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Abstract We provide statistical inference for measures of predictive success. These
measures are frequently used to evaluate and compare the performance of different
models of individual and group decision making in experimental and revealed prefer-
ence studies. We provide a brief illustration of our findings by comparing the predic-
tive success of different revealed preference tests for models of intertemporal decision
making. This demonstrates that it is possible to compare the predictive success of
different models in a statistically meaningful way.
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1 Introduction

Given a behavioural model and an outcome space of possible observations, Selten
(1991) distinguishes between three types of theories. A point theory gives a single
element of the outcome space and predicts this point as the central tendency of the
observations. A distribution theory gives a probability distribution over the outcome
space and predicts that observations are independently drawn according to this distri-
bution. Finally, an area theory only predicts that the observed outcomes should lie in a
certain subset of the outcome space. For example, a distribution theory could predict
that some variable of interest is uniformly distributed on the unit interval. A point
theory, on the other hand, would predict that the mean (or median) of the observations
is equal to 0.5. Finally, an area theory would predict that the observations lie in the
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interval [0, 1]. Given this classification, a distribution theory is more informative than
either a point theory or an area theory in the sense that if we know the observations to
be uniformly distributed, we also know their central tendency (mean or median) and
their area (support).

Many applications in experimental and revealed preference settings fall into the
class of area theories. With respect to these theories, models are often evaluated on
the basis of two metrics: the hit rate and the area. The hit rate gives the percentage of
all observations that fall within the predicted subset of the outcome space. A high hit
rate implies that many subjects have made choices that are consistent with the model’s
predictions. The hit rate, however, only captures one dimension of the model’s per-
formance. In general, the hit rate of a model will be higher if the model becomes less
permissive (i.e. the model imposes weaker restrictions on the observed behaviour).
Therefore, for an area theory to be meaningful it is desirable that the empirical test
is sufficiently strong. The permissiveness can be measured by the ‘area’ of the test,
which gives the relative size of the predicted subset compared to the set of all possible
outcomes.1

Generally, a favourable hit rate, for a specific behavioural model, provides convinc-
ing support for the model only if the associated area is sufficiently small. In practice,
however, the two measures are almost always positively correlated, which in fact
makes it interesting to define a summarizing measure that combines the two measures
of empirical performance into a single metric, a so called measure of predictive suc-
cess. Selten (1991) argues in favour of the functional specification that determines the
predictive success as the difference between the hit rate and the area:

predictive success = hit rate − area.

This measure of predictive success is frequently used experimental studies2 and has
recently been advocated for use with revealed preference tests by Beatty and Crawford
(2011).3 In revealed preference studies, the area is usually quantified as one minus the
Bronars (1987) power, which gives the probability that a randomly generated datasets
(obtained from a uniform distribution on the budget hyperplanes) will fail the revealed
preference test.

Different area theories (and revealed preference models) can be evaluated on the
basis of their predictive success, and models with higher predictive success can be
seen as having a better empirical fit. However, when comparing the predictive success
between two models, it is not at all obvious how big the difference in predictive success
needs to be in order to be ‘significant’. The literature dealing with predictive success
measures is silent on this point. The main reason for this is that the theory underlying

1 Of course, the ‘size’ of a set will always be conditional on a specific measure on the outcome space. Our
framework will be flexible enough to allow for different specifications of this measure.
2 See among many others Huyck et al. (1997), Hey (1998), Willinger and Ziegelmeyer (2001), Hey and
Lee (2005), Gächter and Riedl (2006), Wang et al. (2010), Ehrhart et al. (2007),Keser and Willinger (2007),
Manzini et al. (2010), Otto and Bolle (2011), Masatlioglu and Uler (2013).
3 See, among others, Crawford (2010), Demuynck and Verriest (2013) and Deb et al. (2013) for applications.
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Measures of predictive success 691

the predictive success measure is not a stochastic theory: the observations are either
inside or outside the predicted set (see Hey (1998) for a discussion). However, by
considering the space of all possible observed behaviour as the relevant population,
we show that it is nevertheless possible to conduct valid statistical inference. Our
paper uses elementary large sample theory to construct asymptotically valid confidence
intervals for various predictive success measures. In this way it becomes possible to
construct asymptotic valid hypothesis tests to verify whether the predictive success
of a model is larger than some benchmark threshold (e.g. zero) or to compare the
predictive success between different opposing models.

