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Abstract In this paper, we propose a routing optimization
algorithm to efficiently determine an optimal path from a
source to a destination in mobile ad-hoc networks. To deter-
mine an optimal path for the nodes is important for trans-
mitting data between nodes in densely deployed networks.
In order to efficiently transmit data to its destination, the ap-
propriate routing algorithms must be implemented in mobile
ad-hoc networks. The proposed algorithm is designed by us-
ing a tabu search mechanism that is a representative meta-
heuristic algorithm. The proposed tabu search algorithm car-
ries out two neighborhood generating operations in order to
determine an optimal path and minimize algorithm execu-
tion time. We compare the proposed tabu search algorithm
with other meta-heuristic algorithms, which are the genetic
algorithm and the simulated annealing, in terms of the rout-
ing cost and algorithm execution time. The comparison re-
sults show that the proposed tabu search algorithm outper-
forms the other algorithms and that it is suitable for adapting
the routing optimization problem.

Keywords Routing optimization problem · Tabu search ·
Genetic algorithm · Simulated annealing · Mobile ad-hoc
networks · Meta-heuristic algorithm

1 Introduction

There have been many recent studies on mobile ad-hoc
networks due to increased user interest in ubiquitous net-
working. In various environments, such as territorial, un-
derground and underwater environments, a mobile ad-hoc
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network is a networking technology where users can eas-
ily communicate with their destination by deploying mobile
nodes in areas where there are no infrastructure networks or
in areas where it is difficult to establish the network. Mobile
ad-hoc networks have a lot of applications in industry, sci-
ence, military and various environments. In order to provide
these applications, mobile ad-hoc networks require appro-
priate network protocols including medium access control
and routing protocols, to efficiently transmit data to their
proper destinations.

The protocols of traditional wireless networks are diffi-
cult to apply to mobile ad-hoc networks because of different
network factors. Unlike the nodes of traditional wireless net-
works, such as cellular networks, the nodes of mobile ad-hoc
networks have limited bandwidth and low-power batteries.
Moreover, the nodes’ batteries may be constrained, and they
can be difficult to recharge and replace after the nodes have
been deployed. Thus, it is necessary to consider the specific
factors of the networks in the process of developing the pro-
tocols for mobile ad-hoc networks.

In terms of the routing problem in mobile ad-hoc net-
works, if the optimal path has not been determined for trans-
mitting data from a source to a destination, then serious
problems such as high transmission delay and high energy
consumption by these nodes will occur. Thus, it is certainly
necessary for a routing optimization algorithm to solve this
problem. Especially, in a densely deployed network, the
routing optimization problem involves a classical combina-
torial optimization problem. It was proven to be a NP-hard
problem with computational effort growing exponentially
with the number of nodes and links in the networks [1].

A routing algorithm in mobile ad-hoc networks requires
a time-constraint service to determine a path from a source
to a destination since the topologies of mobile ad-hoc net-
works are more frequently changed than those of other types

mailto:jangkw@hhu.ac.kr


178 K.-W. Jang

of networks. If the routing algorithm cannot provide a time-
constraint service, then the nodes cannot properly transmit
data to the destinations on time. Thus, in order to provide
time-constraint services, the routing algorithm should find
an optimal solution within a reasonable time. In order to
solve this problem, most recent studies on such problems
seem to focus on heuristic algorithms. Among heuristic al-
gorithms, the exhaustive search algorithm is a general tech-
nique that consists of systematically enumerating all pos-
sible candidates for finding a global solution for NP-hard
problems, and the routing optimization problem can also be
solved by using this algorithm. However, finding the optimal
solution by using this algorithm requires excessive compu-
tational time. To avoid numerical difficulties and reduce the
computational burden, efforts have been devoted in finding
high-quality solutions in a reasonable computational time by
meta-heuristic optimization techniques instead of finding a
global solution [2, 3]. Though meta-heuristic algorithms do
not guarantee achieving the optimum solution, these algo-
rithms will achieve an acceptable solution in a reasonable
time.

In this paper, we propose a routing optimization algo-
rithm to minimize the route cost from a source to a desti-
nation within a reasonable time in mobile ad-hoc networks.
We develop the proposed algorithm by using the tabu search
algorithm that is a representative meta-heuristic algorithm.
In order to make a search more efficient, we propose some
neighborhood generating operations for the proposed algo-
rithm. To evaluate the proposed algorithm, we compare the
proposed algorithm with other meta-heuristic algorithms,
which are the genetic algorithm and the simulated anneal-
ing, under various conditions.

