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Abstract In this paper we consider one-to-many matching problems where the pref-
erences of the agents involved are represented by monetary reward functions. We
characterize Pareto optimal matchings by means of contractual exchange stability and
matchings of maximum total reward by means of compensational exchange stabil-
ity. To conclude, we show that in going from an initial matching to a matching of
maximum total reward, one can always provide a compensation schedule that will
be ex-post stable in the sense that there will be no subset of agents who can all by
deviation obtain a higher reward. The proof of this result uses the fact that the core of
an associated compensation matching game with constraints is nonempty.
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1 Introduction

Restructuring is an ongoing process in today’s dynamic business world where compa-
nies are constantly looking for ways to enhance efficiency, to gain competitive edge,
and to keep up with industry trends. A tension exists, however, between a job alloca-
tion that is best from an individual worker’s or department’s point of view and that of
the organization as a whole. Thus, centralized restructuring that involves moving staff
across different departments in an institution, potentially, leaves some staff worse-off.
When a restructuring schedule is devised one should consider, therefore, the opportu-
nity for an ex-post reorganization by some departments orworkers thatmay undermine
the process as a whole.

The focus of study is the class of Pareto optimal matchings of workers to depart-
ments within an organization, and, within this set, we pay particular attention to those
matchings that maximize an organization’s overall reward. We characterize the set
of Pareto optimal matchings and the set of matchings that maximize the institution’s
total reward by means of two stability notions: contractual exchange stability and
compensational exchange stability, respectively.

Contractual exchange stability requires that any deviation, i.e. workers changing
their assigned department or departments exchanging subsets of workers, is approved
by all affected parties. Underlying this stability notion is the assumption that an agent
grants approval to a deviation only if his reward does not decrease as a result of
the change. Our notion of contractual exchange stability is in the spirit of the notion
of contractual individual stability introduced by Bogomolnaia and Jackson (2002)
and analyzed in the context of hedonic coalition formation games. Like contractual
exchange stability, the notion of individual contractual stability presumes that an agent
can leave her current coalition only if her group mates in that coalition agree to the
move. These agents on their part agree only if they are at least as well off without the
leaving member of the coalition as when she is in. Two aspects distinguish our study
of contractual stability from that by Bogomolnaia and Jackson (2002): the cardinal
representation of preferences and the deviation possibilities. The former difference
is inconsequential as only the ordinal properties of agents’ preferences are utilized
in the analysis of contractual exchange stability. The latter difference is driven by
the fact that we focus on a two-sided many-to-one matching environment which is
intrinsically more restrictive than that of coalition formation: for example, same-sided
agents cannot be matched to each other without also being matched to an agent from
the opposite side in a matching problem whereas any subset of agents can form a
coalition in a coalition formation problem.

The cardinal representation of agents’ preferences is instead essential in the defini-
tion of compensation exchange stability. Compensation exchange stability allows the
deviating parties to compensate the agents that aremadeworse-off by the change. Thus,
a deviation is viable only if the net increase in rewards of the deviating agents exceeds
the total losses of those agents whose rewards decrease due to the deviation. Clearly,
some deviations which are not allowed under the notion of contractual exchange sta-
bility (because they leave some agents worse-off) are possible under the notion of
compensational exchange stability (because those agents can be compensated).
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Our notion of compensation exchange stability, just like the notion of contractual
exchange stability, has its counterpart in the coalition formation literature. For exam-
ple, Lazarova et al. (2011) use a similar notion in the context of coalitional games.
These authors, however, focus on unilateral deviations in that context, whereas here
deviations may involve multiple agents. Like in hedonic coalition formation games
discussed above, in coalitional games there are no restrictions on the set of coalitions
that may form, whereas in a matching problem such restrictions exist.

An important class of two-sided matching problems with a cardinal representation
of agents’ preferences is the assignment problem. Seminal works that discuss algo-
rithms for finding assignments with maximum total rewards are Knuth (1955) and
Koopmans and Beckmann (1957) while Shapley and Shubik (1971) seminally define
and study the notion of an assignment game.1 In an assignment problem every tuple
of matched agents is characterized by a cardinal value that is taken to represent the
productivity or overall surplus that these agents can generate when matched together.
In contrast, in the matching environment studied here every agent in a matched tuple
is assigned a cardinal reward that represents the (share of the) value she is guar-
anteed in the matching. Our choice of assumptions is motivated, on the one hand,
by our research question—the characterization of the set of Pareto optimal match-
ings and the set of matchings that maximize the agents’ total reward, respectively
by means of stability notions—as it allows us to abstract away from the problem of
how the joint surplus is shared among the matched agents and focus on the speci-
ficities of the deviation possibilities instead. On the other hand, it is motivated by
the particular application that we have in mind—institutional organization and re-
structuring—whereworkers are guaranteed a salary and departments facewell-defined
budgets.

This setting also directs our search for appropriate stability notions to be used in
the analysis. Our notions of stability are related to the notion of exchange stability
developed by Alcalde (1995) in the context of one-to-one matching problems. Gale
and Shapley (1962) establish the concept of pairwise stability, which is adopted by
Shapley and Shubik (1971) in the analysis of assignment games and the posterior
literature. An important difference between the notions of exchange stability and those
used in the matching literature is that in the former agents are only allowed to “swap”
partners (i.e. the deviation involves agents from the same side) and are not allowed
to opt out (i.e., unmatched agents are not considered) whereas in the latter agents are
only allowed to “divorce”, i.e. opt out of a matching to be unmatched or deviate to
a matching with a new partner from the opposite side. Importantly, Alcalde (1995)
shows the independence of the set of exchange stable outcomes and the set of pairwise
stable outcomes in the context of a standard one-to-one matching problem where no
transfers between agents are allowed. Like Alcalde (1995), we take the view that an
analysis based on exchange stability should be taken as complementary to that based
on pairwise stability and that the choice of a stability notion should be driven by the
research focus. In this study, our choice of stability notions is driven by our task to

