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Abstract
General epistemic polarization arises when the beliefs of a population grow further
apart, in particular when all agents update on the same evidence. Epistemic faction-
alization arises when the beliefs grow further apart, but different beliefs also become
correlated across the population. I present a model of how factionalization can emerge
in a populationof ideally rational agents. This kindof factionalization is drivenbyprob-
abilistic relations between beliefs, with background beliefs shaping how the agents’
beliefs evolve in the light of new evidence. Moreover, I show that in such a model, the
only possible outcomes from updating on identical evidence are general convergence
or factionalization. Beliefs cannot spread out in all directions: if the beliefs overall
polarize, then it must result in factionalization.

Keywords Polarization · Factionalization · Bayesian networks · Network
epistemology · Social epistemology · Philosophy of science

1 Introduction

Epistemic polarization arises when a population’s beliefs about some hypothesis grow
further apart. This is sometimes operationalized as an increase in the spread or dis-
persion of the belief across the population (for example, see Bramson et al., 2017;
DiMaggio et al., 1996; Freeborn, 2023, 2024a, 2024b; Madsen et al., 2018; Pallavicini
et al., 2021). For example, suppose that most of a population are very unsure about the
safety of vaccines. If this belief polarizes, then more people might become very sure
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that vaccines are safe, more people might become very sure that vaccines are unsafe,
and fewer people may be left highly unsure.1

However, we are often interested in agents who hold many different beliefs, and
in how those beliefs might be related. For instance, different polarized beliefs might
also become more closely correlated. Epistemic factionalization arises whenmultiple,
different beliefs become correlated in a population of agents (see Bramson et al.,
2017; Kawakatsu et al., 2021; Levin et al., 2021; Weatherall & O’Connor, 2021).
For example, suppose that some population’s beliefs about vaccination efficacy and
anthropogenic climate change have both polarized. However, perhaps the same people
who are skeptical about vaccine efficacy also tend to be skeptical about anthropogenic
climate change, whilst those who strongly believe that vaccines are effective also tend
to believe in anthropogenic climate change. Then, if I know that someone is highly
skeptical about anthropogenic climate change, this could give some degree of evidence
that they might also be skeptical of vaccines.2 This would be a case of factionalization.

Perhaps such factionalization could be driven by the relationships between different
beliefs. Consider that proposed correlation between skepticism about anthropogenic
climate change and skepticism about vaccines. At first glance, these might seem like
unrelated beliefs, pertaining to two very different fields, climate science andmedicine.
However, these beliefs might be related by an underlying belief, perhaps regarding
the trustworthiness of scientists or scientific institutions. If someone regards scientific
institutions as generally reliable, this could drive them to accept scientific results
about both anthropogenic climate change and vaccines. On the other hand, if someone
regards scientific institutions as generally unreliable, this could drive skepticism about
both anthropogenic climate change and vaccines.

Previous research has already shown how underlying background beliefs can drive
rational polarization of individual beliefs (see Freeborn, 2023, 2024a, 2024b; Jern
et al., 2014). In this paper, I demonstrate how factionalization can arise even for
populations of ideally rational agents who have probabilistic relations between their
beliefs.

To do this, I will assume that the agents are as similar as possible, sharing the same
probabilistic relationships between their beliefs, and updating on the same evidence,
differing only in their initial degrees of belief about various hypotheses. I show how
patterns of factionalization spontaneously emerge due to the probabilistic relations
between beliefs themselves. One can think of this model as explicating one partic-
ular kind of factionalization—arising due to certain underlying background beliefs,
worldviews or ideologies shaping how the agents’ beliefs evolve in the light of new
evidence.

The paper is structured as follows. In Sect. 2, I outline a general model for represent-
ing a population of agents with multiple beliefs, which could undergo factionalization.
I also outline some of the formalism that I will use throughout the rest of the paper.
In Sect. 3, I suggest three different approaches for operationalizing “factionalization”,
“convergence” and “general divergence” within this model. In Sect. 4, I present three

1 For one recent empirical study with similar findings to this, see Lee and Sibley (2020).
2 Indeed, some studies suggest that beliefs about vaccines and climate change may in fact be correlated
within the U.S. population (Hamilton et al., 2015; Latkin et al., 2022).
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simple examples of belief networks, one that leads to convergence and two that lead
to factionalization. I explain whether and how convergence, polarization and faction-
alization arise in each case. In Sect. 5, I explain why factionalization must arise when
agents’ overall beliefs polarize: general divergence never arises.

2 General model

To talk about factionalization more concretely, it will help to have a basic model
of a population in mind. This model will include only certain minimal necessary
features for factionalization to emerge.3 My aim is to distill one particular form of
factionalization that emerges due to the relationships between beliefs.

This model is highly idealized, but it will be helpful to have a concrete real-world
picture in mind. The model might represent a population, accumulating exactly the
same evidence about some particular hypotheses, and updating their beliefs about
many other hypotheses on this basis. For instance, we might imagine a subset of the
general public reading a series of newspaper articles about the a particular Covid-
19 vaccine. From this evidence, each population member might update many other
(more or less closely related) beliefs: about the efficacy of vaccines in general, about
the reliability of scientists, or about whether humans cause anthropogenic climate
change, and so forth.

I assume a finite population of agents. I assume that there is a set of hypotheses
or propositions describing the world or some system within it, each of which can be
true or false, represented by discrete, binary random variables.4 Each agent holds a
degree of belief, a probability, about each hypothesis. The agents can have conditional
probabilities relating pairs of different beliefs. However, I assume that all the agents
agree about each of the conditional relations between beliefs: any disagreement comes
down to disagreements about the hypotheses themselves.

To represent relations between beliefs, I use the formalism of Bayesian networks
(seeSect. 2.1).ABayesian network specifies a set of variables, representing hypotheses
or propositions, and the conditional relationships between variables. Implicit in this
model is that the agents are rational: all of their beliefs must be probabilistically
consistent at each time, and upon learning any evidence, their beliefs are updated in a
dynamically coherent way.5

3 This simplemodel also allows for a very direct comparisonwith other recentmodels looking at polarization
(Freeborn, 2023, 2024a, 2024b; Jern et al., 2014) as well as the formation of scientific paradigms (Grim et
al., 2022a).
4 This is for simplicity only, the analysis extends straightforwardly to discrete random variables more gen-
erally. However, requiring the variables to be discrete allows it to keep the analysis in Sect. 3.3 significantly
simpler (see Lazo & Rathie, 1978).
5 Recent work in philosophy of science has used Bayesian networks as tools to explicate webs of inter-
connected beliefs, paradigms, or scientific hypotheses (Dizadji-Bahmani et al., 2011; Grim et al., 2022a,
2022b; Hartmann & Bovens, 2002; Sprenger, 2017). Other research has already used Bayesian networks
as a tool to study belief polarization (Freeborn, 2023, 2024a, 2024b; Jern et al., 2014).

