
Telecommunication Systems (2024) 85:277–288
https://doi.org/10.1007/s11235-023-01084-4

Quantitative measurement of link failure reaction time for devices
with P4-programmable data planes

David Franco1 ·Marivi Higuero1 · Eder Ollora Zaballa2 · Juanjo Unzilla1 · Eduardo Jacob1

Accepted: 21 November 2023 / Published online: 19 December 2023
© The Author(s) 2023

Abstract
Quick handling of link failures remains a challenging issue in current communication networks, although it is crucial to
many routing algorithms. Link failures are the leading cause of packet losses and delays, therefore, failure recovery is tied to
stringent requirements for certain services, such as the sub-50 millisecond completion time for carrier-grade networks, which
is sometimes difficult to achieve in traditional routing schemes. For this reason, fast recovery strategies are key pillars of
modern communication networks. In this paper, we demonstrate the benefits of the devices with Programmable Data Planes
(PDP) for fast reacting to link failures. We first review the link failure detection, reaction and recovery procedures and then
we discuss the main fast failure recovery mechanisms employed by different types of devices in current communication
networks. In addition, we present a novel method to measure the link failure reaction time of an Intel Tofino switch with
PDP, as well as the results obtained when measuring such time using real hardware equipment. Our results show that such
hardware devices provide a failure reaction time in the order of microseconds, with an average of 472.88 µs, which poses
PDP as a key technology to achieve zero packet loss and zero delay failure recovery.

Keywords Failure reaction time · Failure recovery · Programmable data plane · P4 · Software-defined networking

1 Introduction

The ongoing evolution of Internet services and applications
puts the focus on deploying reliable and efficient network
architectures capable of providingfive-nine availability rates.
In this sense, link failures are the most frequent failures in a
network [1] and thus the main cause of packet loss and delay

B David Franco
david.franco@ehu.eus

Marivi Higuero
marivi.higuero@ehu.eus

Eder Ollora Zaballa
eoza@dtu.dk

Juanjo Unzilla
juanjo.unzilla@ehu.eus

Eduardo Jacob
eduardo.jacob@ehu.eus

1 Department of Communications Engineering, University of
the Basque Country, Plaza Ingeniero Torres Quevedo 1,
48013 Bilbao, Spain

2 Department of Electrical and Photonics Engineering,
Technical University of Denmark, Anker Engelunds Vej 101,
2800 Kongens Lyngby, Denmark

that lead to service degradation or even disruption. In conse-
quence, due to the stringent requirements demanded by some
services, handling link failures and providing high network
resilience has turned into a fundamental task of any routing
algorithm. These resiliencemechanisms can be implemented
either in the control or the data plane. The control plane relies
on a global view of the network and is responsible for deter-
mining the paths along which packets are sent, while the data
plane is in charge of the packet processing logic in individual
switches, thus the data plane moves packets from one inter-
face to another based on control plane rules. Traditionally,
network failure conditions have been addressed in the control
plane, while the data plane was responsible for forwarding
packets at line rate. Widely deployed routing schemes like
Open Shortest Path First (OSPF) include control planemech-
anisms which leverage control plane message exchanges and
computation to determine how to recover from link failures.

However, the slow reaction of the control plane causes
additional delay and packet loss and it is unacceptable for
many services and applications [2, 3], mainly due to (1)
high convergence delays of decentralized algorithms, or (2)
high communication delay between the data plane devices
and the centralized control plane that performs the path re-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-023-01084-4&domain=pdf
http://orcid.org/0000-0002-3763-9815
http://orcid.org/0000-0001-8451-556X
http://orcid.org/0000-0003-4669-694X
http://orcid.org/0000-0002-1766-7958
http://orcid.org/0000-0001-7093-0586


278 D. Franco et al.

computation. Therefore, given the disparity in timescales
between packet forwarding in the data plane—in the order of
a microsecond— and control plane convergence—hundreds
of milliseconds—, there is a trend to shift the responsibil-
ity for path reconfiguration to the data plane where line-rate
packet processing can benefit the failure recovery time
[4]. Indeed, most modern networks support different kinds
of fast-recovery mechanisms which leverage pre-computed
alternate paths that are directly activated in case of fail-
ure, without the interaction of the control plane. The control
plane is hence just responsible for pre-computing the failover
paths. For example, WAN networks leverage IP Fast Reroute
(IPFRR) [5] or MPLS Fast Reroute (MPLS-FR) [6] mecha-
nisms to deal with failures on the data plane, OpenFlow uses
FAST-FAILOVER groups [7] to activate alternate routes when
a link goes down, andBGP relies onBGPPrefix-Independent
Convergence (BGP-PIC) [8] for a quick convergence after
primary path failures.

The advent of high-speed switching devices with Pro-
grammable Data Plane (PDP) opens the door to more
sophisticated recovery strategies to face network failures.
They do not depend on fixed fast failure recovery tech-
niques, such as OpenFlow’s FAST-FAILOVER group, or fast
rerouting protocols [5]. On the contrary, they provide the
necessary tools to build customized fast recovery algorithms
directly in the data plane. Therefore, PDP-based recovery
strategies allow optimizing the response of the network by
(1) implementing custom fast-recovery algorithms, and (2)
running those algorithms at line rate. Programming Protocol-
independent Packet Processors (P4) [9] is the most extended
high-level hardware description language used to specify the
packet processing pipelines of the PDPs. P4 is target inde-
pendent, which means that it does not depend on low-level
placement details, and it can be used both on hardware and
software targets. It provides the required flexibility to build
custom algorithms and the tools to guarantee their perfor-
mance at line rate when using hardware targets.

Failure detection and recovery are widely used terms in
the literature. Failure detection is the time that takes the node
to be aware of the failure, while the failure recovery process
implies the application of the necessary forwarding modifi-
cations to restore the communication path in the node —or
in the whole network. However, devices with PDP allow us
to measure a new phase, hereby named failure reaction time,
which is defined as the time elapsed from the link failure
occurrence until the first change is applied in the data plane
as a response to it. In order to minimize packet loss, net-
work devices need to optimize this time, which is usually
hardware-dependent, so they can quickly react to link fail-
ures.

This paper focuses on characterizing the link failure reac-
tion time of devices with P4-PDP as a key enabler for
applying advanced fast recovery mechanisms in the data

plane. We first study the reaction time when a link failure
occurs, breaking down the process into a number of sepa-
rate events. Then we evaluate the performance of a hardware
Application-Specific Integrated Circuit (ASIC) on reacting
to failure events, for which we measure the failure reac-
tion time of an Intel Tofino switch. Our measurements show
that Tofino hardware switches can react to failures directly
from the data plane on a microsecond scale, which opens
the door to implementing data plane based failure recovery
strategies that improve the performance of data center and
core networks operating at tens of Gbps. Therefore, the main
contribution of this paper is threefold. On the one hand, we
provide a thorough explanation and review of (1) the failure
detection, reaction and recovery procedures and the exist-
ing fast recovery mechanisms to quickly recover from link
failures in current communication networks. On the other
hand, we (2) review the existing measurement techniques
and present the designed method to measure the failure reac-
tion time of an Intel Tofino switch with PDP and (3) show
the test results. The tests are performed using real hardware
equipment and the results show that the Intel Tofino switch
with PDP reacts to link failures in the order of microseconds,
with an average of 472.88 µs.

