision. This has been the main subject explored in Cubitt
et al. (2015) and in Butler and Loomes (2007, 2011); these papers give an interpreta-
tion of the choice of the middle column despite there being no financial implication of
subjects choosing it. I try to find a connection between these two topics, though they
have different incentive mechanisms, by constructing a regression model following
Cubitt et al. My regression estimation shows different results than that of Cubitt et al.
since no explanatory variables have the same magnitude and significance. This sug-
gests that there is no association between preference for randomisation and preference
imprecision as defined by Cubitt et al.

However, it still might be possible to link these phenomena by having a different
interpretation of what we mean by preference imprecision. As Loomes and Pogrebna
(2014) recommend, eliciting preferences should take care of the context where it is
elicited, and that it is necessary to develop a model engaging the inherently stochastic
nature of human decision-making; though they avoid using some deterministic theory
combined with the error term. This paper tries to address this issue by identifying the
possible source of stochasticity given the elicitation procedure, that is, the two stories
that receive most empirical support in this paper involve an imprecision element: in
the threshold story, the imprecision occurs because of the DM’s (in)ability to calculate
utility; surely this has an implication for the DM’s preference? In the random-convex
preference story, the DM does not have a single preference since his or her risk attitude
changes across problems. Perhaps we should pay more attention to defining what we
mean by preference imprecision.
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Appendix 1

See Fig. 5 in Appendix.

Fig. 5 On the screen example to complete the tasks in the particular response table

Appendix 2: Specification of the EU and the RDEU

The general form of EU is EU (.) � ∑I
i pi ui and of RDEU is RDEU (.) �∑I

i Pi ui—where (pi) is the set of true probabilities, (ui) is the utility indices and
(Pi) is the set of weighted probabilities. For the RDEU specification, I assume that
the DM ranks the outcomes from the highest to the lowest. So I can define Pi as:
Pi � ∑I

I w(pi ) − w(pi−1)—where w(.) is the probability-weighting function. I use
the Power weighting function for w(.) that can formally be written as: w(p) � pg; g
>0—where g is a parameter of w(.).22 Given this, P1 � w(p1) and RDEU will reduce

22 There are several forms to specify the probability weighting function, such as Quiggin and Prelec
weighting function. However, a power function is used due to a technical reason.
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to EU if w(pi) � pi everywhere. The w(pi) is monotonically increasing in the area of
[0, 1] with w(0) � 0 and w(1) � 1.

To complete the specification of the EU and the RDEU, I use CARA and CRRA to
specify the utility function. The general form of CARA and CRRA, and its application
in this paper, are:

CARA : u(xi ) �
{

1−exp(−r xi )
1−exp(−r X)

; r �� 0
xi
X ; r � 0

(9)

CRRA : u(xi ) �
{

(xi+e)1−r

1−r ; r �� 1
log(xi + e); r � 1

; e > 0 (10)

where x is the outcome received by the DM in a choice problem i, X is the highest
outcome for all choice problems and r is the parameter of risk attitude. I normalise
CARA so the utility index will always be 0≤ui ≤1. For CRRA, I need to add e
because CRRA does not fully accommodate the case when x � 0 and r <0 otherwise
the function is undefined.

Appendix 3

See Table 3 in Appendix.

Table 3 Count for best-fitting
variant according to the average
corrected log-likelihood

Variant AIC BIC HQC

RCP CARA 29 29 29

RCP CRRA 4 4 4

CT CARA 0 0 0

CT CRRA 0 0 0

NCT CARA 1 1 1

NCT CRRA 5 5 5

RTE CARA 2 2 2

RTE CRRA 1 1 1

RTL CARA 0 0 0

RTL CRRA 1 0 0

FT CARA 23 24 24

FT CRRA 11 11 11

DCT CARA 0 0 0

DCT CRRA 0 0 0

DNCT CARA 0 0 0

DNCT CRRA 0 0 0

Abbreviation of the variants:
RCP the random-convex
preference, CT the constant
tremble, NCT the non-constant
tremble, RTE the random
threshold with exponential
distribution of the threshold,
RTL the random threshold with
log-normal distribution of the
threshold, DCT the delegation
with constant tremble, DNCT
the delegation with non-constant
tremble, FT the fixed threshold

123



92 Y. Permana

Appendix 4

See Table 4 in Appendix.

Table 4 Count for story selection
according to the average
corrected log-likelihood

Story AIC BIC HQC

The random-convex preference 33 33 33

The tremble 6 6 6

The threshold 38 38 38

The delegation 0 0 0

Appendix 5

See Table 5 in Appendix.

Table 5 Count for the risk
aversion from each variant

Model Risk aversion

Risk averse Risk neutral Risk loving

RCP CARA 70 0 7

RCP CRRA 68 0 9

CT CARA 73 0 4

CT CRRA 60 0 17

NCT CARA 63 0 14

NCT CRRA 72 0 5

RTE CARA 67 1 9

RTE CRRA 71 1 5

RTL CARA 66 1 10

RTL CRRA 68 0 9

FT CARA 69 0 8

FT CRRA 64 0 13

DCT CARA 69 0 8

DCT CRRA 63 0 14

DNCT CARA 65 2 10

DNCT CRRA 64 1 12

The reported count within the
random-convex preference story
indicate that most of the subjects
have their mean of the r at the
risk-averse state

Appendix 6

See Fig. 6 in Appendix.
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Fig. 6 Risk aversion of each model
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Appendix 7

See Fig. 7 in Appendix.

Fig. 7 Tremble parameter of the related model
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Appendix 8

See Fig. 8 in Appendix.

Fig. 8 Extra utility parameter of the related models

Appendix 9

See Table 6 in Appendix.

Table 6 Reported regression model results for PROPMID and INTSIZE

Dependent variable PROPMID INTSIZE

Procedure Simple linear Stepwise Simple linear Stepwise

Constant 5.998** (1.255) 5.317** (1.099) − 0.285 (1.329) 0.294 (0.315)

x1 0.185 (0.122) 0.248** (0.078) 0.058 (0.079)

p1 − 2.455** (0.898) − 1.456* (0.586) 2.816* (1.132) 2.211** (0.280)

p3 − 0.766 (1.111) − 2.262 (2.386) − 0.841* (0.377)

RATIO_x2x1 0.312** (0.112) 0.354** (0.104) 0.870 (1.65)

EV 0.108 (0.093) − 0.122 (0.286) − 0.049** (0.016)

RANGE − 0.016 (0.108) 0.203** (0.019) 0.206** (0.013)
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Table 6 continued

Dependent variable PROPMID INTSIZE

Procedure Simple linear Stepwise Simple linear Stepwise

REPEAT 0.311 (1.119) 0.081 (0.186)

ORDER − 0.055 (0.029) − 0.051** (0.009) − 0.014 (0.018)

Obs. 5544 5544 1830 1830

Adj-R2/R2 0.0118 0.0112 0.162 0.161

Subjects 77 77 79 79

Prob.>F 0.000 0.000 0.000 0.000

RMSE 14.206 14.206 N.A N.A

Mean of ŷ 6.3187 6.3187 N.A N.A

Min. ŷ 3.4695 3.7489 N.A N.A

Max. ŷ 10.4243 10.2666 N.A N.A

Stepwise addition (p values≥0.2) and stepwise removal (p values≤0.2) produce identical results
Standard errors are in parenthesis; * and ** denote significance at the 5% and 1% levels, respectively
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