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Abstract Assuming that the traffic matrix belongs to a
polytope, we present a new routing paradigm where each
traffic demand is routed independently of the other demands:
the volume-oriented routing. The routing of each demand
is a combination of two extreme routing schemes depend-
ing on the current volume of the demand. This new routing
paradigm is easy to implement in networks and quite effi-
cient in terms of network cost. However, computing an op-
timal volume-oriented routing is generally difficult. Then,
we introduce two modifications of the presented routing
paradigm such that an optimal solution can be computed in
polynomial time. Numerical experiments are also provided
to compare volume-oriented routing with the best routing
strategy in term of costs, i.e, dynamic routing.

Keywords Volume-oriented routing · Robust routing ·
Dynamic routing · Traffic demand polytope

1 Introduction

Due to the success of the Internet and the diversity of com-
munication applications, it is becoming increasingly diffi-
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cult to forecast traffic patterns in modern telecommunica-
tion networks, as they have to deal with traffic generated by
a variety of different applications utilized by a large number
of users. Moreover, the customers’ mobility makes a traffic
demand matrix change in short periods of time. All those
factors do not allow for considering only one static traffic
demand matrix.

Some ideas to model the uncertainty in traffic demand
matrices were proposed in the past. The first approach
consists in building a traffic matrix based on the worst
case for each traffic component. Routing is then computed
based on this matrix. While this approach is simple, it
can provide expensive solutions, because in fact it does
not allow non-coincident traffic components to share re-
sources.

The second approach is based on probabilistic model-
ing of traffic variations. After specifying such a model, one
may look for routing that optimizes a probabilistic criterion:
throughput expectation, average delays, blocking probabil-
ity, etc. The solution obtained in this way is good on aver-
age, but can be very bad in some cases. Moreover, it requires
knowledge of probability models, and they are usually dif-
ficult to obtain. This kind of approach is generally called
stochastic programming, and was used for example in [18,
23], where a finite number of traffic scenarios with a known
probability are considered.

Another variant of stochastic programming is chance-
constrained programming, where we look for a solution
(a routing) satisfying the problem constraints with a certain
probability. For example, given a probability distribution of
the traffic matrix and a network with known capacities, we
aim at determining a routing scheme such that the probabil-
ity to block a link is lower than a small number ε. This ap-
proach is also generally difficult to apply since probabilities
are not always easy to compute. The optimization problems
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936 M. Żotkiewicz, W. Ben-Ameur

that we get, when this approach is used, are very difficult to
solve in exact way.

A different general approach called robust optimization
(see [17]) takes into account a finite number of possible sit-
uations. In this case a solution that supports all situations
is of interest. In the networking context, a routing scheme
is to be determined such that each traffic matrix belonging
to a given finite set of traffic matrices can be carried in the
network.

Another robust model was proposed in [14] (and inde-
pendently in [12]). It assumes that the outgoing traffic of
each node is bounded (limitations on the incoming traffic
can also be considered). Then the traffic matrix can be any
matrix satisfying this kind of constraints. This uncertainty
model is called the hose model. Several network design
problems based on this model have received a considerable
attention in the literature (see [10] and references therein).

A different model is considered in [8] where the authors
assume that not all nodes can generate the maximum amount
of traffic simultaneously. In fact this model, and the hose
model presented above, are special cases of a more general
polyhedral model considered in [3–5]. In this model all pos-
sible scenarios belong to a traffic demand polytope D, and
our task is to provide a stable routing that is compatible with
all traffic matrices of D but not directly depending on the
current traffic matrix. While stable routing is easy to imple-
ment, it can be expensive in terms of cost when compared
to an optimal dynamic strategy where routing depends on
the current traffic matrix. However, dynamic routing has two
drawbacks: it is difficult to implement and is also difficult to
compute as shown in [11].

To combine both robust static routing and dynamic rout-
ing, some improvements were proposed in [2] where the un-
certainty set D is partitioned into some subsets, and a robust
routing is computed for each of them. This class of problems
was considered in [6, 24]. Numerical experiments of [6, 24]
show that partitioning strategies can sensitively reduce cost
when compared to robust stable routing.

However, the drawback of those partitioning strategies
is that they generally assume the centralization of routing.
Moreover, the routing schemes corresponding to each sub-
set can be very different, thus fluctuations may occur while
switching from one routing to another. Therefore, it is worth
considering something that will make the routing changes
less abrupt, and does not require a global knowledge of the
current traffic matrix.

In this paper we present a new routing paradigm, called
Volume-Oriented Routing (and its polynomially solvable
modifications: Simplified Volume-Oriented Routing and
General Volume-Oriented Routing), that merges the sim-
plicity of Robust Routing with the efficiency of Dynamic
Routing. Moreover, it does not involve abrupt changes in
network flows, and it is only based on local information. In

order to support the paradigm, each node in a network has
to be able to measure traffic originating in it. Moreover, a
network has to be able to handle bifurcated flows.

Other robustness models and techniques to handle traf-
fic uncertainty in networks can be found in [9, 13, 18, 19,
21–23].