The remainder of the paper is organized as follows. First,
Sect. 2 reviews the related work regarding link failure detec-
tion and recovery techniques. Next, Sect. 3 goes deeper into
the concepts of failure detection, reaction and recovery. Then,
Sect. 4 introduces the different fast failure recovery tech-
niques implemented by the networking devices. After that,
Sect. 5 describes the method to measure the link failure
reaction time in hardware devices with PDP and shows the
obtained results. Finally, Sect. 6 brings the main conclusions
of this work to the fore.

2 Related work

The topic of failure reaction has not beenwidely addressed in
the literature, however, it is present in many works as part of
the more global concept of failure recovery, which involves
not only detecting and informing about the failure but also
the process of restoring the communication. Therefore, this
section analyzes the literature regarding the data plane fail-
ure detection and recovery techniques, focusing on those
solutions that decompose the failure recovery time and/or
describe their approaches to measure it.

2.1 Approaches to link failure reaction

The literature describes the failure recovery as a process that
involves detecting and reacting to the failure, and finally
restoring the communication. Therefore, many works in
the literature that look at the recovery time are useful to

123



Quantitative measurement of link failure reaction time for devices with P4-programmable data planes 279

understand the order of magnitude of the reaction time. For
instance, authors in [1] present a survey that shows how fast
recovery is addressed in the data plane. At layer 2, mech-
anisms such as RSTP, and other custom implementations,
show recovery time values around 50 ms. However, those
values strongly depend on the complexity of the topology.
At layer 3, the authors highlight that increasing the num-
ber of rerouted LSPs in MPLS networks, or IGP prefixes in
IP networks, causes higher packet losses and a non-linear
increase of the recovery time, even beyond 50 ms. They also
address fast recovery in programmable networks, where they
describe several mechanisms based on OpenFlow and P4.
They do not show specific recovery time values but they con-
clude that PDPs enable more efficient recovery mechanisms
in terms of latency and throughput.

Furthermore, authors in [10] present a solution to speed up
the failure reaction mechanism in RouteFlow [11], an Open-
Flow framework to run traditional routing protocols. They
implement a patch that allows notifying the corresponding
process in the control plane—i.e., a virtual machine—when
a link failure is detected in a physical OpenFlow node. Then,
the routing protocol running in the virtual machine triggers
the recovery procedure to overcome the failed link.

2.2 Measurement methods

Regarding the methods to measure the failure recovery time,
there are several approaches that leverage computer simu-
lations to evaluate the performance of their solutions. For
instance, authors in the aforementioned [12] use computer
simulations to evaluate their IPFRR OpenFlow implemen-
tation compared to the standard OSPF recovery process.
Moreover, authors in [13] analyze the effect of the designated
router’s placement on overall convergence time in OSPF net-
works by elaborating a mathematical analysis of the problem
and modeling the convergence time.

On the other hand, most of the analyzed solutions rely
on emulation platforms to test their failure recovery tech-
niques. Authors in [2] provide an improved data plane based
fast reroutingmechanism to avoid inefficiencies when recov-
ering from link failures. They use a version of the Mininet
[14] emulation platform that supports behavioral model ver-
sion 2 (bmv2) [15], a P4 software switch for testing and
debugging P4 data planes, to evaluate their solution. They
show an average link failure recovery time of one sec-
ond compared to the 7 s obtained by a control plane based
mechanism. Similarly, authors in [16] design and implement
a P4-based fast failure recovery mechanism using Multi-
ple Routing Configurations (MRC) [17]. They describe the
design and the implementation of the failure detection and
packet forwarding functions and they model their design in
Mininet/bmv2, using the Scapy library of Python to measure
the failure recovery time. P4Neighbor [18] is a multi-failure

recovery system based on PDP that precomputes and encap-
sulates backup paths into the packet header and calculates
backup paths for each link instead of each flow or host. To
measure the link failure recovery time, they emulate the net-
work using Mininet/bmv2, and they compare their proactive
solution with a modified version of P4Neighbor that recov-
ers from link failures in a reactive manner. Their solution
provides recovery times from 19 ms to 51 ms depending on
the number of switches in the alternate path. Additionally,
authors in [19] develop a proactive fast failover mechanism
in the data plane to dealwith link failure and congestion prob-
lems in SDN/OpenFlow. They implement their fast failover
mechanism using the Ryu controller and Open vSwitch
software switches in Mininet. They show that the average
recovery time of their solution is less than 40 ms, compared
to the hundreds of ms of the control plane based fast restora-
tion mechanism.

The literature also shows the use of discrete event simu-
lators to evaluate the failure recovery time, such as in PURR
[20]. PURR is a fast reroute primitive for programmable data
planes that provides low failover latency and high switch
throughput by avoiding packet recirculation. Simulations in
ns3 are carried out to evaluate the impact on the flow comple-
tion time when using PURR with regard to another approach
based on recirculating packets.

Finally, there are many works using commercial hard-
ware to test their solutions. Authors in [21] propose the use
of pre-provisioned alternate paths, as well as a control plane
based failure detection scheme that leverages probe packets.
They evaluate their solution using real Commercial-Off-The-
Shelf (COTS) equipment, PCs running ofsoftswitch13 [22],
which shows an average recovery time of about 60 ms.
Also, authors in [23] present a failover scheme with per-
link BFD sessions and preconfigured primary and secondary
paths computed by an OpenFlow controller. They perform
their experiments on both software —Open vSwitch— and
hardware —Pica8 P3920— switches using pktgen [24], a
packet generator that operates fromkernel space.When using
Loss Of Signal (LOS) based failure detection, they show
a recovery time of 4759 ms and 1697 ms in software and
hardware respectively, which is unacceptable in carrier-grade
networks. However, when using their BFD-based solution,
only supported by software switches, they show recovery
times between 3.4 ms and 42.1 ms depending on the BFD
transmit intervals.

We conclude that none of the aforementionedmechanisms
focuses on measuring the failure reaction time nor uses real
switching equipment to measure it. Therefore, to the best of
our knowledge, this is the first paper that provides a method
tomeasure the failure reaction time in commercial hardware-
based devices with PDP.