2 Related work

2.1 Routing protocols for mobile ad-hoc networks

In wired networks, traditional routing protocols are usually
based on link state or distance vector algorithms such as the
Dijkstra algorithm or the Bellman-Ford algorithm. Vasilakos
et al. [4] proposed a computational intelligence approach
for optimizing the routing in hierarchical ATM networks.
This approach aims to efficiently allocate the network re-
sources while ensuring the quality of service requirements
for each connection. In wireless networks, possibly mobile,
multi-hop network, different approaches are required. Rout-
ing protocols should be distributed, have low overhead, be
self-configuring and be able to cope with frequently chang-
ing network topologies [5]. Due to this requirement, a large
number of routing protocols have recently been developed
for ad-hoc networks. These protocols for mobile ad-hoc net-
works are commonly classified [6] as either table-driven

or proactive protocols, which do try to keep accurate in-
formation in their routing tables, or as on-demand proto-
cols, which only construct routing tables when data is sent
to a destination. The destination sequenced distance vector
[7] and the wireless routing protocol [8] are popular exam-
ples of table-driven protocols. Dynamic source routing [9],
on-demand distance vector routing and associativity-based
routing [10] are representative on-demand protocols. Energy
efficiency is an important consideration for mobile ad-hoc
networks. For energy efficiency, it may be desirable to use
not only a single path between a source and a destination
but to explore multiple paths. The traditional multiple rout-
ing schemes [11–13] have also been considered in mobile
ad-hoc networks. Determining the optimized path between
source and destination nodes under several constrains is a
very important key in many routing protocols. However, by
using traditional algorithms, it is difficult to find a solution
within an acceptable computation time because if there are
a large number of nodes in the network, then the routing op-
timization problem is NP-hard.

Some routing protocols for delay tolerant networks have
also been proposed to overcome frequent, long-duration
connectivity disruptions. They are classified into three
types: deterministic, enforced, and opportunistic approach
[14, 15]. The deterministic approach can be designed when
the information of network is known in advance. Jain et al.
[2] proposed not only a modified Dijkstra algorithm based
on knowledge oracles, but they also presented a framework
for evaluating routing algorithms in delay tolerant networks.
The enforced approach provides special mobile nodes to
make a connection between disconnected parts of network.
Zhao et al. [3] have presented a mobility-assisted approach
that uses a set of mobile nodes to provide communication
service in mobile ad hoc networks. Vasilakos et al. [14] pro-
posed a routing algorithm on opportunistic approach to de-
lay tolerant network routing. They presented the opportunis-
tic routing design space by drawing the correspondence be-
tween the proposed delay tolerant network taxonomy and
the basic opportunistic routing building blocks.

2.2 Meta-heuristic algorithms

Meta-heuristic algorithms have been devised to solve the
aforementioned problems. These algorithms can find the
proper solutions for the NP-hard problems in a reasonable
time. The tabu search [16, 17] is a mathematical optimiza-
tion method that belongs to the local search techniques. It
enhances the performance of the local search method by us-
ing memory structures. The tabu lists contain attributes that
are much more effective, but they raise a new problem. Typ-
ically, more than one solution is declared as tabu and some
of these solutions may possess excellent qualities that may
have not yet been visited. To overcome this problem, the as-
piration criteria are introduced to allow the overriding tabu
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state of the solution. The commonly used aspiration criterion
is allowing the use of better solutions than the best currently
known solutions. The genetic algorithm [18, 19] consists of
powerful and broadly applicable stochastic search and opti-
mization techniques based on the principles of evolution the-
ory. This algorithm has received considerable attention with
respect to its potential as an optimizing technique for com-
plex problems. It has been successfully applied to industrial
engineering such as a fuzzy system, which can be referred
in neuro system, bio intelligent system, and ambient intel-
ligence applications [20, 21]. Vasilakos et al. [22] proposed
a fuzzy-set logic based genetic algorithms for inter-domain
routing of broadband network connections with quality of
service requirements in an integrated ATM and SDH net-
working architecture. The simulated annealing [23, 24] has
been introduced by Kirkpatrick et al. and Cerny as an alter-
native of the local search method. It has been successfully
applied to many combinatorial optimization problems. The
simulated annealing algorithm is an approach to search for
the optimal solution by attempting to avoid entrapment in
poor local optima by allowing an occasional uphill move of
the inferior solutions. This algorithm was shown to be su-
perior in various combinatorial optimization problems. The
solution representation, the energy function and several an-
nealing parameters have to be determined to successfully
apply this algorithm to various combinatorial optimization
problems. Moreover, the initial solution, initial temperature
and the cooling and stopping criterion have to be initialized.

3 Problem formulation

In order to describe the formulation of the routing opti-
mization problem, we present some notations used in the
proposed algorithm. The following notations will be used
throughout the remainder of this paper.