The paper is organized as follows. In Sect. 2 we present
a notation and formulate Robust Routing, which is a starting
point for our research. Robust Routing assumes that traffic
matrices are always routed in the same way regardless of
their locations in the traffic demand polytope. On the other
hand, Dynamic Routing assumes that each traffic demand
matrix can be routed independently of the others. This rout-
ing strategy is presented in Sect. 3. It is optimal in terms
of cost, and can be seen as a lower bound for costs of any
other strategy (including the strategies presented in this pa-
per). In Sect. 4 traffic demand polytopes used in this pa-
per are described. Then, in Sect. 5, Volume-Oriented Rout-
ing is presented. The computationally simpler cases, i.e.,
Simplified Volume-Oriented Routing and General Volume-
Oriented Routing, are covered in Sects. 6.1 and 6.2, respec-
tively. The paper ends with numerical results in Sect. 7 and
conclusions in Sect. 8.

2 Robust Routing

In this section a notation and the basic routing problem, de-
noted by Robust Routing, are presented.

2.1 Notation

We consider a directed graph G = (V ,A ), where V is the
set of nodes and A is the set of arcs. The graph represents
a backbone and the arcs depict unidirectional transmission
links. For each arc a ∈ A an installed capacity ca ∈ R+ and
a routing cost wa ∈ R+ for one unit of traffic are given.

Let t = (tij )i,j∈V be a vector of R
|V |(|V |−1) that speci-

fies values of traffic demands (or capacity requirements) be-
tween pairs of nodes of V . This vector will be called a traf-
fic matrix. A demand between nodes u and v is called “de-
mand uv”, and its value is denoted by tuv . Note that the size
of t can be smaller when we assume that tij = 0, for some
i, j ∈ V and for all t ∈ D. The traffic matrix is supposed to
be variable, and can be any point of a traffic demand poly-
tope D. D is generally defined by some linear constraints
involving the variables tij , for i, j ∈ V . However, it can be
also defined by a set of traffic matrices (in this case D is a
convex hull of those matrices) or by an oracle.

To express routing problems as mathematical programs
we introduce the following notation:

P(i, j): finite set of acyclic paths of G from i to j

(i, j ∈ V ).
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x
ij
p : proportion of volume of a demand ij (i, j ∈ V )

carried through a path p ∈ P(i, j). Note that 0 ≤
x

ij
p ≤ 1. For a current traffic matrix t ∈ D, the traf-

fic carried through p is then given by tij · xij
p . To

fulfill the stability property, the variable x
ij
p does

not directly depend on the current traffic matrix.
x

ij
a : proportion of volume of a demand ij (i, j ∈ V )

flowing through an arc a ∈ A .
fa : maximum amount of traffic carried on an arc

a ∈ A . It depends on the polytope D and the rout-
ing pattern. The variable fa can also be considered
as the minimum capacity that has to be reserved on
an arc a to satisfy all the constraints. A vector f

is called a reservation vector.
w(D): routing cost given by

∑
a∈A wafa .

2.2 Problem formulation

The problem of computing the minimum cost Robust Rout-
ing of an uncertainty domain D can be formulated as in (1).

Robust Routing

Minimize: wRR(D) =
∑

a∈A

wafa

∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (1a)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (1b)

∑

i,j∈V

x
ij
a tij ≤ fa ∀a ∈ A , ∀t ∈ D (1c)

fa ≤ ca ∀a ∈ A (1d)

x
ij
p ≥ 0 ∀p ∈ P(i, j), ∀i, j ∈ V (1e)

x
ij
a ≥ 0 ∀a ∈ A , ∀i, j ∈ V (1f)

The objective is to minimize the total routing cost. In-
equalities (1a) express the fact that traffic demands between
every pair of nodes may be split among many paths. Every
variable x

ij
a is defined by (1b). For a given traffic matrix t ,

a traffic on an arc a is given by the left-hand side of (1c).
Thus, the capacity fa that should be reserved on an arc a

must be higher than the traffic carried in all the situations.
In other words, inequalities (1c) must be valid for each traf-
fic matrix t in the polytope D. Inequality (1d) indicates that
fa is lower than the capacity of an arc a. Note that all the
variables have to be nonnegative.

Variables x
ij
a can be eliminated from the formulation.

However, according to our initial experiments eliminating
them from the implementation does not improve running
times of our algorithms. Therefore, we decided to keep them
for the sake of clearness and simplicity.

Note that we can use other cost functions for this prob-
lem. For instance we can try to minimize the congestion.
In such a situation the cost function has to be replaced by
wRR(D) = z, where z is a variable denoting the congestion.
We also have to replace (1d) by fa ≤ z · ca .

2.3 Computational complexity

Presented in this way, Robust Routing seems to be difficult.
First, the number of paths of P(i, j) can be very high. Sec-
ond, inequalities (1c) have to be satisfied for each traffic ma-
trix in D, and D is generally an infinite set. Fortunately, the
problem was proved to be easily solvable using an algorithm
based on constraint and path generation (see [4, 5]).

Considering the current solution of the relaxation of Ro-
bust Routing (only a finite set of traffic matrices is taken
into account instead of the full D), we only have to check
whether there is an arc a and a traffic matrix t ∈ D such that
(1c) is violated for them. This can be easily done by solving
the following linear program:

max
t∈D

∑

i∈V

∑

j∈V \{i}
x

ij
a tij .

If the maximum is larger than fa we add the violated in-
equality.

Routing paths can also be generated in an iterative way
by solving a shortest path problem for each pair (i, j), where
i, j ∈ V and link weights are given by the values of appro-
priate dual variables of (1b). If there exists a path whose
reduced cost is negative, it has to be added to an appropriate
P(i, j).

