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Abstract
Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to
which the latter is the set of truths that we grasp on the basis of our understanding of
the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano
Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and
only arithmetical truths thus understood. In this paper, we raise a challenge for the
thesis and showhow it can be overcome.We introduce the concept of purity for theories
of arithmetic: a theory of arithmetic is pure when it only proves arithmetical truths.
Then, we argue that, under Isaacson’s thesis, some PA-provable truths—including
transfinite induction claims for infinite ordinals and some consistency statements—
are seemingly not arithmetical in Isaacson’s sense, and hence that Isaacson’s thesis
might entail the impurity of PA. Nonetheless, we conjecture that the advocate of
Isaacson’s thesis can avoid this undesirable consequence: the arithmetical nature, as
understood by Isaacson, of all contentious PA-provable statements can be justified. As
a case study, we explore how this is done for transfinite induction claims with infinite
ordinals below ε0. To this end, we show that the PA-proof of such claims employs
exclusively resources from finite mathematics, and that ordinals below ε0 are finitary
objects despite being infinite.

Keywords Isaacson’s thesis · Peano Arithmetic · Arithmetical truth · Finite
mathematics

1 Introduction

Againstwhat has generally beenbelieved to follow fromGödel’swork,Daniel Isaacson
(1987/1996, 1992), defended the view that PA is complete with respect to arithmetical
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truth. He proposed to conceptualise arithmetical truth as the set of truths that we grasp
on the basis of our understanding of the structure of natural numbers alone, and argued
that the first-order axiom system for arithmetic PA coincides with that set. It is thus
that we must understand Isaacson’s claim that PA is sound and complete with respect
to arithmetical truth.

In this paper we identify a reading of Isaacson’s work in which the status of certain
PA-provable sentences as arithmetical, at least in the sense of the word Isaacson
proposes, can be called into question.Wefirst introduce the notion of purity for theories
of arithmetic: a theory of arithmetic is said to be pure if and only if it only proves
arithmetical truths. We note that purity thus understood is an important component of
Isaacson’s thesis. We then argue that, under the aforementioned reading of Isaacson’s
thesis, PA seems to be impure with respect to arithmetical truth—that is, some of
the truths proven by PA might not be arithmetical truths in the sense of Isaacson,
for their proof in the language of PA is too long to constitute the epistemic basis on
which to perceive the truth of the statement. These include, for instance, transfinite
induction claims for infinite ordinals, as well as consistency statements for theories
of arithmetic weaker than PA. We then try to show that the way in which Isaacson,
who had foreseen the reading that leads to this impurity concern, tries to prevent the
latter, is not entirely satisfactory. Finally, we explore a different route to restore purity:
justifying the arithmeticality, in Isaacson’s sense, of those claims that motivated the
move in the first place. As a case study, we take transfinite induction claims for infinite
ordinals; thus, we argue that shortened proofs of these statements can be shown to be
arithmetical in Isaacson’s sense, as they do not really contain higher-order notions.We
end up by considering this case study as evidence in favour of a conjecture we advance,
namely that the arithmeticality of all statements leading to the impurity concern can
be justified.

2 Isaacson’s thesis

Ever since at least Tarski, the mainstream conception of arithmetical truth has equated
the latter with satisfiability in the standard model for the language of arithmetic, that
we will call L0 and which includes the nonlogical constants (S, 0,+, ·,<).1 We refer
to this model simply as the standard model of arithmeticN , and to the set of sentences
true in this model as true arithmetic, or Th(N )—see e.g. (Boolos et al., 2007, p. 295).

Contra this widespread view on arithmetical truth, Daniel Isaacson advances his
own. For him, an arithmetical truth is a truth that is perceived as such ‘from the
purely arithmetical content of a categorical conceptual analysis of the notion of natural
number’ (1987/1996, p. 203). Accordingly, he defends that the way to determine what
counts as an arithmetical truth is not only a formal matter but also an epistemic one,
since what counts as arithmetical ‘has to do with the way in which we are able to
perceive [a] statement’s truth or falsity’ (1992, p. 95). In particular, he defends that
the set of arithmetical truths is to be captured via a recursive definition. The base
clause asserts that a true statement is arithmetical when its truth can be seen to follow

1 For differing views, see Sayward (1990).
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directly from our understanding of the natural number structure; he seems to think
that the axioms of PA (and perhaps those alone) are arithmetical in this sense. The
recursive clause asserts that a true statement is arithmetical if its truth can be perceived
as such via first-order logical inferences from known truths whose arithmetical nature
has been granted.2 Thus:

[A] truth expressed in the (first-order) language of arithmetic is arithmetical just
in case its truth is directly perceivable on the basis of our (higher-order) articu-
lation of our grasp of the structure of the natural numbers or directly perceivable
from truths in the language of arithmetic which are themselves arithmetical. The
analysis of the number concept in §§2–4 seems to me to render the axioms of
Peano Arithmetic arithmetical, in the sense that their truth is directly perceivable
so expressed, and on this basis the second clause renders the theorems of PA
arithmetical. (Isaacson, 1987/1996, p. 217)

Admittedly, Isaacson’s recursive definition only accounts for arithmetical truths,
that is, ‘being arithmetical’ is a property that applies only to true statements that can
be expressed in the signature of PA. But one can easily account for arithmetical falsities
by taking them to be all statements the negation of which is an arithmetical truth.3

On the other hand, higher-order statements are truths and falsities that incorporate
what Isaacson calls ‘higher-order notions’. These include not only higher-order (in
contrast with first-order) quantification, but also infinitary notions, ‘in the sense of
presupposing an infinite totality’ (1987/1996, p. 210), as opposed to finitary notions.

Once this much is clear, we can fix the terminology we will use in the remainder of
the paper, for the sake of readability. ‘Elementary number theory’will here refer simply
to the realm of mathematics that deals with natural numbers and their basic operations,
as traditionally understood; and ‘number-theoretic’ will just be the corresponding
adjective. When we write ‘arithmetical’, we mean ‘arithmetical in Isaacson’s sense’
(i.e., whose truth or falsity is seen to follow from the purely number-theoretic content of
a categorical conceptual analysis of the notion of natural number); when we talk about
‘arithmeticality’ or ‘arithmetical nature’, we mean ‘the status of being arithmetical in
Isaacson’s sense’. We avoid the use of the term ‘arithmetic’ to prevent any confusion.
The only exception will be the term ‘theory of arithmetic’, by which we mean a theory
aimed at capturing, fully or partially, the content of Dedekind’s analysis of the natural
numbers, as Isaacson believes that PA does in a first-order setting (1987/1996, p.
207). Moreover, other potential uses of the word ‘arithmetical’ will be qualified as
appropriate. For instance, an arithmetical statement as traditionally understood will
be referred to as a ‘statement expressible in L0’ (where L0 is as above); and an

2 One can question, in any case, the appropriateness of this recursive definition. The problem has to do
with the base clause: while PA can be seen to capture the first-order content of second-order elementary
number theory, so do the different theories that are mutually elementary reducible with standard PA, such
as

⋃
n I�n (for a definition of elementary reducibility see, e.g., Łełyk & Nicolai, 2022, p. 8 of 26). It seems

hence arbitrary to establish that one set of axioms, and not the other, can be directly perceived as the set
of truths about the natural number structure. They all correspond to different axiomatizations of what we
consider first-order elementary number theory with full induction to be. In sum, the base clause ought to
allow for a wider range of applicability regarding what counts as following directly from our understanding
of the concept of natural number.
3 As Isaacson does in his (1992, p. 96).
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arithmetical truth in the traditional, Tarskian sense, will be referred to as a ‘statement
of true arithmetic’.