Notations

N the number of nodes
L the number of links
ni the identification of node i

lij the direct link from node i to node j

V {n1, n2, . . . , nN }
E {l12, l13, . . . , lL−1,L}
S source node
D destination node
Ii ith intermediate node
νi the cost of ni

λij the cost of lij
� set of the nodes from S and D in the routing path

= {S, I1, I2, . . . , Im,D}
� set of the links from S and D in the routing path

= {λSI1, λI1I2, λI2I3, . . . , λIm−1Im,λImD}

Fig. 1 Network model

C the total cost of a routing path

We first describe the network model and assumptions for
the routing optimization algorithm. The network model is
a flat architecture as shown in Fig. 1. The topology of mo-
bile ad-hoc networks can be specified by a directed graph
G = (V ,E), where V is a set of nodes with |V | = N and E

is a set of its links. The nodes can transmit data to another
node within a transmission range. Due to the transmission
range of each node, a node can directly transmit data to a
destination or through another node in the network. In this
figure, to transmit data from a source to a destination, each
node has to send data through some intermediate nodes. The
state of the links can vary according to the distance between
communication nodes or the surrounding environment. Con-
sidering this point, the cost of each link is applied to a dif-
ferent value in the network model.

In this network model, we present some assumption to
apply to the proposed algorithm. We assume every node
can bi-directionally communicate with neighboring nodes
via the link between the nodes. Every node has the same
data processing capabilities and communication range. We
search an optimal solution for the routing optimization prob-
lem that includes the total cost of nodes and links in the
network model. To design the algorithm, we assume every
node knows, a priori, the information of all the nodes and
links of the networks by using another management proto-
col [5]. The cost of each node is determined in proportion
to the number of its links, and the cost of each link is deter-
mined by the distance between source and destination nodes.
Therefore, the routing optimization problem in this paper
can be formulated as a combinatorial optimization problem
minimizing the objective function as follows:

minimize

C =
D∑

i=S

νi +
D∑

i,j=S
i �=j

λij (1)
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X0 = genInitSolution();
// generate stochastically an initial solution, X0 with a uniform random number generator.
Xb = X0,Xc = X0; // a best solution: Xb, a current solution: Xc.
insertTabulist(X0); // insert X0 into tabu list.
for (i = 0; i < Kmax; ) //Kmax is the number of iteration.

Srm = removeMove(Xc);
// generate new solutions, Srm, by removing move for all nodes of Xc.
Srp = replaceMove(Xc);
// generate new solutions, Srp, by replacing move for all nodes of Xc.
S = selBestSolution(Srm,Srp); // select a new best solution, S, among Srm and Srp.
for (;;) {

if (isTabulist(S)) // check whether S exists in tabu list.
S = selNextSolution(Srm,Srp); // select a next best solution among Srm and Srp.

else break; // if not, break loop.
}
D = cost(S) − cost(Xb); // calculate the difference value, D, between cost(S) and cost(Xb).
if (D < 0){

Xb = S, i = 0; // if D is negative value, assign S to Xb, and set i = 0.
}
else i + +; // increase the number of iteration.
insertTabulist(S); // insert S into tabu list.
Xc = S; // assign S to Xc.

}
B = Xb; // the final best solution, Xb, is the final solution, B.

Fig. 2 The procedure of the proposed tabu search

subject to

νi ∈ � for i = 1, . . . ,N (2)

and

λij ∈ � for i, j = 1, . . . ,L (3)

In (1), the objective function is to minimize the routing cost
of each node that is deployed in the networks. The constraint
in (2) and (3) implies that we calculate the routing cost with
the computation cost of nodes and the transmission cost of
links between a source and a designated destination in the
routing path.

4 Tabu search algorithm

The tabu search algorithm, which was first proposed by Fred
Glover [16, 17], is based on using the mechanisms that are
inspired by the human memory. The proposed tabu search
algorithm is characterized by the following steps:

Step 1: The construction of an initial solution
Step 2: The structure of generating the neighborhood solu-
tions

(a) The remove move operation

(b) The replace move operation
(c) Selecting an inferior solution

Step 3: Repeat step 2 until the termination criterion is met

To find an optimal solution, the tabu search first stochasti-
cally generates an initial solution with the feasible state. The
initial solution becomes simultaneously a best solution and a
current solution, and this solution is inserted into a memory
list, which is called the tabu list. The tabu list is one of the
mechanisms to prevent cycling and guide the search toward
unexplored regions of the solution space. The dynamic size
of a tabu list plays an important role in finding the better so-
lutions for NP-hard problem [25]. In our experiment, for any
given number of nodes N , the size of a tabu list is reset every
20 iterations to the value of between [N,3N ] uniformly dis-
tributed. Once the tabu list is full, the oldest element of the
tabu list is removed as a new one is added. The tabu search
generates neighborhood solutions for the current solution,
and the tabu search then updates the current solution with
the tabu list during successive iterations. In each iteration,
the set of neighbors of the current solution is built by the
neighborhood generating operations, and only the neighbor
with the highest value is selected as the new best solution of
the next iteration. If there is no new best solution in the tabu
list, then the new best solution is accepted in the process
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of selecting candidate solutions; otherwise, another solution
that has the next highest value becomes a candidate solution.
The cost of the new best solution is compared with the cost
of the best solution. If the cost of the new best solution is
better than the cost of the current best solution, then the new
best solution is accepted as the best solution; otherwise, the
number of iteration only increases. Irrespective of the result
of the cost function comparison, the new best solution is in-
serted into the tabu list, and it is assigned the current solution
of the next generation. Figure 2 presents the procedure of the
proposed tabu search for the routing optimization problem.

