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Abstract
Cognitive radio network (CRN) is a pioneering technology that was developed to improve efficiency in spectrum utilization.
It provides the secondary users with the privilege to transmit on the licensed parts of the spectrum if the licensed user is not
utilizing it. The cognitive radio must, however, relinquish the spectrum when the primary user decides to reoccupy it. By
exploiting the unused portion of the spectrum, a cognitive radio helps in making the use of the radio spectrum more efficient.
Furthermore, the most important capability that a cognitive radio (CR) must possess is spectrum sensing. A CR must be able
to correctly determine the status of the target spectrum with the help of spectrum sensing. This is a very challenging task
and several methods have been investigated over the years. In this work, the state of the art of different spectrum sensing
techniques for a variety of CRNs is presented. Both conventional and modern spectrum sensing techniques for different
types of primary user signals are discussed in this work for Narrowband and Wideband signals. Legacy techniques such as
energy detection are most commonly used due to their simplicity in implementation. However, this comes at the cost of poor
performance at low SNR (signal-to-noise ratio) values. This issue is countered by methods that use statistical information of
the primary signal to make a more informed decision on spectrum occupancy. Several techniques that make use of the power
of machine learning algorithms are also discussed which show clear improvement in performance. The primary challenge in
such techniques is selection of the best features. The most commonly used features are also discussed. Furthermore, spectrum
sensing techniques that consider the 5G signal as the primary user signal of the network are discussed. It is observed that
there is a significant need for research in additional spectrum sensing techniques for 5G cognitive radio networks.
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1 Introduction

The finite resource of the electromagnetic spectrum is facing
the problem of scarcity with the advent of modern communi-
cation tools and devices. The introduction of more accessible
and faster communication platforms has further resulted
in many users competing to gain access to this precious
resource. This has caused a shortage of available frequency
slots for users to access which has led to the demand of
a new technology that could help overcome this spectrum
occupancy problem and allow several users to access the
spectrum.
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In the past two decades, cognitive radio (CR) has devel-
oped as a potential contender to improve the efficiency of
spectrum occupancy by creating a device capable of modify-
ing its parameters according to the state of the spectrumwhile
maintaining certain performance requirements. To achieve
all of this, a CR must be aware of spectrum occupancy by
performing an important task: spectrum sensing. Addition-
ally, the increase in computing power has resulted in a boom
in applications of machine learning in different engineering
disciplines. Numerous applications of machine learning in
spectrum sensing have been proposed and studied and a lot
of research is ongoing.

This work presents a comprehensive review of differ-
ent spectrum sensing techniques that have been proposed
until now. Conventional techniques applied to both Narrow-
band andWideband communications systems are considered.
These include simple energy-based detection techniques
which compute the energy of the received signal and based on
a threshold decide on spectrum occupancy. More advanced

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-023-01079-1&domain=pdf


348 M. U. Muzaffar, R. Sharqi

techniques that use the statistical properties of signals, the
entropy of the signal, etc. are also discussed and their perfor-
mance is observed. In addition, this work places particular
emphasis on work done related to machine learning based
techniques for spectrum sensing. To the best of our knowl-
edge, this is the only survey paper that reviews the different
spectrum sensing techniques in a 5G cognitive radio net-
work where all primary users are 5G based. For all of these
techniques mentioned, the effects of noise and the perfor-
mance at different SNR (signal-to-noise ratio) are discussed.
Some techniques also consider multiple cognitive radios in
a network that cooperate together to make a more informed
decision on spectrum occupancy. Such techniques are also
discussed for each spectrum sensing type.

The rest of the paper is organized as follows: Sect. 2
provides a background of Cognitive Radios and common
terminology. Section3 discusses the concept of spectrum
sensing and provides an extensive review of the current
techniques and the most relevant work related to spectrum
sensing. Finally, the paper is concluded with an insight into
where future work may be focused on.

2 Background

Recent years have seen an eruption in the applications and
use of communication technologies, especiallywireless com-
munications, which has produced escalating pressure on the
electromagnetic spectrum. This increased utilization of a nat-
urally occurring finite resource has resulted in congestion
and scarcity of the free spectrum. Spectrum is defined as the
range of frequencies that are used for transmission of data
by modern communication techniques.

Spectrum access is traditionally controlled by a governing
body in a geographical area. The government body, such as
FCC in the United States, charges users to obtain a license
for access to a band of the spectrum. In return, the user gets
complete uninterrupted access to that band. Traditionally, the
wireless spectrum is divided intowell-defined blocks and has
been treated as a static quantity [1]. Licensed users, hence-
forth called primary users (PU), have the sole right of access
to these blocks. In addition, the PU is not obligated to always
occupy its licensed spectrum. For some periods during the
day, the occupancy of the licensed portions of the spectrum
is even less than 5% [2].

However, with the boom in mobile communications and
resulting exponential increase in the users of the spectrum,
the finite resource has become overcrowded and lacking. A
recent research was conducted to determine the spectrum
occupancy in the spectrum ranging from 3.45 GHz to 3.65
GHz. It concluded that average band occupancy in some loca-
tions was around 25% while it was as low as 0.2% in other
locations [3]. From this information, it can be inferred that

despite having legacy rights of access to the spectrum, the
primary licensed user does not access the spectrum at all
times resulting in the formation of spectrum holes: unused
licensed bands within a geographical area of time [4].

CognitiveRadio (CR)was initially proposed as the answer
to the spectrum scarcity issue by Mitola and Maguire [5]
where they introduced the concept of allowing a commu-
nication device to change its transmission patterns after
determining the state of the target frequency channel in order
to meet certain performance requirements. The FCC of USA
defines CR as a device that is able to dynamically adjust its
transmission parameters and operation after sensing it’s oper-
ational spectral environment [6]. Cognitive Radio (CR) is
often called the secondary user (CR) of the spectrum. Under
this concept, the CR is given the right to use the unutilized
portion of the spectrumonlywhen it is vacated by the primary
user.

The sole responsibility to avoid interference lies on the
secondary user (CR) and, therefore, it must scan the spec-
trum to identify a spectrum hole. If it is found, the CR
must then possess the capability to transmit to the empty
frequency band until the primary user restarts its transmis-
sion. To achieve this, the secondary user must have cognitive
capabilities, hence the name cognitive radio. This implies
that CR must sense the spectrum and adjust its radio trans-
mission parameters accordingly [7]. The network in which a
CR operates is called a Cognitive Radio Network (CRN). A
typical CRN setup is shown in Fig. 1.

2.1 Users of a cognitive radio network (CRN)

Asdiscussed earlier, there are two types of users in a cognitive
radio network:

1. Primary User (PU): PU is the licensed user of the spec-
trum band and has the absolute right to access the
spectrum at any time in a geographical area. Tradition-
ally, one PUwas granted rights to access a spectrumband.
However, modern communication technologies enable
multiple PUs to use the same spectrum simultaneously
such as devices connected to a WiFi network. This type
of network is called a multiple primary user cognitive
radio network.

2. Secondary User (SU or CR): SU is licensed to access
bands of the spectrum when the licensed PU or multiple
PUs are not accessing them. To achieve this, the SU is
expected to have the cognitive capabilities to sense the
spectrum.Mostmodern systems havemultiple secondary
users present in an area trying to access the spectrum
holes as they become available. The terms SU and CR
are used interchangeably in this work.
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Fig. 1 Cognitive radio network

2.2 Performancemetrics of a cognitive radio
network (CRN)

To quantify the performance of a CR network and to deter-
mine the interference between PU and CR, the following
metrics are used:

1. Detection Probability (Pd ): the probability with which
the CR correctly determines that the spectrum is occu-
pied.

2. The missed detection probability (Pm): the probability
with which the CR incorrectly determines that the spec-
trum is vacant while it is occupied.