Our current understanding of the natural number structure owesmuch toDedekind’s
and Frege’s studies of the principles of elementary number theory. Hence, theirs (and
perhaps Dedekind’s to a greater extent) are seen as the best categorical conceptual
analyses of the notion of natural number. Admittedly, Dedekind’s analysis contains
higher-order concepts in the formof second-order quantification over subsets of natural
numbers. But what remains when we strip this analysis of its second-order content—
i.e., when we ‘first-orderize’ this second-order quantification—is just PA. As a result,
according to Isaacson, PA enjoys a privileged position among all first-order axiomati-
zations of elementary number theory: not only does the analysis of the natural number
structure allow us to perceive PA as true and strictly arithmetical, but it is also the case
that PA captures all there is to arithmetical—as opposed to justmathematical—truth:
if a statement expressible inL0 is not provable in PA, then some ‘hidden’ higher-order
concept is needed either to directly perceive its truth or to carry out a proof of it.

With this in mind, we offer a precise formulation of Isaacson’s thesis. There are
a couple of different phrasings in the literature—see e.g. Incurvati (2008, p. 263),
Smith (2008, p. 1), or Horsten (2001, p. 181), who instead calls it Isaacson’s ‘theory
about arithmetical truth’. Isaacson’s seemingly preferred way to put it is that Peano
Arithmetic consists of those truths which can be perceived as truths either directly
or via a proof from the purely number-theoretic content of the categorical conceptual
analysis of the notion of natural number. However, and since we already know that
‘those truths which...’ is just short for Isaacson’s notion of arithmetical truth, we offer
the following, shorter wording:

Isaacson’s thesis Peano Arithmetic proves all and only arithmetical truths (in
the sense of Isaacson).

As we see it, Isaacson’s thesis gains a great deal of plausibility from the fact that
it captures the long-standing mathematical intuition that our natural number system
is at the heart of all finite mathematics, and that PA, as a set of axioms, is the best,
natural approximation of such a system in first-order logic. Even so, the thesis must
be tested, and its most pressing challenge is accommodating the kinds of sentences
that show that PA is incomplete: statements of true arithmetic that are nonetheless
independent of PA. The thesis predicts that all these sentences will present a common
feature, namely their not being arithmetical in nature. Two clear examples Isaacson
examines are the Gödel sentence for PA and Goodstein’s theorem. In the first case,
the arithmeticality of the sentence is denied on the basis that seeing its truth requires
the assumption that PA is consistent. That is, we can only come to see the truth of the
sentence that says of itself ‘This sentence is unprovable in PA’ by first acknowledging
the consistency of PA. But the latter is the kind of notion that, by Isaacson’s thesis,
and due toGodel’s second incompleteness theorem, cannot be arithmetical—hence the
Godel sentence will not be arithmetical either. As per Goodstein’s theorem, the proof
of the theorem relies on the well-ordering of ordinals (i.e. transfinite induction) for
ε0 (TI(ε0) henceforth). The latter, however, is known to entail, over PA, the sentence
Con(PA) (i.e., the sentence asserting the consistency of PA), and hence is also higher-

123



Synthese (2024) 203 :54 Page 5 of 22 54

order in nature. As a result, we should expect PA to prove neither the Gödel sentence
nor Goodstein’s theorem, so Isaacson’s thesis stands.

Similar reasonings are given for two further well-known theorems independent of
PA: the Paris-Harrington theorem and Friedman’s finitization of Kruskal’s theorem.
Thus, although none of these arguments is conclusive enough to secure Isaacson’s
thesis—what happens, for instance, with the Kanamori–McAloon theorem or PA-
unprovable versions of the graph minor theorem?4—they make it rather convincing.
In other words, they seem to indicate that all arithmetically-expressible theorems that
PA cannot prove aren’t, after all, arithmetical truths.

3 The impurity concern

One of the key points behind Isaacson’s thesis is that it lifts PA as the first-order
axiomatization of elementary number theory, in the sense of proving all and only
arithmetical truths. The ‘all’ part of the claim is established through completeness
and it has certainly been the main focus of the literature, possibly due to its novelty
after (and its defiance of) Gödel’s incompleteness theorems (see Smith, 2008; Tatton-
Brown, 2018). But the ‘only’ side has not been thoroughly addressed so far. This
section aims to show that, under a certain reading of Isaacson’s original 1987/1996
paper, there is a real possibility of PA being an impure theory of arithmetic. Here,
the notion of ‘purity’ has a precise meaning, in line with Isaacson’s conception of
arithmetical truth, that we will now explain.

3.1 The notion of purity

When we assert that, following Isaacson’s thesis, PA is complete with respect to
arithmetical truth, what we mean by completeness differs as much from the model-
theoretic notion of completeness as Isaacson’s understanding of arithmetical truth does
from the Tarskian one. That is, we do not intend to say that PA proves all statements
of true arithmetic, for this is plainly not the case. Rather, we just mean that there
is no arithmetical truth in the sense of Isaacson that PA does not prove. To be fully
unambiguous, we could have given this notion a new name—e.g. ‘I-completeness’—
since it is not what is usually meant by completeness alone.

We now intend to define the counterpart of this notion, which one can understand as
the analogue of soundness under Isaacson’s conception of arithmetical truth.Although,
following the above, we could have called it ‘I-soundness’, we introduce a new term
for it. Ordinarily, we say that a theory of arithmetic T is sound iff every theorem of T
is a statement of true arithmetic; we will stick to this understanding of the term in what
follows. Given this definition, when we read ‘arithmetical truth’ in the Tarskian sense,
the question of whether every theorem of PA is an arithmetical truth is just implicit in
the question of the soundness of PA. However, since ‘statement of true arithmetic’ and
‘arithmetical truth’ are conceptswith different extensions under Isaacson’s thesis, there
is a possibility that these two questions come apart in Isaacson’s case. In other words: a

4 See e.g. Bovykin (2009).
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theory of arithmetic being sound (i.e., proving only statements of true arithmetic) does
not entail its proving only arithmetical truths. Accordingly, we distinguish between
soundness and the fact of proving only arithmetical truths, a feature of theories of
arithmetic that we label ‘purity’.5

Purity A theory of arithmetic T is pure iff every theoremof T is an arithmetical
truth.

As can be understood from our discussion above, whether a theory is pure or not
is relative to a given view on arithmetical truth. Hence, under the framework we work
with (i.e., Isaacson’s thesis), a theory of arithmetic T is pure iff every theorem of T is
a true statement expressible in L0 that follows from the recursive definition proposed
by Isaacson. Now, since the questions of soundness and purity have been separated,
we must note that, for a theory to be impure, it need not be unsound, that is, it need
not prove a false statement expressible in L0. It will suffice for it to prove a statement
of true arithmetic that is not an arithmetical truth in the sense of Isaacson.