123



46 Page 4 of 27 Synthese (2024) 203 :46

2.1 Formalism of Bayesian networks

More formally, a Bayesian network is a graphical model that aims to capture some sub-
set of the independence relationships given by a joint probability distribution (Pearl,
2009). Let X = {X1, X2, . . . XN } be a set of N random variables, defined on a
probability space. Then, a joint probability distribution P(X1, X2, . . . XN ) gives the
probability that each of X1, X2, . . . XN falls within some range or a discrete set of val-
ues specified for that variable. A factorization of a joint probability distribution makes
a choice about how variables depend upon others. Given some particular ordering of
variables 1 to N , a factorized representation P(X1, X2 . . . XN ) takes the form,

P(X1, . . . XN ) = P(X1 | X2, . . . , XN ) × P(X2 | X3, . . . , Xn) . . . P(Xn). (1)

P(X1, . . . XN ) =
N∏

i=1

P(Xi | X1, . . . Xi−1). (2)

Each of the N ! factorizations of a joint probability distribution will correspond to
a different Bayesian network. Let G = (V,D) be a directed, acyclic graph, where V
is a set of vertices (or “nodes”), and D is a set of directed edges, pointing from one
vertex to another. In a directed, acyclic graph, these directed edges can never form
a closed cycle. Nodes are associated with unique variables, and edges represent the
conditional relations between different variables. A directed edge (Xa, Xb) exists in
the network if P(Xb, Xa) is a factor in the joint probability distribution. If there is
a directed edge from node A to node B, we call A the “parent” and B the “child”.
Bayesian networks encode a series of local Markov independence assumptions. If the
joint probability distribution factorizes with respect to a directed graph G, then each
variable in the joint probability distribution, associated with some node in the graph,
is probabilistically independent of its non-descendants, given its parents (Geiger &
Pearl, 1993; Pearl, 2009). So, we can fully specify a Bayesian network by a set of
nodes, V , directed edges, D, random variables, X , where there is a 1–1 map between
the random variables and the nodes (I will often use the two interchangeably), and
conditional probability distributions P(Xi | Xpari ), where Xpari are the variables
associated with the parents of Xi .

Bayesian networks can be updated on new evidence using upwards and downwards
propagation procedures, such that the updated Bayesian network remains consistent
with the axioms of probability theory. Downwards propagation involves a simple
application of the specified conditional probabilities, upwards propagation involves a
Bayesian inference procedure. In practice this requires a particular algorithm; in this
case I use successive variable elimination (see Darwiche, 2009 for a comprehensive
overview). Successive updating makes use of the rigidity assumption, that conditional
probabilities of the form P(Xi | X j ) do not change when X j is updated (see Bradley,
2005; Diaconis & Zabell, 1982; Jeffrey, 1983).6 The belief propagation process is

6 Probability kinematics is a generalization of Bayesian updating for uncertain evidence in which the
updating still obeys the rigidity condition.
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governed by probability functions for each nodewhich take as input the possible values
of the parent nodes, and give as output the probability, or probability distribution, of
the variable associated with the node.

2.2 Specification of the evidence

In this model, the agents update their beliefs based on accumulating evidence over
time. So, I assume that the agents begin at some timestep 0, and the population evolves
through T discrete timesteps. All agents receive the same evidence at each timestep,
and then updates all of their beliefs in their belief network on the basis of this evidence.7

I will assume that all the evidence, at every timestep, pertains to just one single belief,
corresponding to one single node, let us call it the “data node”.8 However, the effects
of updating this single belief will propagate through the network to other beliefs.

In order to explore the evolution of beliefs over time, I will look at successive
updating on uncertain evidence.9 Rather than the evidence determining that one of the
hypotheses is definitely true or false (with probability 1 or 0), I will specify this as
fixed likelihood evidence.

What does it mean for agents to receive the same likelihood evidence? In this case,
I will represent that as receiving evidence with the same likelihood ratio. Following,
Mrad et al. (2015), I define likelihood evidence η on a variable H of a Bayesian
network, as evidence given by a likelihood ratio,

L(H = h1) : . . . : L(H = hn) = P(η | H = h1) : . . . : P(η | H = hn), (3)

where the L(H = hi ) are likelihoods, representing the probability of the observed
evidence, given that H is in the state hi . This is a natural standard of “sameness” of
evidence for several reasons. First, it allows the updating procedure to be commuta-
tive (see Field, 1978; Huttegger, 2015; Jeffrey, 1988;Wagner, 2002 for a philosophical
discussion; see also Diaconis & Zabell, 1982; Mrad et al., 2015 for some mathemat-
ical considerations about the explication of uncertain evidence relevant to Bayesian
networks). Second, the same likelihood evidence of this kind can also be thought of

7 For reasons of simplicity, I do not consider network effects or information sharing in this paper. Every
agent has access to exactly the same data. However, the interaction of network effects and belief networks
suggests a promising avenue for further study.
8 In this sense, the evidence that the agents obtainwill be “incomplete” (see Freeborn, 2024b for a discussion
of this point). The results in this paper do generalize to evidence received on multiple different beliefs.
However, the other assumptions of this paper satisfy the Blackwell-Dubins assumptions about Bayesian
merging (see Blackwell & Dubins, 1962; Huttegger, 2015; Kalai & Lehrer, 1994; Nielsen, 2018; Schervish
& Seidenfeld, 1990), so were the agents receive the same sufficient evidence to settle all of their beliefs,
then the agents’ beliefs should converge. The kind of factionalization results I will discuss here are most
relevant to the case where the information is insufficient to settle every belief—see Freeborn (2024b) for
an argument that this is a reasonable assumption under a broad range of conditions.
9 However, nothing in this analysis will depend on the use of uncertain evidence: the results also apply
to the special case of agents updating on certain evidence. I focus on uncertain evidence because it is a
more general case than certain evidence, and because it will generally yield more gradual changes in the
agents’ beliefs than certain evidence. It is easier to observe the evolution of the population’s beliefs when
they change more gradually.
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as exactly the same hard “virtual evidence” in an augmented Bayesian network (Chan
& Darwiche, 2005; Jacobs, 2018; Pearl, 1988).10

2.3 Agreement between agents

Summarizing, I assume that the agents agree about almost everything.

• The agents will form beliefs about the same set of propositions, X .
• The agents will agree about which beliefs are dependent or independent of others
(i.e. the agents will share the same belief network structure G).

• The agentswill agree about the conditional relations between beliefs (i.e. the agents
will share the same conditional probability distributions between parent and child
beliefs).

• Each agent will receive the same likelihood evidence ηt , at each timestep t .

The agents will only disagree about one thing: the initial probabilities that they
assign to each proposition. Given the Bayesian network structure, and the rationality
constraints on the agents, this disagreement can entirely summarized by their beliefs
about the exogenous variables: those with no parents. Beliefs about these variables
are in some sense prior to other beliefs: we could imagine as basic background beliefs
held by the agents. Any polarization or factionalization that arises must be driven
entirely by these disagreements about those exogenous variables. I will assume that
the exogenous beliefs of our population are drawn from a random distribution (more
precisely, that the degrees of belief are drawn from a uniform distribution between
0 and 1). As such, the exogenous variables will be statistically independent of each
other, at least at the initial timestep, t0.

2.4 Limitations of themodel

This idealized model is not intended to fully capture the complexity of real-world
factionalization, which is likely to arise from multiple factors. A sophisticated under-
standing of real-world factionalization should also consider other potential sources,
which may include social trust, political alliance-building or underlying psychologi-
cal attitudes (for example, see Lakoff, 2010; Weatherall & O’Connor, 2021). None of
these play a role in the model presented here.

