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Abstract
Given the extent of using deep convolutional neural networks to model the mechanism
of object recognition, it becomes important to analyse the evidence of their similarity
and the explanatory potential of these models. I focus on one frequent method of their
comparison—representational similarity analysis, and I argue, first, that it underdeter-
mines these models as how-actually mechanistic explanations. This happens because
different similarity measures in this framework pick out different mechanisms across
DCNNs and the brain in order to correspond them, and there is no arbitration between
them in terms of relevance for object recognition. Second, the reason similarity mea-
sures are underdetermining to a large degree stems from the highly idealised nature of
these models, which undermines their status as how-possibly mechanistic explanatory
models of object recognition as well. Thus, building models with more theoretical
consideration and choosing relevant similarity measures may bring us closer to the
goal of mechanistic explanation.

Keywords Deep neural networks · Explanation · Mechanisms · Representation ·
Object recognition · Similarity measures

1 Introduction

Although deep neural networks had their breakthrough in the engineering field of
computer vision (Krizhevsky et al., 2012), there has been a lot of research in recent
years employing deep neural networks directly in the pursuit of neuroscientific goals.
This new framework at the intersection of deep learning and neuroscience aims to offer
a novel methodology for neuroscience in contrast to the traditional one (Nastase et al.,

B Bojana Grujičić
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2020; Richards et al., 2019), having hopes of fulfilling not just its predictive but its
explanatory goals aswell (Cichy&Kaiser, 2019;Kietzmann et al., 2019;Kriegeskorte,
2015; Lindsay, 2021).

In the domain of visual neuroscience, there has been an array of findings suggesting
that inner activations of deep convolutional neural networks (DCNNs) trained for an
object recognition task enable predicting neural response properties in the ventral
stream to a certain extent (Bashivan et al., 2019; Cadieu et al., 2014; Cichy et al., 2016;
Khaligh-Razavi & Kriegeskorte, 2014; Lindsay, 2021; Yamins et al., 2014). When
it comes to their accuracy on the object recognition task, DCNNs are on the human
performance level. Based on these findings DCNNs are said to be themost predictively
successful models of the ventral stream in human and nonhuman primate brains for
object recognition (Cao & Yamins, 2021a, 2021b; Storrs et al., 2021; Yamins et al.,
2014). Importantly, this should not be taken as the claim that the learning mechanisms
of DCNNs and the brain are similar. The claim is limited to the correspondence of the
brain and DCNN processing in object recognition once DCNNs are trained.

Given these findings, the question arises whether DCNNs also provide an explana-
tion of our capacity for object recognition. According to some neuroscientists, DCNNs
are somewhat explanatory in virtue of capturing some behavioural data and explaining
neural variance (Kietzmann et al., 2019; Kriegeskorte, 2015; Lindsay, 2021). In addi-
tion, philosophical interest inDCNNs has been rising lately (Buckner, 2018, 2019; Cao
& Yamins, 2021a, 2021b; Kieval, 2022), with several arguments offered for the claim
of DCNNs being mechanistic explanations of object recognition. Cao and Yamins
(2021a, 2021b) argue that DCNNs satisfy the model-to-mechanism mapping require-
ment put forth for mechanistic explanations (Kaplan & Craver, 2011)—DCNNs are
already sufficiently similar to their neural targets. Buckner (2018) suggests a mech-
anism both DCNNs and the visual cortex instantiate, expanding on Stinson’s (2018)
analysis of connectionist models as explanatory in virtue of capturing some generic
properties of mechanisms responsible for target cognitive phenomena.