Clearly, purity is an essential feature for PA in the context of Isaacson’s thesis.
Should PA be impure, Isaacson’s thesis, at least in the way we formulated it here,
would simply be wrong. But even if the thesis was formulated in a way that is less
liable to the threats of impurity, we understand that purity would still be an essential
feature for PA in Isaacson’s framework. The reason is that, in this framework, PA is
meant to capture the boundaries of awell-defined region ofmathematical truth, namely
arithmetical truth or the truths of finite mathematics. Hence, if PA is to play that role,
it should arguably be able to prove only arithmetical truths. And this is, precisely,
what the idea of being pure amounts to. In fact, and in our view, the desirability of
purity extends to any theory that purports to encapsulate a well-defined region of
mathematical truth.6

The above does not imply, however, that a pure theory of arithmetic will prove all
arithmetical truths—it suffices that all its theorems are arithmetical truths. For instance,
PRA, or Robinson arithmetic, might perfectly well be pure theories of arithmetic if
every theorem they prove is an arithmetical truth. This is in contrast to the case of
PA, at least if Isaacson’s thesis holds. For, if Isaacson’s thesis is true, then PA (i)
proves only true statements (soundness), (ii) proves all arithmetical truths in the sense
of Isaacson (I-completeness), and (iii) proves only arithmetical truths in the sense of
Isaacson (purity).

With this notion of purity in mind, we can now move on to see what it would mean
for PA to be an impure theory under Isaacson’s framework.

5 Our main reason to employ the term ‘purity’ instead of simply calling this notion ‘soundness in Isaacson’s
sense’ or ‘I-soundness’ is to keep any possible confusion away. Thus, when we say that a theory is unsound,
this is often associated with the theory proving a false statement. But this is by no means what goes on when
we say that PAmight be impure. Therefore, to avoid misleading claims, we leave the term ‘soundness’ and
derivatives aside.
6 What’s more: some relaxed form of purity might also be deemed a desirable property of mathematical
theories with a clearly defined and restricted domain (sometimes known as ‘non-algebraic theories’), since
it guarantees that they do not ‘overshoot’ in relation to that intended matter. To give an example, it would
be rather unsettling if we were to show that, from the axioms for Euclidean geometry, one can prove the
existence of a Mahlo cardinal.
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3.2 Impurity as a potential problem

We start by noticing, as Isaacson does, that some statements that are provable in PA
seem to belong to the class of statements that Isaacson dubs higher-order, since they are
about infinitary objects, or involve purportedly higher-order syntactic notions, such as
consistency, for axiomatic systems of elementary number theory. An example of the
former is transfinite induction for any ordinal α < ε0, that we will denote TI(< ε0)

7;
clearly, ordinals likeωω3

are infinite—but PA showsωω3
is well-ordered! An example

of the latter is Con(PRA), the sentence that formalizes the consistency of Primitive
Recursive Arithmetic.

Why, Isaacson asks, when statements similar to these ones are not provable in PA
(i.e., TI(ε0) or Con(PA)), are we justified in taking their corresponding L0-formula
to be a higher-order truth, and such move is not available when the statements are PA-
provable? The reason, he argues, is that the very same tool that helped uncovering the
higher-order nature of the former statements, namely coding (broadly understood), also
reveals the arithmetical nature of the latter statements. The possibility of arithmetizing
its syntax allows PA to speak about syntactic notions, ‘coding’ such notions with
strings of number-theoretic constants; an ordinal notation system does the same in
relation to infinite ordinals. And the application of coding, Isaacson argues, suffices
to realise that these kinds of sentences are, after all, arithmetical in nature: as an
auxiliary device, coding ‘pulls the ostensibly higher-order truth into the arithmetical’
(1987/1996, p. 221) and allows for a proof of the statement in strictly number-theoretic
terms, which is all we need for the statement to count as arithmetical. Note that this is
a consequence of Isaacson’s epistemic approach to arithmetical truth: arithmeticality
is not solely a feature of the statement in question but of the way we come to see its
truth.

This cannot be taken, however, to be a conclusive answer, as Isaacson acknowledges
and we shall now explain. The reason has to do with the length of certain proofs in PA
when these are strictly formulated inL0. Thus, there are certain statements whose PA-
proofs in the language L0 exhibit too many symbols (e.g., certain transfinite induction
claims, or consistency statements), and hence the only way to present a proof that
a human agent might realistically follow is by employing seemingly higher-order
notions, e.g., infinite ordinals. Indeed, this is the reason we work with the latter and
not their notations in proving, e.g.,TI(ωωω

) inPA. Given the correctness of our ordinal
notation,8 we know that there exists a corresponding proof with formulas that strictly
belong to L0. But such a proof would be too long to be carried out in practice, so the
deployment of uncoded infinite ordinals becomes indispensable for the presentation
of the proof.

Now, if this is the case, someone could reason in the following way. First (1), as
we have seen, under Isaacson’s epistemic take on arithmetical truth, what allows us to
establish the arithmeticality of a given statement expressible inL0 is the perceivability
of a statement as true on the basis of a proof stripped of higher-order notions and

7 The expression is a little sloppy here: TI(< ε0) is a schema, that is, needs to be instantiated by some
formula. Let’s take that for granted in what follows.
8 See e.g. Pohlers (2009, Th.3.3.17) for a theorem establishing such correctness.
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consisting of arithmetical truths alone. Second (2), as just said, the proofs of some
L0-expressible statements solely consisting in arithmetical truths formulated in L0
is too long to be surveyed. Third (3), the sort of proof that is surveyable for these
statements employs seemingly higher-order notions. Then, the second and third claims
lead to (4) the possibility, as Isaacson admits, that in these cases ‘the higher-order
perspective is essential for actual conviction as to truth of the arithmetically expressed
sentence’ (1987/1996, p. 221). But this, together with the first claim, suggest that (5)
we cannot establish the arithmeticality of these statements. Therefore, one might be
inclined to conclude that Isaacson’s understanding of arithmetical truth entails that
these statements are not arithmetical truths, despite being provable in PA. Thus, for
instance, TI(ωωω

) might be a statement provable in PA, but not an arithmetical truth.
A key component of this problem concerns the idea of being provable in practice,

that is,what follows fromproofs that a human agentmight realistically be able to check,
versus what is simply provable in principle. Themove, in the previous paragraph, from
(1) and (4) to (5) relies on the idea that perceivability via proof consists somehow in
being able to check the proof by oneself, i.e., that the statement in question is provable
in practice. Thus, Isaacson contends that someone who accepts provability in principle
in PA as sufficient to define the boundaries of arithmeticality need not worry further.
Insofar as a statement is in principle provable inPA solely through formulae formulated
in L0, the statement counts as arithmetical:

If one is prepared to countenance a notion of being ‘in principle’ derivable in
PA, then the present problem disappears. One might consider that this move is
legitimate, as enabling one to define precisely a theoretical boundary, to which
mathematical practice approximates. (Isaacson, 1987/1996, p. 221)

However, and as we have seen, Isaacson’s thesis puts the emphasis on the epistemic
character of arithmeticality. Therefore, there is a strong case for demanding that proofs
be feasibly apprehensible, and not solely ideally apprehensible—an attitude we shall
call the ‘feasibility attitude’. Being arithmetical is here as much a product of our
possibility to perceive the truth of the statement as it is a product of the language in
which the statement can be expressed. Hence, it looks as if followability is a reasonable
constraint on what counts as a proof that allows us to establish the arithmetical nature
of a statement. This is something that Isaacson (1987/1996, pp. 221–222) concedes:
‘I have in my discussion been considering provability in terms of providing a basis
for perceiving the truth of a given statement. In these terms, a proof in PA of a given
proposition being infeasibly long has to be taken seriously.’

