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Abstract
Structuralism in philosophy ofmathematics has largely focused on arithmetic, algebra,
and basic analysis. Some have doubted whether distinctively structural working meth-
ods have any impact in other fields such as differential equations. We show narrowly
construed structuralism as offered by Benacerraf has no practical role in differential
equations. But Dedekind’s approach to the continuum already did not fit that narrow
sense, and little of mathematics today does. We draw on one calculus textbook, one
celebrated analysis textbook, and amonograph on the Navier–Stokes equation to show
structural methods like Dedekind’s have long been central to differential equations,
and have philosophically respectable ontology and epistemology.

Keywords Structuralism · Mathematics · Dedekind · Benacerraf · Differential
equations

There are many things one would say about [the Dedekind cut corresponding to
an irrational number] such as that it is a set of infinitely many things . . . that one
would certainly be most reluctant to impose as a burden on the number itself.
(Dedekind letter to Weber 24 January 1888, quoted by Stein (1988, p. 248).)

The field of differential equations has never been transformed in a profound way
by the intrusion of structuralist methods. (Abstract for the session The Limits
of Mathematical Structuralism: a practice-oriented analysis 17th International
Congress on Logic, Methodology and Philosophy of Science and Technology,
Buenos Aires.)

1 Introduction

Whether the field of differential equations has been transformed by structuralist meth-
ods depends on what is meant by “structuralist.” Carter (2023, p. 214) describes
narrower and broader scopes for structuralism:
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mathematical activities (reasoning or introducing new entities) rely not only
on relations internal to the considered structures; equally important—as I will
show—are “global” relations, the relations being set up between different struc-
tures or mathematical fields.

Section 2 associates narrow scope structuralismwith Benacerraf (1965) What num-
bers could not be, and broad scope with Dedekind (1872) Continuity and Irrational
Numbers. Sections 3–6 describe how functional analysis parallels Dedekind, and how
it is central in differential equations teaching and research. Section 7 describes the
current practice of “definition up to isomorphism.” While practice in functional anal-
ysis certainly does not determine a full metaphysics of mathematical existence, Sect. 8
explains in what way and for what reason the practice is “structuralist.” Benacerraf
says any attempt to specify uniquely what numbers are “miss(es) the point of what
arithmetic, at least, is all about” (1965, p. 69). This paper argues that any similar
attempt for the spaces of functional analysis misses the the point of that subject.

1.1 Sources

We adopt three paradigms for the mathematics: a calculus textbook Differential Equa-
tions and Linear Algebra (Strang, 2015); advanced undergrad lectures on Functional
Analysis by Stein and Shakarchi (2011); and a research survey, Lemarié-Rieusset
(2024) The Navier–Stokes Problem in the 21st Century. Typical current mathematics
in content, all three are unusually up to date in outlook and unusually informative on
history.

Strang (2015) grew from an inspired reorganization of MIT’s differential equations
course for engineering students. Stein and Shakarchi (2011) is one of four volumes
from Elias Stein’s radically re-conceived analysis sequence at Princeton. These cel-
ebrated lectures emphasize how problems in the inchoate 19th century insights of
Charles Fourier led to current methods (Fefferman et al., 2012; Wikipedia contrib-
utors, 2023b). The title of Lemarié-Rieusset (2024) declares its focus on the latest
methods for one famous equation: Navier–Stokes.

1.2 A timeline of structural methods for differential equations

An outline of the events creating this mathematics shows structural methods are no
abstract alternative to concrete calculation. They are calculating tools.

1820: Fourier solves important differential equations by using “functions” that violate
the (later) set theoretic definition of function. The most familiar today is the
Dirac delta function δ(t).

1927: Dirac uses δ(t) and other “improper functions” in Quantum Mechanics, noting
they are not functions by the usual mathematical definition (Dirac, 1930, p.
60ff.).

1934: Leray extends Fourier by deep use of topology, creating the modern approach
to Navier–Stokes and many other differential equations.
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1936: Sobolev generalizes the use of topological vector spaces (Babich, 2009).
1944: Schwartz organizes all this in a theory of distributions (Barany, 2018).

Tao (2008a, b) puts the current state of the art very concisely.
Today the Dirac delta δ(t) and related “functions” occur as calculating tools in

standard second-year calculus and engineering math textbooks, with examples of their
use but no precise definition. More or less rigorous versions of all the topics in this
list are standard upper-level undergraduate pure and applied math.