4.1 Solution encoding

We consider solution encoding for producing an initial solu-
tion in the meta-heuristic algorithm. Traditionally, solution
encodings have been binary strings [26]. Encoding with us-
ing integer values can be more efficient for the combinator-
ial optimization. This was the approach that we took in this
analysis. We need a table for encoding the solutions, i.e., the
node table. The node table includes the identification of the
neighboring nodes and link cost. According to this table, the
solutions of the proposed algorithm consist of the sequences
of integer values identifying the nodes that represent a path
from a source to a destination, as is shown in Fig. 3.

4.2 Initial solution production

If the solution encoding is decided, then the initial solution
for the proposed algorithm is made as follows. The identifi-
cation of the source node is inserted into the first element of
the initial solution. Next, a neighboring node that connects
with the source node is randomly selected. If the selected
node is not a member of the initial solution, then the se-
lected node is inserted into the initial solution. If not, then
the selected node is discarded and another node is randomly

Fig. 3 Solution encoding

selected again. This reason is to prevent a routing loop. Ac-
cording to the same mechanism, a neighboring node that
connects with the selected node is randomly selected and
is inserted into the initial solution. The mechanism for pro-
ducing the initial solution is iteratively operated until the se-
lected node is the destination node. The initial solution pro-
duced by the production operation is calculated according to
the cost function, Cost(), which calculates the cost of each
solution by using the objective function. Figure 4 presents
the production procedure of the initial solution for the pro-
posed algorithm.

4.3 Repair function

Before describing the neighborhood generating operations
of the proposed tabu search algorithm, we first present the
repair function that is used for infeasible solutions. Meta-
heuristic algorithms use several neighborhood generating
operations to obtain an optimal solution. For example, the
proposed tabu search algorithm uses two neighborhood gen-
erating operations for achieving the optimal solution. The
solution produced from the neighborhood generating oper-
ations is divided into the feasible or infeasible solutions. In
most of the previous studies, the infeasible solution is il-
luminated or regarded as the feasible solution by using the
penalty function. However, we change the infeasible solu-
tion into the feasible solution by using a repair function.

The repair function has a mechanism that modifies an in-
feasible solution to a feasible solution. The repair function
of the proposed algorithm is divided into two mechanisms;
Repair 1 and Repair 2. After performing the neighborhood
generating operation of the proposed algorithm, if a new
produced solution is infeasible, Repair 1 is applied to this
infeasible solution. After Repair 1 has been carried out com-
pletely, if the solution is feasible, the solution is accepted as
a candidate solution. If not, we perform Repair 2. After Re-
pair 2 is performed, if the solution is feasible, the solution is
accepted as a candidate solution; otherwise, the solution is
rejected. Figure 5 presents the diagram of the repair function
for the proposed algorithm.

By using a network example, as is shown in Fig. 6(a),
we describe the operation of the repair function. In the net-

We insert the source node into X0[0], where X0 is an initial solution.
for (i = 0; ; ) {

s = selNode(X0[i + +]); // select randomly a node connected with X0[i], where s /∈ X0

if (s == D) break;
else insNode(s, i,X0); // insert s into X0

}
insNode(s, i,X0); // insert D into X0

Cost(X0); // calculate the cost of X0

Fig. 4 The production procedure for the initial solution
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work, we assume that node 1 is a source, and node 6 is
a destination. In the first step, s1, of Fig. 6(b), solution 1
is the current solution, and the second element, 2, of the
solution is removed by the remove move operation of the
tabu search. Repair 1 first finds the position, called the in-

Fig. 5 A diagram of the repair function

feasible point, of the infeasible solution. That is, Repair 1
checks the location of the solution that is disconnected be-
tween neighboring elements of the solution. After perform-
ing the remove move operation, 1 and 5 of the solution in
the second step, s2, have no connection; thus, this solu-
tion is infeasible. To make this solution feasible, Repair 1
checks elements in the solution. If any element is found,
then it is inserted into the infeasible point. Using this op-
eration, in s2 of Fig. 6(b), node 3 is selected in the solution
and is then inserted into the second position of the solution.
During this operation, intermediate nodes are deleted in the
solution. Thus, node 5 is removed in the solution in s3 of
Fig. 6(b). If no element is found in s2, then Repair 2 is per-
formed for this solution. Repair 2 also finds the infeasible
point of the solution. In Fig. 6(c), solution 2 is the current
solution and after performing the remove move operation of
the tabu search, the infeasible point of the solution is the
second position of the solution. This case cannot be fea-
sible by Repair 1, and thus Repair 2 is performed for this
solution. We check whether or not there is a node that can
concurrently connect with nodes 1 and 5, where the node is
excluded in solution 2. Thus, node 2 is excluded and node
3 is selected. The selected node 3 is inserted between nodes
1 and 5. Finally, the solution is feasible. However, after per-
forming two repair mechanisms, if any solution is infeasible,
then the solution is rejected. Next, we describe two neigh-
borhood generating operations of the proposed tabu search
algorithm.