One of themost prominently used frameworks for comparingDCNNand brain acti-
vations is representational similarity analysis (RSA), forming an important evidential
basis for the claim that DCNNs are mechanistic explanations. RSA quantifies second-
order similarities between dissimilarities of stimuli-elicited patterns in DCNNs and
the ventral stream (Kriegeskorte et al., 2008a). First, I argue that RSA underdetermines
DCNNs as how-actually mechanistic explanations since a variety of similarity mea-
sures is used within the framework. Focusing on correlation and Euclidean distance,
I show that they pick out different types of mechanisms in DCNNs and the brain in
order to compare them, and I argue that there is a problem of relevance of these mea-
sures for the explanandum capacity of object recognition. Since there is no arbitration
between similarity measures in terms of relevance, RSA underdetermines DCNNs as
how-actually mechanistic explanations. Second, the highly idealised nature of current
DCNNs undermines their status as how-possibly mechanistic explanations of object
recognition—because models are made with little theoretical consideration, the kinds
of solutions they arrive at are under-constraining for the purposes of learning about the
ventral stream mechanism. This makes the underdetermination due to the application
of different similarity measures rampant.
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After describing the explanandum capacity of object recognition and saying some-
thing aboutDCNNs in general in the next section, I outline howmechanistic abstraction
is applicable to DCNNs in Sect. 3. I then introduce RSA as a method of comparing
DCNNs and the brain in Sect. 4 and argue in Sect. 5 that different similarity mea-
sures pick out different types of mechanisms on the level of representational vehicles.
Section 6 presents a limitation on the use of RSA to correspond representational
content across systems. I then go on to argue that DCNNs are neither how-actually
mechanistic explanations in Sect. 7, nor how-possibly mechanistic explanations in
Sect. 8. Section 9 concludes.

2 The explanandum capacity of object recognition
and the DCNN-based explanans

2.1 The explanandum: object recognition

There are various facets of object recognition as one of the critical capacities enabling
successful interaction with the world around us (Bracci &Op de Beeck, 2022). In what
follows I focus on a constrained version of what this capacity amounts to, called core
object recognition that, while not being theoretically unobjectionable [cf. Bracci and
Op de Beeck (2022)] is the notion often used at the intersection of deep learning and
neuroscience. I follow DiCarlo et al. (2012) in characterising core object recognition
as the capacity to assign labels to objects, e.g. “orange” to an orange. Labels can range
from precise ones, in which case the task is that of identifying objects, to coarse-
grained ones when the task is to categorise them. Our ability to identify or categorise
objects persists over various contingent conditions of presentation of the object – we
are able to say an object is an orange in different lighting conditions, from different
perspectives, being closer or further away from it, etc. Thus, being able to recognise
objects demands solving the problem of invariance to these idiosyncratic aspects of
the presentation of an object (Kreiman, 2021; Pinto et al., 2008).

Additionally, we are able to distinguish stimuli whose retinal activations can be
quite similar, such as a lemon and a tennis ball. Doing this demands being able to
track object-specific properties. These two requirements—invariance and specificity
form the crux of the problem of object recognition (Riesenhuber & Poggio, 2000). The
mechanism that can solve it needs to have a way of responding differently to retinally
similar stimuli while reliably recognising these objects under different conditions of
their presentation.

The task that is used to assess the core object recognition abilities consists in being
presented with two-dimensional images of objects with a request to output appropriate
labels. This task was adopted into neuroscience from the computer vision field and
the ImageNet classification challenge (Deng et al., 2009). While it is debatable how
representative of our object recognition abilities this task is, it is a task humans can
do, and current DCNNs can solve it on the level of human task performance (Storrs
et al., 2021).
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Fig. 1 AlexNet, an eight-layer network, reproduced from Cichy et al. (2016). Layers 1–5 iterate convolution
and max-pooling operations. Convolutional nodes are organised in feature maps, where each node in a
feature map detects the same feature in its own receptive field, and they jointly tile the whole visual field.
There are many feature maps per layer. Max-pooling nodes help with meeting the challenge of invariance.
Extracted features from layer 5 are then passed onto layers 6–8 which are fully connected and approximate
a readout from a population of neurons, in order to output a label

2.2 The DCNN-based explanans of object recognition

Deep neural networks are computational models that consist of multiple layers of
nodes connected by patterns of weights which determine the strength of the activity
propagated from one node to the next one. Input layers in these models process the
input information (related to images of objects in this case), output layers produce the
result of processing (a label in this case), and hidden layers that lie between these two
do the work of solving the task at hand.