1 We refer the reader to Pentico (2007) for a recent survey and classification of the literature on the
assignment problem.
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characterize two desirable sets of outcomes from an institution’s point of view.2 Last,
we point out that our framework for exchange stability is different from that of Alcalde
(1995) in the sense that we consider many-to-one matching problems with peer effects
(i.e. the reward of a worker in a matching depends on the group of coworkers assigned
to the same department) and, moreover, allow for monetary rewards. In the former
aspect our work is related to the literature on many-to-one matching problems with
peer effects (cf. Dutta and Massó (1997) and more recently Pycia (2012)). We differ
from these works in the adopted stability notions (in our case this is exchange stability,
whereas they usually consider extensions of pairwise stability) and again in our focus
on the sets of matching that maximize the total agents’ reward (as the many-to-one
matching literature assumes ordinal preferences). Among the generalized assignment
games works, e.g. Sotomayor (1999), on the other hand, we are not aware of any study
where peer effects are modelled.

The adopted framework of cardinal representation of preferences allows us to also
address the question if, given an initialmatching ofworkers to departments, there exists
a compensation schedule such that a centralized restructuring towards a matching of
maximum total reward of the organization will be ex-post stable, in the sense that there
will be no subset of workers or departments who can all by deviation obtain a higher
reward. We analyze this question by introducing a transferable utility cooperative
game, called a compensation matching game, and by showing that each compensation
matching game has a nonempty core, which ensures that a compensation schedule as
described above exists.

The paper is structured as follows. Section 2 provides notions on matchings for
matching problems with monetary rewards and peer effects used throughout the paper.
In Sect. 3, we characterize Pareto optimality of matchings by means of contractual
exchange stability on the class of strict matching problems. In Sect. 4, we charac-
terize matchings with maximum total reward by means of compensational exchange
stability. Section 5 analyzes the existence of stable compensation schedules when an
organization restructures the initial situation towards a matching of maximum total
reward.

2 Basic notions

We consider two distinct types of economic agents: workers and departments. For
ease of notation, we use lower case letters to denote a generic member i within the
set of workers N , and upper case letters to denote a generic department H within
the set of departments D. A vector of natural numbers q = (qH )H∈D represents the
capacity of each department with qH being the capacity of department H with qH ≥ 1.
We assume that |N | = ∑

H∈D qH , i.e. the total number of workers equals the total
capacity available at the departments. An allocation of workers to departments forms a
partition of the set of workers inN , P = {PH }H∈D, such that the size of the partition

2 In this respect, the independence of the sets of exchange stable matchings defined here and some appro-
priately defined stable sets that follow in the tradition of pairwise stability goes beyond the scope of our
work.
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elements is consistent with the departmental capacity, i.e. |PH | = qH for all H ∈ D.
The set of all such partitions is denoted by P(N ,D, q). If no confusion arises, we
write P instead of P(N ,D, q).

An allocation of workers to departments is given by a matching μ where μ : N →
D such that P(μ) = {μ−1(H)}H∈D ∈ P . The class of matchings is denoted by
M(N ,D, q). If no confusion arises, we writeM instead ofM(N ,D, q). Notice that
in our definition of a matching, we do not allow for workers to remain unmatched and
for departments to have unfilled capacity. The choice of our assumption is driven by
the particular environment that we have in mind, where existing workers are allocated
to existing departments and firing or a closure of a department are not a possibility.
Alcalde (1995) study a model with similar characteristics. This assumption is also
common in the assignment problem literature, where the goal is to find an assignment
with the highest total value (see Pentico 2007 for a review). As our focus is on the
set of Pareto optimal matchings and the set of matchings of maximum total reward
(formally defined below), the assumption is inconsequential as long as any outcome
in which a department has unfilled capacity or a worker is unmatched yields strictly
lower reward than any other outcome where all departments have full capacity and all
workers are matched to a department.3

We assume that for each worker a matching leads to a monetary reward which
depends on the department to which he is assigned and the identity of his peers in that
department. Thus, for each i ∈ N there is a monetary reward function ri where for
each (Si , H) with H ∈ D and Si ∈ 2N\{i} such that |Si | = qH − 1, ri (Si , H) can be
read as the reward that worker i receives when matched to department H with a set of
coworkers Si ⊆ N \ {i}.

Similarly, we assume that for each department H ∈ D, there is a monetary reward
function πH : {S ⊂ N | |S| = qH } → R.

Given a matching μ ∈ M, we will use the shorthand notation ri (μ) to denote the
monetary reward obtained by worker i ∈ N when the department to which i belongs
and the set of i’s coworkers are given by matching μ, i.e. ri (μ) = ri (μ

−1(μ(i)) \
{i}, μ(i)). Similarly, πH (μ) denotes the reward obtained by department H ∈ D from
the set of workers assigned by μ to H , i.e. πH (μ) = πH (μ−1(H)).

The tuple (N ,D, q, r, π) with r = (ri )i∈N and π = (πH )H∈D as above defines a
many-to-one matching problem with peer effects and monetary evaluations or simply
matching problem.