Another way of solving Robust Routing, based on dual-
ity, was proposed in [1]. We should here consider the dual
of the maximization problem above and write that the opti-
mum must be always lower than fa . A similar approach was
also used in a previous work [7]. Instead of generating con-
straints, a compact formulation follows from duality but the
number of variables of the problem increases significantly.
Moreover, the approach assumes that a traffic demand poly-
tope is given by a set of inequalities, while the approach
presented in [4, 5] is more general and can also deal with
polytopes described by their extreme points or by an oracle.

We should also notice that the problem difficulty does not
change if we assume that either traffic demands or network
links are not oriented. It is easy to solve the Robust Routing
problem using the same kind of techniques even if either
demands or links are undirected.

3 Dynamic routing

The problem consists in providing routing schemes (possi-
bly different) for all traffic matrices from a traffic demand
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polytope. It is an optimal strategy in terms of costs, and will
be used to evaluate the efficiency of the strategies presented
in the following sections of the paper.

We need to introduce the following variables:

x
ij,t
p : proportion of volume of a demand ij (i, j ∈ V ) for a

traffic matrix t carried through a path p ∈ P(i, j).
x

ij,t
a : proportion of volume of a demand ij (i, j ∈ V ) for a

traffic matrix t on an arc a ∈ A .

The core problem of this section is denoted as Dynamic
Routing, and can be formulated as follows.

Dynamic Routing

Minimize: wDR(D) =
∑

a∈A

wafa (2a)

∑

p∈P(i,j)

x
ij,t
p ≥ 1, ∀i, j ∈ V , ∀t ∈ D (2b)

∑

p∈P(i,j),p�a

x
ij,t
p ≤ x

ij,t
a ,

∀i, j ∈ V , ∀a ∈ A , ∀t ∈ D (2c)
∑

i,j∈V

x
ij,t
a tij ≤ fa, ∀a ∈ A , ∀t ∈ D (2d)

fa ≤ ca, ∀a ∈ A (2e)

x
ij,t
p ≥ 0, ∀p ∈ P(i, j), ∀i, j ∈ V , ∀t ∈ D (2f)

x
ij,t
a ≥ 0, ∀a ∈ A , ∀i, j ∈ V , ∀t ∈ D′ (2g)

Formulation (2) is similar to (1). However, it replaces
each constraint of (1) involving variables x

ij
p or x

ij
a with

an infinite (in general) number of constraints involving vari-
ables x

ij,t
p and x

ij,t
a .

Although all traffic matrices t ∈ D are present in the for-
mulation, it is enough to only consider extreme points of
D in order to solve the problem. Having the optimal rout-
ings for all the extreme points it is possible to compute opti-
mal routings for all t ∈ D by calculating appropriate convex
combinations of the optimal routings for the extreme points.

Remember that computing dynamic routing is generally
a difficult problem. More precisely, answering the ques-
tion whether a given traffic polytope can be dynamically
routed through a known capacitated network is a co-N P-
complete problem [11].

4 Test cases

In this section two different ways of describing a traffic de-
mand polytope in practice are presented. We use both of
them to evaluate our new routing strategies. The first is the

hose model presented in [14]. The second is based on a
model presented by Bertsimas and Sim in [8].

4.1 Hose model

In [14] a hose model was presented. It assumes that the out-
going traffic of each node is limited, i.e.,

∑
j∈V tij ≤ Ai , for

each i ∈ V , where Ai is an upper bound for outgoing traffic
from a node i. Moreover, limitations on the incoming traffic
can also be considered. In such a case,

∑
i∈V tij ≤ Bj , for

each j ∈ V , where Bj is an upper bound for incoming traffic
to a node j . The traffic matrix then can be any matrix sat-
isfying this kind of constraints. A polytope satisfying those
constraints is called a hose model polytope, and is formally
described as follows.

Hose model polytope
∑

j∈V

tij ≤ Ai ∀i ∈ V (3a)

∑

i∈V

tij ≤ Bj ∀j ∈ V (3b)

tij ≥ 0 ∀i, j ∈ V (3c)

In addition it is possible to assume that both the maxi-
mum and minimum traffic between each pair of nodes are
also constrained, i.e., tmin

ij ≤ tij ≤ tmax
ij . The obtained poly-

tope is called a general hose model polytope, and is formally
described as follows.

General hose model polytope
∑

j∈V

tij ≤ Ai ∀i ∈ V , ∀t ∈ D (4a)

∑

i∈V

tij ≤ Bj ∀j ∈ V , ∀t ∈ D (4b)

tij ≥ tmin
ij ∀i, j ∈ V , ∀t ∈ D (4c)

tij ≤ tmax
ij ∀i, j ∈ V , ∀t ∈ D (4d)

Note that not all nodes in a network have to generate traf-
fic. Assume that some nodes are transit nodes, and are nei-
ther source nor sink nodes of any demand. They are called
then non-active nodes, while the rest are called active nodes.

4.2 B-S model

In [8] Bertsimas and Sim presented a traffic demand model
in which each demand can assume only either its minimum
value tmin

ij or its maximum value tmax
ij , and the number of de-

mands that assume their maximum values cannot be greater
than k. The model can be modified in a way that all possible
traffic demand matrices considered in the original model are
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treated as extreme points of D in a new model. A polytope
satisfying those constraints is called B-S model polytope in
this paper, and is formally described as follows.