Fig. 6 An example of the repair
function
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4.4 Remove move operation

In the remove move operation, an element of the current so-
lution is selected in the regular sequence, and then the se-
lected element is deleted from the current solution. For ex-
ample, if the second element is selected as shown in Fig. 7,
then node 4 is removed from the current solution, and a
new solution is produced. If the new solution is feasible,
then it is accepted. However, if not, the current solution is
changed to feasible by using the repair function, as is shown
in Fig. 7. A new solution produced by the neighborhood gen-
erating operations is calculated according to the cost func-
tion with the objective function. Figure 8 presents the pro-
cedure of the remove move operation of the proposed tabu
search.

4.5 Replace move operation

Like the remove move operation, the replace move opera-
tion is applied to all the elements of the current solution in a
regular sequence. If the current node has more than an out-
going link, then a neighbor node of the current node is se-
lected. A new solution is produced by replacing the selected
node by the current node of the current solution. If the new
solution is feasible, then it is accepted; otherwise, the state
of the current solution is changed to feasible by using the re-
pair function, as is shown in Fig. 9. Fig. 10 presents the pro-

Fig. 7 An example of the remove move operation

cedure of the replace move operation of the proposed tabu
search.

4.6 Termination criterion

The termination criterion of the proposed tabu search algo-
rithm is defined as the number of iterations without finding
an improvement in the best feasible solution. The perfor-
mance of the proposed tabu search algorithm, when the ter-
mination criterion is 10, 50, 100, or 200 iterations, is evalu-
ated by numerical examples in Sect. 6.

5 Other meta-heuristic algorithms

In order to evaluate the proposed tabu search algorithm, we
compare it with other meta-heuristic algorithms, which are
the genetic algorithm and the simulated annealing, because
other existing algorithms have not been addressed for the
proposed network model. In addition, since the exhaustive
search algorithm searches all candidate solutions, it is practi-
cally impossible to find an optimal solution for this problem
using the exhaustive search algorithm. Therefore, we com-
pare the proposed tabu search algorithm with other meta-
heuristic algorithms. To do this comparison, we develop two
representative meta-heuristic algorithms, which are the ge-
netic algorithm and the simulated annealing, for the routing
optimization problem. Two algorithms also use the same so-
lution encoding, the production operation of the initial solu-
tion and the repair function proposed in this paper. We next
describe the operation of the genetic algorithm and the sim-
ulated annealing.

5.1 Genetic algorithm

The genetic algorithm, which was introduced by Holland
[27] and was further described by Goldberg [28], is a sto-
chastic optimization technique. The genetic algorithm is
characterized by the following steps:

Step 1: The generation of the initial population
Step 2: The selection of the parent solutions for breeding

for (i = 1; i < length(Xc); i + +){//Xc is a current solution.
X = removeOp(Xc, i); // generate a new solution, X, by subtracting ith node of Xc.
// X: a new feasible solution derived by the remove move operation
if (feasible(X)) accept(X); // if X is feasible, accept X.
else repair(X); // if X is infeasible, call repair function.
Cost(X); // calculate the cost of X.

}

Fig. 8 The procedure of the remove move operation
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(a) The crossover operation
(b) The mutation operation

Fig. 9 An example of the replace move operation

(c) Selecting the inferior solutions

Step 3: Repeat step 2 until the termination criterion is met

The crossover and mutation operations are of significant im-
portance for achieving an effective genetic algorithm. The
crossover operation dictates the rate of convergence, while
the mutation operation prevents the algorithm from prema-
turely converging with a local optimal solution. The num-
bers of solutions that are produced by each generation are
tunable parameters that remain constant during a specific it-
eration. Figure 11 presents the detail procedure of the ge-
netic algorithm for solving the routing optimization prob-
lem.

5.1.1 Crossover operation

The crossover operation between two chromosomes is con-
ducted among each corresponding set of genes with the
crossover probability p, as is shown in Fig. 12. First, two
chromosomes are selected as the crossover partner; next,

for (i = 1; i < length(Xc); i + +){//Xc is a current solution.
if (degree(Xc[i]) > 1) {// if the degree of Xc is more than one

B = selNode(Xc[i]) // select a neighbor node, B, of Xc[i].
X = replaceOp(Xc, i,B);
// generate a new solution, X, by replacing B with the ith node of Xc.
// X is a new feasible solution derived by the replace move.
if (feasible(X))accept(X); // if X is feasible, accept X.
else repair(X); // if X is infeasible, call repair function.
Cost(X); // calculate the cost of X.