However, this model may still provide insight of one plausible mechanism that
drives factionalization. It seems likely that the principles driving factionalization in
this idealized model could also be at work within the multifaceted models that better
represent the complexities of real-world factionalization.

10 To represent evidence about some variable, H , we augment the original Bayesian network with a virtual
node, η, which has no children and whose only parent is the node corresponding to variable H . We can
represent uncertain evidence pertaining to H as certain evidence about this virtual node, and update H
by Bayes’ rule. The uncertainty regarding evidence on H is now specified by the likelihoods given the
virtual evidence η, i.e. P(η | H = hi ). Therefore if different agents obtain evidence from virtual nodes
with the same conditional probabilities, this represents evidence with the same likelihoods for each agent.
If the reader is still uncomfortable with this notion of sameness of uncertain evidence, they can at least be
reassured that the results in this paper will apply to cases of certain evidence, as a straightforward limiting
case.
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Furthermore, this model does demonstrate how epistemic factionalization, a phe-
nomenon that one might intuitive suppose to be a result of “irrationality”, can arise for
a population of rational agents, who are all updating on the same evidence in highly
idealized circumstances. This insight challenges the notion that factionalization is
solely a product of cognitive biases or misinformation, suggesting instead that it can
be a natural outcome of rational interrelations among beliefs. Therefore, addressing
factionalization is not as straightforward as correcting cognitive biases or rectify-
ing skewed information sources; it demands a deeper understanding of the inherent
dynamics between beliefs.

2.5 Relatedmodels

With this model in hand, it is worth considering how it relates to, and differs from
certain other models. Weatherall and O’Connor (2021) demonstrate how factionaliza-
tion can arise in networks of agents. These agents adopt a heuristic for evaluating the
reliability of evidence—they discount evidence from other agents as a function of the
overall differences between their beliefs. This model deliberately avoids appealing
to background beliefs, worldview or ideologies. Indeed each of the agents’ beliefs
are assumed to be independent (except insofar as they depend on the agents beliefs
about other agents). Nonetheless, the beliefs systematically become correlated as the
population updates its beliefs. As such, they explicate a form of factionalization that
emerges solely “from trust grounded in shared belief”.

The approach taken here is importantly different: the factionalization does not arise
from network effects or social trust between agents. Indeed, in the model presented
here, all agents have access exactly the same evidence. Rather, it arises from relation-
ships between the beliefs of agents. As such, whilst Weatherall and O’Connor (2021)
treat beliefs as independent, in the model presented here, the beliefs are explicitly
probabilistically related.

Grim et al. (2022a) also create a model with some similarities to the one presented
in this paper. In their model, individual agents with multiple, probabilistically related
beliefs exhibit patterns of stable beliefs and punctuated equilibria, which they suggest
might resemble patterns of paradigm shifts. However, these equilibria arise under
different conditions, and by a different mechanism from the factions that I study in
this paper. In the Grim et al. (2022a) model, agents receive an “evidence barrage”
of continually surprising evidence, of different likelihoods. As such, this does not
represent a “learning scenario” (see Huttegger, 2015) in which the agents cumulatively
learn the state of the world. Stable belief patterns arise when the agents’ credences
become resistant to change as a result of nearing either 0 or 1. By contrast, I will
study a population of many agents who receive an increasing (but incomplete) set of
information about the world. Most of the time, most of the agents’ credences never
become close to 0 or 1.
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3 Convergence, polarization and factionalization

Recall themodel inmind fromSect. 2.What shouldwe expect to happen to the popula-
tion’s beliefs as they update on the successive datapoints? We might distinguish three
ways in which the population’s beliefs could evolve: convergence, general divergence
and factionalization. In this section, I will suggest three different ways to explicate
convergence, general divergence and factionalization within this model.11

3.1 Intuitive idea

To begin with, let us consider an informal first pass, meant to capture the intuitive
ideas of convergence, general divergence and factionalization. We can understand
these possibilities as follows.

• Convergence The beliefs of the population members will grow closer together as
they gain evidence.

• General Divergence The beliefs of the population members will grow further
apart in all directions as they gain evidence.

• Factionalization The beliefs of the population members spread out, but not uni-
formly. Instead, different beliefs become more correlated.

Convergence would be perhaps the least surprising of these possible outcomes.
After all, it is well known that Bayesian agents will often converge when they update
on the same information (as indicated by the famous results of Blackwell & Dubins,
1962; Huttegger, 2015; Nielsen, 2018; Schervish & Seidenfeld, 1990; see Freeborn,
2024b for a discussion of these results in the context of agents with a Bayesian belief
network).12 However, it is well known that Bayesian agents can polarize in single
beliefs when they update on evidence (see Freeborn, 2024a; Jern et al., 2014). General
divergence and factionalization would be more surprising outcomes: in some sense
the agents would be polarizing not just in one belief, but in their overall beliefs.

I will suggest some more precise definitions in Sects. 3.2 and 3.3, but it will be
useful to keep this intuitive picture in mind. I represent an example of each of these
cases for an imaginary population in Fig. 1.

3.2 Variance explication

We can use the statistical variance to measure the spread of a single belief is across
the population. A high variance in a population’s beliefs about hypothesis X suggests
that the agents’ beliefs are spread out, whilst a low variance suggests that the agents’
beliefs are closely clustered together. We can use the absolute covariance to give one
measure of the degree to which one belief gives us information about another. If the
absolute covariance between X and Y is large, then knowing an agent’s belief about X

11 However, note that different authors have used these terms in a wide variety of different ways—see
Bramson et al. (2017) for an overview.
12 We may not see belief merging if the evidence is not complete, in the sense of being enough to settle
every belief that the agents hold (see Freeborn, 2024b).
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Fig. 1 A schematic representation of an imaginary population of 60 agents, with two different beliefs, 1 and
2, represented by probabilities. The beliefs are shown at a starting timestep, and three hypothetical evolutions
of this population at a later timestep. a A starting distribution of beliefs for the population. b A possible
evolution from (a) in which the both beliefs have grown closer together. This is a case of convergence. c A
possible evolution from (a) in which both beliefs have grown apart. This is a case of general divergence.
d A possible evolution from (a) in which both beliefs have grown apart, but not uniformly: the two beliefs
have become correlated. This is a case of factionalization

allows us to predict something about their belief in Y .13 We can define these quantities
for our population as follows,

Variance: σ 2
X = 1

N

N∑

i=1

(xi − μx )
2 (4)

13 More precisely, it tells us the linear joint variability. I use the absolute variances and covariances in par-
ticular, rather than correlation coefficients, because we are not interested in the direction of the relationship
between two variables, only the degree to which one variable tells us about the other.
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Absolute Covariance: |σX ,Y | = 1

N

N∑

i=1

|(xi − μx )(yi − μy)|, (5)

where X ,Y are binary random variables representing two propositions, xi and yi are
the probabilities assigned to propositions X or Y being true by agent i , μx and μy are
the corresponding average degree of beliefs across the population, σX and σY are the
corresponding standard deviations across the population.

With this in hand, we can give a new explication the concepts of convergence,
general divergence and factionalization.

• Convergence The average variance of the population’s beliefs decreases as the
agents gain evidence.

• General Divergence The average variance of the population’s beliefs increases,
and the average absolute covariance increases or remains the same, as the agents
gain evidence.