The problem is that the feasibility attitude, despite being a reasonable one, has an
important implication. Since it gives us reasons to buy the argument above, and to
conclude that some PA-provable statements are not arithmetical truths, it also leads
to what we have called the impurity concern: the concern that PA might be an impure
theory of arithmetic. Impurity here must be understood as above, i.e., as implying
that some statements provable in the theory of arithmetic are not arithmetical truths in
Isaacson’s sense—roughly, that PA proves too much for a theory of arithmetic. Thus,
under this implication, Isaacson’s thesis aswe presented it here collapses; for PAmight
still be I-complete, and hence prove all arithmetical truths, but it is no longer the case
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Fig. 1 The relation between
arithmetical truth, truths
provable in PA and truths
expressible in the language of
arithmetic if Isaacson’s thesis is
true and PA is impure

that it only proves arithmetical truths. The situation is depicted in Fig. 1: arithmetical
truth would be a proper subset of the set of PA-provable truths, which is in turn a
proper subset of the true statements expressible in L0 (due to Gödel’s theorem).

This is something Isaacson himself acknowledges, for he grants that, should one
adopt the feasibility attitude,

then within the arithmetically expressible truths of mathematics, we must think
of the boundary between those which are purely arithmetical and those which
are essentially higher-order as running somewhat inside the collection of those
for which derivations in PA exist. (Isaacson, 1987/1996, p. 221)

In recent conversation, Isaacson has made clear to me that he favours an ‘in-
principle’ take on provability. His opinion seems to be that the feasibility attitude
puts one on the road of strict finitism, an undesirable philosophy of mathematics that
Isaacson now, and unlike then, definitely rules out. Be that as it may, and as we have
argued, we still think that the epistemic turn on arithmetical truth fostered by Isaacson
makes a case for the feasibility reading. Thus, in the remaining of the paper, we follow
that reading.

3.3 Isaacson’s proposed way-out

As it happens, Isaacson offers a solution to the impurity concern on behalf of the
advocate of the feasibility attitude. To follow his reasoning, let us recap the problem:
there are true statements expressible in L0, e.g., TI(ωωω

), that can be proved in PA
either employing seemingly higher-order notions embedded in a relatively short proof,
or using solely formulae of L0 but with an unsurveyably long proof. Now, we could
appeal to themere existence of the latter proof in PA (even if it is humanly ungraspable)
to argue that the higher-order notions are not indispensable. But, given his epistemic

123



54 Page 10 of 22 Synthese (2024) 203 :54

approach to arithmeticality, in which a proof has to be a vehicle to perceive the truth
of a statement, the advocate of the feasibility attitude does not buy that argument, and
will remain at best skeptical regarding the arithmeticality of such statements, leaving
a door open for the impurity concern. Then, and possibly with the aim of avoiding
the implications linked to this concern, Isaacson makes a move on behalf of such
hypothetical advocate. According to Isaacson, one could reject extremely long proofs,
such as the one for TI(ωωω

) or the one for Con(PRA), as genuine proofs in PA. As
a result, ‘provable in PA’ would acquire a new, more limited character, and the set
of truths provable in PA would coincide with the set of arithmetical truths. This can
be visualized by considering again Fig. 1: the circle that represents truths provable
in PA ‘shrinks’ to the boundaries of the circle of arithmetical truths. In this case, the
impurity concern no longer applies: all statements that we can consider as genuine
proofs of PA are arithmetical.

Now, let me counter this move. There are at least two considerations as for why we
might not want to reject very long proofs as genuinePA-proofs. In the first place, doing
so deprives PA of its privileged proof-theoretic status among first-order axiomatiza-
tions of elementary number theory. After all, PA is widely considered as the strongest
first-order theory of arithmetic that directly follows from our standard understanding
of the natural number structure as exposed in the work of Dedekind. This is a key point
underlying Isaacson’s thesis: to a great extent, the proof-theoretic privilege buttresses
the epistemic privilege that Isaacson defends for PA. Theories like I�n , for n ∈ ω, can
also be said to follow directly from our understanding of the Dedekian analysis; but,
crucially, they are weaker than PA, and hence do not enjoy the same proof-theoretic
privilege. Now, the standard measures of relative proof-theoretic strength between
two theories of arithmetic S and T in the style of PA, PRA or I�n include the deter-
mination of their proof-theoretic ordinals, and whether S � Con(T ) or vice versa.
Then, suppose that the length in symbols of the shortest PA-proof of, e.g., Con(I�1),
is n, while the length of the shortest PA-proof of any instance of transfinite induction
up to ωω in PA is m. Suppose further, following Isaacson’s suggestion, that we only
admit proofs in PA of symbol length less than min(n,m) = k. In other words, and if
�k is the symbol we use for this restricted notion of provability in PA and ρ(x) is a
function that gives the length in symbols of the shortest proof in PA of the formula
represented by x , we write PA �k ϕ iff PA � ϕ and ρ(ϕ) < k. The result is then that
PA �k Con(I�1) and PA �k TI(ωω). Therefore, it is no longer clear whether PA is
in any standard way proof-theoretically stronger, and hence more privileged, than, in
this case, I�1: PA understood in this new way does not prove the consistency of I�1,
nor can it be said to have a larger proof-theoretic ordinal.9

In the second place, it seems likely that the downgrading of PA could happen
not only at the proof-theoretic but also at the strictly number-theoretic level. That is,
the issue is not only that the restrained view leaves out of PA statements that are of
interest to the logician but only of relative interest to the number-theorist—statements
of proof-theoretic nature, or syntactic statements, like Con(PRA)—but also that we
might need to equally give up on certain important number-theoretic theorems from

9 Should someone suggest that a weaker metatheory of arithmetic can still show that PA proves these
claims, or even establish a relative consistency proof, we can insist that what the metatheory should prove,
and obviously cannot, is that these results must be recovered in the new, restricted conception of PA.
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being considered PA-provable. For consider Theorem 2 in Buss (1994), an analogue
of Godel’s famous speed-up theorem on the length of proofs measured by number of
steps (Gödel, 1936). The theorem shows that, for each computable function �, there
are infinitely many different formulae x provable in PA (or in any first-order theory
of arithmetic, for that matter) such that ρ(x) > �(ρ2(x)), where ρ(x) is defined as
above and ρ2(x) is the length of the shortest proof of x in PA2. Now, let’s suppose that,
among all instances of transfinite induction up to ωω, the instantiation with formula ϕ

is the one whose shortest proof involves the greatest number of symbols, and that the
proof is too long to be surveyed. Using upper corners (��) to indicate that what comes
inside corresponds to the ‘coded’,L0 version of the formula, wewriteρ(�TI(ωω, ϕ)�)

for the shortest proof of the instantiation with formula ϕ of the transfinite induction
schema up to ωω. And, following Isaacson’s suggestion, let’s suppose that only proofs
of length < ρ(�TI(ωω, ϕ)�) are accepted. Then, we can find a computable function
	 such that 	(ρ2(�TI(ωω, ϕ)�)) = ρ(�TI(ωω, ϕ)�). After that, it is not difficult to
generate a countably infinite number of computable functions 	 ′ that bound 	 from
above, i.e. such that

	(n) ≤ 	 ′(n), for all n ∈ N

For each of those 	 ′, Buss’ result tells us that there are infinitely many different
formulas ofL0 that are provable in PA and such that the length of their shortest proof is
greater than 	(ρ2(�TI(ωω, ϕ)�)). However, all these formulas need to be considered
as unprovable in PA, or at least as formulas the proof of which are not genuine for
PA. There are thus infinitely many different theorems of PA that we stop considering
as such. And it might well be possible that relevant number-theoretic results (say,
Fermat’s last theorem) are included among these many formulae. Plus, this is not
merely a speculative point: we know that there are relevant number-theoretic theorems
of this sort. A well-known example includes the instances of Friedman’s finitization of
Kruskal’s theorem. This finitization is a universal statement of the form ∀k∃nψ(k, n)

and is known to be independent of PA. Nonetheless, its particular instances, i.e.,
∃nψ(m, n),m ∈ ω, are provable in PA—but, in most cases, their proofs incorporate
a disproportionate number of symbols.10