}
}

Fig. 10 The procedure of the replace move operation

X[Np] = genInitChromosome();
/* generate stochastically initial chromosomes, X[Np], with a uniform random number, where Np is the number

of population */
for (i = 0; i < Kmax; i + +) {//Kmax is the generation number.

X[Nc] = crossover(Np,X[Np],p);
// generate new chromosomes, X[Nc], using crossover method with crossover probability p.
// Nc is the number of population that are produced by the crossover method.
X[Nm] = mutation(Np,X[Np], q);
// generate new chromosomes, X[Nm], using mutation method with mutation probability q.
// Nm is the number of population that are produced by the mutation method.
X[Np]new = selNewChromosome(X[Np],X[Nc],X[Nm]);
// select new best chromosomes, X[Np]new, among X[Np],X[Nc], and X[Nm].
X[Np] = X[Np]new; // assign X[Np]new to current chromosomes, X[Np].

}
B = selBestChromosome(X[Np]); // select the best chromosome, B.

Fig. 11 The procedure of the genetic algorithm
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makePairs(X[N]); // make pairs for all the chromosomes.
// X[N] is current(initial) chromosomes and N is the population of chromosomes.
for (i = 0; i < N∗p; i + +) {

// randomly select a pairs(c1, c2) in X[N], where c1 and c2 are chromosomes of X[N].
selPairs(X[N]);
k = rand(1, min(size(c1), size(c2))); // randomly generate a cross-point, k.
Xc[i] = exchangePairs(c1, c2, k);
// exchange corresponding genes of each chromosome from position k.
// Xc[i] are two new chromosomes derived by the crossover operation.
if (feasible(Xc[i])) accept(Xc[i]) // if Xc[i] is feasible, accept Xc[i].
else repair(Xc[i]) // if Xc[i] is infeasible, call repair function.
Cost(Xc[i]); // calculate the cost of Xc[i].

}

Fig. 12 The procedure of the crossover operation

for (i = 0; i < N∗q; i + +) {
x = selChromosome(X[N]); // randomly select a chromosome, x.
s = selGene(x); // randomly select a position, s, of x.
g = genNewGene(gene(s)); // randomly generate a new gene, g.
Xm[i] = exchange(x, s, g); // replace the gene of position s of x by g.
// Xm[i] is a new chromosome derived by the mutation operation.
if (feasible(Xm[i])) accept(Xm[i]); // if Xm[i] is feasible, accept Xm[i].
else repair(Xm[i]); // if Xm[i] is infeasible, call repair function.
Cost(Xm[i]); // calculate the cost of Xm[i].

}

Fig. 13 The procedure of the mutation operation

the crossover operation exchanges the corresponding genes
of the two chromosomes. In the crossover operation, all the
corresponding lower genes are exchanged when a gene of
a chromosome is exchanged with the corresponding gene
of another chromosome. The crossover procedure of the ge-
netic algorithm is as follows:

Step 1: Group the chromosomes of the initial population by
pairs and then select a pair of chromosomes.

Step 2: Randomly generate a cross-point and then exchange
the corresponding genes of each chromosome from the
cross-point.

Step 3: Check whether or not the two new chromosomes are
feasible. If not, then change the state of the chromosome
into feasible by using the repair function.

Step 4: Repeat step 2 during the iterations of (N∗p).

5.1.2 Mutation operation

The mutation operation is applied to the set of genes of
all the chromosomes with the mutation probability q , as is
shown in Fig. 13. The mutation operation changes or flips a
gene of the candidate chromosomes to keep away from the

local optima. The mutation procedure of the genetic algo-
rithm is as follows:

Step 1: Randomly select a population of chromosomes and
then select a gene of this chromosome.

Step 2: Randomly generate a new gene and then replace the
selected gene of the candidate chromosome by the new
gene.

Step 3: Check whether or not a new chromosome is feasi-
ble. If not, then change its state into feasible by using the
repair function.

Step 4: Repeat step 2 during the iterations of (N∗q).

5.2 Simulated annealing

The idea of the simulated annealing is based on two re-
sults of statistical physics. First, if a physical system has a
given energy when the thermodynamic balance is reached
at a given temperature, then the probability of the system is
proportional to the Boltzmann factor. Second, the Metropo-
lis algorithm [29] can be utilized to simulate the evolution
of a physical system at a given temperature.

The simulated annealing produces an initial solution by
using the method of creating the initial solution that was pre-
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X0 = genInitSolution();
// generate stochastically an initial solution, X0 with a uniform random number generator.
Xb = X0; // best solution: Xb.
for (i = Tinit ; i < Tf inal; i∗ = α) {
// Tinit is an initial temperature, Tf inal is a final temperature, and α is a cooling parameter.

for (j = 0; j < Kmax; j + +) {//Kmax is the number of iteration.
for (k = 0; k <length(Xb); ) {

if (rand(0,1) < β) // β is an operation threshold.
X = removeOp(Xb); // generate a new solution, X, by the exchange operation.

else
X = replaceOp(Xb); // generate a new solution, X, by the replace operation.