3. False Alarm Probability (Pf ): the probability with which
the CR incorrectly determines that the spectrum is busy
while it is not.

4. Receiver operating characteristics curves (ROC): is a plot
of the False Alarm Probability (Pf ) with the Detection
Probability (Pd ) for different Signal toNoiseRatio (SNR)
values.

The performance of a CR network is usually measured at
different Signal to Noise ratio (SNR) values. In communi-
cation systems, SNR is defined as the ratio of primary user
signal strength to the noise signal strength. It is normally
measured in decibels (dB). When the SNR values are high,
the performance of a CRN is generally good. As the SNR
decreases, degradation is typically observed. As the SNR
value is decreased further, there comes a time when the CR
is unable to sense the PU signal. This is known as the SNR
wall and its value depends on the architecture of the CRN
and the spectrum sensing technique being used [8].

2.3 Systemmodel

The CR needs to sense the spectrum for the presence or
absence of the PU signal. To do this, it must read the incom-
ing signal (over a given frequency range) for a window of
time. If we assume that the PU signal was being transmitted
at the time, the discrete time signal received by the CR for a

window of W samples, is:

y[k] = c[k]x[k] + n[k], k = 1, . . . , W (1)

where y[k] is the received signal at the CR, x[k] is the trans-
mitted signal, n[k] is the Gaussian distributed white noise
with the two-side power spectral density of N0/2 and c[n] is
the channel coefficient. k is the discrete time index and W is
the observation window length. The transmitted signal x[k]
is the PU signal and can have different types of modulation,
such as LTE, 5G, etc.

The received signal, y[n] is corrupted by different types
of channel impairments such as Rayleigh Fading. A wide
range of channel impairments are considered in the research
narrated in this work. Since the task of the CR is to per-
form spectrum sensing only despite the existence of these
impairments, the CR is not expected to perform any cor-
rective actions to remove their effects. This is because any
processing done by the CR to remove the channel effects
will be computationally expensive and will result in a loss
of precious time as the CR must take spectrum occupancy
decisions urgently and act upon them. The observation win-
dow size can be varied, and the performance of the spectrum
sensing algorithm can be determined for each window size.
Increasing the window size will result in more PU signal
samples being used to determine the existence of the PU sig-
nal but at the same time will increase the time required to
perform spectrum sensing.

2.4 Cooperative cognitive radio networks (CRNs)

In most wireless communication scenarios, the CR experi-
ences severe multipath fading and shadowing effects while
trying to sense the spectrum to detect the presence of PU
signal. This could lead to unwanted interference to the actual
PU transmission since the CR is unable to detect the PU sig-
nal due to the channel state and severe fading in the path
of transmission. This is known as the hidden-node problem
[9]. Due to this problem, a CR does not detect the severely
attenuated PU signal while the signal is, in fact, present. If
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therewas another CRnearbywhich did not experience severe
fading, it would have been able to detect the presence of the
PU signal. If both CRs were cooperating in some way, a
more informed decision on spectrum occupancy could have
been made. Hence, cooperative spectrum sensing (CSS) is
proposed as a solution to this problem.

InCSS, there aremultiple CRs spatially located that incor-
porate their sensing information to decide on the existence of
PU or multiple PUs. Using this method minimizes the uncer-
tainty in the PUdetection that ariseswhen a single standalone
CR acts as a CR. By cooperating, multiple CRs can make a
more informed and accurate detection resulting in a perfor-
mance improvement known as cooperative gain [8].

The most commonly proposed type of architecture in
a cooperative CRN is centralized around a fusion center.
All CRs transmit their sensing information to a centralized
base station called the fusion center (FC). After compiling
the information from all CRs, the FC takes a final deci-
sion regarding the existence of a spectrum hole using fusion
schemes, a few of which are listed below:

1. Soft Combining: Each CR transmits its sensing infor-
mation to the FC which then combines the information
using different techniques. If the channel information is
known, the information from each CR is weighted pro-
portionally to their channel gain and summed up. This
is called maximal ratio combining (MRC). In equal gain
combining (EGC), on the other hand, they are weighted
equally [8, 10].

2. Hard Combining: Each CR makes a local decision on
spectrum occupancy and transmits the decision to the
FC. The most frequently used fusion rules are AND, OR,
and majority voting to make a final spectrum occupancy
decision [8, 10].

Once a decision on the absence of the PU is made, the FC can
either broadcast the information to all CRs or it can directly
control the CR traffic by deciding on which CRs get priority
to transmit.

3 Spectrum sensing

The primary job of the CR in a CRN is to perform spectrum
sensing. It is defined as the process of gaining an understand-
ing of the state of spectrum occupancy and identifying the
existence of spectrum holes in a geographical area before a
transmission is initiated. It is a critical task, and the perfor-
mance of the CR network depends on it.

Theoretically, the spectrum sensing problem is defined as
a hypotheses test based on the presence of the primary user
signal:

H0 : No Primary User Signal

H1 : Primary User Signal Present (2)

The actual method in which the hypothesis test is applied
for spectrum sensing changes depends on the different CR
network types and the spectrum sensing techniques used.

The performancemetric probabilities of a CR network can
be defined using the Hypothesis test:

1. The detection probability (Pd ): probability of correctly
deciding on H1 given that H1 is true.

2. The missed detection probability (Pm): probability of
incorrectly deciding on H0 given that H1 is true.

3. The false alarm probability (Pf ): probability of incor-
rectly deciding on H1 given that H0 is true.

The purpose of any spectrum sensing technique is to max-
imize the detection probability and keep the false alarm
probability below a threshold. Thus, spectrum sensing is an
optimization problemwith the objective of achieving a target
detection probability Pd while maintaining the false alarm
Pf below a value.

This paper covers a wide range of spectrum sensing tech-
niques that have been proposed over the years. Broadly,
the techniques can be divided in two main categories: Nar-
rowband andWideband Sensing. Multiple techniques within
each of these categories are discussed and assessed based on
their advantages, drawbacks, and limitations. Figure2 pro-
vides a summary of the different types of spectrum sensing
methods listed according to their categories.

As discussed earlier, spectrum sensing techniques can
be broadly divided into two categories: Narrowband and
Wideband spectrum sensing. Narrowband spectrum sensing
analyzes one frequency band at a time while wideband sens-
ing senses several frequency bands at the same time in search
of a vacant frequency band to initiate transmission.

Most of the early research on spectrum sensing for CRNs
was done on narrowband. Examples of narrowband spectrum
sensing techniques include energy detection, cyclostationary
detection, matched filter detection, etc. In energy detection,
the CR measures the energy of the spectrum to decide on the
presence of PU while statistical detection utilizes statistical
patterns in the PU signal. A detailed review of commonly
used narrowband sensing techniques is discussed in Sect. 3.1.

Modern communication protocols and standards require
high data transmission rates resulting in bigger bandwidth
requirements. Thus, CRs need to sense wide frequency
ranges of the spectrum to find a vacant band. Consequently,
wideband spectrum sensing techniques have been proposed
[10, 11]. The common approach to sensing is to divide the
wideband into several narrow bands and perform sensing
sequentially or in parallel. However, due to the long sensing
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Fig. 2 Types of spectrum sensing

time and high sampling rates, Sub-Nyquist techniques have
been proposed to reduce latency due to sensing. A detailed
reviewof all relevantwideband spectrumsensing is discussed
in Sect. 3.2.