B-S model polytope

∑

i,j∈V :tmax
ij −tmin

ij �=0

tij − tmin
ij

tmax
ij − tmin

ij

≤ k ∀t ∈ D (5a)

tij ≥ tmin
ij ∀i, j ∈ V , ∀t ∈ D (5b)

tij ≤ tmax
ij ∀i, j ∈ V , ∀t ∈ D (5c)

Notice that, like in the hose model case, the number of
extreme points of this traffic demand polytope is exponen-
tial. Moreover, also in this case we can talk about active and
non-active nodes. For the sake of simplicity, assume that if
a node is active, then it generates traffic to all other active
nodes.

5 Volume-Oriented Routing

Volume-Oriented Routing is an extension of Robust Routing
in which demands can be routed differently depending on
their actual volumes. In this case the solution consists of two
different routings for each demand and a set of thresholds.
If a volume of a demand is smaller than a corresponding
threshold the whole demand is routed using the first routing.
If the volume is greater than the threshold a part of the de-
mand equal to the threshold is sent using the first routing,
while the rest of the demand uses the second routing.

5.1 Notation

In order to formulate the problem, the notation of Sect. 2.1
has to be extended by the following variables.

hij : threshold for a demand ij .
t ′ij : volume of a demand ij corresponding to a traffic de-

mand matrix t that has to be routed using the first rout-
ing scheme.

t ′′ij : volume of a demand ij corresponding to a traffic de-
mand matrix t that has to be routed using the second
routing scheme.

x
ij
p : routing scheme used by a demand ij to route the vol-

ume exceeding hij (second routing scheme).

x
ij
a : proportion of volume of a demand ij exceeding hij and

flowing through an arc a.

5.2 Problem formulation

The problem of computing the minimum cost Volume-
Oriented Routing of an uncertainty domain D can be for-
mulated as in (6).

Volume-Oriented Routing

Minimize: wV O(D) =
∑

a∈A

wafa

∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (6a)

∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (6b)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (6c)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (6d)

min(tij , hij ) = t ′ij ∀i, j ∈ V , ∀t ∈ D (6e)

max(tij − hij ,0) = t ′′ij ∀i, j ∈ V , ∀t ∈ D (6f)

∑

i,j∈V

(x
ij
a t ′ij + x

ij
a t ′′ij ) ≤ fa ∀a ∈ A , ∀t ∈ D (6g)

fa ≤ ca ∀a ∈ A (6h)

hij ≥ 0 ∀i, j ∈ V (6i)

x
ij
p , x

ij
p ≥ 0 ∀p ∈ P(i, j), ∀i, j ∈ V (6j)

x
ij
a , x

ij
a ≥ 0 ∀a ∈ A , ∀i, j ∈ V (6k)

In Problem (6) two different routings are considered for
each demand (one used for the volume below the threshold
and one used for the volume above the thresholds). There-
fore, inequalities (1a) and (1b) have to be doubled into (6a),
(6b) and (6c), (6d), respectively. The overall routing is ex-
pressed using (6e)–(6g). Equation (6e) (resp. (6f)) defines
the volume that has to be routed using the first (resp. sec-

ond) routing scheme (variables x
ij
p (resp. x

ij
p ) and x

ij
a (resp.

x
ij
a )), while (6g) defines the traffic sent on each link. Note

that, Problems (6) and (1) are equivalent when either hij = 0
or hij ≥ tmax

ij (the maximum value of tij ), for all i, j ∈ V .

5.3 Computational complexity

Unfortunately a decision version of the problem is co-N P-
complete, so we are not able to verify in polynomial time if a
given solution is feasible. We will prove it in this section by
reducing Subset Sum to the problem of verifying if a given
solution is feasible.

Assume that a collection of numbers is given. Subset Sum
consists in answering the question: is there a subset of those
numbers whose sum is equal to a given limit. Subset Sum is
N P-complete and can be considered as a special case of
the Knapsack problem [16].
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Fig. 1 Graph proving that a decision version of Volume-Oriented
Routing is co-N P-complete

Consider a collection of integer numbers L = {l1, l2, . . . ,
lN } and an integer limit L ≥ 1. The instance of Subset Sum
is denoted by SL .

An instance VL of Volume-Oriented Routing corre-
sponding to SL is modeled by means of a graph presented in
Fig. 1. Capacities of all links but one are unlimited. Only the
capacity of a link u is limited, and is equal to ε · (L − 0.5),
where ε is a sufficiently small number, i.e., 0 < ε < 0.5.
Routing costs are set to 0 (in fact those values are irrele-
vant, because the feasibility of a solution is being verified,
and not its actual cost). The traffic demand polytope D de-
scribes possible volumes of N different demands sti , where
i = 1,2, . . . ,N , each corresponding to one number from L .
The inequalities describing D are as follows:

tsti ≤ li ∀i ∈ {1,2, . . . ,N} (7a)

N∑

i=1

tsti ≤ L (7b)

We want to know whether the following solution is feasi-
ble. The thresholds hsti , for each demand sti , where i =
1,2, . . . ,N , are set to li · (1 − ε). The first routing scheme
(the one used for the volume below the threshold) for each
demand uses link d , while the second routing scheme for
each demand uses link u.