D = cost(X) − cost(Xb);
// calculate the difference value, D, between cost(X) and cost(Xb).
if (D < 0)Xb = X; // if D is a negative value, assign X to Xb.
else if (rand(0,1) < exp(D/i))Xb = X;
// by the Boltzmann distribution for energy states at thermal equilibrium.
else k + +;

}
}

}
B = Xb; // the final best solution, Xb, is the best solution, B.

Fig. 14 The procedure of the simulated annealing

viously mentioned. The algorithm decreases a given temper-
ature by multiplying the cooling parameter, α, of the initial
temperature, Tinit , by the final temperature, Tf inal . During
this period, the algorithm is iteratively operated. In the al-
gorithm iteration, new solutions, X, are produced by one
of the two neighborhood generating operations that adapt
to the current solution, Xb. The two neighborhood generat-
ing operations are the exchange and the replace operations
that have been described in the tabu search. The probabil-
ity of selecting the neighborhood generating operations de-
pends on the given operation threshold, β . The cost of X is
compared with the cost of Xb . According to the comparison
result, X is accepted as Xb, or X is applied to the Boltz-
mann factor. That is, if the difference value, D, between the
cost of X and the cost of Xb is less than zero, then X is ac-
cepted as Xb; otherwise, a random number that is uniformly
distributed in the interval (0, 1) is selected, and this number
is compared with the Boltzmann factor, exp(D/T ). Here, T

is a control parameter that is known as the system parame-
ter. If this number is less than the Boltzmann factor, then X

is accepted as Xb; otherwise, X is rejected and Xb is kept.
Figure 14 presents the overall operation of the simulated an-
nealing for the routing optimization problem.

6 Numerical examples

In this section, we compare the proposed tabu search al-
gorithm with two meta-heuristic algorithms, the genetic al-

Table 1 Problems for the experiment

Problem # of nodes # of links

A 80 225

B 160 456

C 320 923

D 640 1862

gorithm and the simulated annealing, via computer experi-
ments. All the experiments are implemented with the use of
C++, and they are performed on a 1.80 GHz Pentium®4 that
is equipped with a Windows OS, 2 GB of memory and an
Intel® processor. The algorithms were applied to optimize
the routing problems with four different network topologies.
The topologies are called problems A, B, C and D. Each
problem contains some nodes and links, as is shown in Ta-
ble 1. Moreover, the parameters of the algorithms that are
used in the experiments are shown in Table 2.

We measured the routing cost of the tabu search with the
number of iterations: 10, 50, 100 and 200. Figure 15(a) plots
the minimum routing cost as a function of four problems for
the proposed tabu search. In general, if the number of itera-
tions increases in the tabu search algorithm, the probability
of finding the optimal solution increases. In this figure, we
observe that the results of the minimum routing cost are sim-
ilarly represented irrespective of the number of iterations in
the small size network. This means that the proposed algo-
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rithm can find an optimal solution in the small size network
though a small number of iterations are applied to the pro-
posed tabu search. On the other hand, by increasing the num-
ber of nodes in the network, we see that the tabu search with
the larger number of iterations finds an optimal solution with
better performance. However, the minimum routing cost of
the tabu search with Kmax = 100 is similar to that of the tabu
search with Kmax = 200. This is due to the fact that there is
little gain in exceeding Kmax = 100 for this problem. Fig-
ure 15(b) shows the average execution time as a function of
four problems of the proposed tabu search. For all problems,
by increasing the number of iterations, the average execu-
tion time of the tabu search increases. The average execution

Table 2 The parameters of the meta-heuristic algorithms

Algorithms Parameters Values

Tabu search Kmax 10/50/100/200

Genetic algorithm Np 50

p 1/0.5

q 1/0.5/0.25

Kmax 100

Simulated annealing Tinit 0.1

Tf inal 0.00005

α 0.1

β 0.1/0.3/0.5/0.7/0.9

Kmax 100

time and the routing cost of the nodes are trade-off factors,
so these two factors must be simultaneously considered and
balanced by the routing algorithm.

The crossover probability, p, is set to 1 or 0.5, and the
mutation probability, q , is set to 1, 0.5 or 0.25, in all the ge-
netic algorithm experiments. We run the experiment under
the combinations of two parameters, p and q . We experi-
mented with six cases of mixed crossover probability and
mutation probability to measure the optimal cost of solu-
tion of the genetic algorithm; if the value of p is equal to
1, the crossover operation for all the population of the ge-
netic algorithm is carried out; however, if the value of p is
equal to 0.5, then the crossover operation for half the pop-
ulation is carried out. Likewise, the mutation operation is
performed according to the value of q . The initial popula-
tion for problems A, B, C, and D is set to 50, and the gen-
eration number is set to 100. We chose the best case of the
cost and the execution time for 10 runs. Figure 16(a) shows
the minimum routing cost as a function of four problems
for the genetic algorithm. The results of minimum routing
cost for all the cases are slightly different in relation to p

and q in all the problems. Especially, the performance of the
generic algorithm with a high mutation probability is more
improved in other cases. Figure 16(b) shows the average ex-
ecution time as a function of four problems of the genetic
algorithm. This figure shows that by increasing p and q , the
average execution time of the genetic algorithm increases.
Moreover, the results of average execution time for all the
cases also increase in proportion to the number of nodes in