123



280 D. Franco et al.

3 Link failure detection, reaction and
recovery

The failure detection time is the time that takes for the local
control plane or Operating System (OS) to identify a link as
not operative to send or receive data —see Fig. 1. This time
depends on the mechanism employed to identify the failure
and can range from a few microseconds, in case of LOS fail-
ures, to tens of seconds if a Hello-based failure detection
mechanism —also known as probe packets— is used. For
instance, a LOS-based link down detection using packet over
SONETmight take tens of milliseconds, while detecting link
down via lost of neighbor adjacency —e.g., sending Link
Status Advertisement (LSA) messages in OSPF— might
take up to 40s [13, 25]. Another example is the Ethernet
10GBase-T, which according to its physical layer definition
for 10 Gbps [26], a link will only be considered failed if the
link_ f ail_inhibi t_timer —from 2000 ms to 2250 ms—
has expired and the link has still not gone into the link status
OK state. Similarly, the commonly used Small Form-factor
Pluggable (SFP) transceivers have their own mechanism to
detect link failures via LOS.According to the SFF-8431 stan-
dard [27], the Rx_LOS signal indicates that the received
signal strength is below the specified range, which typically
points to non-installed or broken cables. Then, it defines a
100µs delay from the LOS occurrence to the assertion of the
Rx_LOS, which means that it waits that time before con-
sidering the link as failed. Link failures can occur at level
1/2, usually caused by LOS, or they can be at upper layers,
affecting the inter-operationof higher-level protocolswithout
the connection at lower layers having been interrupted. The
OS of network devices is configured to generate OS-level
interruptions as a response to local link failures caused by
LOS. However, detecting errors at upper layers is often more
difficult as keep-alive probe packets are required to moni-
tor the liveliness of such applications and services. Another
difficulty emerges when two devices are connected at layer

Fig. 1 Description of the link failure detection, reaction and recovery
processes

2 through a third device. Let’s say two routers, R1 and R2,
are connected through a switch S1 and they have a router
adjacency. When the link R2-S1 goes down due to LOS, R1
will not detect the link failure event and it will keep sending
packets to R2.

According to [28], there are two families of failure detec-
tion mechanisms in IP networks: (1) lower layers failure
notification and (2) Hello-based mechanisms. The former
is used to overcome situations such as in the aforementioned
example, in which an additional mechanism is required to
notify R1 about the failure in the link S1-R2. The latter
consists in sending periodical Hello messages to monitor
the liveliness of a link or service. BFD [29] is a low-
overhead and protocol-independent Hello mechanism that
is oriented to quickly detect link failures in the forwarding
plane. For instance, OpenFlow uses LOS and BFD detection
to implement path restoration and path protection mecha-
nisms respectively [3, 30]. In restoration, alternate paths can
be either preplanned or dynamically allocated, but resources
are not allocated until a failure occurs, thus additional signal-
ing is required. LOSdetection causes a port to change its state
from up to down and vice versa. When there is a change in
the state of the port, the OpenFlow switch sends a port-status
message [7] to notify the controller. The reactive nature of
path restoration makes LOS detection more suitable for that
mechanism. However, for path protection, alternate paths are
always pre-planned and reserved before the failure occurs. In
these scenarios, BFD provides end-to-end link failure detec-
tion and allows for preconfiguring an alternate path at the
ingress node —the node that usually has the alternate route
for the flow. Both mechanisms can be linked to OpenFlow’s
FAST-FAILOVER group tables —explained in Sect. 4— in
order to speed up the response time in case of link failure.

Once the failure is detected, the local control plane or OS
needs to communicate with the entity responsible for taking
the appropriate actions to overcome the error. Therefore, we
define the failure reaction time as the time since the failure
occurs until it is notified to the entities in charge of triggering
the recovery process. In this case, there are up to three differ-
ent options depending on the network device or configuration
we are using.

• If it is a legacy device, the process in charge of the I/O
devices will tell the routing process about the failure
detection.

• In the case of centralized architectures, such as in SDN,
the error will be either notified to the centralized con-
troller using the southbound interface —e.g., port-status
message in OpenFlow— or directly detected by the con-
troller using Link Layer Discovery Protocol (LLDP)
signaling —detection and notification at once.

• In other implementations, e.g., devices with PDP or
OpenFlow FAST-FAILOVER groups, the local control

123



Quantitative measurement of link failure reaction time for devices with P4-programmable data planes 281

planeorOSdirectly notifies the data plane so it can trigger
the process to recover the failure —precomputed alter-
nate routes are common in these cases.

Some SDN implementations perform the failure detection
directly in the centralized controller using Hello packets. In
such scenarios, the failure detection is limited by the time
that is considered to mark a link as failed when Hello pack-
ets are missing. Additionally, other custom implementations,
usually for devices with PDP, perform Hello-based failure
detection in the data plane [31]. These scenarios are out of
the scope of this paper, as they tend to increment the failure
detection time compared to LOS detection.

After the reaction, the entities in charge need to run their
specific actions to overcome the failure. The link failure
recovery time is the time elapsed since the failure occurs
until the affected node performs all the changes to overcome
the failed link. For the centralized control plane and the pro-
cess in charge of routing, depending on whether they have
precomputed alternate routes or not, they will directly recon-
figure the Forwarding Information Base (FIB) —replace old
entries— in the data plane or they will need to calculate the
alternate path first. If the failure notification arrives at the
data plane, the process is similar. The data plane can have
precomputed alternate routes and directly switch to them,
or if it does not, it will notify the centralized controller so
it can perform the required actions. Again, the centralized
controller can run the path recalculation or use precomputed
alternate routes. Note that the data plane is not capable of
reconfiguring a FIB, this process is delegated only to the con-
trol plane, so the data plane is limited to switching from one
route to another according to predefined state information.

Network recovery is a more complex process in which
multiple nodes of the network cooperate to reestablish the
end-to-end paths when a link goes down. The network
failure recovery time involves the propagation of the infor-
mation about the failure along the network; therefore, it is
highly dependent on the network topology and size. This
time also depends on the network architecture, for example,
in traditional distributed architectures, the routing algorithm
needs to propagate the failure along the network, so every
node can modify its routing tables. This is a time-consuming
process that may cause transient loops until the convergence
of the algorithm is achieved. On the contrary, in SDN/Open-
Flow the centralized controller is responsible for configuring
every node to overcome the failed link. Thus, the path compu-
tation is performed in a centralized entity that has the whole
view of the network, which avoids the need to wait for the
convergence of a distributed routing algorithm and allows
configuring all nodes at once —through the southbound
interface. This process reduces the global network recovery
time as long as the Data-to-Control Plane Interface (D-
CPI) latency is not high. In this sense, network architectures

based on devices with PDP benefit from the centralized path
computation capabilities while avoiding additional D-CPI
communication delay. Thus, they allow the implementation
of failure recovery directly in the data plane, without involv-
ing the control plane.

4 Fast recovery mechanisms

In Sect. 3, failure recovery is defined as the process to restore
the connectivity in the network when a link —it can be
generalized to a node— fails. As described before, the pro-
cesses involved in detecting, reacting and recovering from
link failures are time-consuming. Therefore, most of the
existing network devices implement fast recovery mecha-
nisms that aim at decreasing the time that takes to restore the
connectivity in the network after a failure. The majority of
them leverage precomputed alternate routes to create tran-
sient paths that surpass the failed link until the connectivity
is fully restored.

In this way, this section aims at comparing the different
fast recovery strategies that can be found in current network
devices. According to the network architecture, we identify
the following types of devices:

• Traditional devices: network devices based on traditional
TCP/IP protocol stacks,where the control and data planes
are located in the same physical device. The control plane
of these architectures is distributed along all the network
devices, which cooperate to make routing decisions.

• OpenFlow devices: they form the data plane of SDN-
based networks. OpenFlow defines a static data plane
that is controlled from a programmable control plane.

• Devices with PDP: devices that allow the definition of
customized data plane algorithms, and which also have a
separated control plane that can be local or remote.