3.1 Narrowband spectrum sensing

Narrowband spectrum sensing methods are the oldest and
most common techniques as they conventionally sense one
frequency band at a time. All the early work on spectrum
sensing in CRswas focused on narrowband spectrum sensing
and several techniques were developed. In this section, most
popular methods for narrowband spectrum sensing will be
discussed.

3.1.1 Neyman-pearson theorem and likelihood ratio test

Spectrum sensing was earlier defined as a Hypothesis test in
(2) which essentially makes it an optimization problem. This
means that various optimization techniques can be used to
find the optimal results. A famous tool for hypothesis testing
is the Neyman-Pearson Theorem which uses the likelihood
ratio test to obtain the maximum detection probability for
a fixed false alarm. If x is the received signal, applying the
Neyman-Pearson Theorem to (2), the likelihood ratio test
concludes that the hypothesis H1 (PU present) is true when
L(x), or the likelihood, is greater than λ as shown in the
equation below [12, 13]:

L(x) = p(x |H1)

p(x |H0)
> λ, (3)

where p(x| H1) is the conditional probability of receiving x
given a true H1 and p(x| H0) is the conditional probability of
receiving x given a true H0. λ is the threshold and its value
is determined by the required false alarm probability. If the
received signals for both hypotheses are assumed to be Gaus-
sian distributed due to the large sample size, the maximum
likelihood estimate (MLE) is used to estimate the unknown
mean and variance. Using the estimated parameters, the like-
lihood ratio test is then applied [13]. This method is called
the generalized likelihood ratio test (GLRT). LRT is the ideal

algorithm for spectrum sensing. However, its requirement for
exact information on the signal statistics such as the noise
variance makes it difficult to implement since they are not
easily calculated [14]. Additionally, the assumption that the
received signals will be Gaussian distributed may not always
be true. This will result in incorrect estimates of the param-
eters culminating in degraded performance. However, if all
the assumptions are true for a particular set of primary user
signals, the LRT will provide superior performance than any
other technique.

3.1.2 Energy detection

Energy detection is by far the most prevalent technique for
spectrum sensing [15]. The foremost reasons for its popular-
ity are that it is very simple to implement and that it does not
require any prior knowledge of the PU signal. The decision
on spectrum holes is made by comparing the energy detector
output with a predetermined threshold. All zero-mean con-
stellation signals can be detected with great efficiency using
energy detection [16]. A primary user signal corrupted by
Additive White Gaussian Noise (AWGN) noise is the sim-
plest possible energy detector PU signal [7]. At the receiver,
the discrete-time received signal is defined in (1). The energy
of any received signal that is a zero mean Ergodic signal is
calculated by squaring and adding the discrete samples of
the received signal [17, 18]. Instead of receiving the com-
plete signal, energy can also be computed for an observation
window size of W samples. The concept of windowing, by
selecting fewer samples than the complete signal length, is
commonly used for spectrum sensing.

The energy of the received signal can also be calculated in
the frequency domain using Fast Fourier Transform (FFT).
The signal is first sampled and then input to a FFT block. This
converts the signal to a discrete frequency-domain signal,
X(m) where m is the discrete frequency index. The energy
of the signal is computed usingParseval’s theoremand a deci-
sion on the hypothesis is made after comparing the energy
value against the threshold λ.

Although the energy detector is easy to implement, it is not
without disadvantages. One key downside is that the energy

123



352 M. U. Muzaffar, R. Sharqi

detector is very good at detecting those PU signals which
have energy levels above the set threshold. This causes issues
for cases where the PU signal has low energy levels that may
be below the set threshold.

Additionally, choosing the optimal threshold is difficult
since it requires knowledge of noise power to achieve a
desired detection probability while maintaining the false
alarm probability below a specific level. Unfortunately, it
is difficult to accurately find the noise power, so an estimated
noise power is used instead. However, this has an adverse
effect on the performance of the energy detector. Further-
more, noise power varieswith respect to timewhich increases
error in the noise estimation [16–18]. A double threshold
energy detection technique is proposed by Jinbo et al. [19]
to overcome the issue of noise uncertainty. If the energy of
the received signal is less than the lower threshold, the spec-
trum is considered vacant. If the energy received is greater
than the higher threshold, it is assumed that the PU signal is
present. No decision is made if the energy falls between the
two thresholds. Another major drawback of energy detec-
tion algorithms is that they suffer from poor performance at
low SNRwhere the signal and noise energies are comparable
[20].

As mentioned earlier, noise power estimation is a chal-
lenge in energy detectors. To avoid estimating, different
approaches have been proposed. Shen et al. [17] perform
measurements in all the sub-channels to determine the occu-
pied bands. This is knownas theBayesian estimationmethod.
The occupied channels are then determined by maximizing
the likelihood of estimated samples. From these measure-
ments, those with the highest power are assumed to be
occupied by the primary users. In this way, the drop in perfor-
mance of the CRN caused by a lack of knowledge of noise
power is substantially reduced. Kim et al. [18] propose a
histogram-based method to determine the threshold between
the two categories of signals. Samples of signals belonging
to both hypotheses are collected and plotted as histograms.
Using the plots, a threshold λ is selected to meet the required
false alarm and detection probabilities. Thus, there is no need
to estimate the noise power since the received signal at the
CR is not modeled statistically. This is because the histogram
method is independent of the probability distribution of the
PU signal.

Typical energy detection algorithms employ a different
received signal model at the CR as described which consid-
ers corruption of the transmitted PU signal by AWGN only
and not the one defined in (1). In most cases, No fading
or shadowing effects of the channel are considered. Multi-
path fading causes noticeable degradation in the performance
of an energy detector for different channel models [21].
Rayleigh fading is the most common fading channel model
used to estimate the performance of CR in fading environ-
ments. The performance of the energy detector is improved

by using Cooperative Spectrum Sensing (CSS). Atapattu et
al. [22] propose both Soft andHard combiningwhere a fusion
center (FC) receives transmissions from all CRs and decides
on spectrum occupancy. In the soft-combining approach, the
fusion center uses different fusion techniques such as Maxi-
mal Ratio Combining (MRL) to determine the primary user
signal presence. In the hard-combining approach, each CR
locally decides on the presence of the primary user before
transmitting to the fusion center. The decision is then sent
to the FC which uses OR, AND or Majority rules to decide
on the spectrum occupancy. More CRs in the network will
result in a more informed decision on the occupancy of the
spectrum.

An adaptive double threshold CSS energy detection tech-
nique is proposed byYu et al. [23] inwhich the two thresholds
are adaptively changed based on the historical energy mea-
sured and the SNR computed by each CR present in the
cooperating network. This results in an overall improvement
in the detection probability.

Table 1 summarizes the performance of different energy
detection techniques. The type of channel used is also men-
tioned where known. As can be seen from the table, AWGN
is the preferred channel model used to determine the perfor-
mance of the energy detection algorithms. The performance
of the CR is shown for different SNR values.

