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Abstract In 2005, Baier et al. introduced a “k-splittable”
variant of themulticommodity flow (MCF) problem inwhich
a given commodity was allowed to flow through a number
of paths limited by a small integer. This problem enables
a better use of the link capacities than the classical Klein-
berg’s unsplittable MCF problem while not overloading the
used devices and protocols with a large number of paths.
We solve a minimum-congestion k-splittable MCF problem
coming from a practice of managing an software-defined,
circuit switching network. We introduce a lower bound for a
path flow in order to model a QoS demand for a single con-
nection running the path. Instead of reducing the problem
to the unsplittable flow problem, as suggested by Baier et
al., we propose a potentially more exact method. We directly
enhance the Raghavan and Thompson’s randomized round-
ing for ordinary MCF problems to account for k-splittability
and the lower flow bounds. A mechanism is constructed that
prevents rounding up low flows in the subproblem solution to
big values. It is based on modifying the continuous subprob-
lem by additionally penalizing flows of certain commodities
in certain links. When k = 1, this allows us to prove a prop-
erty similar to theO(

√
logm) approximation factor, wherem

denotes the number of network links. We give probabilistic
guarantees for the solution quality and examine the behavior
of the method experimentally.
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P.Bialon@itl.waw.pl

1 National Institute of Telecommunications, Szachowa Str. 1,
04-894 Warsaw, Poland

1 Introduction

1.1 Problem

Modern communication networks are experiencing a growth
of techniques enabling complex traffic engineering. One
important step in this process was the introduction of Mul-
tiple Protocol Label Switching Network-MPLS [10]. With
the introduction of MPLS, it became possible to project the
traffic so that several paths conduct the traffic between two
nodes. This allows a better use of the available link capaci-
ties without congesting the network. The Software Defined
Networking (SDN) paradigm [22] has decoupled the con-
trol of network traffic from the actual packet forwarding.
Control is centralized in a selected network node, it is pro-
grammable in an elastic programming language and is based
on the global information of the network topology, col-
lectedwith dedicatedSDNmechanisms.ThusSDNopens the
way to elastically design the traffic, and manage the traffic
using even complex optimization (mathematical program-
ming) algorithms.

We present an algorithm that uses the above possibili-
ties. It solves a κ-splittable multicommodity flow problem
with lower path capacity bounds. Each of the defined com-
modities is allowed to be transmitted through at most κ

paths. The goal is to minimize the network congestion (the
highest link saturation). The problem parameter κ allows
steering the compromise between a good usage of the avail-
able network capacity and reducing the number of paths that
must be maintained in the network devices and protocols.
A minimum path capacity can be set for each commod-
ity, in order to keep the path capacities for a commodity
of a similar range or to satisfy some QoS constraints.
The algorithm is based on the randomized rounding tech-
nique [21].
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The described pattern of traffic engineering is applica-
ble to a range of classical networks, on different levels of
management: from LANs, single domains to WANs, when-
ever they are controlled with some elastic technique like
SDN. A particular circumstance stimulating the diversity
of models of traffic engineering is a division of the avail-
able network resources into smaller pieces leased to other
operators. A refined variant of such an approach is virtu-
alization, i.e., defining virtual networks upon an existing
physical infrastructure. The virtual or leased resources are
quite abstract constructs, of a high position in the proto-
col stack, and the flexibility of traffic engineering for such
constructs is natural. Actually, the algorithm described in
the paper comes from a management module in a virtu-
alized network, as described later. The considered traffic
pattern might be as well present in post-IP data-centric, or
content-aware networks [2], data-intensive grid computing,
cloud computing and multi-host data centers [23]. How-
ever, in most applications, an augmentation of the presented
approach would be necessary to account for the respective
structural specificity, for example for multicast, limited radio
reach and energy constraints, scheduling of computations.
We suggest one augmentation serving for the link disjoint-
edness of the paths for a commodity. It is directed to the
network resilience and can make the approach more practi-
cal for all the areas mentioned above, also, opening it also to
life-critical applications.

The multicommodity flow problem presented here comes
from a network management module [11] developed for
a circuit switching network developed in continuation of
the 7FP Future Internet Engineering project [4] (aimed at
obtaining a coexistence of various network techniques, e.g.,
circuit switching, IP, post-IP in a common physical network
infrastructure by means of virtualization). The problem con-
sists in calculating intra-domain traffic paths for the network
to meet specific requirements. The network is a “software-
defined network” as it uses the OpenFlow protocol [18]. The
constructed management plane can define several paths in a
given node-to-node intra-domain relation upon the network
setup. Calculating these paths forms our optimization prob-
lem. In an operating network, the set of these paths is used by
the control plane. When establishing a connection, the con-
trol plane chooses between these paths, taking int account
the current load of the paths. When multiple connections are
simultaneously open, and when the load balancing works
efficiently, we effectively transmit the traffic in the relation
through several “large” paths, making a better use of the
available link capacities.

1.2 Related work

The notion of a κ-splittable problem (customarily called
“k-splittable”) has been introduced in [1], as a natural gener-

alization of the unsplittable flow problem, in which we allow
only one path per commodity [14].

Researches have investigated several formulations of the
κ-splittable problem, analogous to that listed in [14] for
the unsplittable problem. A frequently considered one is
the minimum-congestion formulation, in which we mini-
mize the maximum saturation of a link, while satisfying the
flow demands given for each commodity. In the maximum
flow formulation, the summaric volume of commodities sent
is maximized subject to link capacity constraints. If we
fix proportions of flows for the commodities, this version
becomes equivalent to the minimum-congestion formulation
by a simple flow scaling. As another example, the “maximum
routable demands” choose the subset of the commodities that
will be transmitted so as to maximize its cardinality, subject
to arc capacity constraints. Often various cost models are
considered, minimizing the cost defined as some function of
flow subject to arc capacity bounds and the flow demands
for the commodities. Additional restrictions on the problem
structure are frequently imposed, themost popular is the “bal-
ance condition”: the maximum demand for a commodity is
not greater than the minimum link capacity.

We shall by default consider theminimum-congestion for-
mulation and problems with directed graphs. Already with
κ = 1, the κ-splittable problem is NP-hard [16].

Let n denote the number of nodes, m—number of arcs,
K—number of commodities. Similarly to unsplittable flow
problems, κ-splittable problems are usually solved with a
few groups of methods. The first group gathers typical opti-
mization approaches aimed basically at obtaining an exact
solution. Here belong the branch-and-bound approaches and
their accelerations called branch and-price that generate vari-
ables with solving shortest path subproblems—see, e.g. the
approach [24] for a maximum flow formulation. Another
approach [8] produces different subproblems that describe
a set of paths for a commodity instead of a single path. How-
ever, the branch-and-bound technique is of an exponential
complexity. The solution time can be very large. Moreover,
it is unpredictable, it can highly vary between instances of
the problem, even of a similar size. This has discouraged
the use of such approaches in a practical, operating network
management module.