In the following lines, the most significant aspects of fast
recovery strategies developed for these three types of devices
are described.

4.1 Traditional devices

Traditional devices usually have two tables: the Routing
Information Based (RIB) table and the FIB table. The RIB
is a control plane related table —or repository— where all
the routing entries are stored, including primary and alter-
nate paths for each destination. On the contrary, the FIB is
the table used to forward packets, so it stores essential infor-
mation to do that, like the best active path.

When a link fails, the hosting device’s hardware/OS is
designed to notify routing protocols about that event, so the
process that manages the interfaces will communicate with

123



282 D. Franco et al.

the process that runs the routing protocol to inform about the
link-down event. Regardless of how the link-down event is
detected —LOS or Hello-based—, if there is not any pre-
vious alternate route, the routing protocol’s notification and
convergence process searches for an alternate route. Then,
the RIB is modified in the control plane to mark the primary
route as failed, and the FIB is updatedwith the new route. The
updating process is relatively fast as control and data planes
are collocated in the same physical device. However, in order
to converge to a new routing state, the information about the
failure needs to be propagated along the network, which is
the main bottleneck of the distributed routing strategies.

The failure detection and recovery processes in traditional
devices are defined by the routing protocol, being OSPF the
most extended one. The time that OSFP takes to restore the
network is in the order of seconds and depends on many fac-
tors, such as the network topology, the network congestion
or how many nodes detect the failure [32]. There are OSPF
parameters, such as the router dead interval, that can be cus-
tomized to improve this time. However, the process does not
meet the sub-50 ms recovery time required for carrier-grade
networks [3] and is prone to create loops due to inconsisten-
cies during the propagation of the information about the link
states along the distributed network.

Regarding fast recovery, the aforementioned BFD [29]
is a Hello-based link-down detection mechanism standard-
ized by the IETF, which reduces the time of detecting a link
failure compared to other LSA-based strategies. On the other
hand, IPFRR [5] is a pure IP-basedmechanism that leverages
precomputed routes to fasten the process of switching to an
alternate, avoiding the routing protocol’s convergence stage
and thus reducing the recovery time. When a failure shows
up, the affected routers switch to an alternate path instantly,
letting the Interior Gateway Protocol (IGP) converge in the
background. However, it does not guarantee the full failure
coverage —80% of single link failures and 40–50% of node
failures [1]—, and it leads to transient loops when affected
nodes do not switch to the alternate route at the same time.

4.2 OpenFlow-based devices

OpenFlow-based network devices rely on a centralized con-
troller to compute and install forwarding paths. In this case,
the standard way to proceed when a failure occurs is to first
detect the failure using either LOS-based or Hello-based
—e.g., LLDP messages— mechanisms and then notify the
centralized controller about the failure. However, OpenFlow
devices have theFAST-FAILOVERgroup, a typeofOpenFlow
group that is designed specifically to quickly detect and over-
come link failures. Like the SELECT and ALL groups, the
FAST-FAILOVER group has a list of buckets—being a bucket
a list of actions. In addition to this list of actions, each bucket
has a watch port and/or watch group as a special parame-

ter. The watch port/group will monitor the up or down status
of the indicated port/group. The procedure to determine if a
port is up or down can be LOS detection or it can be based
on BFD, depending on the implementation. If the port/group
is deemed to be down, then the bucket will not be used. If
the port/group is determined to be up, then the bucket can be
used. Only one bucket can be used at a time, and the bucket
in use will not be changed unless the status of the currently
used bucket’s watch port/group transitions from up to down.
When such an event occurs, the FAST-FAILOVER group will
quickly select the next bucket in the bucket list with a watch
port/group that is up.

There is no guarantee on the transition time that takes
to select a new bucket when a failure occurs, it depends on
the search time to find a suitable port/group that is up on
the specific switch. However, the motivation behind using a
FAST-FAILOVER group is that it is almost guaranteed to be
quicker than reaching the control plane to handle the port-
down event and inserting a new flow or set of flows [19].
Therefore, with FAST-FAILOVER groups, link failure detec-
tion and recovery take place without the intervention of the
centralized control plane.

4.3 Devices with PDP

PDPs allow the implementation of custom data plane algo-
rithms that process packets at line rate. This ability can
be leveraged to program tailored fast recovery algorithms
that automatically reconfigure the network in case of fail-
ure, without the intervention of the control plane. In this
case, the failure recovery process is not architecture-specific
but implementation specific, which means that every device
has its own mechanism to recover from link failures. Once
the data plane is notified about the event, it triggers the
recovery algorithm to find the most suitable alternate route
—preinstalled or not— for the specific packet or flow.

Although the recoveryprocess is implementation-specific,
devices with PDP implement custom mechanisms to detect
and react to link failures. For instance, generic devices with
PDP, such as bmv2 software switches, leverage Hello-based
mechanisms to detect and react to link failures via packet loss.
On the other hand, some devices implement hardware-based
mechanisms to detect and notify the data plane when a link
goes down, as it is the case with Tofino switches.

4.3.1 Fast reaction in generic devices with PDP

Among the generic devices with PDP, bmv2 [15] is a ref-
erence P4 software switch written in C++11 that is meant
to be used as a tool for developing, testing and debugging
P4 data planes. It takes as input a file generated from a P4
program by a P4 compiler and interprets it to implement the
packet processing behavior. The bmv2 software switches do

123



Quantitative measurement of link failure reaction time for devices with P4-programmable data planes 283

not implement anymechanism to notify the data planewhen a
link goes down, they rely on self-implemented Hello-based
mechanisms to detect link failures such as in [16]. One or
both ends of a link send Hello packets to determine if the
link is upor down.When an enddetects that the arrival of such
packets stops, the switch sets the affected port as down—see
Fig. 2. In bmv2, Hello packets are generated as a response
to other incoming packets, either from the control plane or
directly cloning user space packets. It is worth noting that
data plane Hello-based detection requires additional state
information—e.g., registers— to store the status of each port
[33]. This solution allows the data plane to know if a port is
up or down, however, its cost in terms of latency is high, as
the switch needs to specify the period and set the threshold of
lost packets until the port is marked as down. Note that other
P4-programmable hardware devices, such as the Netronome
NFP-4000, also rely on implementation-specificHello-based
mechanisms to fast react to link failures.

4.3.2 Fast reaction in devices with specific hardware

Devices with specific hardware, such as Tofino switches,
internally maintain the state of their ports so when a port
goes down they automatically discard the packets destined
to it. The signal comes from the network interface card and
represents the state of the link. The same signal can be used to
trigger the Port Down mechanism, which leverages a packet
generator —specific hardware— that generates packets that
enter the pipeline of the specific switch in which the port
goes down —see Fig. 2. In this way, the link-down event
is detected very quickly and the reaction can be triggered
directly from the data plane at almost zero delay. Section5
elaborates more on the failure reaction time of these types of
devices.

5 Testing failure reaction time

This section evaluates the Failure Reaction Time (FRT ) of a
hardware switchwith PDP that uses a TofinoASIC. As previ-
ously explained, Tofino-based switches implement a failure
recoverymechanism calledPortDown, which leverages LOS
detection to generate a packet that enters the ingress pipeline
of the switch whenever a link goes down.