In the next section, we set out the framework and derive the statistical results. Section
3 contains an empirical illustration of our findings that compares the predictive success
of different revealed preference tests for models of intertemporal decision making.

2 Framework

The building blocks of our framework are data sets, denoted by s. A dataset may
correspond to the outcome of an experiment for a single subject. We denote by � the
set of all possible data sets that can be observed. An experiment is given by a finite
number of datasets {si }i≤n from �.

2.1 Hit rate

An area theory for a certain model of behaviour predicts that the datasets will fall
within a certain subset A of the outcome space �. Given such area theory, we consider
the indicator function I : � → {0, 1} : s �→ I (s) such that I (s) = 1 if and only if
s ∈ A. The hit rate, rn , of the experiment {si }i≤n is given by the proportion of datasets
that fall within the set A.

rn = 1

n

n∑

i=1

I (si ).

2.2 Area

In order to define the area, we need a bit more work. To start, let us fix a dataset si ∈ �

and consider a probably space (�i ,Bi ,Fi ) which may depend on the specificities of
the dataset si . Here, �i ⊆ � is a subset of the outcome space such that si ∈ �i . The set
Bi is a sigma algebra on �i such that the function I (.) restricted to �i is measurable
and Fi : Bi → [0, 1] is a probability measure. We define the area of the dataset si by
the function ρ(si ) : � → [0, 1] where

ρ(si ) =
∫

I (s)Fi (ds).

Intuitively, ρ(si ) measures the size of the set A according to the measure Fi . The area
of the experiment {si }i≤n is defined as the mean of the areas of the datasets in the
experiment:
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an = 1

n

n∑

i=1

ρ(si )

In many experimental settings we have that � is finite, �i = � and Fi equals the
uniform distribution on �, i.e. each individual dataset is given an equal probability.
In such setting, ρ(si ) will be the same for all si and the measure an will coincide with
ρ. Observe, however, that our framework is flexible enough for other specifications of
the probability measure Fi .4

In some cases, it is possible to obtain ρ(.) as a closed form solution. In other settings
(like revealed preference theory) no closed form solutions are known. To encompass
those situations, we allow ρ(si ) to be approximated by simulation. In such cases, we
draw m i.i.d. datasets {s̃i1, . . . , s̃im} using the probability measure Fi and compute the
finite sample approximation:

ρm(si ) = 1

m

m∑

k=1

I (s̃ik).

The area of the experiment is then approximated by

an,m = 1

n

n∑

i=1

ρm(si ),

Using the law of large numbers, we have that for m → ∞, an,m →P an .

2.3 Predictive success

The hit rate rn and the area an,m can be combined in a measure of predictive success p :
[0, 1]2 → R : (r, a) �→ p(r, a). Intuitively, p(rn, an,m) measures the performance of
the behavioural model underlying the indicator function I (.). Usually, p is increasing
in its first argument and decreasing in its second. We assume that p(., .) is continuously
differentiable.

2.4 Large sample results

We consider the probability space (�,B,P) where B is a sigma algebra on � and P is
a probability distribution on � giving the law by which the individual datasets in the
experiment are obtained. We assume that B is such that both the functions I (.) and
ρ(.) are measurable.

The population hit rate and area are given by

r =
∫

I (s)P(ds), and a =
∫

ρ(s)P(ds).

4 See, for example, Andreoni et al. (2011) for such other measures in a revealed preference setting.
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Consider an experiment {s1, . . . , sn} which is obtained from n i.i.d. draws according
to the law P. By the law of large numbers, we have that, as n → ∞ and m n−1 → ∞:
rn →P r and an,m →P a. Further, using the classical central limit theorem, we have
that

√
n

(
rn − r
an,m − a

)
→ N (0, �) ,

where

� =
[
r(1 − r)

∫
(I (s) − r)(ρ(s) − a)P(ds)∫

(I (s) − r)(ρ(s) − a)P(ds)
∫
(ρ(s) − a)2

P(ds)

]
,

is the asymptotic variance–covariance matrix. The elements of � can be consistently
estimated by their finite sample analogues.

Sn,m =
[
rn(1 − rn)

1
n

∑
i (I (si ) − rn)(ρm(si ) − an,m)

1
n

∑
i (I (si ) − rn)(ρm(si ) − an,m) 1

n

∑
(ρm(si ) − an,m)2

]
.