3.1.3 Statistical detection

Statistical detection is a broad field of spectrum sensing
which uses statistical properties of the PU signal to aid in
the spectrum sensing process. Parameters such as Correla-
tion and Covariance may be used at the CR to make a more
informed decision on spectrum sensing. Different types of
statistical detection methods are discussed below:
Correlation detection

Noise, by definition, is uncorrelated whereas most signals
possess inherent correlation that can be utilized for sensing
the spectrum. Correlating the received signal with a copy of
itself is called autocorrelation and it can be used as a tool for
sensing the spectrum. When only x(t) is received at the CR,
the correlation value Rx (τ ) is maximum when x(t) is corre-
latedwith a delayed copy of itself. However, when only noise
is received, autocorrelation will have almost zero value since
noise samples are uncorrelated.Using this knowledge, a deci-
sion on the type of received signal is made. Neyman-Pearson
theorem becomes the optimal detector if the PU signals cor-
relation is known to the CRN [12, 24].
Cyclostationary detection

If a signal or its statistics such as thefirst or secondmoment
are periodic, the signal is called a cyclostationary signal. In
[7], gaps in the spectrum were identified by calculating the
cyclic autocorrelation function, CAF, of the received signal
at the CR. After obtaining CAF, the Cyclic Spectral Density
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Table 1 Spectrum sensing
using energy detection

References Authors Channel SNR (dB) Detection
Prob (%)

False Alarm
(%)

[17] Shen et al. AWGN −15 < 50 < 1

−10 100 < 1

Rayleigh Fading −15 < 30 < 1

−10 ≈ 70 < 1

[18] Kim et al. Undefined −10 95.7 7

99.3 17

100 27

[19] Jinbo et al. Undefined −15 < 35 < 7

−10 < 40 ≈ 17

[20] Atapatuu et al. Rayleigh Fading −5 25 20

55 50

[23] Yu et al. AWGN −10 100 5

(CSD) is computed by applying Discrete Fourier Transform
to the CAF. The CSD has peak values when the frequency of
the PU is equal to the cyclic frequency. If there is no PU signal
present in the received signal, no peaks will be observed. By
comparing the CSD value with a threshold and using the
property that only PU signal will have peaks in the CSD, the
detection probability can be maximized.

One advantage of cyclostationary-based detection over
energy detection is that it performs better than energy
detectors even under severe fading channel conditions [7].
Additionally, they also provide better detection performance
than energy detection techniques [10].
Covariance based detection

The covariance-based detectionmethod of spectrum sens-
ing makes use of the received PU signals covariance matrix
and singular value decomposition (SVD) to detect the pres-
ence of PU signal [10]. Using the SVD, the eigen values
of the covariance matrix are determined and the ratio of the
maximumEigen value to theminimumEigen value is used to
detect the presence of the signal by comparing itwith a known
threshold [25]. The covariance matrix of the received PU sig-
nal is computed [26] and SVD is applied to the covariance
matrix to obtain the maximum and minimum eigenvalues
which are then used to perform the Hypothesis test defined
in (2).Covariance-baseddetectionoutperforms energy-based
detection since it relies on noise power estimation [25].

3.1.4 Entropy-based detection

Entropy is a measure of the amount of information carried
in a signal [27]. Since knowledge of a signal removes all
ambiguity about it, entropy is also a measure of information
that is acquired by knowing a signal. This property can be
used to determine the presence or absence of PU signal in a
received signal by the CR.

Traditionally, a histogram-based approach is used to com-
pute the entropy of a signal. The number of energy levels of
the PU signal is equal to the number of bins of the histogram
[28]. The entropy of the received signal is calculated at the
CR using this method and then compared with a threshold
to decide on spectrum occupancy. Entropy is expected to be
low when the PU signal is present and high when only ran-
dom noise is received. Zhang et al. [29] demonstrate that the
entropy values of the signal received at CR vary around a
specific value and are invariant against different SNR levels
making it difficult to distinguish the noise and PU signal.
To solve this issue, the received signal is transformed to the
frequency domain using FFT, and the entropy of the signal
is computed in the frequency domain. The entropy value is
then compared against a threshold to determine spectrum
occupancy.

Another approach to entropy-based spectrum sensing is
proposed by Swetha et al. [30] where the entropy in the
received signal is computed using the Kernal density esti-
mation method. In this method, a Parzen-Rosenblatt window
method is used to estimate the probability density function
(pdf) of the received signal samples without any prior knowl-
edge of the distribution. A cooperative spectrum sensing
network is used to make a more informed decision about
spectrum occupancy. After combining information received
from all CRs, a decision on the presence of PU signal is made
by comparing it with a threshold.

3.1.5 Matched filter

The optimal detection method for spectrum sensing in
AWGN noise in a narrowband system is the matched filter
since it maximizes the SNR. This filter is implemented by
correlating a copy of the transmitted signal with the received
signal at the CR. Unfortunately, the matched filter requires
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complete knowledge of the transmitted signal characteristics
which are typically unknown to the CR [7].

3.1.6 Machine learning based spectrum sensing

Machine learning is the process of extracting useful infor-
mation or knowledge from available data [31]. The primary
purpose of a machine learning algorithm is to identify a
mathematical formula that provides solutions to practical
problemswhen they are providedwith inputs [32]. Themath-
ematical formula is developed by determining the output of
the system to several inputs (known as training data). Using
this knowledge, the algorithm thenmakes informed decisions
on the expected output when it receives any new input.

The input to the machine learning algorithm consists
of distinguishable and special attributes of the data called
features. Each element of the dataset may contain several
features, with every feature being used to identify a special
trait or property of the data.

Depending on the type of data available, machine learning
can be broadly categorized into:

1. Supervised Learning: is when the machine learning algo-
rithm learns the relationship between inputs and outputs
of a dataset from known inputs and outputs. The dataset
is commonly referred to as labeled data since inputs and
corresponding outputs are known beforehand. Thus, the
objective of supervisedmachine learning is to gain a gen-
eralized idea such that given any new input, the expected
output is appropriately predicted [31, 32].

2. Unsupervised Learning: this is when the machine learn-
ing algorithmautonomously collects the data and extracts
useful information and special properties of the dataset
without external guidance. In other words, the inputs and
outputs available are without labels [33].

3. Reinforcement Learning: is a subfield of machine learn-
ing where the algorithm is used to perceive the state of
the environment it is in and then execute actions based on
its state. Each action brings a different ‘reward’. The goal
of the algorithm is to learn a policy that uses the states as
inputs and determines the optimal action or output [32].

Supervised learning tools are further divided into two
applications which are listed below:

• Regression: A trained machine learning regression algo-
rithm must predict a real-valued output when provided
with any input. This problem is solved by taking a col-
lection of data – both inputs and corresponding outputs –
and producing a model from this dataset which can then
estimate the output for any input value [32].

• Classification: A machine learning classification algo-
rithm is a pattern recognition problem in which each

element of the available data set belongs to one of sev-
eral categories or classes. The algorithm is first trained
using a labeled dataset which identifies the category (or
class) of each data element. This information is used to
produce a model that predicts the class of any unlabeled
input [32].

Unsupervised learning tools are also divided into several
applications. Two of the most used applications are listed
below:

• Clustering: the model developed by the unsupervised
learning tool divides the unlabeled dataset into clusters
(or groups) based on special properties (or features) of the
dataset. Clustering is the unsupervised learning equiva-
lent of the supervised classification algorithm.

• Dimensionality Reduction: the output of the algorithm
model is a feature vector that has fewer features than the
input features.