As previously explained, when a link failure occurs, first,
the switch must be aware of that failure, and then, the error
must be notified to the corresponding entity—control or data
plane— in order to apply the backup configuration if any.
Therefore, we distinguish between the time for detecting the
failure and the time that takes to react to that failure. After
the failure reaction, there is a recovery time, which is the
period that takes the switch to apply the necessary changes in
order to face the link failure and restore the alternate routing.

Fig. 2 Mechanisms to inform the data plane about a failure in devices
with PDP

This section focuses on evaluating the FRT , the specific
implementation of the failure recovery algorithm is out of
the scope of this paper.

5.1 Measurement method

We hereby describe the method designed to measure the
FRT of an Intel Tofino switch, the control and data plane
code is fully available at [34] and the post that discusses the
method is in [35]. Figure3 shows the experimental scenario
deployed to measure the FRT using real hardware equip-
ment. We use two hosts, h1 and h2, and one Intel Tofino
switch to connect the hosts through SFP+ 10Gbps interfaces,
and we configure Tofino’s Packet Generation Tool in the port
17 of the switch to generate a port-down packet whenever
the link goes down. This packet is delivered to the Collec-
tor, connected through port 1 at 1 Gbps, which receives the
timestamps and computes the FRT. For the hosts, we use two
Anritsu MT1000A transport modules, while the Collector is
built on a commercial Supermicro server with an octa-core
Intel(R) Xeon(R) D-2146NT CPU running Ubuntu 20.04.
The first host h1 is in charge of sending packets to the sec-
ond host h2. Every time a data packet arrives at the ingress
pipeline of the switch a timestamp ts1 is stored in a regis-

123



284 D. Franco et al.

Fig. 3 Testing scenario to experimentallymeasureTofino’s failure reac-
tion time

Fig. 4 Potential occurrences, A and B, when measuring the FRT

ter. Then, we physically disconnect the link between h1 and
the switch —port 17— so a port-down packet is generated
and sent to the data plane of the switch. When the port-down
packet arrives at the ingress pipeline of the data plane, a
new timestamp ts2 and the previously stored ts1 are attached
to the packet. The resulting packet is finally forwarded to
port 1, so it reaches the Collector where it is processed to
compute the measured FRT as the difference between ts2
and ts1. Both timestamps are measured in the switch, using
the Intel Tofino’s timestamping engine, which provides a
48-bit counter that increments every nanosecond, thus get-
ting a nanosecond-level precision. The timestamp used is the
Tofino’s ig_intr_md.ingress_mac_tstamp, which is taken
on the arrival of the packet at ingress.

The following examples in Fig. 4 depict, from a theoretical
perspective, how the FRT is measured using the method
described in the aforementioned scenario. Let us assume that
h1 is sending data packets at a constant rate, which arrive at
the switch at ti , ti+1, ..., ti+n . Let us also assume that, in the
absence of any other external event, the FRT is constant
for every port-down event. Then, Fig. 4 shows two potential
occurrences, A and B, when a port-down event —shown as
PD— occurs in the Tofino switch at the time ta .

In occurrence A, the port-down event takes place closer
to the first data packet arrival denoted as ti . As explained

before, the timestamp ts1 is only stored when a data packet
arrives at ti , ti+1, ..., ti+n , therefore, the port-down packet
that arrives at t j makes ts2 be stored before the scheduled
arrival of the next data packet—which should have arrived at
ti+1 if the port-down had not occurred. In this case, the differ-
ence between the real FRT and the measured FRT , named
measurement error (ε), is lower. By contrast, in occurrenceB,
the port-down event happens just before the scheduled arrival
of the next data packet at ti+1 —which in fact does not arrive
due to the port-down—, so the ε is greater because the packet
that should arrive at ti+1 is lost and thus the measured FRT
is computed based on previous timestamp stored at ti . The
maximum and minimum values of the measured FRT can
be theoretically computed as follows. We know that FRT is
computed as:

FRT = t j − ta (1)

where ta is the time at which the port-down event occurs. We
can also compute the measured FRT as:

FRTmeas = t j − ti (2)

Finally, the error ε is calculated as the difference between
the real and measured FRT s as follows:

ε = FRTmeas − FRT = ta − ti (3)

We derive from (3) that the minimum and maximum val-
ues of ε are obtained when ta ≈ ti and ta ≈ ti+1 respectively,
thus when the port-down event occurs just after and before
the arrival of a new data packet.

According to the aforementioned occurrences, we also
conclude that the packet inter-arrival time (�t), which is the
time elapsed between the arrival of two consecutive packets
ti and ti+1, is relevant to reduce the ε. In fact, reducing �t
means increasing the sampling frequency, so it is desirable
to be of the same or less order of magnitude as the FRT to
get the most accurate measures. In consequence, we should
generate packets with the lowest�t . The packet inter-arrival
time is theoretically computed as �t = pkt_length/bitrate,
where pkt_lenght is in bits. In this test, we achieve a maxi-
mum bitrate of 7.619 Gbps with a 64-byte frame size, which
results in an inter-arrival time �t = 67.2 ns.

The data plane implementation of thePortDown can influ-
ence the FRT, so we should pay attention to the elements in
the pipeline that introduce latencywhen a packet is processed
[36, 37]. First, in the parser block, represented as a state
machine, the packet moves from one state to another depend-
ing on the packet header. As all the port-down packets have
the sameheader,we assume this latency is constant—packets
always traverse the same states. Then, in the control block,
the processing logic can add a variable latency that depends

123



Quantitative measurement of link failure reaction time for devices with P4-programmable data planes 285

on the data plane complexity. Addressing a link-down event
is considered a high-priority task, so it is recommended to
process the port-down header at the beginning of the con-
trol block to avoid additional latency. The Listing 1 shows
an example of this implementation that leverages an if/else
statement to check if the packet is of type Port Down. If so,
the actions corresponding to the link-down event are run,
i.e., we update a register that stores the status of each port.
If not, the rest of the control is executed. Note that, in terms
of latency, the deparser block is considered equivalent to the
parser. In this way, the additional latency introduced is con-
stant and limited to amatch-action table corresponding to the
if/else statement.

const bit <32> REG_IDX = 0x1;
register <psv_t >(16) portStatus;
apply{

portStatusReg.read(meta.port_status , REG_IDX);
if (hdr.portdown.isValid ()) {

bit <16> rcvPortStatus = 16w1 <<
(hdr.portdown.port - 1);

meta.port_status = meta.port_status |
rcvPortStatus;

portStatusReg.write(REG_IDX , meta.port_status );
drop ();

} else {
// Rest of the control logic

}
}

Listing 1 Implementation of the port-down event in the control block.

Finally, it is worth noting that all the experiments are car-
ried out without overloading the switch, which results in a
much lower reaction time compared to state-of-the-art recov-
ery time values reviewed in the literature. We estimate that
under overloading conditions, although the reaction time can
rise compared to not overloading the switch, it will be even
more favorable if we compare it to other existing recovery
mechanism under the same condition.