• Factionalization The average variance of the population’s beliefs increases, but
the average absolute covariance decreases, as the agents gain evidence.

3.3 Information-theoretic explication

Finally, we are ready to develop a more general explication of convergence, general
divergence and factionalization. To do this, we will deploy several concepts from
information theory (see Appendix A for definitions and a brief discussion; see Cover
and Thomas (2006) for further detail).

Suppose that we have two joint probability distributions with the same sup-
port, P(X2, X2 . . . XN ) and Q(X2, X2 . . . XN ). The Jensen–Shannon (JS) divergence
DJS(P | Q) gives one natural way to measure the overall relatedness between two
joint probabilistic distributions. It is given by,

DJS(P | Q) = 1

2
DKL

(
P

∣∣∣∣
P + Q

2

)
+ 1

2
DKL

(
Q

∣∣∣∣
P + Q

2

)
. (6)

where DKL is the Kullback–Leibler divergence, given by,

DKL(P | Q) = −
∑

x1∈X1,
...,

xN∈XN

P(x1, . . . xN )log
P(x1, . . . xN )

Q(x1, . . . xN )
. (7)

The Jensen–Shannon entropy effectively gives a measure of the symmetrized joint
information between two such distributions. It has the advantage of measuring the
overall information that one distribution gives us about another, whereas the absolute
covariance is only sensitive to linear relations.

For each joint probability distribution, P(X1, X2, . . . XN ), we can define a corre-
sponding product of marginal probabilities, Pm = P(X1)P(X2) . . . P(XN ). In effect,
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the marginal probabilities product tells us what the probability distribution of the ran-
dom variables would be if they were all independent. If we regard each of the P(Xi ) as
telling us the agent’s credence about some salient hypothesis of interest, Xi , then we
could interpret the marginal probabilities product as telling us the agent’s credences
about each individual salient hypothesis, whilst neglecting beliefs about how those
salient hypotheses are related.

Suppose that our population of A agents holds the set of joint probability
distributions, P1, P2, . . . , PA, with corresponding marginal probabilities products,
Pm
1 , Pm

2 , . . . , Pm
A . Then the average JS divergence between the joint distributions

across the population, 〈Djoint
J S 〉, gives one way to measure the overall relatedness of the

joint probability distributions. On the other hand, the average JS divergence between
the marginal probabilities products across the population, 〈Dmarginal

J S 〉, gives one way
to measure the overall closeness of the agents’ beliefs about the propositions, ignoring
any correlations between these beliefs.

Now we have the tools in place for a plausible information-theoretic explication of
convergence, general divergence and factionalization.

• Convergence 〈Dmarginal
J S 〉 decreases as the as the agents gain evidence.

• General Divergence 〈Dmarginal
J S 〉 increases and 〈Djoint

J S 〉 increases or stays the same
as the agents gain evidence.

• Factionalization 〈Dmarginal
J S 〉 increases and 〈Djoint

J S 〉 decreases as the agents gain
evidence.

Seen this way, there is one sense in which factionalization can be understood as a
form of epistemic divergence, but another in which it can be thought of as a form of
epistemic convergence. Factionalization is a form of divergence in the sense that the
agents’ beliefs about the key, salient hypotheses grow further apart overall, 〈Dmarginal

J S 〉
increases. However, it is a form of convergence, in the sense that, when the dependen-
cies between beliefs are taken into account, the overall joint probability distributions
grow closer together, 〈Djoint

J S 〉 decreases.
From hereon, I will primarily use the information-theoretic approach, which has

the advantage of being sensitive to any statistical relation between the variables across
the population, linear or not. However, at times it will be convenient to consider the
variances of variables and the covariances or correlations between variables.

4 Simple examples

To get a better grasp on convergence and factionalization, it will be helpful to investi-
gate some relatively simple examples. These should allowus to see howan actual belief
network might drive convergence or factionalization. I will not provide an example of
general divergence, for reasons that I will explain in Sect. 5.

In each example, we will follow the model assumptions set out in Sect. 2. I will
also simulate a randomly generated population in each case, and demonstrate how its
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beliefs evolve. In each case I will assume that the agents’ degrees of belief about the
exogenous hypotheses are uniformly distributed between 0 and 1.14

4.1 Example 1: Convergence

Let us suppose that agents have beliefs about two distinct hypotheses, H1 and H2, and
agree that H2 probabilistically depends on H1 as in Fig. 2. However, the agents do not
agree about the probabilities that they assign to the two hypotheses, H1 and H2: let us
assume beliefs about H1 are uniformly distributed across the population.15 Perhaps,
H1 represents the proposition, “The air pressure is low today”, and H2 represents the
proposition, “It will rain today”. All agree that learning that it is raining today (H2 is
true) provides the same degree of evidence that the air pressure is low today (H1 is
true), and vice versa. Therefore, we should not expect any polarization to take place.

If agents receive the same evidence, then their beliefs will all update in the same
direction, as shown in Fig. 3. The variance in their beliefs about H2 will decrease, and
this in turn may drive a decrease in the variance of their beliefs about H1. Overall,
epistemic convergence takes place. The joint probability distributions, P(H1)P(H2 |
H1), and marginal probabilities products, P(H1)P(H2), will move closer together.16

4.2 Example 2: Factionalization

Now, let us allow the agents to have a slightly more complex network of beliefs, one
that allows them to update particular beliefs in opposite directions. Let the population
hold beliefs about three related hypotheses, H1, H2 and H3. It is already well known
that Bayesian networks of this form can drive the polarization of individual beliefs
(see Freeborn, 2023, 2024a, 2024b; Jern et al., 2014 for similar examples).17

Once again, suppose that the agents startwith uniformly distributed degrees of belief
between 0 and 1, now about each of the exogenous variables, H1 and H3. Suppose

14 Figures 3, 5 and 7 show results for simulated populations. However, I draw the exogenous variables from
a quasi-random 3-dimensional Halton sequence, with prime-numbered bases 2, 3 and 5, rather than from a
true random uniform distribution. This is for purely demonstrative purposes: the Halton sequence exhibits
low mathematical discrepancy. As such the sequence is generally more evenly spaced than a sequence
generated by random draws (see Halton & Smith, 1964; Kocis & Whiten, 1997).
15 As a result of agreeing about the conditional relations, the agents will agree more about H2 than H1. In
general, for a population who share a chain belief network, in which all nodes have at most one parent, the
variance of the children variables across the population will be always be less than or equal to the variance
of the parents. For instance, suppose that 2-valued variable B depends only on 2-valued variable A, through
a linear conditional probability distribution. We can write P(A = true) = aP(B = true) + bP(B =
false) = cP(B = true) + b, for some a, b ∈ [0, 1], c = a − b. Then var(B) = c2var(A) ≤ var(A).
16 Note that the beliefs in H1 and H2 across the population both begin and end perfectly correlated. There
are no external sources of information that can serve to change the perfect correlation: H2 depends entirely
on H1 However, the slope of the relation between H1 and H2 has changed. In accordance with the rigidity
assumption, the probability p(H1 | H2) does not change, but the probability p(H2 | H1) can change for
each agent. One way to see this is that not every probability can change by the same amount in light of the
same evidence, as the probabilities are fixed between 0 and 1.
17 More precisely, they allow forwhat (Freeborn, 2024a) terms the contra-directional updating of individual
beliefs. The network in example 1 already allows for a different kind of polarization, belief divergence, in
which the difference between particular beliefs increases.
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H1

