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LAGRANGIAN TORI IN THE PROJECTIVE PLANE

N. A. Tyurin∗

We extend the discussion of the homological mirror symmetry for toric manifolds to the more general

case of monotonic symplectic manifolds with real polarizations. We claim that the Hori–Vafa conjecture,

proved for toric Fano varieties, can be verified in a much wider context. Then the Bohr–Sommerfeld notion

regarding the canonical class Lagrangian submanifold appears and plays an important role. A bridge is

thus manifested between the geometric quantization and homological mirror symmetry programs for the

projective plane in terms of its Lagrangian geometry. This allows using standard facts from the theory

of geometric quantization to obtain some results in the framework of the theory of homological mirror

symmetry.
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Introduction

The Lagrangian geometry of compact symplectic manifolds remains a subject about which not much
is known. Even in the simplest case of two-dimensional compact symplectic manifolds (Riemann sur-
faces), where the Lagrangian condition degenerates because any one-dimensional submanifold is Lagrangian,
the classification problems (up to Hamiltonian isotopy or up to symplectomorphisms) are solved only for
certain special cases including the case of the projective line. In four dimensions, it is unknown which
two-dimensional manifolds appear as Lagrangian submanifolds, and the discussion of the existence of a
Lagrangian Klein bottle in Kahler surfaces is still unfinished.

It is believed that the projective plane CP
2 admits only Lagrangian tori as orientable Lagrangian

submanifolds and real projective planes as nonorientable ones, plus some artificial types produced by hand
using Lagrangian surgery near the intersections of Lagrangian tori and real projective planes, which gives
new topological types of Lagrangian submanifolds such as T 2�RP2.

On the other hand, the classification of Lagrangian tori is incomplete even for CP2: two types of
Lagrangian tori are known (the Clifford and Chekanov types), and it seems that these types belong to
different classes in the classification up to Hamiltonian isotopy (a paper is in preparation by Chekanov
and Schlenk but is not yet available). Of course, this does not mean that the set of equivalence classes is
exhausted by these Clifford and Chekanov types.

At the same time, Lagrangian geometry is highly desired for certain approaches to the mirror symme-
try conjecture. According to the homological mirror symmetry program proposed by Kontsevich [1], the
symmetry is an equivalence between the derived category of coherent sheaves over a given algebraic mani-
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fold M and a Fukaya–Floer category of Lagrangian submanifolds of its mirror partner mir(M), which is a
symplectic manifold. The objects of the Fukaya–Floer category are Lagrangian submanifolds up to Hamil-
tonian isotopy, and the morphisms are induced by the Floer cohomology of pairs of objects. Although a
rigorous definition of the Floer cohomology does not exist in general, it is clear that the full category of
Lagrangian submanifolds up to Hamiltonian isotopy is in any case too large, and this implies restrictions
on the type of Lagrangian submanifolds taken in the specific constructions. In the four-dimensional case,
a variant of the general Fukaya–Floer theory is adopted using a certain additional structure, the Lefschetz
pencil on a given symplectic manifold. The Fukaya–Seidel category thus obtained is compared with the
derived category of coherent sheaves; in the Fukaya–Seidel category, not all Lagrangian submanifolds but
only vanishing cycles are taken.

Another type of restriction is proposed for toric Fano varieties: we take a toric fibration for such an X

and consider the fibers Sα (which are Lagrangian submanifolds in X) with a nontrivial Floer cohomology
FH∗(Sα, Sα; C) �= 0. The needed category is then constructed over the set of the fibers satisfying this
nontriviality condition. In this case, the Hori–Vafa conjecture states that the number of such fibers is finite
and should be the Euler characteristic of the mirror partner [2]. This conjecture was proved in [3] under
certain assumptions. The Bott–Morse version is computed instead of the Floer cohomology. The complex
structure of the toric variety or its small Hamiltonian deformations is taken instead of a general almost
complex structure. The answer looks very familiar in the framework of the geometric quantization of toric
varieties: the desired fibers are distinguished by a certain integrality condition (see formula (10.6) in [3]),
and this integrality condition in the toric framework means that we deal with Bohr–Sommerfeld fibers.

But the main idea of mirror symmetry is to relate the algebraic geometry of a given variety to the
symplectic geometry of its mirror partner, and the answer on the right-hand side must therefore be inde-
pendent of the choice of the compatible complex structure. A certain sufficiently general almost complex
structure is used to construct the objects like the Gromov invariants or the Floer cohomology, and we know
that an integrable complex structure is far from being general in this setup (many examples of answers that
must be corrected are known in gauge theories, etc.). Moreover, the complex structure of a toric variety is
even more special (any toric variety is rigid in the class of toric varieties but can, of course, be deformed
to a nontoric algebraic variety). Therefore, we must extend the setup in [3] such that it would be more
independent of the choice of the complex structure. On the other hand, doing this, we can see that the
results in [3] can be understood as more general facts adopted to the specific case of the toric Fano varieties.

What is proposed as such a generalized consideration? We consider monotonic simply connected
compact symplectic manifolds instead of Fano varieties. We consider symplectic manifolds with real polar-

izations instead of toric varieties. After such a generalization, we have a situation well known in geometric
quantization (see, e.g., [4]–[6]).

Geometric quantization is a set of recipes assigning a given symplectic manifold appropriate Hilbert
spaces together with homomorphisms of the Lie algebra of smooth functions on that manifold with values
in the spaces of self-adjoint operators acting on these Hilbert spaces (or, more generally, it assigns a given
symplectic manifold a certain algebraic variety [7]). One of the recipes can be used in the case where
our given symplectic manifold admits an additional structure, a real polarization, which is a Lagrangian
fibration of our given symplectic manifold. In this case, the Hilbert spaces are spanned by the fibers
satisfying a specific condition, the so-called Bohr–Sommerfeld condition of a certain level. The crucial fact
here is that the number of Bohr–Sommerfeld fibers in the compact case is finite if the Lagrangian fibration
is “sufficiently good.”