Let β = (βij )i,j∈V , where βij = 1 or βij = −1 be any
vector. Define Dβ as follows: Dβ = D ∩ {t,∀i,j∈V βij (tij −
hij ) ≤ 0}. It is clear that D = ⋃

β∈{−1,1}|V |(|V |−1) Dβ . The
solution considered above is not feasible if and only if
there exists at least one β ∈ {−1,1}|V |(|V |−1) and a ma-
trix t ∈ Dβ for which the routing is not feasible. Given any
β ∈ {−1,1}|V |(|V |−1), the function max(tij −hij ,0)) can be
replaced by tij − hij if βij = −1, or by 0 if βij = 1, while
function min(tij , hij ) is equal to tij when βij = 1, and to
hij in the other case. In other words, constraint (6g) is linear
in t and has the same form for all matrices of Dβ . Conse-
quently, the existence of a matrix t ∈ Dβ for which the so-
lution above is not feasible is equivalent to the existence of
an extreme point of Dβ for which the same holds. To check

feasibility, it is then possible to consider only extreme points
of the family of polytopes Dβ , where β ∈ {−1,1}|V |(|V |−1).
This observation will be useful since the extreme points of
Dβ have a very simple structure.

Lemma 1 The given solution to VL is feasible if and only
if the answer to SL is NO.

Proof Suppose that the answer to SL is YES. Then the traf-
fic demand polytope D contains at least one extreme point
such that ∀i=1,2,...,N tsti ∈ {0, li}, and

∑N
i=1 tsti = L. Such

an extreme point requires ε · L of capacity at the link u,
which is 0.5 · ε more than the available capacity. Therefore,
the given solution to VL is not feasible.

Now assume that the solution is unfeasible, and let us
prove that the answer to SL is YES. There exists a traffic de-
mand matrix t ∈ D and a routing corresponding to this ma-
trix such that together they require more than ε · (L−0.5) of
capacity on the link u. According to the observation above,
the feasibility has to be only checked for the extreme points
of the family of polytopes Dβ . Each Dβ is described by
sets of constraints but only one of those constraints contains
more than one variable. Therefore, for each extreme point
of any Dβ , an equation tsti = {li , li · (1 − ε),0} can be not
satisfied only for one tsti , where i = 1,2, . . . ,N . Note that
li · (1 − ε) is the value of the threshold for a demand sti .

Assume that tst1 = l1 · (1−ε). Note that in this case tst1 =
hst1 so the whole tst1 is routed using a link d . The rest of the
available demands’ volume, i.e., at most L − l1 · (1 − ε) [as
a result of (7b)], has to be routed in such a way that it will
use more than ε · (L − 0.5) of the capacity of the link u. But

maxtsti ∈[0,li ]
tsti −hsti

tsti
= ε, for i = 1,2, . . . ,N . Therefore, the

remaining volume cannot use more than ε · (L − l1 + ε · l1)
of the capacity of the link u, and it is less than ε · (L −
0.5), because we assumed that l1 is an integral number and
ε < 0.5.

Knowing that ∀i=1,2,...,N tsti �= li · (1 − ε), we can con-
clude that for any extreme point of any Dβ for which the
routing solution is not feasible, an equation tsti = {li ,0} has
to be satisfied for at least all but one tsti . Assume that the
equation is not satisfied for i = N . Then constraint (7b) is
necessarily saturated. In other terms, we have M + tstN = L,
where M is the sum of volumes of the other demands. No-
tice that this implies tstN is integer. The demands other than
tstN consume at most ε · (L− tstN ) of the capacity of the link
u, so at least ε · (tstN − 0.5) has to be consumed by the de-
mand stN . Using (7a) and knowing that hstN = lN · (1 − ε)

we can write that (tstN − hstN ) ≥ ε · (tstN − 0.5). In other
words, we have lN ≥ tstN ≥ lN − 0.5·ε

1−ε
. Knowing that tstN is

integer and 0.5·ε
1−ε

< 1 we conclude that tstN = lN . It means
that the answer to SL is YES.

To finish the proof we have to consider the case where
tsti = {li ,0} is satisfied for each traffic component. If the
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constraint (7b) is saturated, then the answer to SL is still
YES. Suppose that

∑
i tsti < L. Since all tsti are integer in

this case (either equal to 0 or li ), the previous inequality be-
comes

∑
i tsti ≤ L − 1. Then the traffic sent on link u is less

than ε · (L − 1). However, the routing solution is not feasi-
ble implying that this traffic is more than ε · (L − 0.5). We
clearly get a contradiction. Said another way, The answer to
SL is always YES whenever the proposed solution to VL

is not feasible. �

Proposition 1 The decision version of Volume-Oriented
Routing is co-N P-complete.

Proof The feasibility problem is in co-N P since a cer-
tificate of a negative response is given by any matrix that
cannot be routed according to the proposed thresholds and
routing schemes. It is easy to check whether a given matrix
can be routed according to some given routing schemes. The
reduction proposed in Lemma 1 ends the proof. �

As Volume-Oriented Routing is difficult, we will con-
sider some of its interesting special cases that lead to eas-
ily solvable problems. They will be discussed in the fol-
lowing sections. Note that, according to Sect. 7, the special
case presented in Sect. 6.1 (and its modification presented in
Sect. 6.2) is very efficient.

6 Modifications

In this section we present two novel strategies. The first is
called Simplified Volume-Oriented Routing and is a simpli-
fication of Volume-Oriented Routing. The second strategy
is called General Volume-Oriented Routing. It can be seen
as a generalization of Simplified Volume-Oriented Routing.
However, it is not a simplification of Volume-Oriented Rout-
ing anymore. Thus, Simplified Volume-Oriented Routing and
General Volume-Oriented Routing cannot be considered as
simplifications or generalizations of each other.