2 Two scopes for structuralism

Structuralist philosophy of mathematics pursues “the image of mathematics as revolv-
ing around the concept of structure” (Corry, 2004, p. 337). This image is more or less
true to different areas of mathematics at different times. The contrast between narrow
and broad scope structuralism already occurs in Benacceraf’s What numbers could
not be which opens by quoting R.M. Martin:

[T]he mathematician focuses primarily upon mathematical structure . . . seeing
how one structure is “modelled” in another, or in exhibiting some new structure
and showing how it relates to previously studied ones. . . . (Martin quoted by
Benacerraf 1965, p. 47)

This is broad scope structuralism. When it refers to entirely isomorphism invariant
means we will call it “Dedekind structuralism.” We could as well associate it with
Emmy Noether, or category theory, or many others. To be clear, Noether not only
produced mathematics, she taught a structuralist conception of how it should be pro-
duced. One of her great students wrote of “Noether’s principle: base all of algebra so
far as possible on consideration of isomorphisms” (Krull, 1935, p. 4).

Benacerraf refocuses the question in a narrower way:

[In] an abstract structure [. . . ] the ‘elements’ of the structure have no properties
other than those relating them to other ‘elements’ of the same structure. (1965,
p. 70)

Call this “Benacerraf structuralism.” This image of structural relations holding only
among the elements of one structure is faithful to some current mathematics:

1. Strictly elementary arithmetic. (But not even introductory number theory.)
2. Axiomatic geometry. (But not analytic or differential geometry.)
3. Some model theory.

It is not true to much undergraduate mathematics, let alone research.

2.1 Dedekind’s continuum, and functional analysis

Dedekind defined the real numbers by beginningwith the rational numbers, and saying
irrational real numbers correspond to cuts on the rational numbers:
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Whenever, then, we have to do with a cut (A1, A2) produced by no rational
number, we create a new, an irrational number α, which we regard as completely
defined by this cut (A1, A2); we shall say that the number α corresponds to this
cut, or that it produces this cut. (Dedekind, 1872, p. 15)

The irrational number α is assigned no properties except what follows from being
greater than any rational number in A1 and less than any in A2. Dedekind explicitly
refuses to say irrational numbers are cuts, because that would assign them irrele-
vant set theoretic properties. But his whole understanding of irrational numbers—like
every analyst’s then or now—rests on knowing which rational numbers are less than a
given irrational α, and which are greater. So Dedekind’s real numbers do not have
only properties “relating them to each other.” He defines them in relation to the
antecedently assumed rational numbers Q, which form an indispensable structure
themselves. Dedekind defines all his number systems, from the natural numbers N
through Q and R only up to isomorphism, but each in relation to the ones before.1 So
Dedekind is structuralist, but not Benacerraf structuralist.

Of courseDedekind also knew—like every analyst then or now—irrational numbers
can be specified by Cauchy sequences of rational numbers. This follows from his
definition of irrationals as corresponding to cuts. Dedekind just refuses to say a real
number is a cut on the rational numbers, or is an equivalence class of Cauchy sequences
of rational numbers. Cuts and sequences are equally indispensable to working with
real numbers and neither has a claim to be what real numbers are. Mathematicians
today often prefer an explicitly isomorphism invariant higher-order definition: Let the
real numbers R be any complete ordered field.

These three treatments of the real numbers are closely analogous to the structural
methods of functional analysis.

3 A remarkable, slightly illegal function

Now we meet a remarkable function δ(t). This “delta function” is everywhere
zero, except at the instant t = 0. In that one moment it gives a unit input. . . .
This “impulse” is by no means an ordinary function. (Strang, 2015, p. 23)

Since Fourier’s 1822 Analytic Theory of Heat, a central tool for solving differential
equations has been the Dirac delta function δ(t). Fourier did not use the symbol δ but
worked with this integral expression for a function of the variable t :

∫ q=∞

q=0
cos(q · t) dq.