The use of machine learning algorithms in a wide range
of signal processing applications has gained a lot of research
interest lately. Recent advances in computer technology
have resulted in enormous opportunities for machine learn-
ing algorithms to be employed in different engineering
applications. In fact, machine learning and deep learning
algorithms have emerged as powerful and effective tools
to solve complex optimization problems. As discussed in
Sect. 3, spectrum sensing is an optimization problem. Thus,
it becomes an exciting candidate for machine learning appli-
cations. The objective of the CR is to detect the presence or
absence of the PU signal using spectrum sensing. The output
of spectrum sensing can belong to one of two ‘classes’:

• Class 1: Primary user is absent (H0 in (2))
• Class 2: Primary user is present (H1 in (2))

Thus, it is evident that the spectrum sensing problem can
be considered as a machine learning classification problem.
With the appropriate dataset, any classification algorithm can
then be used to effectively sense the spectrum. Some com-
monly used machine learning algorithms for classification
and clustering are discussed below:

1. Linear Classifier: A linear classifier is a commonly
used model to implement a machine learning problem
when the data set is linearly separable. Data belonging
to multiple classes is separated through linear decision
boundaries called discriminant function, therefore the
name linear classifier. A linear classifier is also known
as Logistic Regression in the literature.

2. Artificial Neural Networks: These are algorithms that try
to mimic the functions of the brain. Neural networks are
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learning machines, comprising many neurons, which are
connected in a layered fashion [34]. Neural networks are
used widely to solve classification problems that are lin-
early and nonlinearly separable.

3. K-means clustering: This unsupervised learning tech-
nique is used to group data into clusters. A fixed number
of clusters are selected arbitrarily from the given data and
the mean of each cluster is computed. The data points are
then reassigned to the cluster with the closest mean. The
process is repeated iteratively until it converges.

4. Support Vector Machines: Support Vector Machines is
an advanced algorithm that relies on preprocessing of
the data to represent it in a much higher dimension than
the original feature space. With an appropriate nonlinear
mapping, data from two classes can always be separated
by a discriminant function even if it was originally insep-
arable [35].

One of the first papers to use the concept of spectrum
sensing as a classification problem was [36–38]. Hassan et
al. [36–38] used a linear and polynomial classifier to decide
on the presence of the PU signal based on features extracted
from the received signal at the CR. The PU signal is modu-
lated using BPSKwhile a Rayleigh channel model was used.
The features extracted from the received signal at the CR
were energy and correlation. These extracted features are
then sent to a fusion center which uses the data received
from all CRs in the network as different features. The classi-
fier was first trained using training data consisting of energy
and correlation features to create a model for the system. The
performance of the systemwas then determined using testing
data.

Muzaffar et al. [39] considered OFDM as the PU sig-
nal modulation technique in a cooperative CR network. Two
different features are used: energy and correlation. The CR
computes the energy and correlation and transmits it to the
fusion center. At the fusion center, features received from all
CRs are combined and are sent to the trained classifier. The
classifier then decides on the existence of the primary user.
It is observed that the correlation classifier outperformed the
energy classifier at low SNR conditions in a flat fading chan-
nel. In addition to energy and correlation, entropy is also
used as a feature in [40] where a linear classifier classifies
incoming OFDM PU signal under slow fading effects and
AWGN.

Mikael [41] proposed a data fusion center for a cooper-
ative cognitive radio network that uses energy as a feature
vector. This algorithm decides on the presence or absence
of the primary user transmission. In this work, four different
machine learning classifiers are used: K-nearest neighbors
(KNN), support vector machine (SVM), Naive Bayes (NB),
and Decision Tree (DT). It was concluded that KNN and DT
outperform the other classifiers.

Actual readings of primary user signals are used to sense
the spectrum by Azmat et al. [42]. Instead of converting the
received PU signal into a feature, the PU signal is itself used
as a feature and input into the machine learning algorithms.
Several algorithms are applied to the feature vector: NB, DT,
SVM(andmanyvariants of SVM),LogisticRegression (LR),
andHiddenMarkovModels (HMM).A limitation to the algo-
rithms and performances discussed in this work is that it was
assumed that there is no fading and signals pass through an
AWGN channel only.

Thilina et al. [43] employ SVM and KNN for Cooperative
Spectrum Sensing on a CR network with a single PU signal.
The signal experiences path loss, shadowing, and Rayleigh
fading, all of which are taken into consideration in the chan-
nel model. The feature used for classification is the received
signal strength (energy). In [44], Thilina et al. computes an
energy vector by compiling the energy of the received sig-
nal at all CRs in a cooperative CR network. Multiple CRs
receive signals from multiple PU’s and based on the dis-
tance between the PU and CR, the energy of the received
signal follows a chi-squared distribution. A novel approach
is used to label the received signal into classes by using the
K-means clustering algorithm. Once the classes are labeled,
supervised machine learning algorithms such as K-nearest
neighbors (KNN), Gaussian mixture models (GMM), and
SVMs are applied to the dataset to decide on the spectrum
state. The type of the primary user signal is unknown for all
cases. It is concluded that the support vector machines algo-
rithm outperforms all other techniques of machine learning
since it maps the feature space into higher dimensions with
the help of kernel functions.

A similar approach is proposed by Arjoune and Kaabouch
[45] to solve the spectrum sensing problem. First, K-means
clustering is used to label a dataset by classifying the received
PU signal into two classes: PU signal present or absent. Once
clustered into two distinct classes, the energy of the received
signals is computed as a feature and passed through sev-
eral ML algorithms such as KNN, Support Vector Machines
(SVM), Logistic Regression (LR), Decision Tree (DT), and
Random Forest (RF) for the purpose of classification of the
signal into either of the classes. The limitation of the paper is
that only the AWGN signal has been considered and the type
of modulation assumed for the PU signal is not provided.

Kaiqing et al. [46] also utilize the method of labeling
the classes using a clustering algorithm. Then, the data is
applied to a support vectormachine algorithm for actual spec-
trum sensing. Energy is once again used as a feature for this
entire process. However, the PU signal is transmitted at mul-
tiple power levels which change the spectrum sensing from
a binary classification problem to a multi-class problem. The
SVM, therefore, has decision boundaries for different power
levels. The channel statistics are unknown, but the authors
suggest they are incorporated in the learning phase of the
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algorithm where the system learns the environment using K-
means clustering. In addition, the noise levels and the primary
user signal type are unknown.

The concept of secondary base station (SBS) is introduced
by Awe and Lambotharan [47]. A system with multiple PUs
and multiple CRs is proposed where the CR’s (or the CRs)
report to the SBS. The primary function of the CR dur-
ing spectrum sensing is to sense the energy of the received
signal and report it to the SBS. At the SBS, clustering is
performed to label the received signals using K-means clus-
tering. Finally, SVM, KNN, and their variants are used to
decide on the spectrum state. Since there aremultiple PU sig-
nals in the vicinity of the CR, the problem does not remain a
simple binary classification. In fact, there are several classes.
Based on the number of PUs present and the number of PUs
active, a combination of PUs that are active needs to be deter-
mined to identify the classes that the datawill be divided into.
In this case, using K-means clustering to label the data into
classes proves useful since it will be able to correctly identify
the number of classes occupied by the received signals at the
CR. Another advantage of using energy and clustering is that
spatial diversity is captured in the data as further PUs will
have lower energy signals than nearby PUs.