Strict preference profiles are a common assumption in many matching models (cf.
Gale and Shapley 1962). Recently, some authors have investigated the link between
indifference and inefficiencies, e.g. Erdil and Ergin (2008). In our setting, a matching
problem is called strict if

(i) for every i ∈ N , all H1, H2 ∈ D, and all S1, S2 ⊆ N with |S1| = qH1 |S2| = qH2

and i ∈ S1 ∩ S2, ri (S1 \ {i}, H1) �= ri (S2 \ {i}, H2) if S1 �= S2 or H1 �= H2; and

3 More recently Chechlárová (2002) and Chechlárová and Manlove (2005) explore the importance of
preference completeness (i.e. whether all agents are acceptable partners to all other agents) and consistency
(i.e. when each agent who finds another agent acceptable, is also found acceptable by the former) for the
existence of exchange-stable allocations in the context of one-to-one matching problems.
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(ii) for every H ∈ D, all S1, S2 ⊆ N with |S1| = |S2| = qH , πH (S1) �= πH (S2) if
S1 �= S2.

3 Pareto optimal matchings

In a Pareto optimalmatching it is not possible tomake any agent better-off by changing
their department, in the case of a worker, or their workers, in the case of a department,
without making another agent worse-off. The formal definition of a Pareto optimal
matching is given below.

Definition 1 Let (N ,D, q, r, π) be amatching problem.Amatchingμ ∈ M is Pareto
optimal if there is no other matching μ′ such that

– ri (μ
′) ≥ ri (μ) for all i ∈ N ,

– πH (μ′) ≥ πH (μ) for all H ∈ D, and
– there exists a worker i ∈ N such that ri (μ

′) > ri (μ) or a department H ∈ D such
that πH (μ′) > πH (μ).

We will characterize Pareto optimality of matchings by means of a stability notion
called contractual exchange stability. Recall that in our set up, departments have fixed
capacities and the number of available workers is consistent with the available capac-
ities. Thus, it seems natural to assume that an agents’ only possibility for deviation is
to perform some switch with other agents on the same side (i.e. workers can exchange
departments with other workers and departments can exchange workers with other
departments) provided that the exchange meets certain contractual criteria. In partic-
ular, if worker i prefers the department and coworkers of worker j in matching μ, and
vice versa, then i and j can exchange their places provided that their respective depart-
ments and peers are not made worse-off by the swap. Similarly, if two departments,
G and H , can generate higher rewards by exchanging a (sub-)set of their workers
under μ, then, they can perform the swap provided that none of the involved workers
is made worse-off. The description above is limited to two-way exchanges, but we
assume that three-way or even more complicated exchanges can be performed as long
as the affected parties (peers or departments) do not earn a lower reward as a result of
the exchange.

Definition 2 Let (N ,D, q, r, π) be a matching problem. A matching μ ∈ M is
contractually exchangeblockedvia anothermatchingμ′ if either there exists a blocking
coalition S ⊆ N with |S| ≥ 2 such that

(i) for each i ∈ S there is a j ∈ S with μ(i) �= μ( j) such that μ′(i) = μ( j);
(ii) for each i ∈ S, ri (μ

′) > ri (μ);
(iii) for all j ∈ N \ S, r j (μ

′) ≥ r j (μ);
for all H ∈ D, πH (μ′) ≥ πH (μ);

or there exists a blocking coalition H ⊆ D with |H| ≥ 2 such that

(i’) for each H ∈ H it holds that (μ′)−1(H) �= μ−1(H) and (μ′)−1(H) ⊆
∪F∈H μ−1(F);
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(ii’) for each H ∈ H, πH (μ′) > πH (μ);
(iii’) for all i ∈ N , ri (μ

′) ≥ ri (μ); for all F ∈ D \ H, πF (μ′) ≥ πF (μ).

In the above definition, it is required that the blocking coalition contains at least
two agents of the same type who agree to a switch and these agents can earn a strictly
higher reward as a result of the switch [requirements (ii) and (ii′)]. Requirements (iii)
and (iii′) of the definition, on the other hand, are important only for those agents who
are affected by the switches proposed by the blocking coalition. For all other agents,
this requirement is automatically satisfied.

Below we introduce the notion of a contractually exchange stable matching.

Definition 3 A matching μ is contractually exchange stable, if it cannot be contrac-
tually exchange blocked.

Theorem 1 Let (N ,D, q, r, π) be a strict matching problem. A matching μ ∈ M is
Pareto optimal if and only if it is contractually exchange stable.

Proof First, let μ be a contractually exchange stable matching. We show that μ is
Pareto optimal by contradiction. Suppose that μ is not Pareto optimal. Therefore,
there exists a matching μ′ such that

1. ri (μ
′) ≥ ri (μ) for all i ∈ N ,

2. πH (μ′) ≥ πH (μ) for all H ∈ D, and
3. there exists a worker i ∈ N such that ri (μ

′) > ri (μ) or a department H ∈ D such
that πH (μ′) > πH (μ).

Let H = {H ∈ D|(μ′)−1(H) �= μ−1(H)}. Note that |H| ≥ 2 since μ′ �= μ. By
definition ofH, we have that

(i’) for each H ∈ H, (μ′)−1(H) �= μ−1(H) and (μ′)−1(H) ⊆ ∪F∈H μ−1(F).
Since (N ,D, q, r, π) is a strict matching problem and taking (2) above into account,
we have that
(ii’) for each H ∈ H, πH (μ′) > πH (μ).
Moreover, by points (1) and (2) above, we know that
(iii’) for all i ∈ N , ri (μ

′) ≥ ri (μ); for all F ∈ D \ H, πF (μ′) ≥ πF (μ).

Therefore, μ can be blocked via μ′ by coalitionH. This establishes a contradiction to
our premise that μ is contractually exchange stable.

Next, letμ be a Pareto optimal matching.We show thatμ is contractually exchange
stable by contradiction. Suppose that μ is not contractually exchange stable. Then,
there exists a matching μ′ that contractually exchange blocks μ. We consider two
cases: (a) S is a blocking coalition of workers and (b) H is a blocking coalition of
departments.