H2

(a)

H1 P (H2 = true)

True 0.9
False 0.1

(b)

Fig. 2 a A Bayesian network structure with two variables, corresponding to degrees of belief about
hypotheses H1 and H2. I assume that all agents agree about this structure. b The conditional probabilistic
relations between H1 and H2

Fig. 3 Belief trajectories for a population of 15 agents, with regards to two related hypotheses, H1 and H2
as in Fig. 2b. The agents all update on 20 datapoints about H2, each with a likelihood ratio of 0.65. This
drives all agents to update in the same, positive direction about H1. Arrow are indicative, showing only the
directions in which their degrees of belief change

H1 H3

H2

H1 H2 P (H3 = true)

False False 0.9
False True 0.1
True False 0.1
True True 0.9

(a) (b)

Fig. 4 a A Bayesian network structure with three variables, corresponding to degrees of belief about
hypotheses H1, H2 and H3. I assume that all agents agree about this structure.bThe conditional probabilistic
relations between H1, H2 and H3

that all agents agree that these beliefs are related: H2 probabilistically depends on
H1 (as in Fig. 4). Perhaps H1 represents the proposition “The air pressure is low
today”, H3 represents “My barometer will give the correct reading” and H2 represents
“My barometer states that the air pressure is low today”. All agree about the same
conditional relationships between these hypotheses. However, their different beliefs
regarding H3 will partly determine how agents update their expectations about what
the barometer will say. If I believe that the barometer is a systematically reliable
instrument, then a low air pressure reading should increase my degree of belief that
the air pressure really is low.On the other hand, if I believe the barometer systematically
gives incorrect readings, then a low air pressure reading should decrease my degree
of belief that the air pressure is low.
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Fig. 5 Belief trajectories for a population of 40 agents, with the belief network shown in Fig. 4. Only two
beliefs, H1 and H3 are shown. The agents all update on 20 datapoints about H2, each with a likelihood
ratio of 0.65. This drives the agents to polarize in their beliefs about H1 and H3. Observe that the agents
beliefs about H1 and H3 become correlated as they coalesce into two clusters. Arrow are indicative,
showing only the directions in which their degrees of belief change. Colors indicate whether the belief
pair (P(H1 = true), P(H2 = true)) ends closest to (0,0) (blue) or (1,1) (orange) at the final timestep, as
measured by the Euclidean distance. (Color figure online)

As before, all of the agents receive the same evidence about H2. Now the agents’
beliefs about H1 and H3 may be drawn in one of two different directions: either they
increase their credence in H1 being true, and decrease it in H3 or vice versa, as in Fig.
5. Different degrees of belief in H3 drive polarization of beliefs H1, upon updating
beliefs about H2. Likewise, different degrees of belief in H1 drive polarization of
beliefs about H3. Indeed, the marginal probabilities products, P(H1)P(H2)P(H3)

may grow further apart. However, when we look at both beliefs, about H1 and H3
together, we see that the beliefs that started independent become correlated. As a result
of these correlations, the joint probability distributions, P(H1)P(H3)P(H2 | H1, H3)

grow closer together. The population’s beliefs factionalize.
Why do the beliefs factionalize, rather than diverging in all directions, without

correlations forming? One way to understand this is in terms of the independencies
between the variables. Belief polarization arises here because the agents’ beliefs about
the H1 and H3 can both provide independent information about how to update the other,
given some value of H2.18 As a result, unlike in the previous example, the correlations
between variables can vary after updating H2. In fact, the correlationsmust vary if H2
is updated to a new value: given some agreed value of H2, then knowing the beliefs
about H3 provides new information to us about the beliefs about H1.

We can draw a more general lesson from examples like this. Whenever updating
one variable in a Bayesian population leads to the polarization of another variable,
then at least some fully or partly independent variables must experience changes in
their correlations. In Appendix B, I explain why this is the case. This realization is very
suggestive: if at least some variables must become more correlated, does polarization
always lead to factionalization, rather than general divergence? I will return to this
question in Sect. 5.

18 In fact, all that is required is that H1 and H3 are fully or partly independence sources of information,
conditional on the value of H2, i.e. P(H1 | H2) �= P(H1 | H3, H2) (and so likewise, P(H3 | H2) �=
P(H3 | H1, H2))—see Jern et al. (2014) and Freeborn (2024a).
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H1 H3

H2

H4 H5
H1 H3 P (H2 = true)

False False 0.9
False True 0.1
True False 0.1
True True 0.9

H4 H5 P (H3 = true)

False False 0.9
False True 0.1
True False 0.1
True True 0.9

(a) (b) (c)

Fig. 6 a A Bayesian network structure with five variables, corresponding to degrees of belief about
hypotheses H1, H2, H3, H4 and H5. I assume that all agents agree about this structure. b The conditional
probabilistic relations between H1, H2 and H3. c The conditional probabilistic relations between H3, H4
and H5

4.3 Example 3: Multiple factions

Let us augment the previous example once more, to see how this process can lead to
the population dividing into many different factions, rather than just two. A simple
way to do this is to add a second polarizing node.

Let the population hold beliefs about five related hypotheses, H1, H2, H3, H4, and
H5. Suppose that all agents agree that these beliefs are related, with H3 depending on
H4 and H5, and with H2 depending on H1 and H3, as in Fig. 6. Perhaps H1 represents
the proposition “The air pressure is low today”, H3 represents “My barometer will
give the correct reading”, H2 represents “My barometer states that the air pressure
is low today”, H4 represents “The barometer is aneroid” and H5 represents “aneroid
barometers give systematically reliable results”. Now, different beliefs about H5 will
drive polarization in H4 (and vice versa) given updated beliefs about H1. But the
updated beliefs about H1 are themselves already polarized by the different beliefs
about H3, given evidence about H2. As a result, rather than dividing into two factions
as in the previous example, the beliefs about H4 and H5 now divide into four distinct
factions, as shown in Fig. 7. In general, augmenting networks in this way, by adding
more polarizing nodes can increase the number of factions that may form.

5 Why do populations factionalize?

The examples in Sect. 4 illustrate how convergence and factionalization both arise, but
not general divergence. In fact, given the definitions in Sect. 3.3, then agents should
never rationally expect their population to exhibit general divergence upon learning
the value of some variable, under the assumptions of our general model, and assuming
that they know the population is rational. We can state this as a general condition.
No General Divergence Condition
Suppose that we have two rational agents, with beliefs specified by joint probability
distributions P(X ,Y , . . . Z , D) and Q(X ,Y , . . . Z , D) over the same set of discrete,
binary variables,X = {X ,Y , . . . D}.Let us suppose that the twoagents share the same
conditional relationships, P(Y |X) = Q(Y |X), for all X ,Y ,∈ X . Let us suppose that
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Fig. 7 Belief trajectories for a population of 60 agents, with the belief network shown in Fig. 6. Only two
beliefs, H4 and H5 are shown. The agents all update on 20 datapoints about H2, each with a likelihood ratio
of 0.65. This drives the agents to polarize in their beliefs H1, in turn leading to four-way factionalization in
their beliefs about H4 and H5. Arrow are indicative, showing only the directions in which their degrees of
belief change. Colors indicate whether the belief pair (P(H4 = true), P(H5 = true)) ends closest to (0,0)
(blue), (0,1) (purple), (1,0) (green) or (1,1) (orange) at the final timestep, as measured by the Euclidean
distance. (Color figure online)

at least one agent is not certain about the value of D. Then, DJ S(P(X ,Y , . . . Z , D |
D) | (P(X ,Y , . . . Z , D | D)) < DJS(P(X ,Y , . . . Z , D) | (P)).