Of course, someone who accepts Isaacson’s move might already be aware of this
consequence, namely that PA would be very lacking as a formal axiomatization of
number-theory, and willing to accept it. This might align them indeed with a strict
finitist philosophy of mathematics, as we said Isaacson thinks. But since our discus-
sion had so far been framed in terms of stripping PA of theorems like Con(PRA) or
transfinite induction claims, the consequence just drawn might not have been evident
to someone keen on giving up these more logical statements, but still thinking that PA
should get most number-theory right.11

10 For instance, it is known that proving ∃nψ(10, n) requires at least the number of symbols represented
with an exponential tower of one thousand 2’s (Smoryński, 1982).
11 A reviewer of this paper has pointed out a further issue which I had overlooked, and for which I am
grateful. As it happens, there are two kinds of advocates of the feasibility attitude. One such kind is the
one I am assuming all along, namely an advocate for the view that any statement that can be proved in
a feasible number of steps can rightly be called an arithmetical truth. Of course, what ‘feasible’ exactly
means here is to be kept loose, as it might involve a lengthy discussion. Perhaps one can conjecture that
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These two considerations suggest that provability inPA cannot be so freely adjusted
to match the set of arithmetical truths, and we are left with the impurity concern under
the feasibility reading of Isaacson’s thesis. The remaining of the paper will now be
devoted to showing how we can still avoid this concern with arguments different to
those of Isaacson.

4 Resisting the impurity concern

In the previous section,we argued that, according to certain reading of Isaacson’swork,
PA could be impure, and that this would certainly be a blow to Isaacson’s thesis. The
reading in question epistemically favours proofs that can be feasibly apprehended,
as opposed to unsurveyably long, humanly unapprehensible proofs. As we saw and
objected to, Isaacson suggests that the advocate of the feasibility attitude may just do
away in PA with all those statements the proof of which is too long to be carried out
in practice. But we argued that such an advocate should not take the path delineated
by Isaacson. As we pointed out, it also seems that Isaacson himself would accept this
conclusion now, having identified that this path leads to strict finitism—and would
discard the feasibility attitude altogether.

Nonetheless, this last move makes us think that Isaacson might have conflated two
views that need to be distinguished: the feasibility attitude as regards arithmetical
truth, and the feasibility attitude as regards derivability in a theory of arithmetic. That
is: one can defend the view that feasible apprehensibility must be a criterion for actual
perceivability of the truth of a statement and thus, following Isaacson, of its arithmeti-
cal nature; and one can defend the view that feasible apprehensibility must be a formal
criterion for derivability over a theory of arithmetic. Only the latter seems to be related
to strict finitism (sometimes also known as ultrafinitism). The former, on the contrary,
just concerns what we can consider arithmetical in Isaacson’s sense. Now, in what fol-
lows, we try to show that the advocate of the feasibility attitude as regards arithmetical
truth is on safe grounds, so that even those statements that fall outside the scope of
what is feasibly apprehensible with statements written in the language L0 alone can,
by other means, be considered arithmetical on Isaacson’s understanding of the term.
That is, we will argue that we can establish the arithmeticality of these statements in
a way other than following the proof with only L0-formulae in PA. Or, to be more

a statement with Rayo’s number-steps is already unfeasible. The other kind of advocate of the feasibility
attitude understands ‘in practice’ as that which has or will be proved. And so the aforementioned issue stems
out of this view: since, presumably, the totality of human agents that there was, there is, and there will be
can only establish the arithmeticality of finitely many claims, this advocate must conclude that the class of
arithmetical statements is finite. Further, if we buy Isaacson’s proposal that provability in PA be restrained
to what we can prove in practice, they would need to accept that the class of PA-provable statements must
also be finite.
We take any of these consequences to be truly undesirable. But we also take the second kind of feasibility
attitude to be extremely unpalatable. While marginal, the first feasibility attitude seems to have been held
by certain finitists. To the best of our knowledge, no one has ever held anything like the second attitude.
Among other things, this might have to do with the fact that any such advocate will be accused of not having
understood the modality involved the notion of ‘provable in practice’. The substantial question is what can
be considered a proof, not how many proofs are actually carried out. So, while a fully-fledged dismissal of
this attitude is outside the scope of this paper, we will not consider it further.
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precise, what we propose is more of a conjecture—a conjecture whose establishment
can, in a sense, be understood as complementary to Isaacson’s original project, and
in fact suggested by Isaacson himself in his remarks on TI(ωω) (1987/1996, p. 221).
The conjecture in question is to be summed up as follows:

Conjecture There is a way to justify the arithmetical nature of each statement whose
proof in the language of PA is too long to be carried out in practice, but which is
nevertheless provable in PA in principle.

The idea behind the conjecture is that, for any statement S whose proof employing
strictly L0-formulae is unsurveyable, but which we know to be in principle provable
in PA, there is some argument that settles the arithmeticality of such statement. Some
examples of argumentative strategies of this sort include, but might not be limited
to, showing that S is equivalent to some other statement S′ which is accepted as an
arithmetical truth, or demonstrating that some proof of S which is not formulated in
L0 is nonetheless based solely on arithmetical truths. In these cases, the feasibility
attitude is respected: a surveyable proof is still needed to establish the arithmeticality
of a statement. Still, if the conjecture holds, the threat of impurity for Isaacson’s thesis
fades away: suspected higher-order truths of the sort presented in Sect. 3 could be
shown to be arithmetical truths.

How can we defend this conjecture? The option we follow, in line with Isaacson’s
original paper, consists in examining some case studies. We look at two paradigmatic
kinds of statements that may lead to the impurity problem: transfinite induction claims
and consistency statements. Or rather: we will be looking at only one of these, trans-
finite induction claims, and, we believe, this will suffice to show that we can justify
the arithmeticality of consistency claims too. The reason is that claims of the form
Con(T ), where T is a theory of arithmetic weaker than PA, can be proven equivalent
to a transfinite induction claim up to a certain ordinal below ε0, over a subsystem of
PA proof-theoretically weaker than T itself.12 This follows from the fact that each of
these first-order subsystems, which are weaker than PA, has a proof-theoretic ordinal
strictly smaller than ε0. Hence, should we show that all transfinite induction state-
ments up to ε0 are, after all, arithmetical truths, we could conclude that all syntactic
statements of this sort are arithmetical truths: epistemically, the truth of the syntac-
tic statement would be perceivable insofar as the entailment can be established via a
first-order derivation that only employs other established arithmetical truths.