Another group of methods are heuristic methods. They
are faster, they often deliver guarantees for the solving time
but give only approximate solutions without a formal assess-
ment of the quality (proximity). Caramia and Sgalambro
[5] consider a maximum-flow model. They compute each
path for a commodity and the related flows according to the
polynomial scheme from [1]. This is repeated for all the com-
modities,ordered in random. Certainly, this leads to conflicts
of computed path flows regarding link capacities, since the
paths have been computed to a large extent independently.
The conflicts are resolved with another polynomial proce-
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dure, a local improvement step, based on the ideas of flow
deviation technique of [7], invented originally for splittable
multicommodity flows. In the local improvement step, bot-
tlenecks are detected and by-passed. The authors achieve run
time O(Kκ2 · m log(m) · log(ρ)) under the balance condi-
tion, with ρ being the ratio of the sum of demands an the
minimum link capacity. Another polynomial-time algorithm
for the maximum-flow problem is given in [13], although
the authors do not calculate the rank of this time explicitly.
They build an initial feasible-solution in terms of link flows
and reinterpret it as a superposition of path flows, with a
possibility of having several different paths for a commod-
ity. They neglect all but the κ widest paths for a commodity
(actually, the splittability level κ may be different for each
commodity in this work). Once the paths have been cho-
sen, the values of flows along them that maximize the goal
function are found as a solution of an auxiliary linear pro-
gramming problem. An interesting heuristic is proposed in
[12]. The authors cope with arbitrary in choosing a particular
flow model by defining a bi-criteria model with the twofold
goal of minimizing the congestion and minimizing the cost
of the transfer. However, they use the mere weighting in the
goal function in order to combine the criteria, with all the
possible consequences having been shown in the theory of
decision making, like impossibility of obtaining all efficient
(Pareto-optimal) solutions by choosing the weight [25].

Approximation algorithms afford some guarantees of the
quality of the obtained solution. For theminimum-congestion
formulation, and assumed P �= N P , the approximation fac-
tor cannot be better than 6

5 , as shown in [16]. It cannot be
either better than κ/(κ + 1) when 2 ≤ κ ≤ m [1]. On
the constructive side, the authors of [1] proposed a reduc-
tion of the κ-splittable problem to the so called uniform
k-splittable problem, where the path flows for a commodity
are required to be equal. In this way, when the uniform prob-
lem is solved within the approximation factor of ρ, then the
initial κ-splittable problem can be solved within the 2ρ ratio.
The uniform problem, in turn, may be in an obvious man-
ner drawn to an unsplittable multicommodity flow problem.
Probabilistic approximation based on randomized rounding,
started by Raghavan and Thompson [21] is the main tool in
approximating unsplittable flow problems. There, a continu-
ous Multicommodity Flow (MCF) relaxation of the problem
(without restrictions on splittability) is solved and then the
continuous solution, interpreted as a superposition of path
flows, is “rounded” to retain the unsplittability of flows. In
the solution of the continuous problem, for a given commod-
ity number k, we can see flow demand D(k) as realized by
a flows on several paths, where the flows sum up to D(k).
Raghavan and Thompson choose randomly only one of these
paths for the final solution (and attribute the flow of D(k) to
this path in this solution). The probability of choosing a par-
ticular path is proportional to the flow on this path in the

continuous solution. In other words, the flows in the con-
tinuous solution are rounded either to zero or to D(k). In
this method, the expected value of the flow of a commodity
in a link after the rounding is the same as the value of this
flow before the rounding, i.e., in the solution of the continu-
ous subproblem. However, in the later solution, the conflicts
about the link capacities are already well resolved. In turn,
for problems where many commodities pass a link, the real
value of the link saturation is close to its expected value.

The run time of randomized rounding methods is low and
well predictable. The solutions are inexact but with precise
probabilistic guarantees for the level of inexactness. This per-
fectly fits the needs of our application. The inexactness of
solution can be easily neutralized by the oversizing (overdi-
mensioning) of resources commonly present in modern
network; many different network algorithms, not necessarily
mathematical programming algorithms, are rough heuris-
tics taking advantage of such an oversizing. Raghavan and
Thompson obtain the approximation ratio of O((logm)1/2)

for a specific version of the minimum-congestion formula-
tionwith unit link capacities and undirected graphs. Formore
general settings, in directed graphs, it was shown in [19] that
randomized rounding methods cannot obtain a ratio better
than O(logm/(log logm)).

1.3 Contribution of this work

We propose a method of solving a minimum-congestion κ-
splittable multicommodity flow problem in a directed graph,
with lower bounds on a path flow, without simplifying
structural assumptions like balance condition or unit edge
capacities.

Our method is based on randomized rounding. However,
unlike in [16], we do not rely on the simple reduction of
the κ-splittable problem to unsplittable problem. The dete-
rioration of solution quality by a factor up to 2 still seems
wasteful from the practical point of view. Instead, we try to
directly intervene in the randomized rounding scheme. Our
rounding may yield up to κ paths for a commodity and the
flows assigned to these paths try to mimic the corresponding
proportion in the fractional flow.We prove that if the optimal
solution of the 1-splittable version of our κ-splittable prob-
lemdoes not usemore thanα part capacity of each link,where
α = 1/O (

(lnm)1/2 + ln κ
)
, then with probability arbitrar-

ily close to 1 our method yields a solution of the κ-splittable
that does not oversaturate links. Increasing κ usually low-
ers the network congestion. The latter feature is not visible
in the estimates but is left as a heuristics coming from the
proportions setting in the algorithm mentioned above.

Our method admits lower bound on flows in the computed
paths. In our problem, the flows in the graphs represent a
traffic composed of many connections. The bounds on the
path flows might model the QoS flow requirements that must
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hold even for a single connection. Without the bounds, an
algorithm could compute a narrow path, insufficient even to
transfer a single connection. Narrow paths can be uncomfort-
able also for other reasons: they might occupy the routing
tables without giving a considerable contribution into the
transfer. A lower bound on a path is intuitively a combina-
torially difficult element, since it introduces a discontinuity
in the allowed values: either zero or at least the lower bound
value. The author is not aware of considering an identical
bound in the literature on k-splittable multicommodity prob-
lem. Some authors consider flows of commodities sent in
quants (containers) in transportation networks [19], which is
a slightly more restrictive setting.

For κ = 1, our method reduces to an unsplittable flow
algorithm that (in essence) yields a goal value at most
O((logm)1/2) worse than the optimal value (disregarding
the arithmetic precision and on condition that the true opti-
mal solution does not oversaturate links). Paradoxically,
this is better than the O(logm/(log logm)) lower bound
shown in [19] for randomized rounding methods solving the
minimum-congestion formulation in directed graphs. The
paradox is resolved by the fact that we propose a differ-
ent, modified continuous multicommodity subproblem. We
modify the coefficients in the continuous MCF subproblem
formulation to decrease the flows of commodities of large
demands by low capacity links in its solution. In this man-
ner, we cope with the known effect of possible rounding low
flows in the solution of the continuous MCF to large values,
that can result in a large inaccuracy of the obtained solution.

A previous stage of the method development has been
reported in conference materials [3]. That approach did not
modify the continuous MCF subproblem and did not estab-
lish theoretical guarantees of the solution quality (proximity),
which could occasionally become very poor due to the effect
of rounding small flows to big values, despite that a heuristics
preventing this was present.

Throughout the paper, we assume that summing over
an empty set of indexes yields zero.

In Sect. 2 we formulate our problem. Its solution is
described and analyzed in Sect. 3. Section 4 analyzes the
approximation quality and Sect. 5 summarizes the experi-
ments with the method. Conclusions and indications for the
further work are given in Sect. 6.