(a) Let S ⊆ N with |S| ≥ 2 be a blocking coalition of workers. From (ii) and (iii) in
Definition 2, one readily derives that
– for all i ∈ N , ri (μ

′) ≥ ri (μ) and
– for all H ∈ D, πH (μ′) ≥ πH (μ).
Moreover, from (ii) in Definition 2 and S �= ∅, we find that
– ri (μ

′) > ri (μ) for some i ∈ N .
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This establishes a contradiction to our premise that μ is Pareto optimal.
(a) Let H ⊆ D with |H| ≥ 2 be a blocking coalition of departments. From (ii′) and

(iii′) in Definition 2, one readily derives that
– for all i ∈ N , ri (μ

′) ≥ ri (μ) and
– for all H ∈ D, πH (μ′) ≥ πH (μ).
Moreover, from (ii′) in Definition 2 and H �= ∅, we find that
– πH (μ′) > πH (μ) for some H ∈ D.
This establishes a contradiction to our premise that μ is Pareto optimal. �

The following example illustrates the need for restricting to the class of strictmatch-
ing problems in Theorem 1.

Example 1 Let (N ,D, q, r, π) be a matching problem with N = {1, 2, 3} and
D = {A, B}, capacities qA = 1 and qB = 2; and reward functions

r1(∅, A) = 0, r1({2}, B) = 2, r1({3}, B) = 0,

r2(∅, A) = 1, r2({1}, B) = 2, r2({3}, B) = 0,

r3(∅, A) = 0, r3({1}, B) = 2, r3({2}, B) = 1;

and

πA({1}) = 1, πA({2}) = 1, πA({3}) = 3,
πB({1, 2}) = 3, πB({1, 3}) = 2, πB({2, 3}) = 1.

Clearly, (N ,D, q, r, π) is not a strictmatching problem sinceworker 1 has the same
reward when he is assigned to department A and when he is assigned to department B
with co-worker 3. Also, department A has the same reward when assigned to workers
1 and 2. We show that in this situation it is possible for a matching to be contractually
exchange stable, but not Pareto optimal.

Consider the matching μ1 such that μ1(1) = A, μ1(2) = μ1(3) = B. This match-
ing is contractually exchange stable. Any coalition of workers that attempts to block
the matching must be either {1, 2}, or {1, 3}. First, consider workers 1 and 2: 1 does
not want to exchange assignments with 2 because his rewards are the same under μ1
and under a new matching in which he is matched to B together with 3. Furthermore,
matching μ1 cannot be blocked by workers 1 and 3 because for worker 3 we have that
r3(∅, A) = 0 < 1 = r3(μ1).

Similarly, we can show that μ1 cannot be contractually exchange blocked byH =
{A, B}. Departments A and B cannot blockμ1 by exchangingworkers 1 and 3 because
worker 3 earns lower reward when matched to department A than when matched with
2 to department B. Departments A and B cannot contractually exchange block μ1
by exchanging workers 1 and 2 because department A earns the same rewards when
assigned to workers 1 or 2.

However, the matching μ1 is not Pareto optimal. To see that, consider matching μ2
such that μ2(1) = μ2(3) = B and μ2(2) = A with r1(μ2) = 0 = r1(μ1), r2(μ2) =
1 > 0 = r2(μ1), r3(μ2) = 2 > 1 = r3(μ1), πA(μ2) = 1 = πA(μ1) and πB(μ2) =
2 > 1 = πB(μ1).
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Note that the requirement of a strict matching problem in Theorem 1 is only used to
show that every contractually exchange stable matching is Pareto optimal. Therefore,
we have the following result.

Proposition 1 Let (N ,D, q, r, π) be a matching problem. If a matching μ ∈ M is
Pareto optimal, then it is contractually exchange stable.

4 Total reward maximizing matchings

In the preceding section, the set of Pareto optimal matchings was characterized by
means of a stability notion—contractual exchange stability—that presumes that agents
can exercise veto power on deviations involving members of their coalition. As dis-
cussed in the introduction, the set of Pareto optimal matchings are desirable from a
central manager’s point of view due to their efficiency.Within the set of Pareto optimal
matchings some outcomes may be more desirable than others. In particular, all Pareto
optimal matchings can be ranked on the basis of corresponding total joint rewards of
all workers and departments. A central manager may thus be interested not only in
achieving a Pareto optimal matching, but also in achieving a Pareto optimal matching
that corresponds tomaximum total reward. Note that wewill refer to suchmatchings as
matchings of maximum total reward and give a formal definition of this notion below.
The question that this section addresses is what kind of stability notion characterize
this subset of the set of Pareto optimal matchings, namely, the set of matchings of
maximum total reward.

Definition 4 Let (N ,D, q, r, π) be a matching problem. A matching μ ∈ M is of
maximum total reward if

∑

i∈N
ri (μ) +

∑

H∈D
πH (μ) ≥

∑

i∈N
ri (μ

′) +
∑

H∈D
πH (μ′) for all μ′ ∈ M.

Note that every matching μ of maximum total reward is automatically Pareto opti-
mal.

Example 2 Reconsider the matching problem of Example 1. In this problem, there
are two Pareto optimal matchings: μ1 such that μ1(2) = A and μ1(1) = μ1(3) = B;
and μ2 such that μ2(3) = A and μ2(1) = μ2(2) = B. There is, however, only one
matching with a maximum total reward and that is μ2 as the total reward of μ1 is 6
and that of μ2 is 10.