Fig. 15 Comparison results as a function of four problems for the tabu search
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Fig. 16 Comparison results as a function of four problems for the genetic algorithm

Fig. 17 Comparison results as a function of four problems for the simulated annealing

the four problems. In Fig. 16(a) and (b), we can see that we
must also consider simultaneously the probabilities of the
crossover and mutation to minimize the average execution
time and the routing cost of nodes for solving the routing
problem with using the genetic algorithm.

Figure 17(a) shows the minimum routing cost as a func-
tion of four problems for the simulated annealing. We mea-
sured the routing cost of all the problems for five operation
thresholds, β = 0.1, 0.3, 0.5, 0.7 and 0.9. The simulated
annealing randomly changes the element of an intermedi-
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Fig. 18 Comparison results as a function of four problems for each algorithm

ate solution by using the remove and replace operations. If
β is equal to 0.3, then the remove operation is operated as
much as 30% in total neighborhood generating operations,
and the replace operation is operated as much as 70%. By
increasing the network size, each case has a different result.
In β = 0.5, the simulated annealing has a slightly better re-
sult than those of other cases. This is because the two neigh-
borhood generating operations are well applied to this prob-
lem.

Figure 17(b) shows the average execution time as a func-
tion of four problems for the simulated annealing. As pre-
viously mentioned, we can see that by increasing the net-
work size, the average execution time of the simulated an-
nealing also increases. In the experiment of the simulated
annealing, we observed that solutions produced from the
remove operation are more infeasible than ones produced
from the replace operation. If the solutions are infeasible,
we perform the repair function to change the infeasible so-
lutions to feasible. Therefore, as β increases, the average ex-
ecution time of the simulated annealing will takes a longer
time.

Figure 18(a) shows the comparisons of the minimum
routing cost of three meta-heuristic algorithms: tabu search,
genetic algorithm and simulated annealing. We applied three
algorithms to the given problems according to the following
conditions. In the tabu search, Kmax is set to 100. In the ge-
netic algorithm, p and q are set to 1 and 0.25, respectively,
and in the simulated annealing, β is set to 0.5. We see that
in terms of the routing cost, the tabu search algorithm out-
performs the genetic algorithm and the simulated annealing.

The tabu search and the simulated annealing algorithms ex-
ploit the same neighborhood generating operations, which
are the remove and the replace operations, but since the
tabu search regularly produces more next generation solu-
tions than the simulated annealing, we observe that the tabu
search has better performance than the simulated annealing
in the figure. We also see that the tabu search outperforms
the genetic algorithm with the crossover and the mutation
operations. This main reason is that the tabu search with reg-
ularly generating neighborhood solutions is better applied
to the routing problem than the genetic algorithm with sto-
chastically generating solutions. Figure 18(b) shows com-
parisons of the average execution time for the meta-heuristic
algorithms in the given problems. The results show that the
tabu search takes a shorter time than the genetic algorithm
and the simulated annealing. This is because the tabu search
reaches the optimal solution faster than other algorithms.
Moreover, though the tabu search produces more neighbor-
hood solutions for the current solution than the simulated
annealing, it takes a shorter time than the simulated anneal-
ing that randomly produces a next generation for the current
solution.

Finally, for the routing problem in the mobile ad-hoc net-
works, we observe that the proposed tabu search algorithm
can efficiently solve this problem in terms of the routing
cost, and it is pertinent to resolve the problem within a rea-
sonable execution time.
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7 Conclusions

In this paper, we proposed a routing optimization algorithm
to efficiently determine an optimal path from a source to
a destination in mobile ad-hoc networks. The proposed al-
gorithm was designed by using the tabu search algorithm,
which is a typical meta-heuristic algorithm. We first de-
scribed the commonly used operations, which are encod-
ing solution, the production of the initial solution and the
repair function, and we presented the neighborhood gener-
ating operations of the algorithm that includes the termi-
nation condition. To compare the performance of the pro-
posed algorithm, we also developed the genetic algorithm
and the simulated annealing that are the representative meta-
heuristic algorithms. We evaluated the performance of the
algorithms by carrying out the experiments by varying the
number of nodes and links, and we compared the proposed
algorithm with other meta-heuristic algorithms in terms of
the routing cost and the average execution time for the rout-
ing problem. The comparison results showed that the tabu
search outperforms other algorithms in terms of the routing
cost and average execution time under various constraints,
and it is suitable for adapting the routing optimization prob-
lem.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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