The toric Fano case is included in this class of “sufficiently good” Lagrangian fibration, and the con-
struction in [3] ensures that the Bohr–Sommerfeld fibers then coincide with the fibers with a nontrivial
adopted Floer–Bott–Morse cohomology. To avoid the ambiguity arising from different versions of the Floer
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cohomology, we universalize the situation, having in mind the following general fact: if a Lagrangian
submanifold is displaceable, then it should have a trivial Floer cohomology for any version of the Floer
cohomology theory; if a Lagrangian submanifold is monotonic, then it should have a nontrivial cohomology
for any definition. We recall that S is displaceable if it can be moved by some Hamiltonian isotopy ψH

such that the intersection S ∩ ψH(S) = ∅. Of course, the presented distribution, generally speaking, is not
complete, but at least for the basic example of a monotonic simply connected symplectic manifold with real
polarization (the projective plane), all currently known examples agree with such an implication.

This paper contains results about the fibers of a real polarization with regular degeneration. The
number of monotonic fibers for a general monotonic symplectic manifold is finite (Theorem 2). For any
real polarization of the projective plane with regular degeneration, any Bohr–Sommerfeld fiber with respect
to the canonical class is monotonic, and any other fiber is displaceable (Theorem 3). We emphasize that
this holds for any real polarization with regular degeneration, not just for a toric one. We do not use the
toric structure in the constructions below and in parallel present several (naive) conjectures extending the
statement in Theorem 3 to the case of any Lagrangian torus in CP2, not just for the fibers. It is currently
difficult to expect that all these conjectures are true, but we continue to work in this direction.

The discussion below follows the idea that the Bohr–Sommerfeld condition and the nontriviality con-
dition for the Floer cohomology are somehow related. If this is indeed the case, then we would obtain a
way to proceed with the homological mirror symmetry using known results and constructions in geometric
quantization. Our main motivation for studying this question is that it would realize the ideology proposed
by A. N. Tyurin that claims that mirror symmetry and geometric quantization are related [8].

1. Bohr–Sommerfeld conditions

We consider a compact simply connected symplectic manifold (M, ω) of real dimension 2n and assume
that the cohomology class [ω] ∈ H2(M, R) is integer. This means that there exists a complex line bundle
L → M with the first Chern class c1(L) = [ω]. Choosing a Hermitian structure on L, we obtain the space
of Hermitian connections Ah(L). There exists a Hermitian connection a ∈ Ah(L) unique up to gauge
transformations such that its curvature form Fa is proportional to ω:

Fa = 2πiω.

The pair (L, a) is usually called the prequantization data. We consider an arbitrary integer k ∈ Z and
the corresponding power Lk. The space Ah(Lk) contains a Hermitian connection ak unique up to gauge
transformations such that its curvature form is proportional to ω:

Fak
= 2kπiω.

The pair (Lk, ak) is called the prequantization data of level k.
Let S ⊂ M be a Lagrangian submanifold. This means that S has the dimension n and the restriction

ω|S vanishes identically. Restricting the pair (Lk, ak) to S, we then obtain a trivial line bundle with a
flat connection (the curvature form vanishes because it is proportional to the symplectic form). Therefore,
Lagrangian submanifolds can be identified in terms of the flat connections thus obtained.

We say that a Lagrangian submanifold S ⊂ M is a Bohr–Sommerfeld manifold of level k if the restricted
connection ak|S admits covariantly constant sections.

It could be asked whether this definition depends on the choices of the Hermitian structure on L and
a connection a from the equivalence class of Hermitian connections described by the condition Fa = 2πiω.
The point is that the definition is absolutely universal: it can be reformulated in our case as follows. We
consider H1(S, Z) and some representative γb ⊂ S for an arbitrary primitive element b ∈ H1(S, Z). Because
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π1(M) is trivial, we can find a disc D ⊂ M with the boundary ∂D = γb. It is easy to see that S is a
Bohr–Sommerfeld manifold of level k if and only if the symplectic area of D times k is integer for any
b ∈ H1(S, Z):

k

∫
D

ω ∈ Z.

We note that we consider the case where [ω] ∈ H2(M, Z) ⊂ H2(M, R), and the last integrality condition is
independent of the choice of D. At the same time, it does not involve any bundles or connections, and the
notion of the Bohr–Sommerfeld condition is therefore universal. It is natural to call the numbers

pk(b) = k

∫
D

ω (mod Z)

the periods of the given Lagrangian submanifold.
On the other hand, the last description relates local deformations of a given symplectic manifold to

variations of the periods of the deformed submanifolds. According to the Darboux–Weinstein theorem [9],
there exists a certain small tubular neighborhood of the given S symplectomorphic to a neighborhood of
the zero section in T ∗S endowed with the standard symplectic form. Local Lagrangian deformations of S

are then represented by graphs of closed 1-forms on S. With the period description in mind, we can see
that a deformation ψ of a given S with the class [ψ] ∈ H1(S, R) changes the periods as

pk(ψ∗(b)) = pk(b) + kψ(b). (1)

Indeed, if we have a loop γb on the given Lagrangian submanifold and deform it to ψ(γb), then the symplectic
area of the tube with the boundary γb − ψ(γb) is exactly ψ(b), which implies formula (1).

As a corollary, we obtain the existence of a Bohr–Sommerfeld Lagrangian submanifolds of (perhaps,
sufficiently large) level k if there exists an arbitrary Lagrangian submanifold.

A variant of the basic definition appears in the case of a monotonic symplectic manifold. A symplectic
manifold (M, ω) is said to be monotonic if its canonical class Kω ∈ H2(M, Z) is proportional to [ω]:

Kω = k[ω].

The number k is called the monotonicity coefficient. For any Hermitian structure on Kω in this case, there
exists a Hermitian connection acan unique up to gauge transformations with its curvature form proportional
to the symplectic form. We repeat the basic definition with respect to (Kω, acan). If the restriction
(ω, acan)|S admits covariantly constant sections, then we say that S is a Bohr–Sommerfeld manifold with

respect to the canonical class. Such a specification is justified; we discuss it in Sec. 3.