Next, we present a new stability notion, compensational stability, to (later) char-
acterize the set of matchings of maximum total reward. In contrast to the notion
of contractual stability, compensation stability exploits the cardinal property of the
agents’ reward function. Underlying the notion of compensation stability is the addi-
tional assumption that deviating agents can use the increase in their reward due to their
deviation to compensate agents adversely affected by the deviation.
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Definition 5 Let (N ,D, q, r, π)be amatchingproblemand letμ ∈ Mbe amatching.
The matching μ is compensationally stable if there is no other matching μ′ such that

∑

i∈S∪T
ri (μ

′) +
∑

H∈F
πH (μ′) >

∑

i∈S∪T
ri (μ) +

∑

H∈F
πH (μ),

where S = {i ∈ N | μ′(i) �= μ(i)}, T = {i ∈ N \S | μ−1(μ(i))∩S �= ∅}, andF =
{H ∈ D | (μ′)−1(H) �= μ−1(H)}, i.e. S is the set of workers that are assigned to a
different department, T is the set of workers that do not change department but change
peers, and F is the group of departments that get a different set of workers.

Theorem 2 Let (N ,D, q, r, π) be a matching problem and let μ ∈ M be a matching.
Then, μ is of maximum total reward if and only if it is compensationally stable.

Proof First, let μ be a compensationally stable matching. We show that μ is of max-
imum total reward by contradiction. Suppose that μ is not of maximum total reward.
Then, there is a matching μ′ such that

∑

i∈N
ri (μ

′) +
∑

H∈D
πH (μ′) >

∑

i∈N
ri (μ) +

∑

H∈D
πH (μ). (1)

With S = {i ∈ N | μ′(i) �= μ(i)}, T = {i ∈ N \ S | μ−1(μ(i)) ∩ S �= ∅}, and
F = {H ∈ D | (μ′)−1(H) �= μ−1(H)}, it follows that

ri (μ
′) = ri (μ) for all i ∈ N \ (S ∪ T ) and (2)

πH (μ′) = πH (μ) for all H ∈ D \ F . (3)

Then,

∑

i∈S∪T
ri (μ

′) +
∑

H∈F
πH (μ′) =

∑

i∈N
ri (μ

′) +
∑

H∈D
πH (μ′)

−
∑

i∈N \(S∪T )

ri (μ
′) −

∑

H∈D\F
πH (μ′)

=
∑

i∈N
ri (μ

′) +
∑

H∈D
πH (μ′)

−
∑

i∈N \(S∪T )

ri (μ) −
∑

H∈D\F
πH (μ)

>
∑

i∈N
ri (μ) +

∑

H∈D
πH (μ)

−
∑

i∈N \(S∪T )

ri (μ) −
∑

H∈D\F
πH (μ)

=
∑

i∈S∪T
ri (μ) +

∑

H∈F
πH (μ)
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where the second equality follows by Eqs. (2) and (3), and the inequality follows by
Eq. (1). This establishes a contradiction to our premise that μ is compensationally
stable.

Next, let μ be a matching of maximum total reward. We show that μ is compensa-
tionally stable by contradiction. Suppose that μ is not compensationally stable. Then,
there is a matching μ′ such that

∑

i∈T ∪S
ri (μ

′) +
∑

H∈F
πH (μ′) >

∑

i∈T ∪S
ri (μ) +

∑

H∈F
πH (μ), (4)

where S = {i ∈ N | μ′(i) �= μ(i)}, T = {i ∈ N \ S | μ−1(μ(i)) ∩ S �= ∅}, and
F = {H ∈ D | (μ′)−1(H) �= μ−1(H)}. It follows that

πH (μ′) = πH (μ) for all H ∈ D \ F and (5)

ri (μ
′) = ri (μ) for all i ∈ N \ (S ∪ T ). (6)

Then,
∑

i∈N
ri (μ

′) +
∑

H∈D
πH (μ′) =

∑

i∈T ∪S
ri (μ

′) +
∑

H∈F
πH (μ′)

+
∑

i∈N \(S∪T )

ri (μ
′) +

∑

H∈D\F
πH (μ′)

=
∑

i∈T ∪S
ri (μ

′) +
∑

H∈F
πH (μ′)

+
∑

i∈N \(S∪T )

ri (μ) +
∑

H∈D\F
πH (μ)

>
∑

i∈T ∪S
ri (μ) +

∑

H∈F
πF (μ)

+
∑

i∈N \(S∪T )

ri (μ) +
∑

H∈D\F
πH (μ)

=
∑

i∈N
ri (μ) +

∑

H∈D
πH (μ)

where the second equality follows by Eqs. (5) and (6), and the inequality follows by
Eq. (4). This establishes a contradiction to our premise that μ is of maximum total
reward. �

5 From an initial matching to a maximum total reward matching

In this section, we analyze situations in which there is an initial matching of workers
to departments which does not generate maximum total reward. Thus, there exists a
possible restructuring where agents are reassigned by means of a matching of max-
imum total reward. The question that arises is how to compensate those workers or

123



64 E. Lazarova et al.

departments that are worse off in the new situation. This question will be analyzed
using a cooperative matching game with transferable utility.

A cooperative (transferable utility) game in characteristic function form is a pair
(N , v) where N is a finite set of players and v : 2N → R satisfying v(∅) = 0. In
general, v(C) represents the maximal joint reward that coalition C ∈ 2N can obtain
when its members cooperate in an optimal way, without help of the players in N \ C.

The core of a game (N , v) is defined by

Core(v) =
{

x ∈ R
N |

∑

i∈N

xi = v(N ),
∑

i∈C
xi ≥ v(C) for all C ∈ 2N

}

,

i.e. the core is the set of efficient allocations of v(N ) to which no coalition can rea-
sonably object. An important subclass of games with nonempty core is the class
of convex games (see Shapley (1971)). A game (N , v) is said to be convex if
v(C1∪{i})−v(C1) ≤ v(C2∪{i})−v(C2) for every i ∈ N and every C1 ⊆ C2 ⊆ N \{i}.