5.2 Results

Figure 5 plots the experimental results obtained from mea-
suring the FRT according to the scenario defined in this
experiment. Looking at the numerical results, FRTmeas

shows an average of 472.88 µs and a standard deviation of
17.28 µs. There are several measured values under 450 µs,
with 393.3 µs being the minimum value. The standard devi-
ation is one order of magnitude less that the average and the
97% of the measured reaction times are within plus or minus
the standard deviation, which ensures the statistical validity
of the overall results.

These results show that the Intel Tofino switch with PDP
achieves a FRT that is in the order of microseconds, which
opens the door to the implementation of faster and more
robust data plane based failure recovery strategies. This
happens thanks to the ability of the devices with PDP to
define custom packet processing pipelines, and their hereby

Fig. 5 Results of the measured FRT when using 7.619 Gbps bitrate
and 64-byte frame size

demonstrated capacity to quickly react to link failures. These
features allow for the implementation of failure recovery
strategies that redirect every single packet through the alter-
nate path, thus getting closer to the zero-packet loss target.
Moreover, choosing the correct failure recovery strategy can
lead us to avoid transitory routing states due to sub-optimal
alternate routes such as tunnels. In fact, the alternate route
can be as optimal as the primary one, so it could persist even
when the link brings up again after the failure.

On another hand, devices with PDP provide the ability to
combine decentralized and data plane based failure recovery
strategies with the centralized view of the SDN controller.
The former are required to optimize the fast reaction of the
networkwhile, as a second step, the latter provides anupdated
and more accurate view corresponding to the new state of the
network after the fast recovery process.

Apart from the benefits in terms of improving the fast
recovery strategies, we foresee other fields in which such
a negligible reaction time could be beneficial. For instance,
in time-sensitive networks (TSN) an extremely low latency
—and low jitter— is required to synchronize all the enti-
ties involved in the communication. In this sense, recovering
from link failures in a microsecond scale provides the
required resiliency to both execute low-latency synchroniza-
tion protocols and run ultra-reliable services over the TSN. In
addition, real-time monitoring systems can benefit form the
ability to detect link failures with a very low delay. Devices
with PDP can be combined with complex NFV orchestra-
tors in order to notify their monitoring systems whenever a
link-down event occurs, activating alternate paths to reach
the compute nodes or even deploying backup functions to
restore the service.

123



286 D. Franco et al.

6 Conclusions

In this paper, we study the different link failure recovery
strategies implemented in current communication networks,
due to their utmost importance in providing proper support
for many services that demand stringent delay and packet
loss requirements. We classify those communication net-
works according to the network devices that comprise them,
including traditional distributed control plane based devices,
SDN/OpenFlow based devices and devices with PDP. Our
focus is on analyzing the fast recovery strategies that are
implemented directly in the data plane, as their response, in
terms of packet loss and delay, is more optimal than dis-
tributed or control plane based strategies.

In addition, we address the link failure detection and
recovery times from a theoretical point of view, while intro-
ducing the new concept of failure reaction time, which refers
to the time that takes a node to trigger the failure recovery pro-
cess. We consider the analysis of the reaction time relevant
to characterize the failure recovery process and to determine
the network’s ability to react fast to link failure events. In
this sense, we provide a method to measure the FRT of Intel
Tofino switches with PDP, which relies on the packet-based
Port Down mechanism to inform the data plane about link
failure events. Our promising results show that the FRT is
in the order of microseconds, which combined with the abil-
ity of PDPs to define custom packet processing pipelines,
enables the implementation of novel fast failover strategies
that allow us to recover from link failures at line rate and
thus optimize the overall network recovery time. Therefore,
we conclude that such devices with PDP can improve the
network’s performance—reduce packet losses and delays—
by implementing a failure recovery algorithm that leverages
their fast reaction capability, which is indeed part of our
future work.

Acknowledgements This research was supported by the Spanish Min-
istry of Science and Innovation (Grant number PID2019-108713RB-
C54) under the project “Towards zero touch network and services for
beyond 5G (TRUE5G)”.

AuthorContributions DF—wrote themainmanuscript.MH—contributed
to the design of the testing method (Sect. 5). All authors reviewed the
manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. Ministry of Science and Innovation
(Grant number PID2019-108713RB-C54).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Chiesa, M., Kamisiński, A., Rak, J., Retvari, G., & Schmid, S.
(2021). A survey of fast-recovery mechanisms in packet-switched
networks. IEEE Communications Surveys & Tutorials, 23(2),
1253–1301. https://doi.org/10.1109/COMST.2021.3063980

2. Shukla, A., & Foerster, K. T. (2021). Shortcutting fast failover
routes in the data plane. In Proceedings of the symposium on archi-
tectures for networking and communications systems (pp. 15–22).
https://doi.org/10.1145/3493425.3502751

3. Sharma, S., Staessens, D., Colle, D., Pickavet, M., & Demeester, P.
(2013). OpenFlow: Meeting carrier-grade recovery requirements.
Computer Communications, 36(6), 656–665. https://doi.org/10.
1016/j.comcom.2012.09.011

4. Liu, J., Panda, A., Singla, A., Godfrey, B., Schapira, M.,
& Shenker, S. (2013). Ensuring connectivity via data plane
mechanisms. In 10th USENIX symposium on networked sys-
tems design and implementation (NSDI 13) (USENIX Associ-
ation) (pp. 113–126). https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/liu_junda

5. Atlas, A. K., Zinin, A., Torvi, R., Choudhury, G., Martin, C.,
Imhoff, B., & Fedyk, D. (2008). Basic specification for IP fast
reroute: Loop-free alternates. RFC 5286, RFCEditor. https://www.
rfc-editor.org/rfc/rfc5286

6. Swallow, G., Pan, P., & Atlas, A. (2005). Fast reroute extensions to
RSVP-TE for LSP tunnels. RFC 4090, RFC Editor. https://www.
rfc-editor.org/rfc/rfc4090

7. ONF. (2012). OpenFlow switch specification version 1.3.0. Open-
Flow Spec, Open Networking Foundation. http://opennetworking.
wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.
3.0.pdf

8. Cisco. (2014). BGP PIC edge for IP and MPLS-VPN.
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_
bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html.
Accessed 07 Mar 2023.

9. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rex-
ford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., &
Walker, D. (2014). P4: Programming Protocol-independent Packet
Processors. SIGCOMM Computer Communication Review, 44(3),
87–95. https://doi.org/10.1145/2656877.2656890

10. Sharma, S., Colle, D., & Pickavet, M. (2020). Enabling fast fail-
ure recovery in openflow networks using routeflow. In 2020 IEEE
international symposium on local and metropolitan area networks
(LANMAN (IEEE) (pp. 1–6).

11. CPqD. (2023). RouteFlow: Virtual IP routing services over Open-
Flow networks. https://routeflow.github.io/RouteFlow/. Accessed
27 Sept 2023).