Thus, we will try to provide evidence for our conjecture as follows. The problem of
impurity with statements such as TI(ωωω

) is that their not-so-long proofs make use
of infinite ordinals and not their notations, which seem to be higher-order (infinitary)
notions. Therefore, it might seem as if the only way we can feasibly carry out a proof
in PA of certain features (i.e., well-orderings) of these ordinals is a proof which is
essentially higher-order. We will show that this intuition is mistaken. In order to get

12 An earlier version of this paper suggested that the reason had to do with the entailment being provable
in PA. But clearly this does not suffice, and I thank the audience at the Konstanz Summer School on the
Philosophy of Mathematics for fruitful discussion on this point. After all, every PA-provable statement is
entailed by any other statement over PA. And we do not want to say that the arithmeticality of Con(PRA)
is granted by the fact that 0 = 0 is an arithmetical truth. It is the special connection between transfinite
induction and consistency that must do the job.
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there, we inspect the argument which constitutes the proof in PA of the transfinite
induction claim in question, and argue that no higher-order resources are employed
in such an argument. Furthermore, we later draw on the proof given to argue that
the ordinals the proofs are about, i.e. the ordinals which PA proves well-ordered, are
finitary in nature.

Putting the pieces together, we will then conclude that the argument of the standard
proof in PA of transfinite induction claims like TI(ωωω

), even when given in terms of
ordinals and not notations, involves no higher-order notions whatsoever, and are thus
based solely on arithmetical truths. In other words, we will be showing that a proof
of the claim can be given which is not formulated in L0 yet which is based solely
on arithmetical truths. But this—and given the epistemic ideal of arithmetical truth
that underlies Isaacson’s thesis, by which a derivation in first-order logic from known
arithmetical truths suffices to establish that statement as an arithmetical truth—will
be enough to assert that TI(ωωω

) and similar statements are arithmetical truths in
Isaacson’s sense, and hence to dispel the threat of impurity generated by transfinite
induction claims.13

4.1 The proof of transfinite induction

The first question we address then is: how can PA prove transfinite induction claims,
i.e., well-orderings, for infinite ordinals? How can we make sense of the fact that the
theory of finite mathematics is able to deal, manipulate and establish properties of
these infinite objects? We believe that the way to approach these questions relates to
the nature of the supremum of all ordinals for which transfinite induction claims are
provable in PA: ε0. The point is that the way PA deals with ordered sets of order-type
(or lists/sequences/proof-trees of length) less than ε0 does not go beyond the strictly
finite, as we will now see; therefore, they are somehow tractable in a finitary way.

In order to clarify what we mean here, we turn to the proof in PA of transfinite
induction for all ordinals α < ε0. This result requires a primitive recursive well-
ordering of the natural numbers of order-type (ε0,≺) obtained, by coding, from the
Cantor Normal Form Theorem for ordinals of base ω.14 Whereas the original proof
is due to Gentzen (1943), we consider a more up-to-date version by Halbach (2014,
pp. 204–207). The proof in question relies on two lemmas. The first of them is the
following:

Lemma 1 PA � Prog(ϕ) → Prog(J (ϕ))

where Prog(ϕ) (that reads ‘ϕ is progressive’) is the formula ∀α(∀β ≺ α ϕ(β) →
ϕ(α)), and J (ϕ) is the formula ∀α(∀ξ(∀η ≺ ξ ϕ(η) → ∀η ≺ ξ + ωα ϕ(η))).

13 An anonymous reviewer has rightly pointed out that the strategy that we follow here, via Gentzen’s
proof of transfinite induction up to ε0, is only necessary for ordinals> ωω . Transfinite induction for infinite
ordinals up to, and including, ωω can be obtained in alternative fashions. For example, one can consider the
set of finite sequences ordered by the so-called shortlex ordering (that is: any two sequences are ordered
by first comparing their lengths and, if the latter are equal, employing the lexicographical order—see e.g.
Mancosu et al. (2021, Chap. 8). This is indeed a well-order of type ωω .
14 This theorem shows that any ordinal below ε0 can be written as the sum of powers of ω with exponent
< ε0, whereas ε0 itself and greater ordinals cannot.
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And, as for the second lemma:

Lemma 2 If

PA � Prog(ϕ) → ∀ξ ≺ α ϕ(ξ)

for all formulas ϕ of L0, then

PA � Prog(ϕ) → ∀ξ ≺ ωα ϕ(ξ)

for all formulas ϕ of L0.
NB: these expressions correspond to TI(α) and TI(ωα), respectively.

Transfinite induction up to any ordinal below ε0 can be reached by applying Lemma
2 finitely many times, and Lemma 2 is easily obtainable from Lemma 1. It is thus the
latter that requires careful examination. And it is in fact the crux of the proof, for it is
where the interweaving with infinite ordinals happens. The formula J (ϕ), sometimes
known as Gentzen’s jump formula, lies at the heart of this lemma. In all cases in
which it is instantiated with α 
 1, Gentzen’s jump formula seems to announce the
possibility of ‘infinite jumps’.We can (very informally) understand the jump as stating
that, when a given formula ϕ holds for all ordinals below a given one—finite or not—
we can carry that formula along for ωα-many more numbers above that ordinal. That
is, it is as if we were indeed ‘jumping’ over powers of ω—taking an infinite leap
the ‘safety’ of which (in the sense of well-foundedness) is guaranteed by Gentzen’s
formula. Notwithstanding these intuitions, we will now argue that these leaps are not
infinite after all.

There is, however, a limit to these leaps. This limit is given by Cantor’s Normal
Form Theorem. Since Gentzen’s jump formula works exclusively with towers of ω

such that the next element of the tower is always smaller or equal than the previous
one, ε0 marks the boundary to the number of ordinals we can ‘jump over’; hence, even
if the jumps were infinite (contrary to what we argue below), they could not be of an
arbitrarily big number of infinite ordinals. This is also why transfinite induction for
ε0 cannot be established with an argument in the style of Lemmas 1 and 2: the inner
structure of Gentzen’s formula prevents us from reaching ε0, and in this we see how
pivotal this formula is for the proof. We will say more about this below.

Now, the other component of Lemma 1 is the notion of ‘progressiveness’, there
abbreviated as Prog. To say that a formula is progressive is to say that, when it holds
for all ordinals below a given one, it holds for that ordinal. Once we know that a
formula is progressive, a transfinite induction claim for some ordinal α is just the
assertion that, should the formula be satisfied by 0, progressiveness will carry the
formula along the ordinal sequence all the way to α. This is all there is to transfinite
induction, asGentzen held (1943, p. 291); therefore, progressiveness is the cornerstone
of transfinite induction. Yet the apparent mystery of Lemma 1 in relation to our project
is that it shows that Gentzen’s jump for a certain formula holds whenever the formula
is progressive. That is, the formula is carried along 1 ordinal, and then ω ordinals, and
then ω2 ... and all the way to ωω and beyond. As such, the mystery lies in asking how
it is possible that a finite, indeed unitary, increment in the satisfaction of a formula
along the ordinal sequence can result in increments of the order of powers of ω.
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The proof of Lemma 1 gives what we take to be a clear answer to this. If a formula
ϕ is progressive, J (ϕ(0)) holds trivially, for it just expresses that ϕ is carried one
ordinal forward. Informally, PA ‘sees’ the unitary jump as safe (in the sense above,
i.e., of well-foundedness).15 Now, for J (ϕ) to be progressive, J (ϕ(1)), i.e., ∀ξ(∀η ≺
ξ ϕ(η) → ∀η ≺ ξ + ω ϕ(η)), must hold. The key then is that, although we seem to
face an ω jump, it is after all a finite one. PA is given a certain ordinal ξ as input and
has to carry that property for a number of ordinals below ω (for whatever η we pick,
it will be strictly less than ξ + ω). Hence, PA only needs to reiterate what it already
‘sees’ as a ‘safe jump’ (the unitary one) a given finite (hence, also safe) number of
times. A very similar reasoning goes for J (ϕ(2)): since PA ‘sees’ the ω-jump as safe
now, it can perform it once and combine it with a finite number of steps (or perform it
twice!) to leap just under ω2-many ordinals. The same idea applies to any jump made
over ωn ordinals. Thus, in more formal terms, we are performing an outer or external
induction on n for ωn—allowing us to conclude that the jump must be safe, in the
sense of being well-founded, for ωω ordinals.