Fourier’s critics were more right than wrong when they called this expression non-
sense.2 But Fourier applied standard rules of calculus just as if this integral did mean

1 Ferreirós (2007, Chap. VII), see also Ferreirós andReck (2020). Reck (2023) reviews other interpretations
including by Dedekind’s “philosophical critics.”
2 See Lützen (1982, p. 113) and many references to Fourier in Kline (1972).
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Fig. 1 Smooth functions approaching δ(t)

something. He got impressive, independently verifiable solutions to difficult differen-
tial equations. Today nearly no one ever sees this ill-defined integral.3

Textbooks now introduce δ(t) as a function with δ(t) = 0 for t �= 0, and δ(0)
so high that the area under the graph is 1. They refer to δ(t) as “impulse input” and
warn it is not an ordinary function. Strang (2015, p. 98) calls it “slightly illegal.” No
function in the set theoretic sense has the required properties.

Textbooks give one step further precision by an integral equation implicit in
Fourier’s work. For all functions g :R→R:

∫ t=∞

t=−∞
g(t) · δ(t) dt = g(0) (1)

This has successfully taughtmath, physics, and engineering students to use δ(t). But
this “integral sign”

∫
cannot mean the familiar Riemann (or less familiar Lebesgue)

integral. With no definition of this
∫
, students just gain intuition from examples using

Eq. 1. Filling it out rigorously is a good bit of work which is done by Stein and
Shakarchi (2011, p. 100f.) for example.

An alternative approach motivates δ(t) by infinite sequences of curves like the
sequence begun in Fig. 1. These are normal or Gaussian curves with mean 0, and
successively smaller standard deviation. So the area under each curve is 1, and they
eventually become vanishingly small everywhere but t = 0.

Intuitively, think of these curves as approaching or converging to the graph of δ(t).
But geometrically they converge to the x-axis plus a vertical line up the y-axis, and
that is not the graph of a function. It takes a good bit of work to spell out the correct,
relevant sense of convergence using topological vector spaces. But then this can be
made a rigorous definition of δ(t). See Stein and Shakarchi (2011, p. 146 Ex. 4).

3.1 Remarkableweak derivatives

This was the great talent of Schwartz: to give a simple idea that works. (Bourbaki
member Cartier, 2021)

3 Related well-defined integrals show δ(t) is the Fourier transform of 1 (Strang, 2015, Example 5, p. 441).
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Fig. 2 Smooth functions approaching δ′(t)

These methods would not work if they did not well match relevant intuitions, includ-
ing intuitions of the calculus. One key to using the Dirac delta function is that this
“function” has a derivative, written δ′(t).

Certainly δ′(t) is not a derivative of δ(t) in the sense of limits of difference quotients
the way Calculus I classes define derivatives. It cannot be that, since δ(0) has no
specifiable value to begin with. Rather, δ′(t) is a derivative in a symbolic sense as
some (but not all) familiar rules of calculus apply to it. It is introduced by the same
means we just used for δ(t): It is motivated verbally, it has a suggestive integral
equation, and smooth curves can approach δ′(t). All three ways are made rigorous by
topological vector space methods the same as for δ(t). See Sect. 5.

Putting it in words, δ′(t) = 0 for t �= 0. This makes perfect sense since δ(t) is
constant when t �= 0. But let t approach 0 from the negative side. From its value of
0 for t < 0, δ′(0) first rockets up to infinity, then down to negative infinity, and then
returns to 0. All this action happens over the single point t = 0. Clearly this is not
possible for any function from R to R as defined in set theory. Since it cannot be a set
theoretic function, but it follows (many of) the calculating rules for a derivative, it is
called a weak derivative of δ(t).

To visualize δ′(t), picture the infinitely high and narrow limit of smooth curves as
in Fig. 2. These smooth curves are the derivatives of normal curves. As δ(t) is a kind
of limit of ever higher narrower normal curves, so δ′(t) is that kind of first high then
low narrow limit of their derivatives.

The integral equation for δ′(t) says, for all functions g :R→R with a well defined
derivative g′(t): ∫ ∞

−∞
g(t) · δ′(t) dt = −g′(0) (2)

Any reference on δ(t) will explain the negative sign in Eq. 2. In short, this makes
(many of) the usual rules of calculus work in this broader context.

4 Numerical methods using weak derivatives

Given a differential equation F(u) = 0 for a function u, we may want numerical
estimates of values u(a), u(b), u(c), . . . at specified points a, b, c, . . . .
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1. Practical applications always need specific calculated values u(a), u(b), u(c) . . . .
2. If exact solutions for u are unknown, numerical approximations may be a good

way to explore the problem.