Using the continuous mapping theorem, we have that for n → ∞ and m n−1 → ∞:
p(rn, an,m) →P p(r, a). Next, let δ be the row vector of partial derivatives of the
predictive success measure p(r, a) evaluated at (r, a),

δ =
[

∂p(r,a)
∂r

∂p(r,a)
∂a

]
.

Using the delta method, we obtain that, for n → ∞ and m n−1 → ∞,

√
n

(
p(rn, an,m) − p(r, a)

) → N
(
0, δ�δ′) .

The variance, δ�δ′, can be consistently estimated by

vn,m = δn,mSn,mδ′
n,m,

where

δn,m =
[

∂p(rn ,an,m )

∂r
∂p(rn ,an,m )

∂a

]
.

If �(.) is the standard normal cdf function, and ca is defined by,

�(cα) − �(−cα) = α,

then

Cα
n,m =

[
p(rn, an,m) − cα

√
vn,m
n , p(rn, an,m) + cα

√
vn,m
n

]
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is an asymptotic α × 100 % confidence interval for the predictive success measure
p(r, a).

2.5 Comparing predictive success

In many cases it is also interesting to compare two tests on the basis of their difference
in predictive success. Consider two tests with hit rates and area equal to r, a and r̃ , ã,
respectively. By the central limit theorem, we know that,

√
n

⎛

⎜⎜⎝

rn − r
an,m − a
r̃n − r̃
ãn,m − ã

⎞

⎟⎟⎠ → N (0, �	) ,

where �	 is the asymptotic variance covariance matrix whose elements can be consis-
tently estimated using the finite sample plug-ins. For example, the covariance between
r and r̃ is equal to

∫
(I (s) − r)( Ĩ (s) − r̃)P(ds),

which can be consistently estimated by

1

n

∑

i

(I (si ) − rn)( Ĩ (si ) − r̃n).

We denote the estimator of the variance–covariance matrix by S	,n,m . Again, using
the delta method, the asymptotic distribution of the difference in predictive success is
given by

√
n

[(
p(rn, an,m) − p(r̃n, ãn,m)

) − (p(r, a) − p(r̃ , ã))
] → N

(
0, δ	�	δ′

	

)
,

where δ	 is equal to the following row vector of partial derivatives:

δ	 =
[

∂p(r,a)
∂r

∂p(r,a)
∂a − ∂p(r̃ ,ã)

∂r − ∂p(r̃ ,ã)
∂a

]
.

Set

v	,n,m = δ	,n,mS	,n,mδ′
	,n,m,

where

δ	,n,m =
[

∂p(rn ,an,m )

∂r
∂p(rn ,an,m )

∂a − ∂p(r̃n ,ãn,m )

∂r − ∂p(r̃n ,ãn,m )

∂a

]
.
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Then

[
p(rn, an,m) − p(r̃n, ãn,m) − cα

√
v	,n,m

n , p(rn, an,m) − p(r̃n, ãn,m) + cα

√
v	,n,m

n

]

is an asymptotic α × 100 % CI for p(r, a) − p(r̃ , ã).

3 Illustration

We illustrate our results using various revealed preference tests for different models of
intertemporal decision making. The first model is the standard life cycle (LC) model
where an individual optimizes a time separable additive utility function

∑
t δ

t u(qt )
subject to an intertemporal budget constraint ptqt + at = It + (1 + rt )at−1. Here
δ < 1 is a subjective discount rate, pt are the period t prices, at is the value of assets
at period t , It is the contemporaneous income and rt is the interest rate. Datasets for
this model are determined by prices, quantities and interest rates for a finite number
of periods, si = {pt,i ,qt,i , rt,i }t=1,...|T |. The revealed preference conditions for this
life cycle model were derived by Browning (1989).

For the second model, let us first single out a habit forming good c. The habits (H)
model replaces the intertemporal separable utility function by a utility function of the
form

∑
t δ

t u(qt , ct−1). Here, the consumption of the addictive good in period t − 1 is
allowed to influence the utility in period t . The revealed preference characterization
of this model was given by Crawford (2010).

Our third model, the habits as durables (HAD) model, considers a variant where the
intertemporal utility function is given by

∑
t δ

t u(qt , At ) and where At = βAt−1 + ct
represents a stock of addiction with depreciation rate β that determines how fast the
addiction wears off. This is the rational addiction model put forward by Becker and
Murphy (1988). The revealed preference characterization of this model was derived
by Demuynck and Verriest (2013).