The most prominent class of models in the context of object recognition modelling
are deep convolutional neural networks (see Fig. 1). A general scheme of howDCNNs
solve the problem of object recognition assumes, in the first step, extracting features
from the input image, such as edges, curves, colours, etc. This step is performed by
iterative employment of convolutional layers, the nonlinear activation function, and
max-pooling layers, all of which are biologically inspired (Kreiman, 2021; LeCun
et al., 2015). These three kinds of nodes jointly enable fine-tuned detection of features
of increasing complexity across the processing hierarchy, in ways that are invariant to
idiosyncratic presentations of objects, thus meeting the challenges of specificity and
invariance for object recognition. In the second step, a classifier in the form of fully
connected layers learns to map these features to object labels.

This is a general scheme of how DCNNs solve the core object recognition task.1

Various architectures have been developed that exhibit these general design features,
but nevertheless widely differ in their other architectural features.2 Networks may
differ regarding their depth, number of nodes, and number of connections between
nodes, but also other architectural motifs. For example, many of them are feedforward
networks, which seems plausible given the very fast reaction times of around 350 ms
in the task (DiCarlo et al., 2012), the finding that constrains the role of feedback
connections for core object recognition. In contrast, some are recurrent networks, that
incorporate feedback connections.

1 For a philosophically accessible and more detailed introduction see Buckner (2019).
2 For overviews of types of architectures see Storrs et al. (2021) and Xu & Vaziri-Pashkam (2021).
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In the performance optimisation-driven approach (Yamins&DiCarlo, 2016), during
the process of training the workings of DCNNs are not constrained by brain data.
DCNNs are trained in a supervised manner for the object recognition task, learning on
their own which features are useful for the task. Trained DCNNs enter the process of
model selection using frameworks that compare their workings with neural population
coding in the brain when they are exposed to the same stimuli in the task.

3 Mechanistic explanatory potential of DCNNs

The motivation to discuss whether DCNNs can be explanatory models and if they can,
in which sense, is based on a breadth of findings that gave rise to the deep learning
revolution in neuroscience in the last 10 years. The quest to advance modelling of
visual processes by using DCNNs (Schrimpf et al., 2020b) started with the findings
of DCNNs hierarchically corresponding to stages of processing along the ventral
stream—early layers in DCNNs were found to be most similar to early processing
stages in the ventral stream, while deeper layers were found to be most similar to
late processing stages in the ventral stream (Cichy et al., 2016; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014). Although visual areas in the brain have been
extensively researched and much has been known about the way the early visual areas
work, later visual areas have eluded visual neuroscientists because of their convoluted
response properties. Thus, it was a surprising result when it turned out that DCNNs
trained solely to successfully perform object recognition were able to predict neural
response properties to an extent, including those of the later visual areas such as the
inferior temporal cortex (Cadieu et al., 2014; Cichy et al., 2016; Khaligh-Razavi &
Kriegeskorte, 2014). Correspondences based on representational similarity analysis,
which quantifies second-order similarities between dissimilarities of stimuli-elicited
patterns in DCNNs and the brain, have had an important role, lending support to the
view that the ventral stream is a hierarchical system, processingmore complex features
as one goes from early to late processing stages.

With these empirical findings came a diversity of views about the roles of DCNNs
in scientific practice and their explanatory potential.

Although researchers utilisingDCNNshave been criticised for not explicitly reflect-
ing on the kinds of explanations their models are aimed at (Kay, 2018), several reviews
of the landscape of modelling the brain with DCNNs explicitly frame this modelling
endeavour as an attempt to obtain mechanistic explanations of cognitive phenom-
ena (Doerig et al., 2023; Kietzmann et al., 2019; Kriegeskorte, 2015; Lindsay, 2021;
Schrimpf et al., 2020b). Modelling with DCNNs, according to these views, is a con-
tinuation of a widespread attempt to obtain mechanistic explanations in neuroscience.