Before starting with the formal analysis of compensation in matching problems
with an initial matching, we provide an illustrative example.

Example 3 Let (N ,D, q, r, π) be a matching problem with N = {1, 2, 3, 4} and
D = {A, B}, capacities qA = 2 and qB = 2, and reward functions

r1({2}, A) = r1({2}, B) = 20, r1({3}, A) = r1({3}, B) = 7,

r1({4}, A) = r1({4}, B) = 14,

r2({1}, A) = r2({1}, B) = 10, r2({3}, A) = r2({3}, B) = 3,

r2({4}, A) = r2({4}, B) = 9,

r3({1}, A) = r3({1}, B) = 15, r3({2}, A) = r3({2}, B) = 7,

r3({4}, A) = r3({4}, B) = 10,

r4({1}, A) = r4({1}, B) = 14, r4({2}, A) = r4({2}, B) = 19,

r4({3}, A) = r4({3}, B) = 10

and

πA(S) = πB(S) = 10

for every S ∈ 2N with |S| = 2.
Assume that the initial matching μ0 is given by μ0(1) = μ0(4) = A and μ0(2) =

μ0(3) = B. In this case, the initial situation has a total reward of 58 with r1(μ0) =
14, r2(μ0) = 3, r3(μ0) = 7, r4(μ0) = 14, πA(μ0) = 10 and πB(μ0) = 10, while
the maximum social reward is 70 which can be achieved, for example, by μ̂ with
μ̂(1) = μ̂(2) = A and μ̂(3) = μ̂(4) = B with r1(μ̂) = 20, r2(μ̂) = 10, r3(μ̂) =
10, r4(μ̂) = 10, πA(μ̂) = 10 and πB(μ̂) = 10. Note that r4(μ̂) = 10 < r4(μ0) = 14.

Given a matching problem (N ,D, q, r, π) and an arbitrary initial matching μ0, we
are interested in studying adequate compensations among theworkers and departments

123



Transfers and exchange-stability in two-sided matching problems 65

when they come together to improve their joint situation by adopting a matching of
maximum total reward. To do this, we define a corresponding cooperative gamewhose
core elements provide stable allocations of the extra rewards obtained by means of
cooperation.

Let (N ,D, q, r, π) be a matching problem with constraints and let μ0 be an initial
matching. We denote by Mmax the set of matchings of maximal total reward, i.e.

Mmax = {μ̂ ∈ M | μ̂ is of maximal total reward}.

For i ∈ N and μ̂ ∈ Mmax, we denote by di (μ̂) the difference of reward for
agent i ∈ N when going from μ0 to μ̂, i.e. di (μ̂) = ri (μ̂) − ri (μ0); we set
d+

i (μ̂) = max{0, ri (μ̂) − ri (μ0)} and d−
i (μ̂) = −min{0, ri (μ̂) − ri (μ0)}. Note

that for every μ̂ ∈ Mmax it follows di (μ̂) = d+
i (μ̂) − d−

i (μ̂). We analogously
define dH (μ̂) = πH (μ̂) − πH (μ0), and set d+

H (μ̂) = max{0, πH (μ̂) − πH (μ0)}, and
d−

H (μ̂) = −min{0, πH (μ̂) − πH (μ0)} for every H ∈ D and every μ̂ ∈ Mmax.

Definition 6 Let (N ,D, q, r, π) be amatching problem and letμ0 be an initialmatch-
ing. The corresponding compensation matching game, (N ∪ D, v), is defined by

v(C) = min
μ̂∈Mmax

{
vμ̂(C)

}
(7)

for every C ⊂ N ∪ D, where

vμ̂(C) = max

{

0,
∑

i∈C∩N
d+

i (μ̂) +
∑

H∈C∩D
d+

H (μ̂) −
∑

i∈N
d−

i (μ̂) −
∑

H∈D
d−

H (μ̂)

}

.

(8)

Note that given a matching with maximum total reward μ̂, we conservatively assume
that a coalition C is required to compensate all agents that suffer from changing the
initial situation. Being conservative, it is also assumed that a most disadvantageous
(from the perspective of C) matching of maximum total reward will be adopted. Note
that v(N∪D) equals the increase in total rewards achievable by adopting anymatching
with maximum total reward.

The following example illustrates the computation of matching games with con-
straints.

Example 4 Reconsider the matching problem (N ,D, q, r, π) of Example 3 and let
μ0 be given by μ0(1) = μ0(4) = A and μ0(2) = μ0(3) = B, with a social reward of
58. There are four matchings with maximum total reward, namely

μ̂1: μ̂1(1) = μ̂1(2) = A, μ̂1(3) = μ̂1(4) = B,

μ̂2: μ̂2(3) = μ̂2(4) = A, μ̂2(1) = μ̂2(2) = B,

μ̂3: μ̂3(1) = μ̂3(3) = A, μ̂3(2) = μ̂3(4) = B,

μ̂4: μ̂4(2) = μ̂4(4) = A, μ̂4(1) = μ̂4(3) = B.
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Table 1 Individual extra
rewards and losses for the agents
in Example 4

μ̂ d1(μ̂) d2(μ̂) d3(μ̂) d4(μ̂)

μ̂1 6 7 3 −4

μ̂2 6 7 3 −4

μ̂3 −7 6 8 5

μ̂4 −7 6 8 5

μ̂ d+
1 (μ̂) d+

2 (μ̂) d+
3 (μ̂) d+

4 (μ̂)

μ̂1 6 7 3 0

μ̂2 6 7 3 0

μ̂3 0 6 8 5

μ̂4 0 6 8 5

μ̂ d−
1 (μ̂) d−

2 (μ̂) d−
3 (μ̂) d−

4 (μ̂)

μ̂1 0 0 0 4

μ̂2 0 0 0 4

μ̂3 7 0 0 0

μ̂4 7 0 0 0

The maximum total reward for this problem is 70, therefore there is an extra reward
of 12 when going from the initial matching to one of maximum total reward.