Likewise, when we consider powers of ω of the form ωα, ωω � α 
 ω, the
induction is happening at the next exponential level. That is, having been able to
establish the safety of jumps over ωω-ordinals as above, we perform now an induction
on n for ωωn

. This will allow us to conclude, in turn and by induction, that jumps
over ωωω

ordinals are also safe. Unsurprisingly, one will say argue in the same way
for any ω with exponent ≺ ε0. Since induction is an entirely arithmetical task, in the
sense that its correctness can be seen to follow from the number-theoretic content of
our categorical conceptual analysis of the notion of natural number, PA can carry out
these nested inductions, one after the other, to complete the transfinite induction. Even
if the ordinals themselves are infinite, their structure is such that ordinary induction
need only be performed a finite amount of times, and so PA can deal with it.

Hence, themathematical procedures underlying the proof of transfinite induction for
ordinals below ε0 has an arithmetical nature: we need not invoke any proof resources
other than number-theoretic induction to establish that these ordinals are well-ordered
and, a fortiori, we need not invoke higher-order proof resources.

4.2 The finite nature of (some) infinite ordinals

Despite the above, here is a reason one may doubt that we have really shown the
arithmetical nature, in Isaacson’s sense, of transfinite induction claims like TI(ωωω

).
One can think that, since transfinite induction claims are about ordinals, the equiv-
alent L0 statement will involve coding techniques for these ordinals. And does not
the presence of coding threaten the arithmetical status of the L0-based formulation of
TI(ωωω

)? The answer to this worry is: not necessarily. As wementioned, under Isaac-
son’s framework, coding is simply a device that, in most cases, allows us to discern
whether a seemingly higher-order truth is arithmetical after all, or whether a seemingly

15 The reader need not interpret ‘sees’ here in anything like a model-theoretic sense, as a model that
‘thinks’ of itself in a certain way (e.g., as containing uncountable objects despite being countable, as given
by Skolem’s paradox). It is just a very informal way to describe the operations that are going on in PA to
reach the desired results.
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arithmetical truth is higher-order. So the mere fact that the L0-based formulation of
TI(ωωω

) involves coding is not, per se, problematic. What was problematic, at least
for the advocate of the feasibility attitude, was precisely the fact that here coding
cannot directly serve as the vehicle to establish the arithmeticality of the L0-based
formulation of TI(ωωω

), because its application renders a proof too long to be sur-
veyed. Accordingly, what we have been trying to show is that the uncoded version of
the statement TI(ωωω

)—that is, the statement asserting that the ordinal (as opposed
to the code for the ordinal) ωωω

is well-founded—is not higher-order but arithmetical.
And we have done it by verifying that the argument by which (the coded version of)
such a claim is proved in PA employs no higher-order procedures. Hence, this would
entail that the L0-based formulation of TI(ωωω

) is also an arithmetical truth, given
the correctness of our coding apparatus. Thus, this would be a way to verify that,
in this case, and to use Isaacson’s words, coding constitutes a ‘linkage [that] pulls
the ostensibly higher-order truth down into the arithmetical’ (Isaacson, 1987/1996, p.
221).

There is however a second point that the reader may raise here. All we have shown
is that the steps that constitute the argument by which PA can establish TI(< ε0), and
thus by which we come to see the arithmeticality of this statement, are of a finitary
nature. That is, we have outlined the core of a proof that establishes such claims, and
which can be fully formalised. But note that, in this outline, we have availed ourselves
to infinite ordinals all along, instead of their notations in the language L0. And we
could have not in fact employed the notations since these are, in many cases, likely to
render such an argument unsurveyable; in other words, the argument above cannot be
formalised in L0 without becoming unfeasibly long, and any feasible formalisation
would seem to appeal to infinite ordinals. Yet these ordinals seem to be higher-order
concepts, given that they might be considered infinitary in nature. Hence, insofar as
the argument expounded is the core of the proof of TI(< ε0), it does seem that the
way by which we may convince ourselves of the arithmeticality of TI(< ε0) does
make use of higher-order concepts after all. That is, the possibility that ‘the higher-
order perspective is essential for actual conviction’ (Isaacson, 1987/1996, p. 221)
of the arithmeticality of the claim seems not to have vanished. Again, insisting that
these ordinals are translatable into expressions in the language L0 is of no use, as the
impossibility to do that without ending up with an unsurveyable proof is what brought
us here in the first place. Thus, our aim now is to show that these ordinals are finitary
in nature, and hence not higher-order, so as to conclude that the arguments used in the
proofs of TI(ωωω

) and similar claims involve no higher-order concepts at all. The key
is to reflect on the proof of the transfinite induction claims just displayed.

We explained that the main argument for the proof in PA establishing that ordinals
below ε0 are well-ordered consists in exploiting a nested induction applied to the inner
structure of these ordinals. But the possibility of this nested induction is only given in
the first place because the structure of these ordinals is finitary. Indeed, what facilitates
the nested induction is the fact that ordinals up to ε0 are capable of being treated as
finite objects, as is revealed by their specific Cantor Normal Form. And what do we
mean by this? Cantor’s Normal Form Theorem shows that we can see any ordinal
below ε0 as a sum of towers of ω of the form {α0, α1, ..., αn} where αi ≤ α j when
i < j and αi ≤ ω for each i . Due to this, one can think of any such ordinal as a finite
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list with two types of elements: further two-sorted lists, or individuals—symbolised,
for instance, by�. Thus, the ordinal ωω2

can be understood as a list with one element:
another list, itself containing yet another list, which finally contains two elements:
�,�. On the other hand, the ordinal ωω2 + 2 can be understood as the same list, now
containing also � and �. In following this idea, the theorem allows us to understand
each ordinal below ε0 as a finite list, the members of which are also finite lists, the
members of which are also finite lists... and so on. What all of this reveals, in any case,
is that the structure of the ordinal itself responds to a finitary nature. And, as we said,
this makes possible the overall inductive procedure: PA ‘sees as safe’ (in the sense
given in the previous subsection), i.e., apprehends as well-founded, each list in the
construction of the ordinal, and it can also easily establish the well-foundedness of a
finite sequence of individuals.

To be clear, this is a semi-informal picture that aims to uncover the finitary structure
of the ordinals we are interested in.16 Of course, alternative pictures are also possible.
For example, we can see the ordinal as a finite tree, the nodes of which are finite
trees, the nodes of which are finite trees, etc. Any such picture will hopefully lead to
conviction as to the fact that these infinite ordinals ω ≤ α < ε0 can truly be said to
belong to the realm of finite mathematics, and hence not to be higher-order concepts.

In fact, while this dividing line between the finitary and infinitary, to be located well
into the infinite ordinals, may initially come as a surprise, it becomes increasingly less
so as we learn of different situations where the link between infinite ordinals below
ε0 and finitary mathematics is made explicit. Some of these examples have been
thoroughly investigated in the literature. The following are just two of them:

• The set of ordinals below ε0, equipped with the usual well-ordering of ordinals,
is isomorphic to the set N with the ordering induced by the so-called Matula
numbers—see Weiermann (2005).