A cooperative CR network is considered by Yingqi et al.
[48]wheremultipleCRs determine the energy of the received
signal. The combined energy from all CRs results in a high-
dimensional feature vector. The energy vectors fromdifferent
CRs follow a chi-squared distribution and this knowledge is
used to downcovert the high dimensional feature vector into a
2-d probability feature vector. This results in smaller training
duration and shorter classification times during testing. After
down-converting to a 2-d feature vector, K-means clustering
is used to label the data into the two classes. Then, SVM is
used to determine the spectrum state. SVM is trained using
the data labeled by K-means clustering.

Eigenvalues obtained from the covariance matrix of the
received signal are used as features by Awe et al. [49] for a
multi-antenna CRwithmultiple transmitting PU signals. The
multiple antennas of a singleCR are like havingmultiple CRs
operating in a small geographical area. The obtained eigen-
value feature vector is passed through an SVM algorithm
to identify the state of the spectrum. The system does not
consider a fading channel. However, since the setup can be
considered as multiple CRs operating nearby, the effects of
shadowing are almost negligible.

A multi-class classification approach is adopted by Jan et
al. in [50] and [51]. The class that identifies the spectrum
as being vacant (H0 in (2) is quantized into four different
levels based on the received signal energy using threshold-
ing. Based on the decided class by the SVM algorithm, the
transmission power of the CR is varied to avoid interference.
In total, any received signal at the CR can be classified into
five different classes. A novel approach to feature extrac-

tion is proposed by extracting three distinct features from
the received signal: the average of the received signal is cal-
culated and indexed to a power of 10 and then multiplied by
10, the average of the squared signal is computed, the square
root of the cube root of the mean of the signal is computed.
These three features are input to the SVM to decide on spec-
trum occupancy. By adjusting the transmission power of CR,
the risk of interference for the case when the PU is present
but was miss-detected to be absent is greatly reduced.

In [52], Shah and Koo used a different approach to apply
machine learning to the spectrum sensing problem. The sens-
ing time slot is first divided into multiple slots to reduce the
effects of fading. Then, the KNN algorithm is used to sense
the spectrum after extracting energy (as a feature) from the
received signal. The energy vector is quantized into four lev-
els to determine the strength of the received PU signal if
any at all. The two upper levels of energy are identified as
belonging to one class (PU signal present) and the remaining
two levels belong to the other class (PU signal absent). Spa-
tial diversity is introduced by having cooperative spectrum
sensing and a total of 8 classes need to be classified by the
algorithm based on energy levels as well as local and global
decisions that occur due to cooperation between CRs.

A variant of machine learning called Extreme Learning
Machine (ELM) is proposed as the solution to the spectrum
sensing problem by Ma et al. [53] for a CR network with
multiple PUs. ELM is a tuning-free three-stepmachine learn-
ing algorithms with extremely fast learning speed. Each PU
is depicted by a state with regard to spectrum occupancy.
The CR computes the energy of the received signal over
a Rayleigh channel and sends to the FC for a decision on
whether the spectrum is vacant for CR transmission. The
Energy feature vector is computed from samples collected
by each CR and sent to FC which makes a final decision on
spectrum occupancy.

3.2 Wideband spectrum sensing

Conventional CRs are expected to restrict themselves to spe-
cific bands of the spectrum and therefore require sensing in
a particular frequency band only. However, with the intro-
duction of modern communications technologies and the
resulting increase in spectrum occupancy and high data rates,
CRs must also be able to scan a wide band of frequencies
to find an available frequency band for transmission. This
leads to the concept of wideband spectrum sensing [54]. This
section explains the different types of Wideband Spectrum
Sensing Techniques.

3.2.1 Nyquist sampling

If the same conventional methods that are applied to narrow-
band systems are utilized for wideband spectrum sensing,
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it would require CRs to perform standard analog to dig-
ital conversions at Nyquist Rate. Due to the wide range
of frequencies, this would eventually result in an unafford-
able high sampling rate or severe implementation complexity
[54]. Despite these drawbacks, several Nyquist-rate-based
spectrum sensing techniques have been proposed which are
discussed in the sections below:
Wavelet based

If the received signal at the CR occupies multiple fre-
quency bands, whose frequencies and power are unknown,
wavelet transform can be applied to the received signal.
Wavelet transform acts as an edge detector and aids in identi-
fying the edges of the occupied frequency bands by locating
the local maxima in the wavelet transform modulus [55].
Once a frequency band is found to be vacant and its location
is determined, CR can start transmitting at the frequency
band. To improve latency, the channel can be divided into
multiple bands and then sensed simultaneously [10].
Multiple narrowbands

Another approach is to split the wide band of frequencies
into several narrow bands. Then, using the narrow band tech-
niques discussed in the previous section, spectrum sensing is
performed on each narrow band [10]. However, this approach
is flawed due to the high sensing time required which is not
compliant with the demands of modern communications.
Filter bank

An alternative to the multiple narrowband method is the
use of filter banks. Using this method, the wideband signal is
passed through multiple prototype filters [10]. Each of these
filters has a different central frequency and it modulates the
received signal to a baseband frequency [54]. As a result,
for each filter, the corresponding portion of the wideband
is down-converted and effectively passed through a low-pass
filter. The output of the filter can be passed through an energy
detector (or any other narrowband detection technique) to
determine the state of PU signal in that frequency range.
With this method, the wideband signal can be analyzed at
much lower baseband sampling rates. However, since the
filter bank operates in parallel, it increases the complexity of
implementation.

3.2.2 Sub-nyquist sampling

As discussed above, scanning the entirewideband for PU sig-
nal presence results in very high sampling rates, and dividing
the wideband into smaller narrowbands requires very high
sampling time, a sub-Nyquist spectrum sensing approach
can be used [54]. This approach allows the CR to detect
any PU signals occupying the wideband spectrum at lower
sampling rates than the Nyquist sampling rates and, conse-
quently, decide on any spectral transmission opportunities
for the CR. This provides the CR ability to scan a wide-

band spectrum at a lower sampling rate without a significant
increase in sensing time.

Sub-Nyquist sampling forwideband signals canbedivided
into twomain types which are discussed in the following sec-
tions.
Compressive sensing

Compressive sampling is a technique through which a
signal canbe efficiently recoveredusing relatively fewer sam-
ples than required by conventional sampling which follows
the Nyquist criterion [54, 56]. The PU signal transmissions
are typically sparsely distributed on the wideband range of
frequencies since the spectrum is scarcely occupied. This
allows for compressive sensing to recover the received sig-
nals at sampling rates lower than the required Nyquist rates
[10, 54]. Taking advantage of the sparsity of signals, the idea
behind compressive sampling is to recover the signal through
a small set of linear measurements [57]. A sparse signal is
defined as a signal with very few non-zero elements. A signal
with N samples is k-sparse if it has only k non-zero elements
and (N − k) zero elements and N � k [58].

Compressive sensing involves representing a signal using
fewmeasurements or samples. If a signal x = [x0 x1 . . . x(N−
1)], of length N , is not sparse, a projection of this on a basis
or dictionary can make it sparse. The new sparse signal s is
given by:

s = �x . (4)

This implies that any signal can be converted to a sparse
signal by projecting it to a suitable basis [10].

Several algorithms have been proposed to solve this linear
reconstruction problem. Arjoune and Kaabouch [10] discuss
three of the commonly used techniques namely convex and
relaxation, greedy and Bayesian. Optimization algorithms
such as gradient descent are used to solve the optimization
problem in the convex and relaxation method [59]. In the
greedy approach, the solution is built iteratively to reach the
minimum value and reduce detection time [60]. Finally, the
optimal solution is found by using Bayesian models to define
the probability distributions of the signal [61]. Once the
reconstruction is complete, energy detection or other spec-
trum sensing algorithms are discussed in Sect. 3.1. can be
applied to decide on the existence of a PU signal.