The corresponding extra rewards for the departments when going from the initial
matching to a matching with maximum total reward is always 0 since they have
constant reward functions. The individual extra rewards and losses for the workers
when going from the initial matching to a matching of maximum total reward are
provided in Table 1.

Since the departments are indifferent between all matching functions, we can omit
them from the study of compensations and the player setN ∪D can be restricted toN
only. The value of coalition {1, 2, 3} in the compensation matching game is explained
below. All coalitional values are given in Table 2.

v({1, 2, 3}) = min
l∈{1,2,3,4}

{
vμ̂l ({1, 2, 3})

}

= min
l∈{1,2,3,4}

{

max

{

0,
3∑

i=1

d+
i (μ̂l) −

4∑

i=1

d−
i (μ̂l)

}}

= min {max {0, 16 − 4} ,max {0, 16 − 4} ,max {0, 14 − 7} ,

max {0, 14 − 7}}
= min {12, 12, 7, 7}
= 7.

Note that the core of this game is not empty since, for instance, (0, 0, 7, 5) ∈
Core(v). Here, the core element (0, 0, 7, 5) can be interpreted as follows: when choos-
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Table 2 Coalitional values in Example 4

C {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} N

v(C) 0 0 0 0 0 1 0 6 3 0 7 4 5 6 12

ing matching μ̂3, worker 2 is helped by worker 3 to fully compensate worker 1 with
6 and 1, respectively.

In addition, note that (N , v) is not convex since for i = 4, C1 = {2}, andC2 = {2, 3}
we have

v(C1 ∪ {i}) − v(C1) = 3 − 0 > 6 − 6 = v(C2 ∪ {i}) − v(C2).

It turns out that each compensation matching game has a nonempty core. This can
be shown using a relation between compensation matching games and bankruptcy
games. A bankruptcy problem is defined by a tuple (N , E, c) where N = {1, . . . , n}
is the set of agents, E is the estate that must be shared among the agents, and c ∈ R

N

is the vector of claims of the agents satisfying
∑

i∈N ci ≥ E . Bankruptcy problems
have being studied from a game theoretical viewpoint in O’Neill (1982). Given a
bankruptcy problem (N , E, c), the corresponding bankruptcy game, (N , v(N ,E,c)), is
defined by

v(N ,E,c)(C) = max

⎧
⎨

⎩
0, E −

∑

i∈N\C
ci

⎫
⎬

⎭

for every C ⊂ N . In Curiel et al. (1987) it is shown that bankruptcy games are convex.

Lemma 1 Let (N ,D, q, r, π) be a matching problem, let μ0 be an initial matching
function, and let μ̂ ∈ Mmax. Then, (N ∪ D, vμ̂) is a bankruptcy game.

Proof Define E(μ̂) = ∑
i∈N di (μ̂) + ∑

H∈D dH (μ̂), ci = d+
i (μ̂) for every i ∈ N ,

and cH = d+
H (μ̂) for every H ∈ D. We will prove that (N ∪ D, E(μ̂), c) is a

bankruptcy problem with the associated bankruptcy game v(N∪D,E(μ̂),c) equal to vμ̂.
Note that (N ∪ D, E(μ̂), c) is a bankruptcy problem since

E(μ̂) =
∑

i∈N
di (μ̂) +

∑

H∈D
dH (μ̂) =

∑

i∈N
d+

i (μ̂)

−
∑

i∈N
d−

i (μ̂) +
∑

H∈D
d+

H (μ̂) −
∑

H∈D
d−

H (μ̂)

≤
∑

i∈N
d+

i (μ̂) +
∑

H∈D
d+

H (μ̂) =
∑

i∈N
ci +

∑

H∈D
cH

by definition of d−
i (μ̂) and d−

H (μ̂). Moreover, for C ⊂ N ∪ D, we have

vμ̂(C) = max

{

0,
∑

i∈C∩N
d+

i (μ̂) +
∑

H∈C∩D
d+

H (μ̂) −
∑

i∈N
d−

i (μ̂) −
∑

H∈D
d−

H (μ̂)

}
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= max

{

0,
∑

i∈N
d+

i (μ̂) +
∑

H∈D
d+

H (μ̂) −
∑

i∈N
d−

i (μ̂) −
∑

H∈D
d−

H (μ̂)

−
∑

i∈N \(C∩N )

d+
i (μ̂) −

∑

H∈D\(C∩D)

d+
H (μ̂)

⎫
⎬

⎭

= max

⎧
⎨

⎩
0,

∑

i∈N
di (μ̂) +

∑

H∈D
dH (μ̂) −

∑

i∈N \(C∩N )

d+
i (μ̂) −

∑

H∈D\(C∩D)

d+
H (μ̂)

⎫
⎬

⎭

= max

⎧
⎨

⎩
0, E(μ̂) −

∑

i∈N \(C∩N )

ci −
∑

H∈D\(C∩D)

cH

⎫
⎬

⎭

= v(N∪D,E(μ̂),c)(C).

�
Theorem 3 Compensation matching games have a nonempty core.