Recently some philosophical work has proceeded in that direction as well. Cao and
Yamins (2021a, 2021b) attempt to counter long-standing doubts that DCNNs could
be mechanistic models, by developing a particular account of mechanistic abstrac-
tion applicable to DCNNs and reviewing evidence that vindicates these models as
mechanistic explanations of the ventral stream. Buckner (2018) gives a proposal for
a mechanism implemented in both DCNNs and the ventral stream, building upon
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Stinson’s analysis (2018) of the mechanistic explanatory potential of connectionist
networks.

In sum, there seems to be some agreement across philosophy and neuroscience
that DCNNs can be or that they already are mechanistic models of the human visual
system. This paper speaks to that kind of view.

It is important, however, to note that there is an alternative view that considers
DCNNs similarly to how neuroscientists consider animal models. According to this
comparative model interpretation, DCNNs are treated as artificial model organisms
(Scholte, 2018). DCNNs lend themselves to being tweaked in various ways. One can
train them on different datasets and change their architectural features as one likes.
Such malleability and accessibility of their inner workings can help the process of
hypothesis generation about which model features are possibly instantiated in the
brain. According to this view, current DCNNs are not directly meant to model brain
mechanisms but to be used as a platform for hypothesis generation that can subse-
quently help to form more elaborate and stringent models that would be intended as
explanatory models of brain processes.

3.1 Mechanistic abstraction and its application to DCNNs

Mechanisms are entities and activities organised in such a way that they are respon-
sible for the phenomenon to be explained (Illari & Williamson, 2012). Explaining a
phenomenon, such as object recognition, amounts to describing a mechanism respon-
sible for it. At the intersection of neuroscience and deep learning, mechanisms are
often characterised as mechanisms that represent stimuli-related properties, thereby
enabling appropriate task performance. The talk of representations has been ubiqui-
tous in visual neuroscience since its early days (Bechtel, 2007), while deep learning
is a representation-learning method (LeCun et al., 2015). The particular representa-
tions that DCNNs and the ventral stream acquire enable them to meet the challenges
of invariance and specificity for object recognition, and researchers precisely aim to
learn about the ventral stream representations using DCNN modelling (Kietzmann
et al., 2019; Kriegeskorte, 2015; Lindsay, 2021), especially in its higher visual areas.

Thus, mechanisms for object recognition are mechanisms that operate on repre-
sentations (Bechtel, 2007, 2008), carrying task-relevant content about stimuli. From
this representational perspective, entities that comprise a mechanism are representa-
tions, and activities are operations that transform representations in spatio-temporally
organised ways. Another perspective on the mechanism of object recognition is imple-
mentational, which focuses on the contribution of neural structures and their activities
to the function of object recognition. The aspects of this dual perspective on the
mechanism of object recognition are connected through the notion of the vehicle of
representation (Bechtel, 2007, p. 34). Vehicles of representation are specifiable types
of neural processes that carry stimulus-related representational content, needed for
successful task performance.

A model of object recognition has mechanistic explanatory force if it has vari-
ables that map onto the representations, activities, and organisational properties of the
brain mechanism, and if the dependencies posited between these variables map onto

123



Synthese (2024) 203 :30 Page 7 of 28 30

the causal relations between their counterparts in the target brain mechanism. This
is the model-to-mechanism mapping (3M) requirement for mechanistic explanations
(Craver & Kaplan, 2020; Kaplan & Craver, 2011). However, some opposition to the
idea of DCNNs being mechanistic models of the brain comes from the fact that they
aim to model brain processes at a higher level of abstraction than some paradigmati-
cally mechanistic explanations, such as that of long-term potentiation (Craver, 2007)
or depolarisation (Machamer et al., 2000). DCNNs abstract away from many low-
level neural features, which opens up the question of their compatibility with the 3M
requirement.