El-Khamy et al. [62] use a wavelet transform-based
approach to compressive sensingbyusingwavelet transforms
to create the basis functions defined in (4). A cooperative
CRN is proposed by Zhang et al. [63] which employs a
compressive sensing-based blind user selection technique to
select the cooperating CRs. Additionally, each CR also uses
compressive sensing to determine theminimum sensing time
required to detect the spectrum.

Khalfi et al. [64] propose a machine learning-based com-
pressive sensing algorithm. The proposed algorithm uses

123



358 M. U. Muzaffar, R. Sharqi

compressive sensing to reduce the size of the wideband
signal and then extracts feature such as PU signals activ-
ity statistics, CR’s neighbors, previous spectrum occupancy
information, and current spectrum measurement. Finally,
instead of applying a classification algorithm to determine
spectrum occupancy, a regression algorithm such as linear
regression (LR) is used to predict when the spectrum will be
occupied in the future.
Multi-coset sampling

Multi-coset sampling is another Sub-Nyquist sampling
approach in which only some samples are selected from a
standardized grid by using a sampling rate fs higher than the
Nyquist rate. This grid is divided into blocks of j consecu-
tive samples. Only i samples are considered in each block
such that i < j . All other samples are discarded. In effect,
this sampling technique is implemented by having i sampling
channels. Each channel has a different time offset [54]. The
main advantage of multi-coset sampling is that the sampling
rate is lower than the Nyquist rate by a factor of j . However,
obtaining a unique solution for the wideband spectrum occu-
pancy from only a few measurements is a challenge [54].

Utilizing the fact that spectrum sensing only requires the
location of the occupied frequency bands and not a complete
reconstruction of the signal, a non-uniform multi-coset sam-
pling approach is proposed by Yang et al. [65]. A two-step
iterative detection scheme is proposed which utilizes corre-
lation and eigen values since they are non-zero only when
the channel is occupied.

3.3 5G communications and spectrum sensing

The fifth-generation standard of wireless communications
technology, more commonly known as 5G is the planned
successor of the widely used 4G LTE standard. The 5G sys-
tem has been tested in some countries of the world as early
as 2019 and a full deployment worldwide is expected soon.

The number of users of wireless cellular networks has
increased exponentially in the last few years. This has had a
direct impact in the data rate and bandwidth requirements for
communication. In fact, video andmusic streamingplatforms
have gained a lot of popularity recently and the demand for
faster cellular data has never been higher.

5G communication networks will provide a high-speed
communication platform to users worldwide. 5G is expected
to operate at very high frequencies andmay range from3GHz
to 100 GHz [66, 67]. The actual frequency bands utilized
by the protocol will depend on the licenses issued in each
country. Due to the very high frequencies, 5G signals will
occupy large bandwidth and provide an average data trans-
mission rate of 1 Gbits/s [67]. 5G communication systems
will use the OFDM modulation technique for transmission.
Each individual slot of a 5G signal will consist of 14 OFDM

symbols. Several slots combine to form a subframe and 10
subframes make up one frame.

5G communication system will allow Dynamic Spectrum
Access (DSA) which enables multiple users to access the
spectrum and help in optimizing spectrum usage [68]. This
is directly related to the concept of CRNs which provides
opportunities to unlicensed users to access the licensed por-
tion of the spectrum when it is vacant. The incorporation of
DSA to the 5G protocol implies that CRNs will be an inte-
gral part of 5G networks and therefore spectrum sensing by
the CRs will become even more crucial. Additionally, due to
the high bandwidth of 5G systems, the CR must sense the
spectrum in the range of hundreds of megahertz [69].

Even though 5Ghas not yet been implementedworldwide,
research on spectrum sensing techniques has already caught
the attention of several researchers. Zhang et al. propose a
spectrum sensing architecture for 5G networks in [69]. In
this work, spectrum agents are proposed which are equipped
with spectrum sensing capabilities. Each CR in the network
must send a request to the nearby spectrum agent to sense
the spectrum. All spectrum agents send their sensing results
to the Fusion Center which combines the information and
decides on the occupancy of the spectrum.

The high bandwidth of 5G systems will require spectrum
sensing to be performed over a large range of frequencies. In
5G, a CRN must utilize multiple channels or bands to trans-
mit. Liu et al. [70] discuss spectrum sensing based on the
generation of basis functions for modulation of the signal to
be transmitted. The generated basis function will be orthogo-
nal and will allowmultiple access to the CR. This will enable
the CR to access a larger number of vacant channels.

Xu et al. [71] propose a reinforcement learning-based
approach to spectrum sensing in 5G networks with the aim to
improve the performance of the CRN in terms of throughput,
energy saving, and sensing accuracy. Reinforcement learning
uses traditional spectrum sensing schemes to find an optimal
policy via trials in Markov decision processes. If there is
an obvious divergence of sensing results among cooperating
CRs, repeat sensing is done to ensure high performance.

A 5G CRN multiband spectrum sensing approach with
resource allocation using Game theory is proposed by Ejaz
and Ibnkahla [72]. Spectrumsensing is carriedout using com-
pressive sensing. Once the signal is reconstructed, energy
detection is used to determine spectrum occupancy. The sys-
tem is then optimized to consume minimum energy during
the spectrum sensing stage.

Xu et al. [73] propose a sliced spectrum sensing technique
that aims to eliminate the out-of-phase feature distortions that
occur due to variations in a fast-fading channel or a non-static
channel. In this method, the sensingwindow is split intomul-
tiple slices effectively converting the non-static channel to
several quasi-static channels. After this, conventional spec-
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trum sensing techniques can be applied to detect spectrum
occupancy.

Awe et al. investigate a machine learning-based spectrum
sensingmethod in [74]. A 5G network withmultiple PUs and
multipleCRs is assumed and the spectrum sensing problem is
defined through temporal and spatial spectrum holes. In this
way, the spectrum sensing problem becomes a non-binary
classification problem.The energy feature vector is generated
using a beamforming algorithm. This feature vector is passed
to an SVMalgorithm to decide on the existence of PU signals
in a particular frequency range at a specific time.

Ahmed et al. [75] proposed a deep learning-based spec-
trum sensing technique for a CRN in a 5G communication
system. The proposed detector employs residual connections
with cascaded multi-kernel convolutions to identify the PU
spectrum occupancy by extracting the inherent multi-scale
signal and noise features during the sensing time. This allows
the CRN to learn of the presence of spectrum holes. The sig-
nal considered in this work passes through an AWGN and
Rayleigh fading channel. The signal is operating on a 5G
communication system, but the modulation techniques used
are conventional digital techniques. The use of deep learning
CNNs greatly improves the performance even at low SNR
values.

A filter-based approach is proposed by Algriree et al. [76]
for the detection of 5G PU signal in three cascaded stages:
cosinefiltering,Welch segmentation, andHammingwindow-
ing. The detection probability is measured for different SNR
values and an improvement in performance is seen with this
filter-based approach. The CR is operating in a 5G system,
but the signal is only corrupted by AWGN (Additive White
Gaussian Noise), and no channel variations (or impairments)
are considered. Dikmese et al. [77] propose another filter-
based approach for CSS in a 5G system combining it with
energy detection in the frequency domain. FFT is applied
to the received wideband signal to generate equally spaced
subband signals. The channel is modeled by AWGN and
log-normal path loss impairments. The results indicate good
performance even at low SNR values. Since the proposed
method is for a CRN, a decision is achieved by using either
the OR AND or Majority rule. Based on the results, the best
results were achieved using the OR rule.