Proof Let (N ,D, q, r, π) be a matching problem, let μ0 be an initial matching func-
tion, and let (N ∪ D, v) be the corresponding compensation matching game. By
Lemma 1, we know that v is the minimum of a finite number of bankruptcy games
with the value of the grand coalition equal for all games. Clearly, this implies that
Core(vμ̂) ⊆ Core(v) for every μ̂ ∈ Mmax. Because bankruptcy games are convex,
they have a nonempty core and, therefore, Core(vμ̂) �= ∅ for every μ̂ ∈ Mmax, which
implies Core(v) �= ∅. �

The following example illustrates the construction of a bankruptcy game given a
matching problem and an initial matching and the convexity property of these games.

Example 5 Reconsider the matching problem (N ,D, q, r, π) of Example 3 and the
initial matching μ0 given by μ0(1) = μ0(4) = A and μ0(2) = μ0(3) = B discussed
in Example 4. As shown in Example 4, there are four matchings with maximum total
reward. Here, we will consider matching μ̂1 given by μ̂1(1) = μ̂1(2) = A and
μ̂1(3) = μ̂1(4) = B. The first row of Table 1 shows the extra rewards and losses for
the agents when going from the initial matching,μ0, to thematching ofmaximum total
reward μ̂1. Recall that the corresponding extra rewards for the institutions is always
0 since they have constant reward functions in the example.
To construct the bankruptcy game (N ∪ D, vμ̂), we use Equation 8 and compute the
value vμ̂1(C) for every C ⊂ N ∪ D. As an example, the value of coalition {1, 2} is
computed below.

vμ̂1({1, 2}) = max

⎧
⎨

⎩
0,

∑

i∈ {1,2}
d+

i (μ̂1) −
∑

i∈{1,2,3,4}
d−

i (μ̂1)

⎫
⎬

⎭

= max

{

0,
2∑

i=1

d+
i (μ̂l) −

4∑

i=1

d−
i (μ̂l)

}
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Table 3 Coalitional values in Example 5

C {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} N

v(C) 2 3 0 0 9 5 2 6 3 0 12 9 5 6 12

= max {0, 13 − 4}
= 9.

All coalitional values are given in Table 3.
Note that the core of this game is not empty since, for instance, (4, 5, 3, 0) ∈

Core(vμ̂1). To see that (N ∪ D, vμ̂) is convex, consider as an example coalitions
C1 = {1, 2} and C2 = {1, 2, 3} and i = 4. We have v(C1 ∪ {i}) − v(C1) = 9 − 9 =
12 − 12 = v(C2 ∪ {i}) − v(C2). Similarly, one can check that the convexity property
holds with respect to every i ∈ {1, 2, 3, 4} and every C1 ⊆ C2 ⊆ {1, 2, 3, 4} \ {i}.

Theorem 3 tells us that we can find a compensation schedule such that a centralized
restructuring resulting in a matching of maximum total reward of the organization will
be ex-post stable, in the sense that there will be no subset of workers or departments
who can by deviation obtain a higher reward. Still, the core of matching games may
contain many possible allocations, thus, the question remains what allocation will be
selected. The following example illustrates how such a selection could be conducted.

Example 6 Reconsider the compensation matching game of Example 4. Recall that
there are four matchings with maximum total reward:

μ̂1: μ̂1(1) = μ̂1(2) = A, μ̂1(3) = μ̂1(4) = B,

μ̂2: μ̂2(3) = μ̂2(4) = A, μ̂2(1) = μ̂2(2) = B,

μ̂3: μ̂3(1) = μ̂3(3) = A, μ̂3(2) = μ̂3(4) = B,

μ̂4: μ̂4(2) = μ̂4(4) = A, μ̂4(1) = μ̂4(3) = B.

and that there is an extra reward of 12 when going from the initial matching to one

of maximum total reward. Since v(C) = min
{
vμ̂1(C), vμ̂2(C), vμ̂3(C), vμ̂4(C)

}
with

vμ̂1(N ∪D) = vμ̂2(N ∪D) = vμ̂3(N ∪D) = vμ̂4(N ∪D), we have that Core(vμ̂l ) ⊂
Core(v). Moreover, since (N ∪D, vμ̂l ) is a bankruptcy game for every l ∈ {1, 2, 3, 4}
by Lemma 1, the allocation given by any bankruptcy rule applied to the bankruptcy
problem associated to μ̂l , l ∈ {1, 2, 3, 4}, is in the core of the compensation matching
game, as well as any convex combination of those allocations. As an illustration,
Table 4 gives the allocations obtained by applying the proportional rule (Prop), the
adjusted proportional rule (AProp), the constrained equal awards rule (CEA), and the
Talmud rule (Tal) to the bankruptcy problems as defined in the proof of Lemma 1. For
a description of these rules see Thomson (2003).

If the implemented matching of maximal total reward is known a priori, one can
use a specific bankruptcy rule, for example, the proportional rule, in the corresponding
bankruptcy problem associated to that selected matching. Otherwise, if a probability
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Table 4 Bankruptcy rules for compensation matching games in Example 6

μ̂1, μ̂2 : (N , 12, (6, 7, 3, 0)) μ̂3, μ̂4 : (N , 12, (0, 6, 8, 5))

Prop(N , E, c)
(
4 12 , 5 14 , 2 14 , 0

) (
0, 3 1519 , 5 1

19 , 3 3
19

)

AProp(N , E, c)
(
4 6
11 , 5 6

11 , 1 1011 , 0
) (

0, 3 23 , 5 5
18 , 3 1

18

)

CEA(N , E, c) (4.5, 4.5, 3, 0) (0, 4, 4, 4)

Tal(N , E, c)
(
4 23 , 5 23 , 1 23 , 0

) (
0, 3 23 , 5 23 , 2 23

)

distribution over the possible acceptance of a matching of maximal total reward is
known a priori, a possible allocation can be the expected allocation given by a specific
bankruptcy rule.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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