2. Finiteness

We assume that we have an additional structure on M , a real polarization. This means that M is
fibered over a base B and almost all the fibers are smooth Lagrangian fibers. This usually happens for
phase spaces of completely integrable systems, and there hence exists a commutative subalgebra in the
Poisson algebra (C∞(M, R), { · , · }ω) spanned by the set of smooth functions {f1, . . . , fn}, called integrals,
such that the differentials (df1, . . . , dfn) form a basis in the cotangent space almost everywhere on M . These
conditions dictate several topological restrictions; for us, the most important is that a smooth fiber must
be isomorphic to a torus.

For a real polarization of M given by a map

π : M → B,
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where B is a convex polytope in Rn, we have the so-called Kodaira–Spencer map. For each regular point
b ∈ B, the deformation along the base somehow corresponds to the deformation of the fiber π−1(b) ⊂ M ,
and because the local deformations of a Lagrangian submanifold are described by closed 1-forms, we have
the map

mKS : TbB → H1(π−1(b), R).

We claim that for a smooth fiber π−1(b), the Kodaira–Spencer map is an isomorphism. To prove this, we
first note that the dimensions of the compared spaces are the same:

dimTbB = n = dimH1(T n, R).

If we suppose that a vector v ∈ TbB goes to zero under this map, then this would imply that the corre-
sponding small deformation is isodrastic, i.e., it preserves the periods of Sb = π−1(b). But according to
formula (1), this could happen if and only if the corresponding closed 1-form ψ is exact. In other words,
there exists a smooth function f on Sb such that ψ = df . But each smooth function must have at least
two critical points on a compact manifold, a maximum and minimum. This means that the graph of ψ in
this case must intersect our given Sb in at least two points. But this is impossible because the fibers do not
intersect each other. Therefore, the Kodaira–Spencer map does not have a kernel and by the dimensional
argument is an isomorphism.

In geometric quantization, the approach with a real polarization gives the following recipe for con-
structing the Hilbert spaces [5]. In a fixed real polarization, we take the fibers S1, . . . , Sl, . . . that are
Bohr–Sommerfeld of level k and then consider the linear span

∑
i

C〈Si〉 = Hk.

The point is that the set of such fibers is discrete in any case and finite if the real polarization has suffi-
ciently good degenerations. Indeed, the discreteness follows simply because the Kodaira–Spencer map is
an isomorphism. Just what are the “sufficiently good degenerations”? They appear in the case of toric
varieties, for example. This means that the degenerations are regular, i.e., if B is a convex polytope in Rn,
then the fibers over the inner part are smooth. The picture over an arbitrary (n−1)-dimensional face is
repeated, i.e., a smooth symplectic manifold fibered over this face with smooth Lagrangian fibers over the
inner part of this face (which are smooth Lagrangian (n−1)-dimensional tori), and so on. In this situation,
the number of smooth Bohr–Sommerfeld Lagrangian fibers is finite.

Indeed, the discrete set can have a limit point only on the boundary. We suppose that the limit point
corresponds to a smooth (n−1)-dimensional torus placed over the inner part of a (n−1)-dimensional face.
The preimage of this (n−1)-dimensional face is a symplectic submanifold M1 ⊂ M . The limit process
implies that for our fixed k (the level by the Bohr–Sommerfeld property), the normal bundle NM1/M |Slim ,
where Slim is a degenerate torus corresponding to the given limit point, contains a series of shrinking
disc bundles each of which consists of discs of constant symplectic area such that this area times k is an
integer. This implies that starting with some sufficiently small disc bundle, the symplectic area of the fiber
discs must be zero. But this is impossible because the normal bundle NM1/M is symplectic and each disc
must have a nontrivial symplectic volume. Therefore, the limit point cannot exist on the inner part of a
(n−1)-dimensional face.

The same arguments with lower dimensions show that the limit point can appear only if it corresponds
to a zero-dimensional edge of B and hence to a vertex p ∈ B of a polytope. Choosing some Darboux
coordinates in a neighborhood of π−1(p) ∈ M and representing the sequence of shrinking tori in these
coordinates starting with a certain number, we obtain a contradiction.

We thus obtain the following statement.
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Theorem 1. Let X be a simply connected symplectic manifold and π : X → B be a real polarization

with regular degenerations. Then for any level k ∈ Z, the set of Bohr–Sommerfeld Lagrangian fibers of

level k is finite.

3. Monotonicity

As already mentioned in Sec. 1, there is a variant of the Bohr–Sommerfeld condition in the case of
monotonic symplectic manifolds. In the Floer cohomology theory, one of the most important cases is where
a given Lagrangian submanifold is monotonic. To describe such a manifold, we first recall what the Maslov
index is. Because we discuss Lagrangian tori below, we restrict ourself to the case of orientable Lagrangian
submanifolds.

Let S ⊂ M be an orientable Lagrangian submanifold of a simply connected symplectic manifold
(M, ω). We choose an arbitrary almost complex structure compatible with ω and realize the anticanonical
bundle K−1

ω using the determinant of the Hermitian bundle (TM, I, ω). For an arbitrary loop γ ⊂ S,
we choose a disc D ⊂ M with the boundary ∂D = γ and consider a trivialization of the anticanonical
bundle K−1

ω |D restricted to D. This trivialization is unique up to gauge transformations, and because D is
simply connected, the degree of all such transformations computed on the boundary must be trivial. In this
realization, the chosen trivialization is represented by a type-(n, 0) polyvector field η that is nonvanishing
on D. On the other hand, the disc boundary carries a nonvanishing real polyvector field θ given by the
determinant of TS restricted to γ. Therefore, the Hermitian pairing of η and θ gives a map

φD : γ → C
∗

because it is easily seen that the Lagrangian condition implies that 〈η, θ〉h never vanishes. The degree of
this map

µ(γ, D) =
〈
φ∗

Dh; [γ]
〉

(where h is the generator of H1(C∗, Z) and [γ] ∈ H1(γ, Z) is the fundamental class) is an integer that is
independent of the choice of the almost complex structure. Moreover, it is independent of the choice of D

in the same class from π2(M, S) with the image at [γ] ∈ π1(S) under the canonical homomorphism. For
another disc with the same boundary γ, the value µ(γ, D′) can be computed as

µ(γ, D′) = µ(γ, D) + 〈K−1
ω ; [S2 = D ∪ D′]〉.