Proof From the Kullback–Leibler divergence chain rule (Eq. 18) and the positivity of
Kullback–Leibler entropy, it immediately follows that,

DKL(P(X ,Y , . . . Z | D) | (P(X ,Y , . . . Z | D))

< DKL(P(X ,Y , . . . D) | (P(X ,Y , . . . D)). (8)

Furthermore,

DKL(P(X ,Y , . . . Z | D) = DKL(P(X ,Y , . . . Z , D | D). (9)

Then,

DKL(P(X ,Y , . . . Z , D | D) | (Q(X ,Y , . . . Z , D | D))

< DKL(P(X ,Y , . . . Z , D) | Q(X ,Y , . . . Z , D)). (10)

The result for Jensen–Shannon divergences follows immediately.

Therefore, if the agents’ overall beliefs grow further apart, then agents should
always expect factionalization, not general divergence.19 We can understand this as a
cumulativity of information condition. If all of the rational agents in some sense acquire
the same information, then in some sense their beliefs shouldmove closer together. This

19 However, this does not immediately rule our general divergence as a possibility altogether. As I explain
in Appendix A, conditional Kullback–Leibler divergences are the expectations of the Kullback–Leibler
divergences of the conditional probabilities relative to the current probability distributions. Thus whilst
no agent should rationally expect the Kullback–Leibler divergences to increase upon learning the same
information, this does not mean that surprising results could not happen, in which upon learning new
information, the actual Kullback–Leibler divergences could increase.
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does not mean that beliefs cannot polarize, but rather, if polarization generally takes
place across all of their beliefs (i.e. their beliefs about the salient hypotheses become
more spread out; Dmarginal

J S increases) then the beliefs across the population must
factionalize, or become more correlated (i.e. their beliefs about the salient hypotheses
become more spread out; Djoint

J S must decrease). Whilst the population’s marginal
beliefs about all the hypotheses individually can diverge, if we look at the the joint
probabilities, then the population’s beliefs must nonetheless grow closer together.
Another way to think of this is that, in one sense Bayesian learning is genuinely taking
place in such a population.Alternatively, onemight say that the population’s beliefs are
becoming more orderly or predictable, even as the agents’ individual beliefs diverge.

Certain kinds of Bayesian belief polarization can only arise given certain structural
or independence relations between the variables (see Appendix B).20 In fact, we can
understand these as conditions on the dependence between variables: polarization can
only take place if the salient variables are dependent in precisely such a way that they
must become more generally correlated after polarization. In other words, they can be
viewed as conditions that exclude general divergence but allow for factionalization,
consistent with our cumulativity of information approach above. I discuss this further
in Appendix C.

6 Conclusions

Epistemic factionalization arises very naturally, even for ideally rational agents, who
update on exactly the same evidence. This factionalization is driven by probabilistic
relations between different beliefs. Different background beliefs drive polarization
when the agents update beliefs on the same evidence in different ways: the same
evidence can cause some agents to increase their confidence, whilst others decrease
theirs.However, this sameprocess tends to lead to different beliefs becoming correlated
across a population. Factions emerge, in which agents tend to hold not just one, but
many similar beliefs. This process often, but not always, corresponds to the coalescence
of distinct clusters of agents, who hold many very similar beliefs, different from the
agents in other clusters.

This kind of factionalization is an epistemically rational process. Indeed, it arises
precisely because the agents are all rationally learning from the same evidence. There
are two perspectives through which we might view factionalization. From one per-
spective, factionalization might look like a kind of convergence, whereas from another
viewpoint, factionalization might look like a particularly severe form of polarization.
Fully understanding factionalization requires us to study the phenomenon stereoscop-
ically, using both of these lenses.

In the first sense, factionalization corresponds to the agents’ beliefs genuinely
moving closer together: the agents’ overall joint probability distributions become
more similar, as measured by the Kullback–Leibler divergences or Jensen–Shannon
entropies. As a population factionalizes, the agents’ beliefs line up into two or more

20 Freeborn (2024a) denotes the types of polarization that can only happen under these conditinos as
“contra-directional updating”.
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opposing camps, each of whom agree about many different beliefs. We can see fac-
tionalization as a process in which the populations beliefs become more orderly or
predictable, as correlations develop or strengthen between the different agents’ beliefs.

In the second sense, factionalization can be understood as a form of multi-belief
polarization. The key is whether we consider the joint probability distributions or
marginal probabilities products more relevant to the task at hand. If we are pri-
marily concerned with the beliefs about the individual hypotheses themselves, then
factionalization may represent a particularly severe kind of polarization. After all, fac-
tionalization indicates that the agents have grown further apart in their beliefs about
each distinct hypotheses, even as their conditional probabilitiesmay have grown closer
together. Recall our original example, a population factionalizing over the issues of
anthropogenic climate change and Covid-19 vaccines, perhaps driven by an underly-
ing belief in the trustworthiness of scientists. If the agents grow apart on both of these
issues, and their beliefs become more correlated, then this seems to correspond to a
severe kind of polarization, even as the agents’ joint probabilities grow closer together.

Perhaps one way to put this is that a purely formal epistemologist might feel reas-
sured by factionalization. After all, it is the factionalization process that allows a
population’s overall beliefs (as represented by the joint probability distributions) to
converge, even when individual beliefs are polarizing. By contrast, a social episte-
mologist or social scientist might find factionalization more concerning. After all,
factionalization indicates that the population’s beliefs about each individual hypothe-
ses are moving further apart; in such a way that the population is dividing into factions
that disagree about not just one belief, but many.

Moreover, no matter how rational the process, this kind of regimentation of beliefs
into distinct factions might often be problematic for real populations. For instance, it
is well-known that trust tends to decrease between people with very different beliefs
(Kitcher, 1995; Rogers, 1983). It is plausible that factionalization across many differ-
ent beliefs might exacerbate the general problems with social epistemic polarization
(Kawakatsu et al., 2021; Levin et al., 2021). In a real world population, processes
mechanically similar to this might plausibly contribute towards populations dividing
into distinct worldviews, ideologies or paradigms. The fact that the beliefs of agents
in each such faction might be internally consistent may discourage convergence or
learning from agents in other factions.

Ultimately, the model presented here explains only one kind of factionalization.
A more complete model of social factionalization would need to include many other
factors, not limited to cognitive biases of agents, differential access to information
between agents, and biased sources of information. However, the type ofmodel studied
here suggests that, even fixing all such biases would not, in itself, be sufficient to
eradicate factionalization.