As a final fourth model, we consider the static utility maximization model where
the household maximizes each period a time-independent utility function u(q) sub-
ject to a budget constraint ptq = mt for some level of expenditure mt . The revealed
preference conditions for this model are given by the Generalized Axiom of Revealed
Preference (GARP) (see, for example, Varian (1982)). Typically, in a revealed prefer-
ence setting, we specify the measure Fi as the probability law that randomly samples
datasets s̃i = {pit , q̃it }t∈T where q̃it is obtained by a uniform draw from the hyperplane
{q ∈ R

n+|pitq = pitq
i
t }. This is analogue to the way that the Bronars (1987) power is

computed.
We consider 3 measures of predictive success.

p1(r, a) = r − a,

p2(r, a) = r

a
,

p3(r, a) = r − a

1 − a
.
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The first measure takes the difference between the hit rate and the area and is the
measure that has become standard in the literature. It is bounded between -1 and 1.
In the best case scenario, r → 1 and a → 0. This gives a predictive success close
to one. In such case, most datasets pass the test while the area is very small. In the
worst case scenario, r → 0 and a → 1, which give a predictive success close to
minus one. In this case, almost all observations are inconsistent with the model while
the area is almost equal to the outcome space �. In intermediate cases, the measure
of predictive success is found somewhere between minus one and plus one. Zero is a
natural benchmark where r = a.

The second measure takes the ratio of the hit rate and area. Intuitively, p2 measures
the density of the observed datasets within the predicted area. It is bounded from below
by zero. The natural benchmark, where r = a, gives a predictive success equal to one.
The third measure is obtained from the first measure by dividing it by the maximal
value that it can obtain for fixed a. It can also be written as 1 − 1−r

1−a . Intuitively,
the higher the predictive success measure will be, the lower the density outside the
predicted area. Its benchmark is equal to zero. We refer to Selten (1991) for a more
thorough discussion of the differences between these predictive success measures.

3.1 Data description

We use data from the Encuesta Continua de Presupuestos Familiares. This dataset
contains detailed information on consumed quantities and prices for a large sample
of Spanish households. We refer to Browning and Collado (2001), Crawford (2010)
and Demuynck and Verriest (2013) for a more detailed explanation of this data set.
The observations range from 1985 to 1997 and are obtained on a quarterly basis.
Every quarter, new households are participating in the moving panel and others are
dropped. There are a maximum of eight consecutive observations per household. We
consider 14 nondurable commodity categories5 and take tobacco as the habit forming
good.6 We have a sample of 671 households (n = 671). Finally, we simulate the
areas ρ(si ) using 1,000 random draws per dataset (in other words, we set m equal to
1,000).

3.2 Results

Table 1 provides the results on the estimates of p(r, a) for the different measures
and the 95 % asymptotic confidence intervals. For the first measure, the highest esti-
mate is for the HAD model which is also the only model whose confidence inter-
val excludes the benchmark value 0. For the second measure, the highest value is

5 In particular, we have (1) Food and non-alcoholic drinks at home, (2) Alcohol, (3) Tobacco, (4) Energy
at home, (5) Services at home, (6) Nondurables at home, (7) Nondurable medicines, (8) Medical services,
(9) Transportation, (10) Petrol, (11) Leisure, (12) Personal services, (13) Personal non–durables, (14)
Restaurants and bars.
6 We further restrict the sample to the subset of households for which the wife is outside of the labour market
and for which we have observations for all eight quarters. We further restrict the sample to households which
have strict positive consumption for the addictive good in all periods.
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Table 1 Mean values, sample standard deviations (
√

vn,m ) and 95 % confidence intervals for the predictive
success measures

LC H HAD GARP

p1 0.0013 0.0332 0.1505 0.0123

(0.0386) (0.4390) (0.5009) (0.2737)
[ −0.0016 0.0042

] [
0.0000 0.0664

] [
0.1126 0.1884

] [ −0.0084 0.0330
]

p2 6.6666 1.1470 1.4006 1.0136

(173.4945) (1.9421) (1.3352) (0.3022)
[ −6.4606 19.7938

] [
1.0001 1.2939

] [
1.2996 1.5016

] [
0.9907 1.0365

]

p3 0.0013 0.0429 0.2410 0.1306

(0.0386) (0.5672) (0.8016) (2.9034)
[ −0.0016 0.0042

] [
0.0000 0.0858

] [
0.1803 0.3017

] [ −0.0891 0.3503
]

found for the LC model. However, this model also has the highest variance, which
makes its value highly uncertain. Both H and HAD models exclude 1 from the 95 %
confidence intervals. The last measure gives qualitatively similar results as the first
measure.