Hence, if D′ is homotopy equivalent to D, then the numbers must be the same. At the same time, the
number is independent of the choice of γ in a given class [γ] ∈ π1(S). In summary, we have a map

µ : π2(M, S) → Z,

which is called the Maslov index. For any simply connected symplectic manifold and any Lagrangian
submanifold, this index exists and, moreover, is invariant under any Lagrangian deformation. As follows
from its definition, it must be invariant under any continuous deformations. In the case where the ambient
symplectic manifold has a small second cohomology (Pic M = Z), the index can be reduced to the numerical
correspondence

µ : H1(S, Z) → Z (mod deg K−1
ω ),

which is often called the Maslov number.
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Further, a Lagrangian submanifold S ⊂ M is monotonic if there exists an integer k such that for any
loop γ ⊂ S and any disc D ⊂ M , ∂D = γ, we have

µ(γ, D) = k

∫
D

ω, (2)

where µ is the Maslov index of the loop γ with respect to the disc D. The existence of a monotonic
Lagrangian submanifold imposes strong restrictions on the topology of M : it must itself be monotonic.
Consequently, it is natural to use the notion of Bohr–Sommerfeld Lagrangian submanifolds with respect
to the canonical bundle. It is easy to see that a Lagrangian submanifold is monotonic only if it is a
Bohr–Sommerfeld manifold with respect to the canonical class. Indeed, identity (2) is possible only in the
case where the symplectic area of D times k is an integer for arbitrary γ and D. But this is exactly our
Bohr–Sommerfeld condition with respect to the canonical class.

On the other hand, for a Bohr–Sommerfeld Lagrangian submanifold with respect to the canonical
bundle in a monotonic simply connected symplectic manifold, we can define a characteristic class called
the universal Maslov class [10]. Setting its first definition aside, we here define it as follows. For a given
Bohr–Sommerfeld submanifold S ⊂ M with respect to the canonical class with K−1

ω = k[ω] for an arbitrary
loop γ and disc D, ∂D = γ, we consider the difference

mS(γ, D) = µ(γ, D) − k

∫
D

ω ∈ Z.

Then the value of mS is independent of the choice of D. Moreover, this numerical correspondence is linear,
and mS is consequently a cohomology class from H1(S, Z). We recall that this class is well defined if and
only if our Lagrangian submanifold is a Bohr–Sommerfeld manifold with respect to the canonical bundle.
And because this property is stable only under Hamiltonian deformations, the resulting cohomology class
is invariant under Hamiltonian deformations [10].

It follows tautologically from this description that S is monotonic if and only if it is a Bohr–Sommerfeld
manifold with respect to the canonical class and its universal Maslov class vanishes, mS = 0. Summarizing
our discussion, we have the following statement, whose proof is obvious.

Theorem 2. Let X be a simply connected monotonic symplectic manifold and π : X → B be a real

polarization with regular degenerations. Then the number of monotonic Lagrangian fibers is finite.

4. Lagrangian tori in CP2

In what follows, we discuss the basic example of a monotonic simply connected symplectic manifold,
the projective plane CP

2. We take the projective plane CP
2 with the standard Fubini–Study Kahler form ω,

which we regard as a symplectic form. Hence, the cohomology class [ω] is integer and represents a generator
of H2(CP2, Z). As a symplectic manifold, the projective plane is monotonic, K = −3[ω]. We are interested
in Lagrangian fibrations of CP2. We use them to verify the following naive conjecture.

Conjecture 1. If a smooth Lagrangian fiber is displaceable, then it is not Bohr–Sommerfeld with

respect to the canonical class, and if this fiber is Bohr–Sommerfeld with respect to the canonical class, then

it is also monotonic.

This conjecture can be rewritten for an arbitrary simply connected monotonic symplectic manifold
endowed with a real polarization with regular degenerations. Below, we show that this conjecture holds for
the projective plane, but we first present the basic example of Lagrangian tori in CP2.
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The first and simplest example of Lagrangian fibration of CP2 comes from toric geometry. We choose
homogeneous coordinates [z0 : z1 : z2] and consider the subset of CP2 defined by the system of equations

zj = rje
iφj , j = 0, 1, 2,

where rj are fixed positive real numbers satisfying r0 + r1 + r2 = 1 and φj are real parameters. In C3,
this would give a three-dimensional torus, but after factoring by phase rotations, we obtain a smooth
two-dimensional torus in CP2. Varying the rj , we obtain a family of Lagrangian tori, i.e., a Lagrangian
fibration of CP2 over a triangle ∆ ⊂ R2. Indeed, we can assign each smooth torus a pair (r0, r1) (r2 is
uniquely defined by r0 and r1); all possible values of r0 and r1 form the triangle ∆. The degenerations
of this Lagrangian fibration are regular: over the segments {r0 = 0, 0 < r1 < 1}, {r1 = 0, 0 < r0 < 1},
and {r0 + r1 = 1, 0 < r1,2 < 1}, we have one-dimensional toric fibers, and the vertices of ∆ correspond to
the maximum degenerations, zero-dimensional tori or simply points. We let Tr0,r1 denote the smooth fiber
of (r0, r1) ∈ ∆. Such tori are called Clifford tori, and the fibration is called the Clifford fibration of the
projective plane.

Because the symplectic form is integer, the question arises about the Bohr–Sommerfeld fibers of this
fibration. The line bundle L = O(1) with a Hermitian connection a whose curvature form is proportional to
the symplectic form distinguishes a set of Bohr–Sommerfeld fibers of different levels. And the specification
is very simple: the fiber Tr0,r1 is Bohr–Sommerfeld of level k if and only if

kr0, kr1 ∈ Z.