Perumal and Nagarajan [78] propose a machine learning-
based compressive sampling spectrum sensing approach in
a 5G CRN. A Convolutional Neural Network (CNN) is
trained using cyclostationary features of the dataset which
are obtained from the carrier signal structures using the time
delay and cyclic frequency. These features are maintained
even at low SNR values. The signal is modeled as a 5G sig-
nal corrupted by AWGN and Rayleigh fading channel. The
work depicts good detection probability at SNR values above
5 dB. However, no information is provided about the perfor-

mance of the proposed classifier in lowSNRconditions (such
as SNR < 5 dB).

Cycolstationary features of a 5G signal are also used by
Nouri et al. [79] using the Gaussian Kernel Least Mean
Square (KLMS) algorithm. The paper suggests that to sense
a specific frequency band, the proposed algorithm uses a set
of inaccurate cyclic frequencies belonging to the PU. Using
this information, a detector is designed, and spectrum sens-
ing is performed. The performance is shown for both AWGN
and Fading channels at different SNR values and this detec-
tor performs very well even at very low SNR. The detection
probability crosses 90% at around−15 dBwhich is an excel-
lent performance.

Using the properties of eigen values of the covariance
matrix of a signal, Zhao et al. [80] propose a spectrum sens-
ing for CRN. Eigenvalues capture signal correlations and
noise characteristics and parameters such as eigenvalue to
arithmetic mean and eigenvalue to geometric mean are com-
puted. Taking these parameters and combining themwith the
matrix theory framework, the authors determine the detection
probability using the Tracy-Widom distribution of maximum
eigenvalue. The signal is corrupted by AWGN and Rayleigh
fading channel and the spectrum sensing algorithm produces
excellent results at different SNR values. Even at low SNR
values (< −10 dB), the algorithm performs reasonably well.

Koteeshwari and Malarkodi [81] propose another com-
pressive sensing-based approach in a 5G network. The least
Absolute Shrinkage and Selection Operator (LASSO) is
found to be the most suitable choice for communication in
compressive sensing and recovery in wideband 5G networks.
A good performance is shown but there is no mention of
channel impairments used in the signal model. Additionally,
only positive SNR values (> 0 dB) are evaluated and show
promising results. However, low SNR values are not looked
at.

Sinha and Trivedi [82] have proposed a unique spectrum
sensing method based on two-state discrete-time Markov
chain models in a non-fading channel with additive Lapla-
cian noise. The proposed system provides good results for
different modulation techniques but does not evaluate the
performance under fading channel conditions.

Zhao et al. [83] propose to construct a dual-threshold CSS
framework for a 5G network. The proposed algorithm uti-
lizes the presence of a cyclic prefix in the 5G OFDM signal
which results in autocorrelation in the PU signal. The auto-
correlation is performed after grouping the received signal
and performing FFT on them. The proposed system uses
two thresholds to determine the existence of PU signal. If
the detection statistic falls between the two thresholds, the
individual CR indicates spectrum sensing failure. Since the
framework involves multiple CRs, a decision is made locally
by each CR and sent to the FC for the final decision. The
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performance is evaluated for low SNR values and a good
detection probability at low SNR values.

4 Discussions

In this section, we compare and analyze the different variety
of spectrum sensing techniques presented in the literature. As
discussed earlier, spectrum sensing techniques are broadly
divided into two categories: Narrowband and Wideband
spectrum sensing. Between these, narrowband spectrum
sensing is more prominent in the literature.

Energy detection is, by far, themost common type of spec-
trum sensing method due to its simple implementation. It is
deployed in different variations under AWGN and Rayleigh
Fading conditions and several research works have shown
that the main challenge in energy detection is the selection
of the optimal threshold. On the other hand, improvement
in performance is observed when known statistical proper-
ties of the PU signal are employed to sense the presence
of the PU signal. These properties include correlation and
cyclostationary. With these properties, the performance is
vastly improved especially under fading conditions. Another
property that can be used to detect the presence of a PU sig-
nal is entropy. Noise, being unknown, has a much higher
entropy compared to the PU signal, and this feature is used
to detect spectrum occupancy. With this method, the per-
formance improves in an AWGN channel for different SNR
levels but degrades in fading conditions.

Machine learning has emerged as another promising can-
didate for the spectrum sensing problem and different types
of machine learning algorithms are employed under both
AWGN and fading channel conditions to evaluate their per-
formance. In most cases, energy is used as the discriminating
feature between thePUsignal andnoise. Someof the research
works employ different features than energy and show great
improvement in performance. Research has been done on
both the AWGN and fading channel conditions and it has
been observed that SVM and Naive-Bayes outperform other
algorithms in most cases.

The above-mentioned spectrum sensing techniques dis-
play great improvement in performance under both AWGN
and fading conditions when a cooperative Cognitive Radio
Network is deployed and a fusion center is used to make the
final decision on spectrum occupancy.

In summary, all spectrum sensing methods have their pros
and cons. For the most simple to implement techniques, such
as energy, lack in complexity is countered by degradation in
performance in low SNR levels and fading conditions. On
the other hand, the more advanced techniques that perform
well under severe channel conditions are computationally
expensive to implement. Similarly, machine learning tech-
niques require computational power to train and update the

Table 2 Summary of spectrum sensing techniques

Spectrum sensing
method

Channel Performance Computational
requirement

Energy AWGN Good Low

Fading Poor

Statistical AWGN Good Medium

Fading Average

Entropy AWGN Good Medium

Fading Poor

Machine Learning AWGN Good High

Fading Good

models. The selection of the best technique comes down to
the application. If less processing power is available, energy
detection becomes the best solution. However, if process-
ing power is sufficient, machine learning-based algorithms
become the better choice.

Table 2 shows a summary of the findings that have been
discussed in this section.

5 Conclusion and future work

In this review, different types of spectrum sensing algorithms
for narrowband and wideband signals and their performance,
advantages and constraints were exhaustively discussed. It
has been established that spectrum sensing remains the most
critical task of a CRN and the performance of the CRN
depends on the successful detection of spectrum holes. With
the introduction of 5G communications, the demand for suc-
cessful spectrum sensing has never been higher. Moreover,
the ability to apply machine learning algorithms to engineer-
ing problems has given rise to boundless opportunities for
performance improvements and research.

Through an extensive review of the current state of the
art, it can be concluded the future course of work in spectrum
sensingmust be focused on spectrumsensing in 5GCognitive
Radio Networks. A dearth in research on spectrum sensing
for 5G signal was observed and there is significant scope
in cognitive radios in 5G networks. With more countries
adapting 5G communications, most devices are expected to
operate in 5G environment. Future cognitive radio networks
will function in 5G networks. 5G signals have multiple use
cases and two different frequency ranges resulting in multi-
tude of combinations of spectrum sensing applications.

Access to more computational power and recent advances
in machine learning algorithms has made the prospect of
application of machine learning algorithms in 5G Cogni-
tive Radio networks very high. Applying different machine
learning algorithms to a variety of 5G signal parameters and
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various different channel conditions to determine the best
performing algorithms could be a possible avenue of future
research.
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