As Freeborn (2024b) points out, this type of rational polarization could potentially
be resolved with the right kind of evidence. If rational agents are able to acquire the
same sufficient evidence to settle all their beliefs, then such agents should expect
their beliefs to merge. However, in practice, we do not generally have such complete
evidence. Bridging the gap between such ideological factions could be challenging.
The beliefs of each opposing faction are rationally held, and mutually self-supporting,
on the basis of the same evidence. As a result, the epistemic factions that so form
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could be difficult to remove through a process of convergence. Simply acquiring more
evidence pertaining to just one belief could plausibly drive further factionalization.
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Appendix A: Information-theoretic quantities for discrete variables

Here, I outline some of the key information-theoretic quantities that I use (see Cover
& Thomas, 2006 for a more detailed overview). For simplicity, I define these only for
discrete variables. These concepts can all apply to joint probability distributions of
many variables; however, for clarity I will present them as probability distributions
over just one variable here unless the multi-variable case is of particular importance.
I leave the logarithmic bases unspecified.21 Figure 8 gives a visualization of some of
the quantities of information and their relations.

Information entropy is a measure of the uncertainty of a random variable. If we
learn something about the value of a random variable (i.e gain information), then its
information entropy will fall. The total information entropy of a random variable tells
us how much information we would need to learn its exact state. If X is a discrete
random variable, with possible values x, . . . ∈ X , then the entropy is defined by,

H(X) = −
∑

x∈X
P(x)logP(x), (Entropy) (11)

21 Choose your favorite logarithmic base. Any will do, as long as it is used consistently.
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where P(x) is the probability of X taking value x . The entropy of a probability
distribution is always greater than or equal to zero, H(X) ≥ 0; an entropy of zero
corresponds to a variable about whose value we are certain. Likewise, if we have
a joint probability distribution over N random variables, X1, . . . XN with supports
X1 . . .XN , then the joint entropy is given by,

H(X1, . . . XN ) = −
∑

x1∈X1,
...,

xN∈XN

P(x1, . . . xN )logP(x1, . . . xN ). (Joint Entropy)

(12)

The joint entropy tells us howmuch uncertainty is associated with the set of random N
random variables. The conditional entropy H(Y | X) tells us what entropy we should
expect for variable Y after learning X , on average, given our current joint probability
distribution over X and Y . It is defined by,

H(Y | X) = −
∑

x∈X ,y∈Y
P(x, y)log

P(x, y)

P(x)
. (Conditional Entropy) (13)

Loosely, we can think of conditional entropy H(Y | X) as the expected posterior
entropy upon learning X , and the original entropy of X as the prior entropy. It is not
symmetric: H(Y | X) �= H(X | Y ); however, Bayes’ rule for entropy tells us how to
relate these quantities:

H(Y | X) = H(X | Y ) − H(X) + H(Y ). (Bayes’ Rule for Entropy) (14)

This is an additive analogue for Bayes’ rule for probabilities. The conditional entropy
always greater than or equal to zero, and always less than the marginal entropy: 0 ≤
H(Y | X) ≤ H(Y ). In other words, upon learning the true value of a variable that
we did not previously know (actually, more generally, upon reducing the entropy
of one variable), the posterior entropy of our joint probability distribution should
increase (on average, according to our probability measure). One can think of this as
a cumulativity of information condition. Roughly speaking, one should expect a net
gain in information from learning something new.

Suppose that we have a joint probability, P(X1, . . . , XN ) over N random variables.
Then the joint entropy is can be calculated by the conditional entropies using the chain
rule for entropy.

H(X1, . . . XN ) =
N∑

i=1

H(Xi | X1, . . . Xi−1). (Chain Rule for Entropy) (15)
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Fig. 8 A Venn diagram relating
various quantities of information
for two variables, X and Y in a
joint probability distribution

I(X | Y )
=

I(Y | X)
H(X | Y ) H(Y | X)

H(X) H(Y )

H(X,Y )

This is an additive analogue to the chain rule for probability (see Eq. 2).
The mutual information gives us the amount of information we expect to gain about

Y upon learning X , given our current joint probability distribution over X and Y . It
equals the difference between the original entropy of Y and the conditional entropy
of Y upon learning X .

I (X | Y ) = −
∑

x∈X ,y∈Y
P(x, y)log

P(x, y)

P(x)P(y)

= H(Y ) − H(Y | X). (Mutual Information) (16)

The mutual information is symmetric: I (X | Y ) = I (Y | X). Another way to think
of the mutual information is that it tells us about the independence of variables. If
X and Y are independent, then the mutual information is zero, I (X | Y ) = 0: in
other words, neither independent variable provides us with any information about the
other (this corresponds to H(X) and H(Y ) having no overlap in Fig. 8). On the other
hand, if X and Y are perfectly correlated, then I (X | Y ) = H(X) = H(Y ) (this
corresponds to H(X) and H(Y ) having total overlap in Fig. 8) . In general, the mutual
information is bounded between these two quantities, 0 ≤ I (X | Y ) ≤ H(X), H(Y ).
The mutual information gives us a more general way to measure the dependencies
between variables than the correlation or covariance (Eq. 5), in particular one more
suited to handling nonlinear dependencies.

One can think of the mutual information, between a joint probability distribution
P(X ,Y ) and a marginal probabilities product P(X)P(Y ), as a special case of the
Kullback–Leibler divergence. The Kullback–Leibler (KL) divergence between two
joint probability distributions on the same support is given by,

DKL(P | Q) = −
∑

x1∈X1,
...,

xN∈XN

P(x1, . . . xN )log
P(x1, . . . xN )

Q(x1, . . . xN )
, (KL Divergence)

(17)
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where P and Q are two joint probability distributions with support X . The Kullback–
Leibler divergence gives a measure of the information-theoretic difference between
two distributions between two distributions, according to the probabilities of one
distribution or the other. As such, the Kullback–Leibler divergence is not generally
symmetric, unlike the mutual information: DKL(P | Q) �= DKL(Q | P). Kullback–
Leibler divergences also obey an additive chain rule,

DKL(P(x, y) | Q(x, y)) = DKL(P(x) | Q(x)) + DKL(P(x | y) | Q(x | y)),
(KL Divergence Chain Rule)

(18)

where the conditional Kullback–Leibler divergences are shorthands for the expecta-
tions of the Kullback–Leibler divergences of the conditional probability distributions,
relative to the former probability distribution, DKL(P(x | y) | Q(x | y)) =
EP [DKL(P(x | y) | Q(x | y))].

Unlike the mutual information, the Kullback–Leibler divergence is generally
unbounded. For example, if one agent is certain about a variable, (say P(X = x) = 1),
in a way that contradicts another (Q(X = x) �= 0), then the Kullback–Leibler diver-
gence DKL(P | Q)will be infinite for probability P . In other words, no finite quantity
of information can be sufficient to shift distribution P to Q.