6.1 Simplified Volume-Oriented Routing

The strategy considered in this section is a special case of
Volume-Oriented Routing. In the latter case, positions of the
thresholds are subject to optimization, while in the former
case those positions are set to the minimum values of the
corresponding demands’ volumes. The change makes the
problem polynomial.

Let us define tmin
ij as mint∈D tij , and tmax

ij as maxt∈D tij .
The formulation of Simplified Volume-Oriented Routing
modifies (6) by simplifying definitions of t ′ij and t ′′ij , i.e., it
replaces (6e) and (6f) with new constraints. The formulation
is as in (8).

Simplified Volume-Oriented Routing

Minimize: wSV O(D) =
∑

a∈A

wafa

∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (8a)

∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (8b)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (8c)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (8d)

tmin
ij = t ′ij ∀i, j ∈ V , ∀t ∈ D (8e)

tij − tmin
ij = t ′′ij ∀i, j ∈ V , ∀t ∈ D (8f)

∑

i,j∈V

(x
ij
a t ′ij + x

ij
a t ′′ij ) ≤ fa ∀a ∈ A , ∀t ∈ D (8g)

fa ≤ ca ∀a ∈ A (8h)

x
ij
p , x

ij
p ≥ 0 ∀p ∈ P(i, j), ∀i, j ∈ V (8i)

x
ij
a , x

ij
a ≥ 0 ∀a ∈ A , ∀i, j ∈ V (8j)

Moreover, as threshold variables hij are not used, in-
equalities (6i) are obsolete for Simplified Volume-Oriented
Routing.

Notice that, if tmin
ij = 0 for all i, j ∈ V then Simplified

Volume-Oriented Routing is equivalent to Robust Routing.
Then it is better to consider tmin

ij over non-dominated traf-
fic demand matrices from D, and not over the whole poly-
tope D.

The problem is polynomial, and can be easily solved us-
ing techniques presented in Sect. 2.3, i.e., using an algorithm
based on constraint generation (see [4, 5]) and path genera-
tion in an iterative way.

6.2 General Volume-Oriented Routing

The strategy considered in this section can be seen as an
extension of Simplified Volume-Oriented Routing, with more
general routing schemes.

The formulation of General Volume-Oriented Routing is
quite similar to the formulation of its predecessor, i.e., Sim-
plified Volume-Oriented Routing. The only differences are
in definitions of t ′ij and t ′′ij . The formulation of General
Volume-Oriented Routing is as in (9).

General Volume-Oriented Routing

Minimize: wGV O(D) =
∑

a∈A

wafa
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∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (9a)

∑

p∈P(i,j)

x
ij
p ≥ 1 ∀i, j ∈ V (9b)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (9c)

∑

p∈P(i,j),p�a

x
ij
p ≤ x

ij
a ∀i, j ∈ V , ∀a ∈ A (9d)

αij tij + βij = t ′ij ∀i, j ∈ V , ∀t ∈ D (9e)

(1 − αij )tij − βij = t ′′ij ∀i, j ∈ V , ∀t ∈ D (9f)

∑

i,j∈V

(x
ij
a t ′ij + x

ij
a t ′′ij ) ≤ fa ∀a ∈ A , ∀t ∈ D (9g)

fa ≤ ca ∀a ∈ A (9h)

x
ij
p , x

ij
p ≥ 0 ∀p ∈ P(i, j), ∀i, j ∈ V (9i)

x
ij
a , x

ij
a ≥ 0 ∀a ∈ A , ∀i, j ∈ V (9j)

Where vectors α and β are given, and satisfy the follow-
ing set of constraints.

αij t
min
ij + βij ≥ 0 ∀i, j ∈ V (10a)

(1 − αij )t
min
ij − βij ≥ 0 ∀i, j ∈ V (10b)

αij t
max
ij + βij ≥ 0 ∀i, j ∈ V (10c)

(1 − αij )t
max
ij − βij ≥ 0 ∀i, j ∈ V (10d)

It is obvious that Simplified Volume-Oriented Routing is
a special case of General Volume-Oriented Routing, where
αij = 0 and βij = tmin

ij , for each i, j ∈ V . An interesting
observation is that for each D there exists a simple way to
obtain an optimal pair of vectors α and β .

Proposition 2 For a given D, vectors α and β defined in
(11) yield an optimal solution, i.e., there are no cheaper so-
lutions to General Volume-Oriented Routing for any other α

and β .

αij = −tmin
ij

tmax
ij − tmin

ij

∀i, j ∈ V (11a)

βij = tmax
ij tmin

ij

tmax
ij − tmin

ij

∀i, j ∈ V (11b)

Proof Consider a capacity consumed by only one demand
ij . The constraints defining the used capacity on a link a for
General Volume-Oriented Routing can be combined into:

x
ij
a (αij tij + βij ) + x

ij
a [(1 − αij )tij − βij ]