Indeed, the periods of the torus Tr0,r1 are given by the numbers r0 and r1 with respect to the appropriate
generators of H1(Tr0,r1 , Z), which implies the statement. It is hence obvious that

1. there are no Bohr–Sommerfeld fibers of levels 1 and 2,

2. there is a unique fiber that is Bohr–Sommerfeld of level 3 and is therefore Bohr–Sommerfeld with
respect to the canonical class, and

3. the number of fibers that are Bohr–Sommerfeld of level k is exactly dim H0(CP3,O(k − 3)).

The last coincidence can be promoted to the direct equality “the number of k-Bohr–Sommerfeld fibers is
equal to the dimension of the holomorphic section space of O(k)” if we generalize the situation and consider
singular fibers together with the smooth ones. Then there would be exactly three Bohr–Sommerfeld fibers
of level 1 (the three points over the vertices of ∆, zero-dimensional tori), six Bohr–Sommerfeld fibers of
level 2 (the same three points plus three equatorial one-dimensional tori over the triangle edges), ten Bohr–
Sommerfeld fibers of level 3 (the same three points plus two one-dimensional tori on the edges of the triangle
∆ plus our regular fibers), and so on. This effect is known in the geometric quantization of toric varieties.

We are interested in only regular fibers here, and we therefore consider what would be the result of
applying the approach described above in the homological mirror symmetry. To start, we take the fibers
with a nontrivial Floer cohomology. Setting possible definitions of the Floer cohomology FH∗(S, S; Z2)
aside, we can here use our interpretation: if a Lagrangian submanifold S is displaceable, then it has a
trivial Floer cohomology. Displaceability means that there exists a Hamiltonian isotopy ψt such that ψt(S)
does not intersect S for some t:

ψt(S) ∩ S = ∅.

It is easy to see that if r0 and r1 are both not equal to 1/3, then Tr0,r1 is displaceable. Indeed, for
CP2, we have the subalgebra of symbols in the Poisson algebra (C∞(CP2), { · , · }ω) [7] corresponding to
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self-adjoint operators on C3. The Hamiltonian flow sending Tr0,r1 to Tr1,r0 is induced by the self-adjoint
operator interchanging z0 and z1 in C3. Because the fibers do not intersect each other, we find that if
r0 �= r1, then Tr0,r1 is displaceable, and the same holds if r1 �= 1 − r0 − r1. One absolutely symmetric
possibility remains, when ri = 1/3, i = 0, 1, 2, but this is precisely the Bohr–Sommerfeld Lagrangian fiber
with respect to the canonical class. To examine whether it has a nontrivial Floer cohomology, we use the
following argument: the given Lagrangian torus T1/3,1/3 is monotonic. Indeed, it is Bohr–Sommerfeld with
respect to the canonical class and is minimal; therefore, the universal Maslov class is trivial [10]. This fact
was used in [11] to prove that the Floer cohomology of T1/3,1/3 is isomorphic to its de Rham cohomology,

FH∗(S, S; C) = H∗
dR(S, C),

which is, of course, well known for a torus.
Hence, for the standard toric fibration of CP2 (and the same holds for any projective space), the

condition of being Bohr–Sommerfeld with respect to the canonical class is equivalent to the monotonicity
condition and, furthermore, to the nondisplaceability condition (in particular, the results in [11] follow from
it). There is a simple natural extension of the toric case: a Lagrangian torus in CP

2 is said to be of the

Clifford type if there exists a Hamiltonian isotopy sending this torus to a standard fiber of the Clifford
fibration. The Floer cohomology is invariant under Hamiltonian deformations (this is its main property,
which could even be taken as its general definition). Moreover, the Bohr–Sommerfeld condition of an
arbitrary level, the monotonicity condition, and the nondisplaceability condition are also preserved under
a Hamiltonian deformation. Therefore, what was said above also holds for any torus of the Clifford type.

We complete our discussion of tori in CP2 of the Clifford type, noting in summary that Conjecture 1
holds for the standard toric fibration of CP2. The extension of Conjecture 1 to the case of the projective
plane can be formulated as a series of conjectures, which are rather naive and are currently supported only
by verification in known examples. All these conjectures become theorems if Lagrangian tori are replaced
with fibers of a real polarization with regular degenerations. We show this below, but we formulate the
conjectures in general form here.

Conjecture 2. If S ⊂ CP2 is a Bohr–Sommerfeld Lagrangian torus of level k, then necessarily k ≥ 3.

If this conjecture holds, then the class of Bohr–Sommerfeld Lagrangian tori with respect to the canonical
class is “primary” in the sense that any Bohr–Sommerfeld Lagrangian torus of level 1 should a priori be
included in the set of Bohr–Sommerfeld Lagrangian tori with respect to the canonical class (because 3 is
divisible by 1), but such a torus strongly differs symplectically from “pure” Bohr–Sommerfeld tori with
respect to the canonical class.

Conjecture 3. The universal Maslov class of any Bohr–Sommerfeld Lagrangian torus S ⊂ CP2 with

respect to the canonical class is trivial,

H1(S, Z) 
 mS = 0.

If this conjecture holds, then every Bohr–Sommerfeld Lagrangian torus with respect to the canonical
class must be monotonic and must therefore have a nontrivial Floer cohomology. This implies our third
suggestion.

Conjecture 4. A smooth Lagrangian torus S ⊂ CP2 of the projective plane is nondisplaceable if and

only if S is a Bohr–Sommerfeld torus with respect to the canonical class.
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We note that all these conjectures are stronger than needed for proving a general version of the Hori–
Vafa conjecture: it suffice to use a weaker statement.

Conjecture 5. Let X be a monotonic simply connected symplectic manifold and π : X → B be a real

polarization. Then a smooth fiber π−1(b) = Sb is nondisplaceable if it is Bohr–Sommerfeld with respect to

the canonical class.

We consider two nontoric examples.