2 Problem formulation

Let N be the set of natural numbers (including zero). We
have a directed graph G = (V, E), where V ⊂ N is the set
of nodes (vertices), E ⊂ V × V is the set of links (arcs); arcs
connecting a node to itself are not allowed. Thus n = |V |
is the number of nodes, m = |E | is the number of links.
Furthermore:

– K ∈ N, K ≥ 1 is the number of commodities;
– s(k), t (k) are the source node and the sink node for com-

modity k; k = 1, . . . , K ;
– D(k) ∈ R, wi th D(k)>0 for k = 1, . . . , K is the traffic
(flow) demand for commodity k (problem parameter);

– φlo(k) ∈ R, where 0 ≤ φlo(k) ≤ D(k), for k = 1, . . . , K
is the minimal flow on a path for commodity k (problem
parameter);

– κ ∈ N, where κ>0, is the maximum number of paths for
a flow (our problem is a problem of κ-splittable flow).

A path p is a sequence (p[1], p[2], . . . , p[ j]) of different
nodes in V , where j ≥ 1, such that (p[i], p[i + 1]) ∈ E for
i = 1, . . . , j − 1. Let Pk be the set of all paths from s(k) to
t (k) in graph G.

For each commodity k, the integer number ηk (where
1 ≤ ηk ≤ κ), flow paths pk

1, pk
ηk

(where pk
i ∈ Pk)

together with corresponding positive flow values (shortly:
flows) φk

1 , . . . , φ
k
ηk

(where φk
i ∈ R, φk

i >0) must be found

such that
∑ηk

j=1 φk
j = D(k).

We now formulate our problem:

(P)

minimize ξmax (1)

over

ηk (where 1 ≤ ηk ≤ κ) (2)

pk
i ∈ Pk, φk

i ≥ 0 for k = 1, . . . , K , i = 1, . . . , ηk (3)

subject to

ξmax = max
e∈E

⎛

⎜
⎝

⎛

⎜
⎝

K∑

k=1

∑

i=1,...,ηk : e on pk
i

φk
i

⎞

⎟
⎠

/
ce

⎞

⎟
⎠ (4)

ηk∑

i=1

φk
i = D(k) for k = 1, . . . , K (5)

φk
i ≥ φlo(k) for k = 1, . . . , K , i = 1, . . . , ηk (6)

where e on p means that arc e lies on path p.
Constraints (5) enforce that the network transfers exactly

the amount of traffic D(k) for a commodity k and (6)
expresses the lower bounds for path flows. The goal func-
tion ξmax is simply the highest saturation level of a link. The
saturation level of a link is the ratio of total flow in this link
and the link capacity—cf. (4). The saturation level of a link
means that the link capacity is actually exceeded (the link is
overloaded). The value of goal function, ξmax is less than 1
iff none of the links are overloaded, i.e., the given variable
values yield a practically viable set of transportation paths. A
greater goal value indicates that the network needs enhance-
ments, and the capacity excess by particular link is listed by
the solver to the administrator in such a case. Alternatively
(and more likely) the administrator might want to adjust his
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demands D(k), that often express some prognosis of the traf-
fic to be carried by the network and thus are imprecise.

3 Solution method

3.1 General scheme

The solution process is depicted as Algorithm 1, with given
parameter r ≥ 1—number of rounds. The algorithm uses

Algorithm 1 Main algorithm.
1: Solve the continuous MCF problem (C) as in Sect. 3.2. If (C) is

infeasible, STOP with error.
2: (Path reconstruction) Find a representation of the solution in terms

of a superposition of path flows. I.e, find integers η′
k , where η′

k ≥ 1,
paths p′k

i ∈ Pk

3: for r times do {Do r rounds}
4: Based on the result of the previous step, find ηk (where 1 ≤ ηk ≤

κ) for k = 1, . . . , K and pk
i ∈ Pk , φk

i ≥ 0 for k = 1, . . . , K ,
i = 1, . . . , ηk in the randomized rounding procedure.

5: end for
6: Take the lowest-goal-value result of rounding among the rounds

done as the final solution.

a folklore observation (see e.g. Theorem 1.7.3 in [9]).
Assume we have some network flow of some commodity
given by flows per the links. Then it can be equivalently
(though in general noinuniquely) expressed as a superposi-
tion of flows on several non-looping paths leading from the
source node to the destination node and some circulations
(flows on some loops).

The paths p′i
k (2) and flows φ′i

k on them are reconstructed
from the solution of (C), expressed in the flow-per-link man-
ner. The reconstruction consists in taking the path flow part
in the mentioned superpositional representation of the net-
work flow represented by the solution of problem (C) and
neglecting the circulation part.

At the end of Step 3.1, the number of paths for a commod-
ity is not yet limited by κ and the lower bounds on path flows
are not yet applied.

The paths in the randomized rounding are chosen, semi-
randomly, among the paths calculated in Step 3.1. The choice
is steered, in a complex way, by the values φ′k

i . Generally, a
high value of φ′k

i increases the probability of choosing path
p′i

k . The details of rounding are given in Sect. 3.4. We shall
now describe the steps of our algorithm.

3.2 Solving the continuous MCF subproblem

For integer i and j , let δi, j = 0 for i �= j and δi, j = 1 for
i = j . The continuous MCF problem is defined as follows:

(C)

minimize ξmax (7)

over

ϕk
e ≥ 0 for e ∈ E ′(k), k = 1, . . . , K

ϕe ≥ 0 for e ∈ E,

ξmax ≥ 0 (8)

subject to

ξmax ≥ ϕe/ce for e ∈ E (9)

ϕe =
∑

k∈{1,...,K }: ce≤φlo(k)

φk
e for e ∈ E (10)

δi,s(k) · D(k) +
∑

( j,i)∈E ′(k)

ϕk
(i, j) = δi,t (k) · D(k)

+
∑

(i, j ′)∈E ′(k)

ϕk
(i, j ′)

for i ∈ V, k = 1, . . . , K : E ′(k) �= ∅

(11)

ϕk
(i, j) = 0 for i, j ∈ V, k ∈ 1, . . . , K : (i, j) ∈ E ′(k)

∧ i = s(k) (12)

ϕk
e ≥ 0 for k ∈ 1, . . . , K , e ∈ E ′(k), (13)

where E ′(k) = {e ∈ E : ce ≥ φlo(k)} (we shall use this
notation also later).

Problem (C) can be explained as follows: ϕk
e is the flow

of commodity k in link e, ϕe—the total flow in link e.
The Kirchoff law is expressed by (11). Equation (12) is an
anti-circulation constraint needed for the proper convergence
analysis in Remark 2 (it prevents a nonzero circulation of a
commodity on a loop that would cross the commodity source
node). Note that several problem parts use set E ′(k) of arches
capable of carrying traffic φlo(k), instead of set E . The prun-
ing of links in E serves for a numerical simplification of
problem (C). The pruning is possible due to constraints (6) in
problem (P). Namely, the rounding procedure is constructed
so as to round any possible flow of commodity k through a
link to a value not less than φlo(k), to satisfy (6). For each
pruned link, such a rounding would cause its ovesraturation,
which should not happen, at least under the assumptions
of our algorithm analysis in Sect. 4). There we consider
only solutions not oversaturating the links, the most prac-
tically important case. (To allow solutions oversturating the
links, we could simply resign from the acceleration: use E
instead of E ′(k); the algorithm analysis would adjust quite
trivially).