Fig. 2 Example proving that General Volume-Oriented Routing out-
performs Simplified Volume-Oriented Routing when the hose and B-S
models are of interest

and for α and β defined as (11) into:

z
ij
a tmin

ij

tmax
ij − tij

tmax
ij − tmin

ij

+ z
ij
a tmax

ij

tij − tmin
ij

tmax
ij − tmin

ij

For the sake of clearness, in the latter case, z
ij
a was sub-

stituted for x
ij
a and z

ij
a for x

ij
a . Assume that the routing for

General Volume-Oriented Routing (with α and β denoted by
α′ and β ′) is known and expressed using vectors x and x. In
order to obtain the same results for all t ∈ D and suggested
α and β take:

z
ij
a =

(

α′
ij + β ′

ij

tmin
ij

)

x
ij
a +

(

1 − α′
ij − β ′

ij

tmin
ij

)

x
ij
a

z
ij
a =

(

α′
ij + β ′

ij

tmax
ij

)

x
ij
a +

(

1 − α′
ij − β ′

ij

tmax
ij

)

x
ij
a

It is an easy exercise to check that the obtained load on each
link will be exactly equal to what is obtained when Gen-
eral Volume-Oriented Routing is considered. Moreover, the

routing is feasible, because both z
ij
a and z

ij
a are convex com-

binations of x
ij
a and x

ij
a , for a ∈ A and i, j ∈ V . Note that

0 ≤ α′
ij + β ′

ij

tmin
ij

≤ 1, and 0 ≤ α′
ij + β ′

ij

tmax
ij

≤ 1, for all i, j ∈ V ,

because of (10). �

Alike Simplified Volume-Oriented Routing, its modifica-
tion, i.e., General Volume-Oriented Routing can be solved
in polynomial time using the techniques presented in [4, 5].

Obviously, General Volume-Oriented Routing is able to
produce routing schemes unavailable for Simplified Volume-
Oriented Routing, e.g., for tij = tmin

ij the whole demand ij is
routed using one link, while for tij = tmax

ij the whole demand
ij is routed using another link. Thus, the two approaches are
not equivalent. We give below an example showing that the
approaches can be different even if either the B-S model or
the hose model is assumed.
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Example 1 Consider a network presented in Fig. 2 with
cu = 1, for all u ∈ A . Consider three non-zero demands:
st , sc, and dt . The constraints of the B-S model are as fol-
lows: tmin

st = 1, tmax
st = 2, tmin

sc = 0, tmax
sc = 1, tmin

dt = 0,
and tmax

dt = 1. Assume k = 1. In such a network, Simplified
Volume-Oriented Routing has no solution, while the only
feasible solution for General Volume-Oriented Routing uses
a path s − a − b − t for the first routing of the demand st ,
and paths s − c − b − t and s − a − d − t for the second
routing.

The same result can be obtained for a general hose model
polytope specified as follows: four active nodes {s, t, c, d},
As = 2, Bs = 0, At = 0, Bt = 2, Ac = 0, Bc = 1, Ad = 1,
Bd = 0, and tmax

dc = 0. For a classical hose model polytope
the bound on tmax

dc has to be substituted by an additional link
of capacity 1 joining d and s.

7 Numerical results

We tested our strategies on an Intel 2.4 GHz CPU with
3.25 GB RAM, using a linear programming solver CPLEX
11.0 [15]. We built our example cases using real world
networks available in SNDlib [20]. We used atlanta and
f rance topologies. Both were tested using two different
sets of active nodes V act , and five different traffic demand
polytopes defined for each of the sets. The first polytope for
each set satisfied restrictions of the hose model presented in
Sect. 4.1. The sets of active nodes and the bounds for in-
coming and outgoing traffic were chosen at random. The
minimum traffic between a pair of node i and j , where

i, j ∈ V act , was set to
min(Ai ,Bj )

2·|V act | , and the maximum traf-

fic was set to
min(Ai ,Bj )

2 , where Ai and Bj are defined as in
Sect. 4.1. Another two traffic demand polytopes were con-
vex hulls of a number (3 or 10) of extreme points of the first
polytope. The last two polytopes were built using the B-S
polytope model presented in Sect. 4.2. The bounds were set
at random, while k was set to 10% or 20% of its maximum
value, i.e., 0.1 or 0.2 times |V act | · (|V act | − 1), depending
on the test case.

We used an evaluation strategy similar to the one pre-
sented in [6]. First, the polytopes were scaled in such a way
that the congestion, using Robust Routing, obtained for the
most loaded link was 110%. Then, in order to handle the in-
solvability of our test cases (we build them in such a way that
all networks are congested) additional uncapacitated arcs
between all pairs of active nodes were introduced. Routing
costs of these additional arcs were set in such a way that
it was approximately twenty times more expensive to use
them than paths consisting of arcs in the original network.
We can consider those arcs as possibilities to rent capacity
from other operators or as links set up using different, and
more expensive, technologies, e.g., satellite links.

The result of our experiments are presented in Table 1.
It consists of fourteen columns. The first five describe test
cases, and are as follows:

topology: name of the topology in SNDLib.
|V |: number of nodes in the network.
|A |: number of undirected links in the network. Note

that, additional expensive links are not included
here.

dim. D: dimension of the traffic demand polytope, i.e.,
|V act | · (|V act | − 1).

variant: way a traffic demand polytope was created,
hose—full hose model polytope, 3 pts. (10 pts.)—
convex hull of three (ten) random extreme points
of a full hose model polytope, B-S 10% (resp.
20%)—B-S polytope model with k = 
K ·|V act |·
(|V act | − 1)�, where K = 0.1 (resp. 0.2).

The next nine columns contain costs, gains (computed by
dividing the cost difference between Robust Routing and the
two volume-oriented strategies of Sect. 6 by the cost dif-
ference between Robust Routing and the lower bound), and
computing times of all optimization problems presented in
the paper. The following problems are considered:

Robust Routing: strategy described in Sect. 2. It is the sim-
plest routing strategy and an upper bound on costs of all
other strategies.