Play example. We consider CP1 = S2 endowed with the standard symplectic form. Any smooth
loop γ ⊂ CP1 is a Lagrangian submanifold, and the topological type of a smooth Lagrangian submanifold
is actually exhausted by the one-dimensional torus T 1. The line bundle L = O(1) together with the
appropriate Hermitian connection a ∈ Ah(L) defines the Bohr–Sommerfeld condition of level k, which in
this case is as follows: a smooth loop γ ⊂ CP1 is Bohr–Sommerfeld of level k if and only if it divides the
surface into two pieces both of a symplectic area in k−1 ·Z. This means that γ ⊂ CP1 is Bohr–Sommerfeld
with respect to the canonical class if and only if it divides the surface into equal pieces. On the other hand,
this is the case only if γ is nondisplaceable. This means that Conjecture 5 holds for a smooth loop in CP1.

Of course, this says almost nothing about any other case: it follows because for a smooth loop in CP1,
there is only one symplectic invariant that uniquely characterizes the loop up to a symplectomorphism,
namely, the symplectic area of the disc bounded by this loop. But this is not true for higher dimensions:
there is at least one more type of Lagrangian tori in CP2, called the Lagrangian tori of the Chekanov
type [12], [13].

Nontoric example. This example was suggested in [13], where it was characterized as a nontoric
fibration of CP2. We consider the family of conics {Qε} in CP2 given by the equation

Qε = {z0z1 = εz2},

where ε ∈ C and [z0 : z1 : z2] are homogeneous coordinates. For this pencil with the basis points [0 : 1 : 0]
and [1 : 0 : 0], we have exactly two singular conics: the conic is two intersecting lines for ε = 0 and the
conic degenerates into the double line z2

2 = 0 for ε = ∞.
We consider the one-dimensional real subfamily in {Qε} consisting of the conics Qaeit−µ, where µ ∈ C∗

and a ∈ R+ are fixed numbers and t is a real parameter. For each element in this subfamily, for example,
Qa·eit0−µ, we have the natural fibration

π : Qaeit0−µ → (−1, 1) ⊂ R,

given by the Hamiltonian action of the symbol preserving each conic in the family (this symbol is essentially
unique up to a scaling [14]). The fiber can be labeled by δ ∈ (−1, 1), and this correspondence has a certain
meaning: the symplectic area of the disc bounding the loop T 1

t0,δ equals δ (mod Z). Fixing a value of δ,
we distinguish the corresponding fiber T 1

t0,δ. We now vary t0 in the real subfamily {Qaeit−µ}; this gives
the corresponding family T 1

t,δ, which forms a certain two-dimensional torus T 2
δ = T 2

a,µ,δ ⊂ CP2. The point
is that this torus is Lagrangian [13]. All tori thus constructed for different a form a certain fibration of
CP2\l2, where l2 is the line z2 = 0 with only one singular torus T 2

|µ|,µ,0 with one shrunk loop (it is therefore
not a real polarization with regular degenerations).

It was stated in [13] that for a fixed µ �= 0, the fibration of CP
2 consists of two types of Lagrangian

tori: the torus Ta,δ is of the Clifford type if a > |µ| and of the Chekanov type if a < |µ|, and these types
are different.
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What does this example yield for the discussion of our themes? We note the following:

1. The tori T 2
a,δ, a > |µ|, of the Clifford type were already discussed above, and Conjecture 5 holds for

them.

2. Every torus T 2
a,δ, a < |µ|, of the Chekanov type is displaceable and therefore has a trivial Floer

cohomology to itself.

3. There is no torus of the Chekanov type that is Bohr–Sommerfeld with respect to the canonical class.

Indeed, it is easy to construct a smooth function on CP2 whose Hamiltonian flow sends T 2
a,µ,δ to T 2

a,−µ,δ.
This function is far from general; it is a symbol corresponding to the self-adjoint operator A = diag(0, 0, 1).
Its Hamiltonian flow acts as the rotation of the parameter space C with the two fixed points 0 and ∞.
Because a torus of the Chekanov type corresponds to the case where two circles of the same radius a with
centers at µ and −µ do not intersect each other, we then find that such a torus is displaceable.

On the other hand, we show that a torus of the Chekanov type cannot be Bohr–Sommerfeld of level
1, 2, or 3. We first take an arbitrary “equatorial” torus Ta,0, where a < |µ| and δ = 0. For this torus, we
have a distinguished basis in H1(Ta,0, Z) given by the loops α and β, where

α = Ta,0 ∩ Qa, β ∪ β′ = Ta,0 ∩ l(z0=z1),

and l is the projective line in CP2 given by the equation z0 = z1. The intersection of α has two components
of the same homological class, and each of them can be taken as the second element in our basis. The
first loop α is the boundary of half of the conic Qa (is an equator), and the period of α is hence trivial
(the symplectic area of each conic is equal to 2, and the area of half of a conic is hence equal to 1). This
intersection is given by the equation

z2
0 = (µ − aeiφ)z2

2

on the projective line l, and the loops β and β′ are therefore given by the square roots of µ− aeiφ. For any
µ ∈ C and a ∈ R, a < |µ|, the area of the subset

z0 = (µ − aeiφ)1/2z2

is less than a quarter of the symplectic area of the entire projective line l. This means that the period of β

belongs to the interval (0, 1/4). On the other hand, if Ta,0 were Bohr–Sommerfeld of level 1, 2, or 3, then its
periods would necessarily be integer after multiplication by 1, 2, or 3. While the first period, corresponding
to α, is itself integer, the second period, corresponding to β, does not satisfy this condition.

To show that the same holds for any other Ta,δ with a nontrivial δ, we use the monotonicity property of
the periods for a smooth part of our Lagrangian fibration. We fix an arbitrary torus Ta0,δ0 of the Chekanov
type and consider a subset M ⊂ CP

2 consisting of tori of the Chekanov type,

M = {Ta,δ | a ≤ a0}.

For this M , we have a real polarization with regular degenerations corresponding to the Lagrangian fibration
of the “basis” conic Qµ. Hence, we can identify the fundamental groups of all tori in M and use the basis of
α and β constructed above for the torus Ta,0. As a → 0, the basis element β vanishes, and the Lagrangian
fibration of Qµ is given by only the element α. It is therefore clear that such a real polarization has regular
degenerations. We consider a lift of the period map to the two-component function

f = (f1, f2) : M → R
2
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such that
fi|Ta,δ

= const, fi|T ≡ pi(T ) (mod Z).