3.3 Reconstructing paths

Then, for each commodity k, objects η′
k , p′k

i , φ′k
i are

reconstructed form the solutions ϕk
e (flows in links for com-

modities) by the rather folklore Algorithm 2.
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Algorithm 2 Reconstruction of flow paths from flows for
commodity k.
1: η′

k ← 0
Set l = 0,
E ′′ = {e ∈ E ′(k) : φk

e >0}, V ′′ = {v ∈ V : ∃(i, j) ∈ E : (v =
i ∨ v = j)} G ′′ = (V ′′, E ′′) (G ′′ is G after a rejection of links of
capacity lower than the minimum demanded path flow φlo(k) for
commodity k, and a consecutive rejection of non-linked nodes).
Set ϕ′′

e = ϕk
e , e ∈ E ′

2: while there exist a path in G ′′ from s(k) to t (k) do
3: Find a path p in G ′′ from s(k) to t (k), where p = (p1, . . . , pl ),

p1 = s(k), pl = t (k) as a shortest path in under unit link weights.
Reconstruct a new path:
l ← l + 1
f ← mine on p ϕ′′

e

p′k
l ← p

φ′k
l ← f

4: Strip the path flow from the graph:
ϕ′′

e ← ϕ′′
e − f for e ∈ E ′

E ′′ ← {e ∈ E ′′ : ϕ′′
e >0}, V ′′ ← {v ∈ V ′′ : ∃(i, j) ∈ E ′′ : (v =

i ∨ v = j)}, G ′′ ← (V ′′, E ′′)
5: η′

k ← l
6: end while

Remark 1 Certainly, checking for the existence of path p in
Step 3.3 and finding this p in Step 3.3 are really combined
in one run of the Dijkstra method; these activities were sep-
arated in the algorithm depiction for clarity.

Remark 2 The following holds for Algorithm 2:

(i) Algorithm 2 finishes its work after at most |E | iterations
of the while loop (with η′k equal at most |E |).

(ii) Then, after the algorithm is finished, there holds∑ηk
i=1 φ′k

i = D(k).

The above remark comes from the common knowledge
on decomposing network flows into paths and loops (see e.g.
[9]). In each iteration of the “while” loop, we strip at least
one link from E ′′; from this, (i) follows.

Property (ii) can be shown in the following reasoning.
Consider three network flows in graph (V, E ′): flowA is rep-
resented by the values of variables ϕ′′

e immediately before
the “while” loop is entered, flow B is defined by the val-
ues of ϕ′′

e immediately after the “while” loop is exited and
the flow C is defined by the superposition of flows φ′k

l on
paths p′

l
k for i = 1, . . . , η′

k (after the “while” loop). The
stripping is so defined that A equals the superposition of B
and C, symbolically: A = B + C . Denote by L(A), L(B)

and L(C) the sum of link flows leaving node s(k) in net-
work flow A, B or C, respectively. Constraints (11) enforce
that L(A) = D(k). In turn, L(C) = ∑ηk

i=1 φ′k
i , obviously.

By superposition, L(A) = L(B) + L(C). Now it suffices to
show that L(B) = 0, which we do in following way. Net-
work flow B by the construction of stripping s a network
flow conforming to the Kirchoff law, with some commodity

emission E in node s(k) and the same absorption E in node
t (k) (a negative emission means an actual absorption and
vice versa). The value E cannot be negative, since nothing
flows into s(k): in flowA the constraint (12) held and the link
flows in network flow B are not greater than the respective
link flows in network flow A by the construction of strip-
ping. If, in turn, E were positive, network flow B could be
decomposed into flows on paths leading from s(k) to t (k),
at least one of them being positive, and some flows on loops
(circles)—see e.g. Theorem 1.7.3 in [9]. But there was no
path in G ′′ from s to t in the last check in the “while” loop.
Therefore, E must be zero, which completes the proof.

3.4 Randomized rounding

A round of the randomized rounding takes place in step 3.1
of Algorithm 1. The goal of the randomized rounding is to
calculate the solution of our initial problem (P) represented
as a collection of path flows based on the objects calculated in
step 3.1. Namely, for k = 1, . . . , K we calculate ηk (where
1 ≤ ηk ≤ κ), paths pk

i ∈ Pk and reals φk
i ≥ 0 for i =

1, . . . , ηk based onη′
k , p′k

i ∈ Pk, φ′k
i ≥ 0 for k = 1, . . . , K ,

i = 1, . . . , η′
k .

The randomized rounding takes place for each k-th com-
modity, in isolation from other commodities. The results of
calculations for one commodity will not influence the calcu-
lations for another commodity. Thus, the order of considering
commodities may be arbitrary, and our algorithm considers
the commodities simply in the order of indexing. We shall
now describe the randomized rounding for a given k.

3.4.1 The original Raghavan and Thompson’s randomized
rounding

Weshall first describe the originalRaghavan andThompson’s
basic procedure in translation to our settings, for given k.

They have always ηk = 1 (since their problem is unsplit-
table). Thus only the single path pk

1 and the flow φ1 must be
evaluated.

Their randomized rounding goes in two steps:

1. Path choice. They choose p1 as one of the paths p′k
i for

i = 1, 2, . . ., η′
k with the probability Γi of choosing path

p′k
i given by Γi = φ′k

i /
∑η′

k
j=1 φ′k

j = φ′k
i /D(k).

2. Setting the flow. The flow φ1 in path p1 is simply chosen
as equal to the D(k), the demand for commodity k.

We may interpret the above process as follows. First, we
round the flows φ′k

i for i = 1, . . . , η′k :—one of them to D(k)

and the remaining ones—to zero. Then, we renumber the
paths and flows: variables representing zero flows and their
corresponding paths are removed from the considerations,

123



A randomized rounding approach to a k-splittable multicommodity... 531

and thevariables for the onlynonzeroflowand its path receive
the index of 1. This view explains the name of “randomized
rounding” and will be occasionally used in the further text.

3.4.2 Our method

For given k, our modified Raghavan and Thompson method
runs in two steps:

1. Choice of candidate paths. We obtain a set
W ⊆ {1, . . . , η′

k} of indexes of paths such that |W | ≤ κ .

Paths p′k
j for j ∈ W will candidate to become the paths

pk
i in the final solution (a further selection of the candi-

dates will take place in the Step 2). Set W is obtained
as the set of numbers chosen in either of κ independent
random choices of a number in set {1, 2, . . . , η′

k}, where
in each choice the probability Γi of choosing i is given
by Γi = φ′k

i /
∑ηk

j=1 φ′k
j = φ′k

i /D(k) (for i = 1, . . . η′
k),

as before.
2. Final choice of the paths; choice of the flows. For i ∈ W

we define verified flows: φ′ k
i = max(φ′k

i , φ
lo(k)). Now

we take as many as possible paths among the candidating

pk
i with largest φ

′ k
i so that the sum of φ′ k

i s for the chosen
paths is not greater than D(k). Let j� be the number of
the chosen paths and S be the sum of their verified flows

φ′ k
i .