Table 2 gives the mean values and 95 % asymptotic confidence intervals for the
difference in predictive success between the different revealed preference tests. Many
intervals include the value of zero meaning that the hypothesis of equal predictive
success cannot be rejected at the 5 % level. Exceptions to this are the differences
between the GARP and the HAD test for measures 1 and 2, the difference between the
LC and HAD test for measures 1 and 3 and the difference between the H and HAD
test for all predictive success measures under consideration.

3.3 Size analysis

Our results are based on large sample statistics. This means that they may be unreliable
if the number of datasets in the experiment is small. In order to analyse this, we conduct
a simple level analysis based on an artificial dataset on 10 observations (|T | = 10)
and 10 goods.7 We compute the area of this dataset using the Bronars procedure.
We consider the case where the null-hypotheses p1(r, a) = 0, p2(r, a) = 1 and
p3(r, a) = 0 hold. Towards this end, we randomly generated experiments of various
sizes using the same Bronars procedure.8 Table 3 gives the level of the test that rejects if
the sample-based predictive success measure falls outside the 95 % confidence interval.
The table shows that the test coincides with the nominal level for experiments of 250
datasets or more. Small experiments, however, tend to reject the null-hypothesis to
often.

7 The results are not sensitive to the number of observations or goods.
8 The results are based on 100,000 repetitions.
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Table 2 Mean, sample standard deviation (
√

v	,n,m ) and 95 % confidence intervals for difference in
predictive success

GARP - LC GARP - H GARP - HAD

p1 0.0110 −0.0209 −0.1382

(0.2758) (0.4912) (0.5576)
[ −0.0099 0.0319

] [ −0.0581 0.0163
] [ −0.1804 −0.0960

]

p2 −5.6530 −0.1334 −0.3870

(173.4899) (1.9326) (1.3529)
[ −18.7798 7.4738

] [ −0.2796 0.0128
] [ −0.4894 −0.2846

]

p3 0.1293 0.0877 −0.1104

(2.9030) (2.8963) (2.9700)
[ −0.0904 0.3490

] [ −0.1314 0.3068
] [ −0.3351 0.1143

]

LC-H LC-HAD H-HAD

p1 −0.0320 −0.1492 −0.1172

(0.4382) (0.5008) (0.4568)
[ −0.0652 0.0012

] [ −0.1871 −0.1113
] [ −0.1518 −0.0827

]

p2 5.5196 5.2661 −0.2536

(173.3819) (173.4446) (1.6688)
[ −7.5991 18.6383

] [ −7.8573 18.3895
] [ −0.3799 −0.1273

]

p3 −0.0417 −0.2397 −0.1980

(0.5660) (0.8011) (0.6918)
[ −0.0845 0.0011

] [ −0.3003 −0.1791
] [ −0.2503 −0.1457

]

Table 3 Level of the test that
rejects the hypothesis
p1(r, a) = 0; p2(r, a) = 1 or
p3(r, a) = 0 if these values fall
outside the 95 % confidence
intervals

n p1 p2 p3

10 0.18 0.18 0.18

25 0.09 0.08 0.08

50 0.08 0.08 0.08

100 0.07 0.07 0.04

150 0.07 0.06 0.05

250 0.05 0.05 0.05

4 Conclusion

This note provides statistical inference for measures of predictive success. Predic-
tive success measures are frequently used to evaluate and compare the performance
of different models of individual and group behaviour in experimental and revealed
preference studies. Our results allow us to derive confidence intervals for the value
of a predictive success measure or for the difference between the predictive success
measure of two opposing models. We provide a brief illustration of our findings by
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Measures of predictive success 699

comparing the predictive success of different revealed preference tests for models of
intertemporal decision making. Finally, simulation results indicate that our tests give
reliable results for moderately sized experiments but that type I errors may be above
the 5 % nominal value in small samples.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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