Numerical methods are extremely important, extensively developed, and often
extremely reliable; but the pitfalls and the general theory are extremely intricate.
See discussion by Sterrett (2023).

Numericalmethods for differential equations often useweak derivatives in the sense
of our Sect. 3.1 rather than classical derivatives (Evans, 2010, p. 8 and much passim).
The widely stated reason for this in the literature is that numerical approximations
normally are patched together from individually smooth pieces, butwith “kinks”where
different pieces join. They are not classically differentiable at the “kinks,” but do have
weak derivatives. Section 6 returns briefly to this.

5 Function spaces

Rigorous versions of generalized functions like δ(t) and δ′(t) are due to Sobolev and
Schwartz using function spaces.4 Tao (2008b , p. 210) says the elements of function
spaces “are functions.” But in that same series of articles Tao states he uses “function”
in awider sense than functions as defined in set theory (2008a, p. 185). The elements of
function spaces most often are not functions in the set theoretic sense. They are always
intuitively like functions defined in set theory, the way δ(t) and δ′(t) are intuitively like
set theoretic functions from R to R. And all function spaces are structurally related
to spaces of set theoretic functions. We can see an example:

There is a function space called C∞
c (R) containing those set theoretically defined

functions f :R→R which are infinitely differentiable and have f (x) = 0 for all x
outside some finite interval. It carries a topology we will not define.

The point for us is thatC∞
c (R) has a dual spaceD′(R)whose elements are definable

in basically three ways:

1. Continuous linear functions from the space C∞
c (R) to R.

(a) This officially defines D′(R) for Stein and Shakarchi (2011, p. 100).
(b) Compare defining R by Dedekind cuts on the rational numbers.

2. Equivalence classes of suitable sequences of functions in C∞
c (R).

(a) Stein and Shakarchi (2011, p. 146 Ex. 4) shows this can define D′(R).
(b) Compare defining R by equivalence classes of Cauchy sequences of rational

numbers.

3. Up to isomorphism by more abstract properties.

(a) Compare defining R as a complete ordered field.

4 Andrei Rodin points out the early history is poorly known and may go back to Nikolai Gunter in Saint
Petersburg in 1916. That would be valuable to know but current practice traces to Sobolev and Schwartz.
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Elements ofD′(R) are calledSchwartz distributions onRnomatterwhich definition
ofD′(R) is used. This is often shortened to just distributions. The Dirac delta function
δ(t) can be precisely defined as the Schwartz distribution on R which satisfies Eq. 1.
Authors often use distributions without specifying which definition they mean. The
definitions of D′(R) agree up to isomorphism so they all work alike exactly as the
definitions of R all work alike. Section 7 returns to this.

The space of Schwartz distributionsD′(R) is one of many, many different function
spaces used in functional analysis. These are not Benacerraf structures, since the
elements of one function space are not only related to the elements of that space.

They are Dedekind structures: They are defined, in practice, up to isomorphism.
And the elements of a function space are defined by relations to each other, and to
the elements of a few other related structures. In our example, the elements of D′(R)

are related to the real numbers R and to elements of the more basic function space
C∞

c (R).
This barely touches the surface of current functional analysis. But be assured the

more advanced reaches are no less structural than this!

5.1 Aside on Dedekind cuts as order-preserving functions

Some readers may enjoy a fuller account of Item 1b above, comparing Dedekind cuts
to continuous linear functions. The point is:

A Dedekind cut gives the same information as a continuous order-preserving
function from Q to the ordered set {0, 1} (with 0 ≤ 1, and topology making {0}
open and {1} closed).

This rarely comes up outside textbooks on order-theory. But it is not hard.
PartitioningQ into a lower part A1 and an upper part A2 is just the same as giving an

order preserving function Q→{0, 1} mapping A1 to 0 and A2 to 1. Dedekind (1872,
p. 13) notes each irrational number corresponds to one such partition ofQ, while each
rational number q corresponds to two since q might be the greatest element of A1, or
the least element of A2. We can remove this ambiguity by requiring that part A1 of a
Dedekind cut must have no greatest element. In other words A1 must be open in Q.
And this is exactly the same as requiringQ→{0, 1} to be continuous for this topology
on {0, 1}.