We finally choose ηk as j�, pk
i for i = 1, . . . ηk as the chosen

paths, and φk
i for i = 1, . . . ηk as the respective values φ′ k

i
multiplied by

D(k)

S
. (14)

Remark 3 The D(k)
S coefficient in (14) ensures that the path

flows for commodity k in the final solution sum up to D(k).

Remark 4 Since, clearly, S ≤ D(k), the computed φk
i satisfy

our initial demand φk
i ≥ φlo(k).

Note that when κ = 1, our randomized rounding becomes
essentially the same as that of Raghavan and Thompson.

Moreover, we can interpret our procedure as rounding ηk

flows φ′
i
k up and the remaining of them—down to zero and

a subsequent neglecting/renumbering of variables.
Our method is a simple heuristics: the mutual ratios of the

calculated flows φk
i try to follow the corresponding ratios of

theφ′k
i . Asymptotically, for large κ and for a low lower bound

φlo(k), the collection of flows φk
i after rounding becomes

close to the collection of flows φ′k
i before rounding. Con-

structing set W so that |W | ≤ κ is important for the solution

quality analysis. It allows assessing the probability for flow
φ′k

i being rounded up by the value κφ′k
i /D(K ), only by a

constant factor κ greater than in the Raghavan and Thomp-
son’s case.

3.5 A modification

The Raghavan and Thompson’s randomized rounding has a
clear sense when there aremany flow paths coming through a
link immediately before the rounding and for these paths, the
values of D(k) for the respective ks remain small compared
to the link capacity. The randomized rounding is constructed
in such a way that, in such circumstances, the sum of the
flows in the link before the rounding is a good approxima-
tion of the sum of these flows after the rounding. When D(k)

for some flow path of commodity k is comparable with or
greater than the link capacity, the quantization effects of the
rounding become notable, the approximation gets inaccurate
and there is a big chance that the link capacity will be seri-
ously exceeded after the rounding, especially when κ = 1
(when rounding up means rounding to as much as D(k)). In
order to decrease the probability of rounding such continuous
flows to D(k)s, we make these flows smaller by penalizing
them already in problem (C) in the following modification
of our method:

Modification 1 (to problem (C)) We replace (10) with

ϕe =
∑

k∈{1,...,K }: ce≤φlo(k)

σ k
e · ϕk

e for e ∈ E (15)

where

σ k
e = 1 for k ∈ K


e ≡ {k ∈ K : D(k)<αce},
σ k

e = σ ≡ 2κ|E |/α for k ∈ K�
e ≡ {k ∈ K : D(k)> = αce}

(16)

and

α =
√
2√

ln(8|E |) + √
2κ

. (17)

Here σ k
e are the penalty coefficients, sets K


e and K�
e are the

sets of commodities k with “small” and “large” D(k), respec-
tively, compared to the link capacity ce.

3.6 Run time

We shall discuss the run time of Algorithm 1. Let, reasonably
|E | ≥ |V |. Choosing a random real number will be assumed
to be an elementary operation.

Setting up problem (C) in Step 3.1 can be realized so as
to take no more thanO(K · (|E |+ |V |)) time. For each com-
modity, at most |E | paths are reconstructed from link flows in
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the solution of (C) byRemark 2 (i). In an effective implemen-
tation, the reconstruction time is dominated by at most |E |
Dijkstra method runs, each costing at most O(|E | · log |V |).
The reconstruction costs thus at most O(|E |2 log |V |). Con-
sider the time of Step 3.1, i.e., of the randomized rounding.
Computing the numbers Γi costs at most O(|E |) (in a given
round, for a given commodity) since at most |E | paths have
been reconstructed from the continuous flow. The computa-
tion of an element of W in a single random choice can be
done within an O(|E |) time; the computation of |W | is thus
possible within the time ofO(κ ·|E |). A single final choice of
paths is in a reasonable implementation dominated by sorting
|W | ≤ κ numbers, which can be done in O(κ log κ) time.
The time of Step 3.1 of Algorithm 1 is clearly dominated by
the setup time for problem (C). Putting all these observations
together, we obtain the bound on the run time of our method
of

O (
Kr · (|E |2 log |V | + κ log κ))

) + external solver run time.

(18)

However, the assumption that at most |E | paths are recon-
structed for a given commodity is very conservative; in prac-
tice, rather a few paths (say, a constant number) per commod-
ity are reconstructed,whichmakes the practical time closer to
O (Kr · (|E | log |V | + κ log κ)))+ external solver run time.

4 Solution quality

We shall consider the most practically important question of
how we can guarantee that the algorithm finds a realizable
solution, in which no link is overloaded (i.e., with the goal
function not greater than 1).

The algorithm has been designed to only give approxi-
mate solutions. Thus it is possible that the algorithm yields
a non-realizable solution while a realizable one exists for
the problem. Fortunately, networks are nowadays often over-
sized, the link capacities are fairly greater than required for
the existence of a realizable solution. This existing network
oversizing can compensate for the proximity of the algorithm
andmake the algorithm again obtain a realizable solution.We
are going to formally analyze such a compensation.

We shall show the following. Assume that for some prob-
lem (P) with κ = 1, a solution with the goal value less than
α exists, where α ≤ 1 is given by (17). This assumption
means that our network is already oversized so that realiz-
ing an unsplittable transfer of our demands with the highest
link saturation of α is possible. Then, our algorithm finds a
realizable solution (i.e., with the goal value not more than 1)
for the same problem with any setting of splittability level κ ,
with a probability that can be drawn arbitrarly close to 1 by
increasing the number of rounds r .

To show the above,we shall first analyze a solution yielded
by a single round of randomized rounding, i.e., a single pass
of step 3.1 of Algorithm 1. We shall prove that, under the
sufficent network oversizing, the goal value for its solution is
not more than 1 with at least a constant, positive probability.
This is sufficient, since then we can apply the well known
Las Vegas randomized scheme: by increasing the number r
of independend rounds we can quickly draw the probability
that any of the solutions of the rounds has the goal value not
exceeding 1 arbitrarly close to 1. Then it remains to take the
best (lowest-goal-value) of the solutions of the rounds as the
final solution, as is actually done in Algorithm 2.

From now until further notice, we shall consider a single
round.

In the solution of a round, a link is occupied by flows of
the paths (obtained by the reconstruction by Algorithm 2 for
the commodities) rounded randomly either to zero or to some
positive value. Thus, the final link occupancy may be viewed
as a sum of realizations of some random variables. In the
further analysis, we shall need a probabilistic description of
how well the sum of realizations of random variables can be
assessed by the sum of the expectations of the variables. Our
main probabilistic tool will be thus the following theorem
[15]:

Theorem 1 For j = 1, . . . N let X j ∈ {0, 1} denote inde-
pendent random variables with means p j and let |θ j |<∞.
Then for all ε ≥ 0

Pr

⎡

⎣

∣
∣∣∣∣∣

1

N

N∑

j=1

θ j · (X j − p j )

∣
∣∣∣∣∣
>ε

⎤

⎦ ≤ 2 exp
(
−Nε2/χ2

)
,

(19)

whereχ2 = 1
N

∑N
j=1 θ2j �(p j )and�(x) = (1−2x)/ ln((1−

x)/x) for x ∈ (0, 1), �(0) = �(1) = 0.