• Weiermann (2002) has shown that the behaviour regarding limit laws (roughly,
the probability that any property holds in a structure of arbitrarily large size) for
classes of infinite structures of order type up to ε0 is continuouswith that for classes
of structures of finite size (and hence order type), assuming certain background
conditions on the order. In particular, when seen as additive systems, these classes
of structuresmeet the so-called zero-one law, that is, all properties have probability
either 0 or 1 to be satisfied in structures of arbitrarily large size, whether finite or
infinite, as long as the order type induced is less than ε0. In loose terms: finite
structures and infinite structures of order type up to, but not including, ε0, show a
certain ‘decidability’ when it comes to satisfying any property.

16 I would like to thank the reviewers of this paper for pointing out that a previous argument I advanced
to the effect that ordinals up to ε0 followed from our understanding of natural numbers, based on Kreisel’s
notion of ordinal visualization (Kreisel, 1965), is not available here. First, because the argument relied on the
positing of ‘arithmetical concepts’, which can be problematic in the context of Isaacson’s thesis. Secondly,
because a similar argument would establish the arithmetical nature of TI(ε0), contradicting Isaacson’s
thesis.
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4.3 Additional remarks

In this section, we have argued that: (i) the argument behind the proofs in PA of
transfinite induction claims up to ε0 does not employ higher-order resources, and (ii)
the ordinals with which these arguments are presented are inherently finitary, and
not higher-order. Thus, we conclude that a surveyable proof can be given for these
claims that does not appeal to higher-order notions overall—which, in the spirit of
Isaacson’s thesis, suffices to be convinced that the statements these proofs establish
can be considered arithmetical truths. Therefore, these claims are not a counterexample
to the purity of PA under the interpretation of arithmetical truth given by Isaacson.
We take this to render further support and plausibility to Isaacson’s thesis.

What’s more: we believe that the explanation provided reinforces Isaacson’s thesis
with respect to two additional and different (but related) fronts. First, because it gives an
answer to a question that underlay the specific case study: howcanPA,which according
to Isaacson’s thesis coincides exactly with the truths of finite mathematics, prove that
certain infinite ordinals, i.e., seemingly higher-order objects, are well-founded? Our
response consists in pointing out that these objects are not really higher-order in nature
but, as Cantor’s Normal Form Theorem reveals, finitary; and that precisely because of
this, their inner structure of blended finite strings can be proved well-founded by PA
through the application of ordinary induction finitely many times.

The second front has to do with some remarks presented by Gentzen in his original
proof of transfinite induction up to ε0 in PA, for whom the situation was the opposite
of the one we have presented here. According to him, for an important segment of
the countable ordinals (including ordinals well beyond ε0), ‘transfinite induction is a
formof inferencewhich, in substance, belongs to elementary number theory’ (Gentzen
1943, p. 307, italics in original), so that ‘[t]he fact that transfinite induction even up
to the number ε0 is no longer derivable from the remaining number-theoretical forms
of inference therefore reveals from a new angle the incompleteness of the number-
theoretical formalism’ (ibid.). In other words, he seems to suggest that transfinite
induction forα ≥ ε0 is a genuine arithmetical truth—asopposed to some true statement
cooked-up by logicians—that is nevertheless independent of PA. Following Isaacson’s
terminology, we could read him as saying that transfinite induction for such ordinals
is not ‘higher-order’. Recently, Saul Kripke (2022) has defended a very similar idea,
arguing that TI(ε0) is the first genuine arithmetical true statement that was shown
independent from PA. For both Gentzen and Kripke, the unprovability of TI(ε0) is
yet another example of the incompleteness of PA with respect to arithmetical truth,
constituting thus a challenge to Isaacson’s thesis.Webelieve, however, that our account
of what underlies transfinite induction for ordinals below ε0 renders important support
(even if perhaps not decisive) to a very different conclusion, namely that TI(α), for
α ≥ ε0, unlike transfinite induction for smaller ordinals, is not really arithmetical.
After all, the widely accepted strategy for proving transfinite induction claims in PA
(namely, the Gentzen proof just outlined) is not applicable for ordinals α ≥ ε0, insofar
as the inner structure of these ordinals does not allow Gentzen jumps.
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5 In search of more evidence

As a reminder, our driving conjecture here is that there is a way to justify the arithmeti-
cality of each statement whose proof is too long to be proved in practice, but which PA
can still prove in principle. These might include statements about infinitary concepts,
or certain syntactic statements. To provide some evidence for this conjecture, we have
justified the arithmeticality of transfinite induction claims for ordinals up to ε0.

The argument deployed seems to do well not only with transfinite induction claims
but with many other statements involving infinitary objects and, in particular, infinite
ordinals (for instance, results on ordinal arithmetic; see e.g., Sommer, 1995, §3).
Likewise, it seems to us that it fares well with respect to consistency statements about
theories weaker than PA. But these statements by no means exhaust the class of
‘syntactic’ statements that might involve unfeasibly long proofs. For instance, we find
that statements that code provability in a theory of arithmetic are of an equally syntactic
nature. If we are to defend the conjecture—and, with it, Isaacson’s thesis—one will
have to tell a convincing story on why these statements are also arithmetical.

As a paradigmatic case, take the following: what can wemake of Henkin sentences,
that is, formulae ϕ such that

ϕ ↔ PrPA(�ϕ�)?

Some considerations come into play here. First of all, there is no one single formula
expressing provability in a formal system. The formula in questionwill depend, among
other things, on the choice of coding made, and on the conditions we believe a formula
expressing provability in a system should meet. The last point is particularly relevant,
and has been the object of some discussion—see e.g. Halbach and Visser (2014).
Indeed, if some formula π(x) that is intended to express provability is generally
believed to be unsuccessful for that aim, we are (arguably) no longer talking about a
syntactic statement, insofar as it fails to capture the relevant syntactic property. Hence,
formulae like the ones Kreisel devised to answer Henkin’s problem (i.e., whether
Henkin sentences are provable in their relevant systems) (Kreisel, 1954) might not
be strictly relevant when it comes to testing the conjecture: since most would argue
that they fail to capture a syntactic property (as Henkin, and Halbach and Visser, have
done), we can discard right away their containing higher-order notions.

Thus, one could argue that it all boils down to justifying the arithmeticality of
Henkin sentences expressed with the ‘canonical’ formula capturing provability, which
we denote as Bew(x). It is at this point where the defender of the conjecture must step
in and try to explain in what sense these types of sentences are arithmetical. We shall
not attempt to do that here. Nonetheless, we venture that one can accomplish this task
for the formulae in question by identifying provability with the existence of a certain
finite sequence and, in turn, justifying the arithmeticality of the notion of ‘sequence’.

6 Conclusion

In this paper, we introduced the notion of purity for theories of arithmetic, and showed
that there is a reading of Isaacson’s thesis under which PA can be considered an
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impure theory of arithmetic, thus undermining Isaacson’s thesis. As we see it, two
possibilities stand out now if such a conclusion is to be avoided. Either we take this to
be significant evidence in favour of retaining the Tarskian conception of arithmetical
truth as truth in N , thus going back to the incompleteness of PA, or we find a way
to justify the arithmetical character of statements such as TI(ωωω

), Con(PRA) and
the like. Here, we tried to pursue the second path. As we said, our argument is just
conjectural, based on a paradigmatic case study, and more may need to be done. But,
if the conjecture holds, it is definitely a way to buttress the claim that PA proves all
and only arithmetical truths—that is, Isaacson’s thesis.
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