So the real numbers R can be defined (up to isomorphism) as continuous order
preserving functionsQ→{0, 1}. Schwartz distributions commonly are defined (up to
isomorphism) as continuous linear functions C∞

c (R)→R.

6 What Fourier’s “functions” do for differential equations

Generalized functions u solving some differential equation are studied numerically
as described in Sect. 4, or when set theoretically defined solutions do not exist or are
not yet known. The Navier–Stokes equation has been studied this way for 90 years.
As another use, a differential equation may depend on some input function. Then
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the general solutions for arbitrary inputs may be well organized around the special
solution with the Dirac delta δ(t) as input.

6.1 Leray’s weak solutions to Navier–Stokes

The Navier–Stokes equation expresses Newton’s law F = ma for the flow of viscous
fluids.5 Its widespread use in physics and engineering relies on coarse approximations
and ad hoc corrections because the math is so hard (Patton, 2023; Sterrett, 2023).

The equation posits three forces on a flowing fluid: viscous drag within the flow,
fluid pressure, and an external force such as gravity. The 2-dimensional case models
a fluid layer of negligible depth and it has been completely solved (Fefferman, 2008).
For 3-dimensional flow, you can win a $1,000,000 Clay Millennium Prize without
finding a single solution just by settling the existence of smooth solutions.

Prove or refute: The 3-dimensional Navier–Stokes equation has a smooth global
solution for every smooth initial condition. (see details in Fefferman, 2000)

Here a smooth global solution means a function in the set theoretic sense, with well-
defined derivatives at every point meeting the equation. Current work on this is heavily
based on Leray’s 1934 result: The 3-dimensional Navier–Stokes equation has a global
solution in Fourier’s sense for every smooth initial condition.

These are called weak solutions. A weak solution could be a function in the set
theoretic sense. Or it could be a generalized function which verifies many rules of
calculus in a symbolic way while not being a function set theoretically (or at least not
currently known to be one).

Leray (1934) took advantage of two facts:

1. “Functions” in Fourier’s sense include all smooth functions, even all continuous
functions, but there are far more functions in Fourier’s sense (as there are more
real numbers than rational).6

2. The key point: Spaces of (what I have called) Fourier’s “functions” have good topo-
logical properties that the related spaces of set theoretically defined functions lack.
This is precisely analogous to the continuous real line R supporting techniques of
calculus that do not work for the discontinuous rational line Q.

Leray found a nice kind of approximate solutions to the 3-dimensional Navier–
Stokes equation, and gave an innovative topological argument showing suitable
sequences of these approximations converge to weak solutions.7

5 Introductions emphasizing pure mathematics are: Fefferman (2008), Lemarié-Rieusset (2024, opening
chapters), McLarty (2023), Wikipedia contributors (2023a). The huge engineering and physics literature
on Navier–Stokes is beyond the scope of this paper.
6 Leray’s solutions are measurable functions and are often treated as distributions as a convenient more
general context. See the introduction to Chap. 5 of Lemarié-Rieusset (2024).
7 The proof is non-constructive.While Leray’s solutions have good properties beyond beingweak solutions,
striking work by Albritton et al. (2022) confirmed the expectation that they are not unique.
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6.2 Fundamental solutions

Themost important solution to a linear differential equation [is] the fundamental
solution. In engineering [it is called] the impulse response. (Strang, 2015, p. 78)

Strang expands on fundamental solutions throughout his book. For a theoretical intro-
duction see Stein and Shakarchi (2011, p. 125–134). Lemarié-Rieusset (2024, p. 715)
notes they are central to his discussion of classical solutions to Navier–Stokes.

Suppose a savings account pays 3% yearly interest compounded continuously. Let
y(t) be the amount in that account at time t measured in years. Then the derivative
y′(t) is the rate of change of the balance at time t and it is a sum of two terms:

y′(t) = 0.03 · y(t) + f (t). (3)

Here 0.03 · y(t) is the interest on the balance of y(t), and f (t) is the rate of deposits
or withdrawals made at time t . Mathematically f is called the input function.

The fundamental solution to Eq. 3 is just the solution with δ(t) as input. That means
there are no deposits or withdrawals at any time except t = 0 when the balance y(0)
instantaneously jumps to 1. Then the balance for t ≥ 0 grows exponentially at the rate
of interest:

y′ = 0.03 · y(t) + δ(t) with solution

{
y(t) = 0, for t < 0;
y(t) = e0.03·t , for t ≥ 0.