To prove that a round of our methods likely yields a solu-
tion of (P) with a goal value not greater than 1 under the
considered network oversizing, we shall first need to show
that the optimal value of the relaxation (C) of problem (P)
with Modification 1 is less than α under this oversizing.

Lemma 1 For some problem (P), let α be defined by (17). If
the optimal value of the alteration of problem (P) consisting
in setting κ to 1 is less than α then the continuous problem (C)
with Modification 1 resulting from the unaltered problem (P)
has the optimal value less than α.

Proof Take any link e ∈ E . Let ηk , pk
i , φ

k
i for i = 1, . . . , ηk ,

k = 1, . . . K be taken taken from an optimal solution of the
alteration of problem (P). Each path pk

i of them that goes

through link e must have k ∈ K

e. Otherwise, since the cor-

responding φk
i would be equal to D(k) (because κ = 1), and
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since D(k) is from the definition ofK�
e not less than αce, the

total flow in link e would be at least αce which would contra-
dict the assumption about the optimal value of the alteration
of problem (P). A similar reasoning can be made for all links
e ∈ E .

The optimal solution of the alteration of problem (P) can
be translated into a feasible solution of the problem (C) with-
out Modification 1 resulting from problem (P), I.e., it can be
expressed in terms of link flows rather than path flows (the
mapping is trivialwhenwe realize that nopath for commodity
k cannot flow through a link in E \E ′(k) in the solution of the
alteration of (P), since, by (6), yielding the goal value above
1). In the so translated solution the total flow in each link
e is less than αce. Thus, switching on Modification 1 does
not change the value of goal function of the problem (C)
for this solution (because all the sets K�

e are empty). Thus
the translated solution is a feasible solution of the resulting
problem (C) with Modification 1 yielding the goal function
value below α. ��
Now that we can assess the optimal value of (C), it remains to
take into account the rounding effects during the randomized
rounding step. Our main result is contained in the following
theorem, stating that under the sufficient oversizing of the
network a round of our method with a guaranteed constant
positive probability finds a solution not exceeding the capac-
ities of the links.

Theorem 2 We have problem (P) with |E |>1. Let α =√
2√

ln(8‖E‖)+√
2κ

, as in (17). Then with probability at least 1/4

a round of randomized rounding in our method with Modifi-
cation 1 finds a feasible solution of the problem yielding the
value of goal function not greater than 1 on condition that
the alteration of problem (P) consisting in setting κ to 1 has
the optimal value less than α.

Proof That our method finishes returning a solution in the
described situation is a consequence of Remark 2(i) and the
feasibility of generated problem (C) with Modification 1,
implied by Lemma 1. The feasibility of the returned solution
in problem (P) follows from Remarks 3 and 4 and from the
construction of the Algorithm 2, that yields positive φi and
ηk ≤ κ . The claim about the goal value in (P) for this solution
will be proved in steps.

1. Consider link e ∈ E and these paths among p′k
i cal-

culated in Step 3.1 of Algorithm 2 with k ∈ K�
e that

go through link e, together with the corresponding flows
φ′k

i (K�
e is defined as in Modification 1). In the course

of randomized rounding, these flows are rounded either
down—to zero or up—to a positive value not greater than
D(k). Let us assess the probability of rounding flow φ′k

i

(the flow on path p′k
i ) up. It is not greater than the proba-

bility for i to become the member of set W (a candidate

for rounding up) in our randomized rounding, which is,
in turn, not greater than κφ′k

i /D(k).
Consequently, the probability Π� of rounding any of the
considered flows (i.e., flows φ′k

i with k ∈ K �
e and p′k

i
coming through e) is not greater than

κ
∑

k∈K�
e

i=1,...,η′
k

e on p′k
i

φ′k
i /D(k).

Algorithm 2 reconstructs paths from the solution of the
subproblem (C) in such a way that for each k ∈ 1, . . . , K∑

k∈K�
e, i=1,...,η′k, e on p′k

i
φ′k

i ≤ ϕk
e where ϕk

e is a part of

the solution of the subproblem (C) by the construction of
graph flow stripping. Thus,

Π� ≤ κ
∑

k∈K�
e

ϕk
e /D(k)

and, using the definition of set K�
e

Π� ≤ κ
∑

k∈K�
e

ϕk
e /(αce).

Now we will need an assessment of
∑

k∈K�
e
ϕk

e . By (15),
and because the optimal value of subproblem (C) is from
Lemma 1 less than α, this is not greater than ce/σ , where
σ is defined as in (16). Consequently,

Π� ≤ κ

ασ
= κ

α · 2κ|E |/α = 1/(2|E |).

and, finally

Π� ≤ 1/(2|E |).

2. Now we shall consider an arbitrary link e and the paths
pk

i calculated in Step 3.1 of Algorithm 1 with k ∈ K

e

that lead through link e,together with the corresponding
flows φ′k

i (K

e is defined as inModification 1). The sum of

the above flows after the rounding is done on them will
be equal to

∑

k∈K

e

∑

i=1,...,ηk : e on pk
i

φk
i ,

whereηk andφk
i are taken from the solution of (P) yielded

by the round. This sum can be expressed as:

∑

k∈K

e

Yk,
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where Yk = ∑
i=1,...ηk : e on pk

i
φk

i .
The random variables Yk are independent, since the ran-
domized rounding is performed independently for each
commodity k. It is clear that the values Yk are all within
[0, D(k)]. The probability of rounding a flow φ′k

i (of the
flows being considered) up is not less than κφ′k

i /D(k),
due to a similar reasoning as given earlier. Therefore

Pr(Yk>0) ≤ κ
∑

i=1,...,η′
k : e on p′k

i

φ′k
i /D(k) ≤ κϕk

e /D(k),

where ϕe are from the solution of problem (C). Thus,
the random variable Yk is majorized by random variable
θk ·Xk , where θk = D(k) and Xk is a binary variable equal
to 1 if Yk>0 and to zero when Yk = 0. We have pk ≡
Pr(Yk>0) = Pr(X = 1) ≤ κφk

e /D(k) and, certainly,
variables Xk are independent since they are functions of
independent variables Yk .
We are now interested in probability Π
 that

∑
k∈K


e∑
i=1,...,ηk : eonpk

i
φk

i in the solution of (P) yielded by the
round exceeds ce.

Π
 ≤ Pr

⎛

⎜
⎝

∑

k∈K

e

Yk>ce

⎞

⎟
⎠ ≤ Pr

⎛

⎜
⎝

∑

k∈K

e

θk Xk>ce

⎞

⎟
⎠

= Pr

⎛

⎜
⎝

∑

k∈K

e

θkpk +
∑

k∈K

e

θk(Xk − pk)>ce

⎞

⎟
⎠

≤ Pr

⎛

⎜
⎝

∑

k∈K

e

κθkϕ
k
e /D(k) +

∑

k∈K

e

θk(Xk − pk)>ce

⎞

⎟
⎠ .

But from the assumption and from Lemma 1,∑
k∈K


e
ϕk

e ≤ αce and θk = D(k). Thus

Π
 ≤ Pr

⎛

⎜
⎝καce +

∑

k∈K

e

θk · (Xk − pk)>ce

⎞

⎟
⎠

= Pr

⎛

⎜
⎝

∑

k∈K

e

θk · (Xk − pk)>ce · (1 − ακ)

⎞

⎟
⎠

= Pr

⎛

⎜
⎝

1

|K

e|

∑

k∈K

e

θk · (Xk − pk)>
ce · (1 − ακ)

|K

e|

⎞

⎟
⎠ .