For these reasons, it is often more convenient to use the Jensen–Shannon (JS) diver-
gence tomeasure the information-distance between two joint probability distributions.
This is given by,

DJS(P | Q) = 1

2
DKL

(
P

∣∣∣∣
P + Q

2

)
+ 1

2
DKL

(
Q

∣∣∣∣
P + Q

2

)
. (JS Divergence)

(19)

The Jensen–Shannon divergence can be understood as a smoothed and symmetrized
version of the Kullback–Leibler divergence. If the probability distributions of two
agents move generally closer together, then the JS divergence will decrease. If the
probability distributions of two agents move generally further apart, then the JS diver-
gence will increase. For instance, if the probability distributions are identical, P = Q,
then DJS(P | Q) = 0. On the other hand, if the probability distributions are as dif-
ferent as they can be, for a set of N variables, e.g. P(Xi ) = 1, Q(Xi ) = 0, for all
binary variables Xi ∈ X , then the JS divergence will take its maximum possible value,
(P | Q) = N

2 log(2).
There are many other possible different measures of the similarity of joint proba-

bility distributions, known as f-divergences (see Ali & Silvey, 1966; Csisz’ar, 1964;
Morimoto, 1963; Rényi, 1961). However, the Jensen–Shannon entropy has some
desirable properties. One can think of the Jensen–Shannon entropy as giving an
“information radius” between two joint probability distributions (see Nielsen, 2021).
It has many convenient properties that make it suitable to measure the information-
distance between two joint probability distributions. Furthermore, it is symmetric,
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DJS(P | Q) = DJS(Q | P). The square root of the Jensen–Shannon divergence is a
metric distance (Endres & Schindelin, 2003; Fuglede & Topsoe, 2004).

One way to think of these quantities is as follows. The correlation and covariance
both give a measure of the statistical linear relatedness of two variables. The mutual
information gives a way to measure the overall statistical relatedness of two variables,
regardless of the linearity of the relation. The KL divergence and JS divergence extend
this, giving a measure of the overall relatedness of two joint probability distributions.
The KL gives this measure relative to one or the other probability distribution, whereas
the JS divergence gives a way to average this for both probability distributions.

Appendix B: Contra-directional updating for Bayesian agents

Jern et al. (2014) and Freeborn (2024a) define contra-directional (or contrary) updating
as updating in which one agent increases their degree of belief in some hypothesis,
whilst another agent decreases their degree of belief:

(posterior2 − prior2) × (posterior1 − prior1) < 0. (20)

Suppose that there are two agents, with an identical Bayesian belief networks,
G, with discrete variables, including at least two binary variables, D and H . Let V
be the set of all exogenous variables. Let the two agents have identical conditional
probability distributions for all children conditional on their parents, but may differ
in the probabilities associated with each variable. Let β be a virtual node, with no
parents, whose children are the set of the exogenous nodes V (see Fig. 9). Given that
the only differences between the beliefs of the agents can be traced to differences
about the exogenous variables, we can understand the virtual node β as encoding all
of the differences between the beliefs of the two agents.

Under these assumptions, Jern et al. (2014) prove that only certain kinds ofBayesian
belief networks can exhibit contra-directional updating. Following the terminology of
Freeborn (2024a), we can express this either through an independence condition or a
structural condition.

Independence Condition Contra-directional updating and transvergent updating
with regards to H as a result of updating D is only possible if the belief network
satisfies these criteria:

H S

D

β

H S

D

Fig. 9 Left: An example Bayesian network without the virtual node β included. Right: The same network
with the virtual node β included. Observe that it is parent to the exogenous variables, and only the exogenous
variables
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1. D and β are conditionally dependent given H .
2. D and H are conditionally dependent given β.

The independence condition states that contra-directional updating and transvergent
updating with regards to node H as a result of updating node D can only occur if two
requirements are met: (1) D and the virtual node β are conditionally dependent given
H and (2) D and H are conditionally dependent given β. β represents the differing
beliefs of two agents with the same Bayesian network structure, G, and variables that
can only take on values of 1 or 0.

The structural condition expresses this in terms of d-separation, a graphical or
structural property of Bayesian networks (i.e. one pertaining to the nodes and edges
only, rather than the numerical values of variables). Loosely, d-separation tests the
connectedness of the two variables (Pearl, 2009, pp. 16–19). Roughly, speaking, two
sets of nodes are conditionally dependent if they are d-connected given a third set of
nodes and conditionally independent if they are d-separated given a third set of nodes.

Structural Condition Then contra-directional updating and transvergent updating
with regards to H as a result of updating D cannot occur for almost all distributions
compatible with G unless both of these two requirements is satisfied:

1. D and β are d-connected given H .
2. D and H are d-connected given β.

The structural condition states that almost all distributions compatible with G,
contra-directional updating and transvergent updating with regards to H can only
occur if (1) D and β are d-connected given H and (2) D and H are d-connected
given β. The first requirement means that the initial beliefs of the agents can provide
additional information about H once D is known, and the second requirement means
that the data node D can give additional information about the hypothesis node H
given the initial beliefs of the agents.

These independence conditions demonstrate that the polarization of one variable
leads to changes in the correlations of other variables. To see this, observe that the
independence condition implies the following relations (see Jern et al., 2014):

1. P(β | D) �= P(β | HD),
2. P(H | D) �= P(H | βD).

Recall that, under these assumptions, all of the differences between agents can
be summarized by the differences in the exogenous variables, which in turn can be
entirely represented by the virtual node, β. Thus, these conditions can be understood
as stating that, given some data pertaining to D, there are some independent sources
of information (captured within β), which vary between agents, and which will affect
how the agents update H . In other words, the value of H , upon updating D will vary,
given different independent beliefs, β. As such, the correlations between H and other,
at least partly independent variables, will change.
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Appendix C: Factionalization and the independence conditions

Suppose that we have two joint probability distributions, P(X ,Y , . . . Z , D) and
Q(X ,Y , . . . Z , D), where there is some uncertainty about the value of D. The no
general divergence condition (Sect. 5) shows that the Kullback–Leibler divergence
berween the two joint probability distributions must decrease if we learn the true
value of some variable, e.g. D. We can use this to gain a new understanding of the
independence conditions in Appendix B.

Recall (see Eq. 15) that we can rewrite the conditional entropy of a joint probability
distribution, given some variable as follows,

H(X ,Y , . . . Z | D) = H(X) + H(X | Y ) + · · · H(D|X ,Y , . . .) − H(D). (21)

More generally, given some factorization, with a choice of endogenous variables A
and exogenous variables, B, we can write,

H(X ,Y , . . . Z | D) =
∑

A∈A
H(A) +

∑

B∈B
H(B | A) − H(D). (22)

H(X ,Y , . . . Z | D) =
∑

A∈A
H(A | D) +

∑

B∈B
H(B | A, D) (23)

Let us call the first term the exogenous entropy and the second term the endogenous
entropy. Now, if the value of D is not certain, H(D) ≥ H(D | X) for any variable
X . If this is the case then either the exogenous entropy or the endogenous entropy (or
both) be expected to fall upon learning D.

Suppose that we satisfy the two independence conditions in Appendix B,

P(β | H) �= P(β | DH)P(H | β) �= P(H | Dβ) (24)

Thus, at least two variables must conditionally depend on D. Thus, at least two
conditional entropies must change upon learning D. Given the positivity of entropy,
these conditional entropies must fall. If P and Q both share the same graph structure,
then these same conditional entropies must change in both of these graphs. Given that
the Kullback–Leibler divergence must be expected to decrease upon updating on D,
both of these entropies must change in the same direction.

One way of understanding this is that the belief structures must carry precisely
the conditional relationships to allow for variables to become more correlated, upon
updating. In other words, polarization can arise precisely when the independencies
between the variables allow for increased dependence between the variables. This
allows for the Kullback–Leibler divergence between the joint probability distributions
to fall, even when the Kullback–Leibler divergence between themarginal probabilities
products increases.
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