(4)

To solve Eq. 3 for any input f (t), think of f as a “sum” of continuously many
successive impulses where the value f (t) is the magnitude of the impulse at time t .
Then the solution with input f is the “sum” of continuously many successively shifted
impulse solutions with these variously sized impulses.8

This method applies widely:

1. The fundamental solution to any linear differential equation with constant coeffi-
cients and an input function, is the solution for input δ(t).

2. Any linear partial differential equation with constant coefficients can be treated
by a multi-variable analog of Eq. 4 using a multi-variable version of δ(t).

The Navier–Stokes equation is not linear so it has no fundamental solution. But the
method of fundamental solutions is so productive that a major part of Navier–Stokes
research rests on fundamental solutions to related linear equations.

7 Working up to isomorphism

Dedekind had no such term as “structuralism.” He expressed his view imagistically
or philosophically, in terms of creating new objects, and Frege criticized Dedekind at

8 Strang (2015, p. 78) gives a fully worked example. Then, because readers “may feel uncertain about
working with delta functions,” he gives three ways to verify the result.
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length for this (Hallett, 2019). Still today mathematicians rarely discuss “structural-
ism.” But now they have precise, standard techniques for defining structures “up to
isomorphism” and working with them that way.

Today mathematical isomorphism is always sorted.9 Two topological vector spaces
might be isomorphic as vector spaces, but not in any topologically continuous way,
so they are not isomorphic as topological vector spaces.

Section 5 said the three approaches to the real numbers “all work alike.” Precisely,
they all imply R is a complete ordered field. And there is only one complete ordered
field, up to isomorphism of ordered fields.

A statement ϕ(F) about ordered fields F is invariant under isomorphism of ordered
fields if and only if ϕ(F1) agrees with ϕ(F2) whenever F1 and F2 are isomorphic as
ordered fields. Intuitively such a statement just talks about the algebra and the order
on F and not about any set theoretic construction. Two typical examples suggest
why these are the mathematically important statements about an ordered field: a real
number α has a square root if and only if 0 ≤ α; and every upper bounded subset ofR
has a Least Upper Bound (LUB). These are isomorphism invariant as they refer only
to ordered field properties.

Beginning analysis books like Tao (2016) often specify one set theoretic construc-
tion of the real numbers. But they teach students to discuss R in terms invariant under
isomorphism of ordered fields. Then it becomes rigorously irrelevant whether R was
defined by Cauchy sequences, or cuts, or simply as a complete ordered field. All those
definitions imply exactly the same isomorphism invariant theorems. Notably, each of
them implies real numbers can be specified by Dedekind cuts on Q and can be spec-
ified by Cauchy sequences on Q. It is rigorously irrelevant to standard theorems of
analysis what the real numbers are set theoretically.

Section 5 sketched three approaches to distributions. All are useful and often
used. But usually none is taken to specify D′(R) uniquely. All are taken to define
D′(R) uniquely up to isomorphism of topological vector spaces extending C∞

c (R).
Everything Lemarié-Rieusset (2024) says about distributions is invariant under those
isomorphisms. So Lemarié-Rieusset never chooses one set theoretic construction of
distributions. It would be rigorously irrelevant for him to do so.

8 What is structuralism and what is it good for?

Two philosophic questions stand out10:

1. In what sense is “Dedekind structuralism” structural? Like Zermelo Fraenkel (ZF)
set theory it defines some structures in terms of others, and Benacerraf (1965) took
ZF definitions to typify non-structural methods.

2. Is “definition up to isomorphism” conceptually rigorous? Or is it a fast and loose
practice that “the philosophical logician . . . , sensitive to matters of ontology” can
correct? (Quoting Martin in Benacerraf, 1965, p. 47)

9 The sort can be clear from context. Group theory usually (not always) uses isomorphism of groups. More
intricate contexts use multiple sorts of isomorphism and the sorts have to be specified.
10 Thanks to an anonymous referee for posing these sharply.
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8.1 Structuralism through relevant concepts

Dedekind structuralism, unlike ZF, describes structures only up to isomorphism and
only by relation to other specifically relevant structures. A structuralist account defines
distributions by relation to real numbers and to (set theoretically well defined) differ-
entiable functions. These relations are used in all calculations with distributions. And
they are explicitly relations. They do not say what distributions are.