Now, using Theorem 1

Π
 ≤ 2 exp

(

−|K

e|

c2e (1 − κα)2

|K

e|2/χ2

)

,

where χ2 = 1
|K 


e |
∑

k∈K

e
θ2k �(pk) and �(x) = (1 −

2x/ ln((1− x)/x) for x ∈ (0, 1) and �(0) = �(1) = 0.
But �(x) ≤ 1

2 . Thus

Π
 ≤ 2 exp

⎛

⎝−|K

e|

c2e (1 − κα)2|K

e| · 2

|K

e|2 ·

(∑
k∈K


e
D2(k)

)

⎞

⎠

≤ 2 exp

(

−2c2e (1 − κα)2

|K

e| · α2c2e

)

≤ 2 exp

(
−2(1 − κα)2)

α2

)
.

By substituting α =
√
2√

ln(8|E |)+√
2κ

from the definition

and performing a few further calculations, we obtain

Π
 ≤ 1/(4|E |).

3. Let us assess the probability Π that the total flow in
link e is above ce in the solution yielded by the round.
The sufficient condition for this to hold is that any
flow in e for a commodity from K�

e is rounded up or∑
k∈K


e

∑ηk
i=1 φk

i >ce. The the two parts of this alterna-
tive are precisely that analyzed in the two previous steps
of the proof. Consequently, Π ≤ Π� + Π
.
The goal value is less than κ with probability at least 1/4
iff the total flow in any link e ∈ E does not exceed ce

in the solution given by the round. The probability of the
later is clearly not greater than |E | · Π .
So, it now suffices to prove that |E | · Π ≤ 3/4. We have
|E | ·Π ≤ |E | · (Π� +Π
) ≤ |E | · (1/(4E)+1/(2E)) =
3/4. ��

Now we switch to considering the whole Algorithm 1,
with many rounds. The solution of Algorithm 1 is the best
round solution. Thus, not founding a solution with the goal
value not exceeding 1 by Algorithm 1 means that no round
has found it. The probability of the latter, assuming the same
as in Theorem 2, is clearly (3/4)r , since the rounds are inde-
pendent.

Corollary 1 Under the assumptions of Theorem 2, the whole
method returns a feasible solution of (P) of the goal value
not exceeding 1 with probability 1 − (3/4)r .

5 Experiments

The performed experiments aimed at observing the practical
solution quality of the method as well as the reaction of the
computation time to changes in the problem sizes.

The method, with Modification 1, has been implemented
in C++. The implementation, called Dim, uses Gnu GLPK
v. 4.52 (see [17]) as an external solver for the continuousMCF
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subproblems. Finding shortest paths in the path reconstruc-
tion phase is done using the Bellman-Ford algorithm with
heaps (see [6]) being emulated by C++ Sets, of a similar
efficiency.

We have resigned acquiring a specific benchmark with a
minimum-congestion problem and lower flow bounds and
a specific competitor solver for such problems. We have
instead decided to use a series of artificial network topologies
generated by the well recognized BRITE generator [20].

We assess our method in a threefold way. Firstly, we com-
pare it to the GNU GLPK solver applied to a Mixed Integer
Programming Problem (MILP) formulation of the problem
instance. The GLPK solver was stopped when the absolute
value of the relative error in the calculated optimal value
could be guaranteed not to exceed ±0.03. This comparison
clearly works only for small problems, since the MILP for-
mulation is very difficult. Thus we always assess the optimal
value of problem (P) from below by the optimal value of its
relaxation (C). Itmaybe seen as a solution of (P)withκ = ∞.
Using (C) as a relaxation is correct as long as the optimal
value of a problem (P) is not more than 1. This is because
using set E ′ instead of E in (C) is not a larger restriction on
the network flow than constraints (6) in (P): no path in the
solution of (P) goes through a link not satisfying the appropri-
ate (6).Also,we solve all the instances of (P)with ourmethod
without Modification 1 (we call this method “Dim base”).
In this way, we can at least assess the effect of introducing
our “anti-quantization improvement” (as well as compare
the solution times). Actually, we may expect “Dim base” to
sometimes give better solutions than the more conservative
“Dim”, which, however, has some quality guarantees. It is
valuable to see their practical comparison.

The generation of problem instances can be outlined as
follows. We use a topology generated by BRITE due to
the Waxman model with the node average degree parame-
ter RT_m equal to 5. The number of nodes n is a problem
instance parameter, varied in the experiments. The com-
modities are defined in the relations of consecutive pairs
of different nodes, until the presumed number K of com-
modities is reached. If all the pairs have been exhausted
before reaching K , the consecutive relations reuse the pairs
in the Round-Robin fashion. The link capacities are cho-
sen randomly and independently form interval [1E3, 1E5]
with a uniform distribution. The demand D(k) for each kth
commodity is chosen randomly and independently on other
choices from [0.01 · D̃, D̃], where D̃—a positive parameter.
Their logarithms have a uniform distribution. The default
number of rounds r = 100 has been always used.

Two experiments have been performed:

1. Experiment A. A series of problem instances with differ-
ent n has been generated. In an instance, the number m of
links was chosen by BRITE as approximately RT_m · n,

the number of relations was chosen as K = n · (n − 1).
Note that here the complexity of the problem grew very
quickly with n. The maximum demand parameter D̃ has
been chosen so as to keep the optimal value of the con-
tinuous relaxation of the problem equal to 0.5.

2. Experiment B. There have been constant settings n = 20,
m = 80, D̃ = 1428.6 and K was varied. This series has
allowed observing both the reaction of solution quality
for various network saturation levels and the reaction of
the computing time on K .

The experiments were run on a Dell E640 Latitude with the
Intel i7-3740QM CPU and 8GB RAM, running the Fedora
20 Linux.

The results are shown in Tables 1, 2 and Figures 1, 2, 3,
4, 5, and 6. Results are marked with ‘–’ whenever the corre-
sponding solver run was not performed due to an excessive
solution time expected. Thegoal values for the ξmax the found
solutions are denoted simply by ξmax.

The measured approximation ratio of our method, under-
stood as the goal value of the obtained solution divided by the
goal value of the exact solution, is not worse than 1.5. For
example, in Experiment A, even when we limit our atten-
tion to κ = 1, the obtained goal value for our method (Dim)
exceeds the optimal goal value for the relaxation most for
n = 7 (compare Table 1; Fig. 2). The ratio of the val-
ues is then 0.623/0.500 = 1.246. The optimal value for
the relaxation is only the underestimation of the true opti-
mal problem value, so the real solution approximation factor
can be lower than 1.246. In the near problem instance with
k = 7, κ = 1, we know the true optimal value of the problem,
computed by GLPK for the MILP formulation; the approx-
imation factor is 0.517/0.503 = 1.028 there. Interestingly,
the (upper assessment of) approximation ratio seems have a
peak in n = 8 and approaches 1 for lower or greater val-
ues of n. For example, already for n = 6 or for n = 30,
our method seems to find an exact solution, with respect
to the 4-meaningful-digit accuracy of the goal value reg-
istration taken in our experiments. This behavior might be
explained as follows. Small problems are simple, there are
a few possible paths for a commodity and randomization in
100 performed rounds may have a similar effect as a “brute-
force” searching of the space of possible solutions. In turn,
for large problems, there are many commodities per link
on average. Thus many path flows come through a single
link in the solution of the continuous relaxation; thus the
effects of rounding the particular flows cancel out statisti-
cally (which is a fundamental of the randomized rounding
method). Despite that we have performed our experiments on
a particular class of problems, this behavioral pattern may be
expected to reproduce for many other problem classes. The
highest upper assessment of approximation ratio in Experi-
ment B for κ = 1 seems to appear for K = 50 and equal