Because M is simply connected, such a lift exists. The obtained function f = (f1, f2) is smooth on the
inner part of M and continuous on the entire M . It is monotonic, i.e., has no critical points, because
the Kodaira–Spencer map is the differential of this function. Because the family of conics Qε admits the
symmetry z0 ↔ z1, we can take the lift with the induced (skew) symmetry

f1(Ta,−δ) = −f1(Ta,δ).

It follows from the strict monotonicity condition that the image f(M) ⊂ R2 must be convex. It follows
from the symmetry condition that it must be symmetric. We know that for the “equatorial” tori, f2 is less
than 1/4 (while f1 vanishes). Therefore, the component f2 for any Ta,δ must be less than 1/4 and greater
than 0 (because the zero value is reached for the limit tori T0,δ ⊂ Qµ, which are degenerate). But this is
impossible for a Bohr–Sommerfeld Lagrangian torus of level 1, 2, or 3.

Hence, although the last example is excluded from our main case of real polarizations with regular
degenerations, we can use arguments related to the the action map that arises naturally in the regular case.
Below, we discuss this question in more detail.

We consider an arbitrary polarization π : CP2 → B ⊂ R2, where B is a convex polytope. We as-
sume that it has only regular degenerations. This means that there exists a set of symplectic divisors
D1, . . . , Dm ⊂ CP

2 such that dimR Di = 2. These divisors are projected to the edges of B. It then follows
that each Di represents the class [D] ∈ H2(CP2, Z) Poincaré dual to the cohomology class [ω] and that the
number of symplectic divisors is deg K−1 = 3.

Indeed, the total degree of the degeneration components must be the degree of the anticanonical class
because the “inner” part of CP2 with respect to B admits a nonvanishing holomorphic vector bifield of the
type (2, 0) with respect to an arbitrary almost complex structure compatible with ω and π. Each component
in π−1(∂B) must have a positive degree with respect to [ω] ∈ H2(CP2, Z). On the other hand, the number
of components is equal to the number of edges of our convex polytope B, i.e., it must be greater than or
equal to three. It is hence clear that for CP2, the regularity dictates the form of B and the type of π−1(∂B).

Furthermore, the analysis of the system becomes simpler if we can find integrals of a special type.
Because the “inner” part of CP2 is topologically equivalent to the direct product (B − ∂B) × T 2, we can
choose a basis in H1(π−1(b), Z) uniformly for all smooth fibers of π. Moreover, we can do this with respect
to the boundary components D1, D2, and D3 if we choose any two of the three. The point is that for any
Di, there exists a uniquely determined basis element in H1(π−1(b), Z) that degenerates in the passage to a
limit fiber in Di. This means that we have distinguished primitive elements d1, d2, d3 ∈ H1(π−1(b), Z) such
that each pair of di and dj , i �= j, form a basis. We choose and fix d1 and d2 as a basis. Then there exists
a lift of the period map with respect to the boundary data

pd1,d2 = (p1
d1,d2

, p2
d1,d2

) : B → R
2

such that pd1,d2 is smooth on B − ∂B, pi
d1,d2

∣∣
π(Di)

= 0, and pi
d1,d2

(b) =
∫

D
ω (mod Z), where D ⊂ CP2 is

a disc with the boundary ∂D = γdi ⊂ π−1(b) and [γdi ] = di ∈ H1(π−1(b), Z). Such a lift exists, and there
are exactly four possibilities for the extension pd1,d2 because there are exactly four possible choices of the
signs of d1 and d2 (cf. the discussion on the choice of spin structures in [3], [11]). We fix the signs such that
pd1,d2 is nonnegative on B.

We note that such a lift gives us a certain set of real functions that are natural generalizations of the
classical action variables for an integrable mechanical system. It is therefore natural to call it the action

map.
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Let aij = Di ∩ Dj . Then it is easy to see that

pd1,d2(a12) = (0, 0), pd1,d2(a13) = (0, 1), pd1,d2(a23) = (1, 0).

It hence follows that
d3 = d1 + d2 ∈ H1(π−1(b), Z).

Indeed, d3, being a primitive element, can be represented as d3 = pd1 + qd2, where p and q are coprime
integers. But the symplectic area is an additive functional, and it is hence clear that p = q = 1.

We now use the fact, proved in Sec. 2, that the Kodaira–Spencer map is an isomorphism. This implies
one very important property of our action map.

Lemma. The function pd1,d2 is strictly monotonic in both arguments.

Indeed, because each component of pd1,d2 is monotonic on the corresponding boundary and because
the Kodaira–Spencer map in this case coincides with the differential of pd1,d2 , we see that the lifted period
map pd1,d2 does not have any critical points on B − ∂B and the restriction pj

d1,d2

∣∣
Lc

is a strictly monotonic
(increasing) function for any level line Lc = {pi

d1,d2
= c, 0 ≤ c < 1}.

We now verify Conjectures 2–4 in this case.
It follows from the monotonicity of pd1,d2 that

0 < p1
d1,d2

(b) + p2
d1,d2

(b) < 1

for any regular fiber Sb = π−1(b), b ∈ B − ∂B. By the definitions of pd1,d2 and of a Bohr–Sommerfeld fiber
of level k, we find that the minimal possible nonempty level is level 3, and Conjecture 2 holds.

From the monotonicity of pd1,d2 , we find that there exists only one Bohr–Sommerfeld fiber of level 3
with respect to the canonical class. We note that for this fiber Scan, we have

p1
d1,d2

(Scan) = p2
d1,d2

(Scan) =
1
3
.

To prove the monotonicity of Scan, it suffices to find for each generator of H1(Scan, Z), a smooth loop γ

representing this generator and a smooth disc D bounded by γ such that the Maslov index of [γ, D] would
be three times the symplectic area of D. This suffices because the relation is the same for any other disc D′

with the same boundary γ because CP2 is monotonic. We note that because the set of Lagrangian fibers is
connected the Maslov index is the same for all Lagrangian tori.