No statement in our three paradigm sources places numbers or distributions in
the transfinite cumulative hierarchy that uniquely identifies each ZF set. Dedekind
structuralism admits no question of uniquely identifying the elements of any structure.
The kind of sets that Benacerraf (1965) says numbers cannot be, our argument says
distributions also cannot be.

8.2 Epistemology: trusting these concepts

Socrates: [There are] people you would not care to trust (pisteuō) claiming they
are good practitioners, if they cannot show some example of their skill—some
workwell carried out—once andmany times. (Plato,Laches 185e–186a, atwww.
perseus.tufts.edu)

It is a testimony to mathematical progress that, where Frege and Russell found
Dedekind’s idea of “new creations” wrong, Martin only says 1960s structural mathe-
matics leaves philosophers wanting to know more11:

The philosophical logician. . . . will not be satisfied with being told merely that
such and such entities exhibit such and such a mathematical structure. He will
wish to inquire more deeply into what these entities are. . . . he will wish to ask
whether the entity dealt with is sui generis orwhether it is in some sense reducible
to (or constructible in terms of) other, perhapsmore fundamental entities. (Martin
quoted by Benacerraf, 1965, p. 47)

Martin was wrong if he thought structuralist mathematics neglects set theoretic
constructions. Section 5 gave two set theoretic constructions for distributions from
Stein and Shakarchi (2011). But Stein and Shakarchi do not offer either construction
as ontology. They use both. They take the construction by linear functions as defini-
tive (item (a) of our Sect. 5). But this makes no difference after their Chap. 3. The
construction by sequences of curves is definitive for Lighthill (2008, p. 10f.).

Lemarié-Rieusset (2024) uses distributions without knowing or caring whether the
reader defines distributions by linear functions, or sequences of smooth functions, or
any other definition. Those constructions all define the space of distributions up to
isomorphism. The theorems in Lemarié-Rieusset (2024)—and essentially all books
on differential equations on that level—are isomorphism invariant. Those books use
distributions rigorously without choosing between the constructions.

The mathematicians are right from the viewpoint of fruitfulness, logical rigor, and
conceptual coherence. Philosophers could valuably tease out the social versus indi-

11 On Frege and Russell see Hallett (2019); Heis (2020).
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vidual epistemology (De Toffoli, 2023). How do structural methods help individuals?
How do they help organize and coordinate the community? But in plain fact we have
two centuries of fruitful, successful, rough and ready use of “generalized functions”
like δ(t) from Fourier to Dirac and on, made rigorous for the past 80 years by the struc-
tural function space methods of Sobolev and Schwartz. That record exhibits both the
heuristic value and the epistemic reliability of structural methods, tested from many
pure and applied perspectives.

9 Conclusion

It is a long road, both in the history of mathematics and in today’s undergrad math
curriculum, from calculus through current progress on Navier–Stokes. Our sources
show extensive structural work well carried out, meeting Socrates’ demand for trust-
ing good practitioners. Not only are the theorems true. The vast work of conceiving,
stating, proving, communicating, and applying them is well carried out. A philosopher
like Martin (as quoted by Benacerraf) is free to ask what distributions are specifically,
not just up to isomorphism. But the question is rigorously irrelevant to our paradigm
sources (Lemarié-Rieusset, 2024; Stein&Shakarchi, 2011; Strang, 2015). Itmisses the
point of what functional analysis is all about. Without settling all philosophical ques-
tions about “structuralism,” existing mathematical practice does show philosophers
can trust the epistemology and ontology of current, working, Dedekind-structural,
functional analysis.
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Fefferman, C., Fefferman, R., Hagelstein, P., Pavlović, N., & Pierce, L. (2012). The Princeton lectures in

analysis. Notices of the American Mathematical Society, 59, 641–647.
Ferreirós, J., & Reck, E. H. (2020). Dedekind’s mathematical structuralism: FromGalois theory to numbers,

sets, and functions. In The prehistory of mathematical structuralism (pp. 59–87). Oxford University
Press.

Ferreirós, J. D. (2007). Labyrinth of thought: A history of set theory and its role in modern mathematics.
Birkhäuser.

Hallett, M. (2019). Frege on creation. In Essays on Frege’s basic laws of arithmetic (pp. 285–324). Oxford
University Press.