12. Kamamura, S., Shimazaki, D., Hiramatsu, A., & Nakazato, H.
(2013). Autonomous IP fast rerouting with compressed backup
flow entries using OpenFlow. IEICE Transactions on Infor-
mation and Systems, 96(2), 184–192. https://doi.org/10.1587/
TRANSINF.E96.D.184

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/COMST.2021.3063980
https://doi.org/10.1145/3493425.3502751
https://doi.org/10.1016/j.comcom.2012.09.011
https://doi.org/10.1016/j.comcom.2012.09.011
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.rfc-editor.org/rfc/rfc5286
https://www.rfc-editor.org/rfc/rfc5286
https://www.rfc-editor.org/rfc/rfc4090
https://www.rfc-editor.org/rfc/rfc4090
http://opennetworking.wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
http://opennetworking.wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
http://opennetworking.wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://doi.org/10.1145/2656877.2656890
https://routeflow.github.io/RouteFlow/
https://doi.org/10.1587/TRANSINF.E96.D.184
https://doi.org/10.1587/TRANSINF.E96.D.184


Quantitative measurement of link failure reaction time for devices with P4-programmable data planes 287

13. Waqas, M., Malik, S. U. R., Akbar, S., Anjum, A., & Ahmad, N.
(2019). Convergence time analysis of OSPF routing protocol using
social network metrics. Future Generation Computer Systems, 94,
62–71. https://doi.org/10.1016/J.FUTURE.2018.11.003

14. Mininet Team. (2023). Mininet main page. https://mininet.org/.
Accessed 20 April 2023.

15. P4 community. Behavioral Model version 2 (bmv2). The reference
P4 software switch. https://github.com/p4lang/behavioral-model.
Accessed 01 May 2023.

16. Miura, H., Hirata, K., & Tachibana, T. (2022). P4-based design
of fast failure recovery for software-defined networks. Com-
puter Networks, 216, 109274. https://doi.org/10.1016/j.comnet.
2022.109274

17. Kvalbein, A., Hansen, A. F., Cicic, T., Gjessing, S., & Lysne,
O. (2008). Multiple routing configurations for fast IP network
recovery. IEEE/ACM Transactions on Networking, 17(2), 473–
486. https://doi.org/10.1109/TNET.2008.926507

18. Xu, J., Xie, S., &Zhao, J. (2021). P4Neighbor: Efficient link failure
recovery with programmable switches. IEEE Transactions on Net-
work and Service Management, 18(1), 388–401. https://doi.org/
10.1109/TNSM.2021.3050478

19. Lin, Y. D., Teng, H. Y., Hsu, C. R., Liao, C. C., & Lai, Y. C. (2016).
Fast failover and switchover for link failures and congestion in soft-
ware defined networks. In 2016 IEEE international conference on
communications (ICC) (IEEE) (pp. 1–6). https://doi.org/10.1109/
ICC.2016.7510886

20. Chiesa, M., Sedar, R., Antichi, G., Borokhovich, M., Kamisiński,
A., Nikolaidis, G., & Schmid, S. (2019). PURR: A primitive for
reconfigurable fast reroute: hope for the best and program for
the worst. In Proceedings of the 15th international conference on
emerging networking experiments and technologies (pp. 1–14).
https://doi.org/10.1145/3359989.3365410

21. Lee, S. S., Li, K. Y., Chan, K. Y., Lai, G. H., &Chung, Y. C. (2014).
Path layout planning and software based fast failure detection in
survivable OpenFlow networks. In 2014 10th international confer-
ence on the design of reliable communication networks (DRCN)
(IEEE) (pp. 1–8). https://doi.org/10.1109/DRCN.2014.6816141

22. Fernandes, E. L., Rojas, E., Alvarez-Horcajo, J., Kis, Z. L., Sanvito,
D., Bonelli, N., Cascone, C., & Rothenberg, C. E. (2020). The road
to BOFUSS: The basic OpenFlow userspace software switch. Jour-
nal of Network and Computer Applications, 165, 102685. https://
doi.org/10.1016/j.jnca.2020.102685

23. Van Adrichem, N. L., Van Asten, B. J., & Kuipers, F. A. (2014)
Fast recovery in software-defined networks. In 2014 3rd Euro-
pean workshop on software defined networks (IEEE) (pp. 61–66).
https://doi.org/10.1109/EWSDN.2014.13

24. Turull, D., Sjödin, P., & Olsson, R. (2016). Pktgen: Measuring
performance on high speed networks. Computer Communications,
82, 39–48. https://doi.org/10.1016/j.comcom.2016.03.003

25. Goyal, M., Soperi, M., Baccelli, E., Choudhury, G., Shaikh, A.,
Hosseini, H., & Trivedi, K. (2011). Improving convergence speed
and scalability in OSPF: A survey. IEEE Communications Surveys
& Tutorials, 14(2), 443–463. https://doi.org/10.1109/SURV.2011.
011411.00065

26. Institute of Electrical and Electronics Engineers (IEEE). (2006).
Standard for information technology–telecommunications and
information exchange between systems–LAN/MAN–specific
requirements part 3: CSMA/CD access method and physical
layer specifications–amendment: Physical layer and management
parameters for 10 Gb/s operation, type 10GBASE-T. IEEE Std
802.3an-2006 (Amendment to IEEE Std 802.3-2005) (pp. 1–181).
https://doi.org/10.1109/IEEESTD.2006.231802

27. SFF Committee. (2013). SFP+ 10 Gb/s and low speed electrical
interface. SFF-8431Rev 4.1 (Addendum) (pp. 1–137). http://www.
snia.org/sff/specifications

28. Vasseur, J. P., Pickavet,M.,&Demeester, P. (2004).Network recov-
ery: Protection and restoration of optical, SONET-SDH, IP, and
MPLS. Elsevier.

29. Katz, D., & Ward, D. (2010). Bidirectional forwarding detec-
tion (BFD). RFC 5880, RFC Editor. https://www.rfc-editor.org/
rfc/rfc5880.html

30. Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P.
(2013). Fast failure recovery for in-band OpenFlow networks. In
2013 9th international conference on the design of reliable commu-
nication networks (DRCN) (IEEE) (pp. 52–59). https://ieeexplore.
ieee.org/document/6529882

31. Cascone, C., Sanvito, D., Pollini, L., Capone, A., & Sanso, B.
(2017). Fast failure detection and recovery in SDN with stateful
data plane. International Journal of Network Management, 27(2),
e1957.

32. Siddiqi, A., & Nandy, B. (2005). Improving network convergence
time and network stability of an OSPF-routed IP network. In
NETWORKING 2005. Networking technologies, services, and
protocols; performance of computer and communication networks;
mobile and wireless communications systems: 4th international
IFIP-TC6 networking conference, Waterloo, Canada, May 2-6,
2005. Proceedings (vol. 4, pp. 469–485). Springer. https://doi.org/
10.1007/11422778_38

33. Sedar, R., Borokhovich, M., Chiesa, M., Antichi, G., & Schmid,
S. (2018). Supporting emerging applications with low-latency
failover in P4. In Proceedings of the 2018 workshop on network-
ing for emerging applications and technologies (pp. 52–57). https://
doi.org/10.1145/3229574.3229580

34. Franco,D. (2023). daviddvs/tofino-frt: Ready to publish v2. https://
doi.org/10.5281/zenodo.7890921

35. Intel. (2022). Intel connectivity research program forum–port down
reaction time. https://community.intel.com/t5/Intel-Connectivity-
Research/Port-down-reaction-time/m-p/1432179. Accessed 03
May 2023.