For our distinguished generator d1 ∈ H1(Scan, Z), we choose a smooth loop γ1 ⊂ Scan such that
[γ1] = d1. We consider the level line C1/3 = {p2

d1,d2
= 1/3} and choose the segment Bt ⊂ C1/3, t ∈ [0, 1/3],

which corresponds to the inequality p1
d1,d2

≤ 1/3. There exists a family of smooth loops {γt
1}, t ∈ [0, 1/3],

such that

γ
1/3
1 = γ1 ⊂ Scan, π(γt

1) = b(t) ∈ Bt ⊂ B, γt
1 ⊂ Sb(t), [γt

1] = d1 ∈ H1(Sb(t)).

This family {γt
1} shrinks to the point γ0

1 on the symplectic divisor D1. It is easy to see that the family {γt
1}

forms a disc ⋃
t∈[0,1/3]

γt
1 = D ⊂ CP

2,

and hence ∫
D

ω =
1
3
.
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On the other hand, the Maslov index of [γ1, D] is equal to 1. Indeed, because we shrink γ1 to a point over
the level line of p2

d1,d2
, it follows that the Maslov index of D must be the degree of the normal bundle of

D1. We hence have

µ([γ1, D]) = 1 = 3 · 1
3

= 3
∫

D

ω,

and because we can repeat the arguments for a smooth loop γ2 ⊂ Scan representing the generator d2, it
follows that Scan is monotonic. Conjecture 3 holds.

We prove that if a fiber Sb is not Bohr–Sommerfeld with respect to the canonical class, then it is
displaceable. For this, it suffices to prove that the same happens for a fiber that is not on the “diagonal”
{p1

d1,d2
= p2

d1,d2
}. Indeed, our choice of the pair (d1, d2) was arbitrary, and taking another pair, for example,

(d1, d3), we obtain the same result for the corresponding “diagonal,” and because the intersection of the
“diagonals” is exactly one point, which is Bohr–Sommerfeld with respect to the canonical class, it follows
that Conjecture 4 holds for fibers of a real polarization of CP2 with regular degenerations.

We claim that there exists a Hamiltonian deformation of CP
2 that generates the corresponding Hamil-

tonian isotopy interchanging fibers with the values (c1, c2) and (c2, c1) with respect to the function pi
d1,d2

.
The required Hamiltonian deformation is constructed explicitly as follows. We consider the level lines of
the sum p1

d1,d2
+ p2

d1,d2
lifted to CP2. The possible values are in [0, 1]. There are two exceptional level sets:

we have the point D1 ∩ D2 for c = 0 and D3 for c = 1. For any other α ∈ (0, 1), the level line

Cα = π−1({p1
d1,d2

+ p2
d1,d2

= α})

is a smooth three-dimensional sphere. The restriction of the symplectic form ω to Cα defines a fibration

pα : Cα → S2
α,

topologically isomorphic to the Hopf bundle. Indeed, we take the kernels of ω|Cα , and the corresponding
one-dimensional distribution is integrable, which gives the fibration. In addition, we have a symplectic form
ωα on S2

α that is the result of the reduction applied to ω and a smooth circle S1
α ⊂ S2

α that is the result of
the phase factorization of the “diagonal” torus with the periods (α/2, α/2).

We note that as α → 1, this Hopf bundle Cα → S2
α degenerates to D3 with a marked circle S1

1 ⊂ D3.
Moreover, the triple (D3, ω|D3 , S

1
1) is the result of the limit transition for (S2

α, ωα, S1
α) as α → 1. On the

other hand, the opposite limit as α → 0 is realized as a conformal shrinking of the triple (S2
α, ωα, S1

α) to
the point D1 ∩ D2. Indeed, it is clear that the symplectic volume is

∫
S2

α

ωα = α.

On the symplectic two-dimensional sphere D3, we choose a smooth function f1 ∈ C∞(D3, R) such that
f1 is a height function and both its two nondegenerate critical points pN

1 and pS
1 are on the marked circle

S1
1 . Using the inverse limit process, we can now construct a family of smooth functions {fα} for the family

of two-dimensional spheres {S2
α} for α ∈ (0, 1]. We take an appropriate normalization for the functions,

∫
S2

α

fαωα = α2,

and then lift each function fα to Cα via the canonical projection

Fα = fα ◦ pα : Cα → R.
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We claim that these lifted functions can be combined into a smooth global function F such that

F |Cα = Fα.

This function has exactly three critical points: the intersection point D1 ∩ D2 and the two points pN
1 and

pS
1 on D3.

The flow on CP
2 generated by the Hamiltonian vector field XF is a one-parameter family of symplec-

tomorphisms φt of CP2 such that φ2π = id. This family corresponds to the rotation of the sphere S2
α about

the fixed points pN
α and pS

α on the “diagonal” circle S1
α. It is easy to see that the result of a certain rotation

applied to a fiber of the given real polarization with the periods (c1, c2) is the fiber with the periods (c2, c1).
This completes the proof of Conjecture 4 for fibers of a real polarization with regular degenerations.

Summarizing the discussion, we obtain the following theorem.

Theorem 3. Conjecture 1 holds for CP2.

We note that the method of the lifted period function, i.e., the method of the action map, can be applied
to any compact simply connected symplectic manifold, and the main property of the Kodaira–Spencer map
can be used to establish the strict monotonicity of the lifted period function, which was crucial in our
construction for CP2 above. We can therefore expect that our method will also be useful in more general
cases, for other monotonic symplectic manifolds.

At the same time, before studying Conjectures 2–4, which were formulated for any Lagrangian tori in
CP2, we could try to find the answer to the following natural question. Is there a geometric condition on
a Lagrangian torus in CP2 that detects whether this torus can be included in a family of Lagrangian fibers
of a real polarization with regular degenerations?
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terji, ed.), Vols. 1 and 2, Birkhäuser, Basel (1995), pp. 120–139.
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