Lower bound: lower bound on a cost of all strategies. For
3 pts. and 10 pts. we used Dynamic Routing. Note that
computing optimal Dynamic Routing is extremely difficult
as it requires a set of routing variables for each extreme
point of a traffic demand polytope. Therefore, for hose, B-S
10%, and B-S 20% we decided to compute it for a random
set of 50 extreme points instead of taking into account the
whole D.

SVO-Routing: strategy presented in Sect. 6.1.
GVO-Routing: strategy presented in Sect. 6.2, with the op-

timal values of vectors α and β .

It is clearly seen that both tested strategies are very efficient,
and in most cases give at least 50% of the maximum possi-
ble gain, i.e., the gain given by Dynamic Routing. Moreover,
in one case they are as efficient as the mentioned Dynamic
Routing. Notice that the gains presented in this table are gen-
erally (for hose, B-S 10%, and B-S 20%) lower bounds of
the real gain since we are only able to obtain a lower bound
for the cost of Dynamic Routing.

It is worth to notice that there is no difference between
Simplified Volume-Oriented Routing and General Volume-
Oriented Routing for the hose and B-S models polytopes.
It may leave an impression that General Volume-Oriented
Routing is useless as far as those models are concerned.
However, remember that an example was given at the end
of Sect. 6 showing that Simplified Volume-Oriented Rout-
ing and General Volume-Oriented Routing are generally not
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Table 1 Performance of the presented approaches

network Robust Routing Lower bound SVO-Routing GVO-Routing

topology |V | |A | dim. D variant cost time[s] cost cost gain[%] time[s] cost gain[%] time[s]

atlanta 15 44 12 3 pts. 723.0 0.1 715.6 717.5 74.3 0.4 717.5 74.3 0.2

10 pts. 447.5 0.2 329.1 332.0 97.6 0.4 332.0 97.6 0.3

hose 442.3 0.3 317.7 380.3 ≥49.8 0.5 380.3 ≥49.8 0.5

B-S 10% 361.1 0.1 286.7 287.9 ≥98.4 0.2 287.9 ≥98.4 0.2

B-S 20% 343.0 0.2 193.6 291.8 ≥34.3 0.3 291.8 ≥34.3 0.5

30 3 pts. 410.7 0.6 389.6 395.2 73.5 0.7 393.5 81.5 0.9

10 pts. 448.8 0.7 400.6 420.5 58.7 1.6 420.4 58.9 2.5

hose 443.5 3.1 265.7 402.1 ≥23.3 7.0 402.1 ≥23.3 9.9

B-S 10% 625.7 1.0 264.5 350.6 ≥76.2 6.1 350.6 ≥76.2 10.5

B-S 20% 506.1 1.4 315.3 448.0 ≥30.5 11.0 448.0 ≥30.5 25.9

france 25 90 20 3 pts. 332.4 0.6 317.8 317.8 100.0 0.7 317.8 100.0 0.8

10 pts. 353.6 0.8 320.3 324.1 88.6 0.8 324.1 88.6 1.6

hose 357.0 1.6 321.4 328.9 ≥78.9 1.9 328.9 ≥78.9 3.0

B-S 10% 394.5 1.4 263.9 371.5 ≥17.6 2.7 371.5 ≥17.6 4.3

B-S 20% 483.6 1.7 296.9 477.9 ≥3.1 4.9 477.9 ≥3.1 8.8

56 3 pts. 652.3 3.6 614.1 619.6 85.6 3.7 619.3 86.4 3.4

10 pts. 695.4 8.6 520.5 574.2 69.3 22.7 565.1 74.5 37.3

hose 649.2 495.0 278.3 525.4 ≥33.4 1336.4 525.4 ≥33.4 3401.0

B-S 10% 854.5 33.2 314.0 802.8 ≥9.6 177.4 802.8 ≥9.6 765.1

B-S 20% 518.7 11.5 261.1 516.3 ≥0.9 605.7 ≤516.3 ≥0.9 7200.0

equivalent when either the hose or the B-S models are con-
sidered.

Going back to the computational results, the obtained
running times are satisfactory, and prove that the strategies
can be successfully implemented in medium size networks.
The 7200-second time limit was hit only once. However, we
were still able to obtain a feasible solution to the problem
(that is why the cost is presented using a sign ≤).

8 Conclusion

In the paper we presented a novel routing paradigm—
Volume-Oriented Routing that is supposed to merge the ef-
ficiency of Dynamic Routing with the simplicity of Robust
Routing. We showed that the problem of providing an op-
timal solution satisfying Volume-Oriented Routing is dif-
ficult in general. However, we presented a way to cope
with this difficulty, i.e., Simplified Volume-Oriented Routing
and General Volume-Oriented Routing, which are polyno-
mially solvable modifications of Volume-Oriented Routing.
We showed that Simplified Volume-Oriented Routing cannot
outperform General Volume-Oriented Routing as far as cost
is concerned. Numerical results proved the applicability of
the approaches.

Finally, Volume-Oriented Routing and Simplified Volume-
Oriented Routing can be easily implemented since only lo-
cal information is required for routing. Two routing schemes
for demand tij have to be memorized in the routing table
of node i: the first scheme is used until the demand vol-
ume achieves the threshold hij , and then all extra traffic is
routed according to the second scheme. The implementation
of General Volume-Oriented Routing is slightly more com-
plex, although still decentralized.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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