123



536 P. M. Białoń
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Fig. 1 Solution quality for different κ and network sizes in experi-
ment A

0.0553/0.0380 = 1.46 and in generally with the increase
of the number of commodities K , seem to fall, as expected,
becoming 1.04 for K = 1600. The approximation may be
considered as practically satisfactory. Note that the practical
approximation ratios are considerably better than our theo-
retical estimates. For example, for experiment B, K = 50,
κ = 1, we have α = √

2/(
√
ln(8|E |) + √

2κ) = 0.55
(compare (17)), therefore, by Theorem 2, we would over-
size the network by 1/κ = 1.79 and Corollary 1 in order
not to overload links with probability at least (1− (3/4)100).
The factor 1.79 is greater than the observed upper assess-
ment of the approximation ratio equal to 1.46 for the problem
instance.

Increasing the maximum path splittability level κ usually
considerably lowers the goal value of the solution calcu-
lated with our method (see, for example, Fig. 1, Table 1;
Table 2). This behavior stops at κ for which the goal value
of the solution is near the optimal value of the relaxation,
say, higher not more than by 4 percent, and thus any sub-
stantial improvement is clearly not possible. In most cases,
such a proximity has been achieved for κ between 1 and
4.

Our method seems most frequently yield lower ξmax than
its “Dim base” version, though this behavior inverses for
small problems. The inversion could be explained with the
influence Modification 1 that with a considerable probability
excludes some narrow links from conducting large-volume
commodities. This exclusion has a conservative character
and, for small problems, an exhaustive, almost “brute-foce”
searching the solution space may bring better results.

For big problems, our method, Dim, is considerably
slower than Dim base. Modification 1 turns out compli-
cate the optimization subproblems. Although the practical
complexity of continuous optimization problems is hard to
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Fig. 2 Solution quality for different methods and network sizes in
experiment A
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Fig. 3 Influence of network size on the computation time, Experi-
ment A. Remember that m ≈ RT_m · n, K = n · (n − 1)

investigate theoretically, we may suppose that the introduc-
tion of high penalties in Modification 1 introduces a large
difference in the order of magnitude of the subproblem
coefficients and this is the reason of slowing down the com-
putations.

The solution time seems quite predictable, for example,
in Fig. 3 with logarithmic scales of n and the time, an
almost straight line is present. This is important for practical
applications. This time is essentially lower than for Branch-
and-Bound in GLPK solving the MILPs. In Experiment A,
the time for Dim grows as about 4–5th power of n, but other
problem sizes also grow with n: there holds m ∝ n and
K ∝ n2. In Experiment 2, it grows with K as about K 1.5. An
exemplary solution time is of the rank of 30s for 20 nodes,
80 links and 400 commodities.
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ties, Experiment B

6 Conclusions and further work

We have presented a practically viable method of calculat-
ing a minimum-congestion multicommodity network flow.
It accommodates the flow κ-splittability and lower bounds
on path flows. The quality of the solution obtained in the
variation of randomized rounding is guaranteed to be worse
from optimal 1-splittable solution by a factor logarithmic in
the number of links. The practical inaccuracy of the solu-
tion seems even less and the solution time is quite low and
predictable.

It would be practical to extend the method with reliabil-
ity issues. For example, one might require that there are at
least two paths generated for the commodity and one of the
paths for the commodity be edge-disjoint with the others.
There is at least one clear way to achieve this. However,
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Fig. 6 Influence of the number of commodities on computation time,
Experiment B

the approximation factor would grow at least by the fac-
tor of 2. This way leads through the following steps: (1)
Add constraints: φk

e ≤ D(k)/2 for e ∈ E , k ∈ K to
problem (C) in order to enforce finding a flow that for a
commodity k is decomposable to at least two edge-disjoint
paths. (2) Modify the path reconstruction algorithm (Algo-
rithm 2) so that at least two disjoint paths are obtained, e.g.,
by immediately pruning the links on one of the reconstructed
paths from the graph. (3) Modify the rounding procedure
so that at least two disjoint paths are rounded up. Lower
bounds on flows redundancy paths should be defined by the
user and carefully taken into account throughout the process
described above. Node-disjointedness of the paths could be
obviously added to our problem by artificially splitting each
node into an “input node” and “output node”, connected by
one link.

Another extension is highly desired. When calculating
likelihood Γi of rounding a “fractional” path flow up, we
assume rounding up means rounding to D(k). This is a
rather conservative assessment, the flows are usually rounded
to smaller values. Theoretically, this could deteriorate the
quality of the solution given by our method for larger κ .
Though such a phenomenon has not been observed in exper-
iments, another assessment should be considered. Values σ k

e
in Modification 1 are calculated using the same conserva-
tive assessment, with similar consequences. In an improved
assessment, the “round-up value” could be for example cal-
culated to fall somewhere between D(k) and the value of the
fractional flow. Alternatively, an iterative procedure might
be applied. The values from the solution could be used to
obtain new likelihoods Γi and σ k

e . Then, the solution could
be recalculated.
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Appendix: List of the most important symbols

Problem
Main problem (P)

V Set of nodes
E Set of links
G Problem graph, G = (V, E)

ce Capacity of link e
s(k), t (k) Source, sink node for commodity k
Pk Set of all nonlooping paths from s(k) to t (k)

n Number of nodes, n = |V |
m Number of links, n = |E |
K Number of commodities
D(k) Demand for commodity k
κ Flow splittability level
φlo(k) Minimum path capacity for commodity k
ξmax Goal function, network congestion
ηk Number of paths for commodity k in the solution
pk

i i-th path for commodity k in the solution
φk

i Capacity of the i-th path for commodity k in the
solution

Continuous relaxation (C)

E ′(k) Set of links of capacity at least φlo(k)

ϕe Total flow in link e
ϕk

e Flow for commodity k in link e
δi j Kronecker delta for i and j

Algorithm and solution quality
Main algorithm

r Number of rounds (user-given)
η′

k Number of paths reconstructed from the solution
of (C) for commodity k

p′k
i i-th reconstructed path for commodity k

φ′k
i Capacity of the i-th reconstructed path for com-

modity k in the solution

Randomized rounding

Γi Likelihood of choosing i th reconstructed path to
candidate for the final solution

W Set of indexes of paths candidating to final solu-
tion

φ′ k
i Verified (cast onφlo(k)) flow for i th reconstructed

path for commodity k

Modification 1 and solution quality analysis

K

e,K�

e Set of commodities with small (large, respec-
tively) demands compared to the capacity of link
e

σ k
e Penalty for flow of commodity k in link e—in

Modification 1
α Sufficient network oversizing coefficient, a value

dependent on the Problem (P), defined by (17)
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