Heis, J. (2020). If numbers are to be anything at all, they must be intrinsically something: Bertrand Rus-
sell and mathematical structuralism. In The prehistory of mathematical structuralism (pp. 303–328).
Oxford University Press.

Kline, M. (1972). Mathematical thought from ancient to modern times. Oxford University Press.
Krull, W. (1935). Idealtheorie. Julius Springer.
Lemarié-Rieusset, P. (2024). The Navier-Stokes problem in the 21st century (2nd ed.). Taylor & Francis.
Leray, J. (1934). Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica, 63,

193–248.
Lighthill, M. (2008). Introduction to Fourier analysis and generalized functions. Cambridge monographs

on mechanics. University Press.
Lützen, J. (1982).Prehistory of the theory of distributions, Volume 7 of Studies in the history ofmathematics

and the physical sciences. Springer.
McLarty, C. (2023). Fluid mechanics for philosophers, or which solutions do you want for Navier-Stokes?

In L. Patton & E. Curiel (Eds.), Working toward solutions in fluid dynamics and astrophysics: What
the equations don’t say (pp. 31–56). Springer.

Patton, L. (2023). Fishbones, wheels, eyes, and butterflies: Heuristic structural reasoning in the search for
solutions to the Navier-Stokes equations. In L. Patton & E. Curiel (Eds.), Physical laws and the limits
of explanation—What the equations don’t say (pp. 57–78). Springer.

Reck, E. (2023). Dedekind’s contributions to the foundations of mathematics. In E. N. Zalta &U. Nodelman
(Eds.), The Stanford encyclopedia of philosophy (Winter 2023 edition). Metaphysics Research Lab,
Stanford University.

Stein, E., & Shakarchi, R. (2011). Functional analysis: Introduction to further topics in analysis, Volume 4
of Princeton lectures in analysis. Princeton University Press.

Stein, H. (1988). Logos, logic, and logistiké: Some philosophical remarks on the nineteenth century trans-
formation of mathematics. In W. Aspray & P. Kitcher (Eds.), History and philosophy of modern
mathematic (pp. 238–259). University of Minnesota Press.

Sterrett, S. (2023).Howmathematics figures differently in exact solutions, simulations, and physicalmodels.
In L. Patton & E. Curiel (Eds.), Physical laws and the limits of explanation—What the equations don’t
say (pp. 5–30). Springer.

Strang, G. (2015). differential equations and linear algebra. Wellesley-Cambridge Press.

123



Synthese (2024) 203 :83 Page 15 of 15 83

Tao, T. (2008a). Distributions. In T. Gowers, J. Barrow-Green, & I. Leader (Eds.), Princeton companion to
mathematics (pp. 184–187). Princeton University Press.

Tao, T. (2008b). Function spaces. In T. Gowers, J. Barrow-Green, & I. Leader (Eds.), Princeton companion
to mathematics (pp. 210–213). Princeton University Press.

Tao, T. (2016). Analysis I. Hindustan Book Agency.
Wikipedia contributors. (2023a). Navier-Stokes equations. Accessed 10th October 2023 from https://en.

wikipedia.org/wiki/Navier-Stokes_equations
Wikipedia contributors. (2023b). Princeton lectures in analysis. Accessed 24th October 2023 from https://

en.wikipedia.org/wiki/Princeton_Lectures_in_Analysis

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Princeton_Lectures_in_Analysis
https://en.wikipedia.org/wiki/Princeton_Lectures_in_Analysis

	Structuralism in differential equations
	Abstract
	1 Introduction
	1.1 Sources
	1.2 A timeline of structural methods for differential equations

	2 Two scopes for structuralism
	2.1 Dedekind's continuum, and functional analysis

	3 A remarkable, slightly illegal function
	3.1 Remarkable weak derivatives

	4 Numerical methods using weak derivatives
	5 Function spaces
	5.1 Aside on Dedekind cuts as order-preserving functions

	6 What Fourier's ``functions'' do for differential equations
	6.1 Leray's weak solutions to Navier–Stokes
	6.2 Fundamental solutions

	7 Working up to isomorphism
	8 What is structuralism and what is it good for?
	8.1 Structuralism through relevant concepts
	8.2 Epistemology: trusting these concepts

	9 Conclusion
	Acknowledgements
	References