36. Harkous, H., Jarschel,M., He,M., Priest, R., &Kellerer,W. (2019).
Towards understanding the performance of p4 programmable
hardware. In 2019ACM/IEEE symposium on architectures for net-
working and communications systems (ANCS) (pp. 1–6). https://
doi.org/10.1109/ANCS.2019.8901881

37. Harkous, H., Jarschel, M., He, M., Pries, R., & Kellerer, W. (2020).
P8: P4 with predictable packet processing performance. IEEE
Transactions on Network and Service Management, 18(3), 2846–
2859. https://doi.org/10.1109/TNSM.2020.3030102

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/J.FUTURE.2018.11.003
https://mininet.org/
https://github.com/p4lang/behavioral-model
https://doi.org/10.1016/j.comnet.2022.109274
https://doi.org/10.1016/j.comnet.2022.109274
https://doi.org/10.1109/TNET.2008.926507
https://doi.org/10.1109/TNSM.2021.3050478
https://doi.org/10.1109/TNSM.2021.3050478
https://doi.org/10.1109/ICC.2016.7510886
https://doi.org/10.1109/ICC.2016.7510886
https://doi.org/10.1145/3359989.3365410
https://doi.org/10.1109/DRCN.2014.6816141
https://doi.org/10.1016/j.jnca.2020.102685
https://doi.org/10.1016/j.jnca.2020.102685
https://doi.org/10.1109/EWSDN.2014.13
https://doi.org/10.1016/j.comcom.2016.03.003
https://doi.org/10.1109/SURV.2011.011411.00065
https://doi.org/10.1109/SURV.2011.011411.00065
https://doi.org/10.1109/IEEESTD.2006.231802
http://www.snia.org/sff/specifications
http://www.snia.org/sff/specifications
https://www.rfc-editor.org/rfc/rfc5880.html
https://www.rfc-editor.org/rfc/rfc5880.html
https://ieeexplore.ieee.org/document/6529882
https://ieeexplore.ieee.org/document/6529882
https://doi.org/10.1007/11422778_38
https://doi.org/10.1007/11422778_38
https://doi.org/10.1145/3229574.3229580
https://doi.org/10.1145/3229574.3229580
https://doi.org/10.5281/zenodo.7890921
https://doi.org/10.5281/zenodo.7890921
https://community.intel.com/t5/Intel-Connectivity-Research/Port-down-reaction-time/m-p/1432179
https://community.intel.com/t5/Intel-Connectivity-Research/Port-down-reaction-time/m-p/1432179
https://doi.org/10.1109/ANCS.2019.8901881
https://doi.org/10.1109/ANCS.2019.8901881
https://doi.org/10.1109/TNSM.2020.3030102


288 D. Franco et al.

David Franco received his MSc
degree in Telecommunication En-
gineering from the University of
the Basque Country (UPV/EHU)
in 2018. He joined the Commu-
nications Engineering Department
of the UPV/EHU as a researcher
in the I2T (Engineering and Res-
earch on Telematics) research lab
in 2016. His research is focused
on software-defined networking
and network function virtualiza-
tion applied to traffic engineering
and secure communication sys-
tems. He is also a PhD student

in Mobile Network Information and Communication Technologies at
UPV/EHU.

Marivi Higuero obtained her BS
and MS degrees in Telecommuni-
cation Engineering, in the Faculty
of Engineering in Bilbao, in the
University of the Basque Country
(UPV/EHU), and the PhD degree
in Engineering in Information and
Communications Technologies, in
the same University, in 2005. She
worked in Sarenet (Bilbao), an
Internet Service Provider, as a m-
ember of the technical department
in this company. Since 1997 she
works as assistant professor in
the Communications Engineering

Department in the University of the Basque Country. She is also mem-
ber of the I2T (Engineering and Research on Telematics) research lab
in the same University, where she has participated in several national
and European R&D projects. Her research interests include SDN and
NFV, network security, and ITS (Intelligent Transport Systems) and
network mobility protocols.

Eder Ollora Zaballa obtained
his BSc at the University of the
Basque Country (EHU) and the
MSc at the Technical University
of Denmark (DTU). He also recei
ved his PhD degree in the Net-
work Technologies and Service
Platforms group at DTU. He has
previously been involved in the
European project NGPaaS, Band-
width-on-Demand (GEANT) and
X2Rail. His research interest
focuses on control and data plane
programming (ONOS, Openflow,
P4, and P4Runtime), distributed

control planes, slicing, telemetry and network security in SDN net-
works. As a Postdoc at the same university (DTU), he is currently
involved with P4 programming at a later project with GEANT

JuanjoUnzilla received the BS and
MS degrees in electrical engineer-
ing and the Ph.D. degree in com-
munications engineering from the
UPV/EHU, in 1990 and 1999,
respectively. He was the Head of
the Electronic and Telecommuni-
cations Department, from 2001 to
2004, and the Vice-Chancellor of
UPV/EHU, from 2004 to 2013.
He is currently a Professor with
the Communications Engineering
Department, UPV/EHU, where he
teaches subjects related to telecom-
munication networks and services.

He is a member of the I2T Research Laboratory, where he participates
in several regional, national, and European Research and Development
projects. His research interests include SDN and NFV in 5G networks,
its applications to industrial communications, and cybersecurity in dis-
tributed systems. He is one of the co-founders of the spin-off Keynetic
focused on cybersecurity services to SMEs, in 2017.

Eduardo Jacob (Senior Mem-
ber, IEEE) eceived the BSc degree
in industrial engineering and the
MSc degree in industrial engi-
neering, and industrial commu-
nications and electronics respec-
tively in 1987 and 1991, and the
PhD degree in communications
engineering in 2001 from the Uni-
versity of the Basque Country
(UPV/EHU). During two years he
worked in a public telecommu-
nications research and develop-
ment enterprise (currently Tecna-
lia). He spent several years as the

IT Director in the private sector. Since 1994 then he has been at full
time with the Faculty of Engineering in Bilbao, UPV/EHU, where he
was elected as Head of the Department of Communications Engineer-
ing from 2012 to 2016. He is currently Full Professor and leads the
I2T (Engineering and Research on Telematics) Research Laboratory.
He also has directed several PhD theses and managed several research
projects at the local, national, and European levels. His research inter-
ests include applying software-defined networks to industrial commu-
nications, cybersecurity in distributed systems, software-defined wire-
less sensor networks, and in-network processing.

123


	Quantitative measurement of link failure reaction time for devices with P4-programmable data planes
	Abstract
	1 Introduction
	2 Related work
	2.1 Approaches to link failure reaction
	2.2 Measurement methods

	3 Link failure detection, reaction and recovery
	4 Fast recovery mechanisms
	4.1 Traditional devices
	4.2 OpenFlow-based devices
	4.3 Devices with PDP
	4.3.1 Fast reaction in generic devices with PDP
	4.3.2 Fast reaction in devices with specific hardware


	5 Testing failure reaction time
	5.1 Measurement method
	5.2 Results

	6 Conclusions
	Acknowledgements
	References