Recently there has been a lot of discussion on the topic of abstraction and mech-
anistic explanation (Chirimuuta, 2014; Levy, 2014; Potochnik, 2015; Stinson, 2016;
Weiskopf, 2011), leading to a wider recognition of abstraction being characteristic of
modelling and that abstract models can be mechanistic explanations (Boone & Pic-
cinini, 2016; Craver & Kaplan, 2020). Models can abstract away from both, details
that are irrelevant for object recognition, as well as some relevant details, and still
be mechanistically explanatory in virtue of satisfying the 3M requirement. Abstract
mechanistic explanatorymodels often aim to describe just those core features ofmech-
anisms that are the most important for the phenomenon of interest.

The account of mechanism schemata found in Machamer et al. (2000) and Darden
(2002) captures this point.3 Typically, scientists are not after describing all the details
of a particular mechanism but aim to characterise a type of mechanism responsible
for the phenomenon. A mechanism schema is an abstract description of a type of
mechanism (Darden, 2002; Machamer et al., 2000). Schemas may have a general
scope, capturing shared major features of mechanisms that can occur within quite
different systems (Boone & Piccinini, 2016). For example, a mechanism schema for
protein synthesis is DNA → RNA → Protein (Darden, 2002; Machamer et al., 2000).
This abstract mechanistic template can be instantiated by inserting more detailed
characterisations of entities, activities, and organisational properties for the variables
in the schema, reaching a more detailed description of an instance of a mechanism
for protein synthesis. Schema instantiation can play an important role in mechanism
discovery (Darden, 2002). For example, if a type of mechanism in a DCNN can be
depicted as a mechanism schema, it can then be transferred as a hypothesis onto the
ventral stream in an attempt to see whether and how that schema is instantiated in
more detail.

Deep neural network modelling may thus be shown to be continuous with other
abstract mechanistic modelling efforts found in biology more broadly if it can provide
abstract descriptions of the types of mechanisms responsible for phenomena to be
explained. I take the core features of the mechanism type responsible for object recog-
nition to be the representations that DCNNs and the target instantiate, cohering with
the goal of the field to learn about representations in the ventral stream (Kietzmann
et al., 2019;Kriegeskorte, 2015; Lindsay, 2021). The emphasis on similarities ofmech-
anistic entities, in this case, representations, is one way to type mechanisms (Glennan

3 Note that Craver (2007) characterises schemata differently, as lying between more gappy mechanistic
explanations (mechanism sketches) and complete mechanistic explanations.
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Fig. 2 Tuning functions and neural manifolds. Left: A neuronal tuning function. Right: Neural manifolds
across three processing stages, reproduced from Cohen et al. (2020). Notice the change of the shape of
manifolds as they become more disentangled

& Illari, 2017).4 These core features of a mechanism type are the ones that are taken to
be key contributors to the runnability of the model and successful task performance.
The runnability of the model is crucial for this modelling paradigm (Rumelhart et al.,
1986) since it embeds the possibility of a model exhibiting similar object recognition
task performance as humans in virtue of operating over similar representations (Cao
& Yamins, 2021a; Kriegeskorte, 2015; Kriegeskorte & Douglas, 2018).

A mechanism schema of a DCNN has explanatory force if there is a mapping
between the major features of a mechanism type it posits and the target system that is
relevant for object recognition, as per the 3M requirement. I discuss contexts in which
the mapping between DCNN and the ventral stream representations is formed using
the framework of representational similarity analysis, which I turn to in Sect. 4.

3.2 Two candidate levels for themapping of representations

Establishing a mapping between representations in DCNNs and the ventral stream
presupposes a target level of analysis relevant for object recognition. While generally
different neural networkmodels may bottom out at different levels of analysis, looking
into the current research practice of using DCNNs to model the object recognition
mechanism enables us to simplify the issue by considering two candidate levels.

According to one view, relevant representations lie on the level of individual neu-
rons. Extending the traditional way of trying to understand the visual system by
analysing which stimulus features individual neurons are responsive to (Kriegesko-
rte & Wei, 2021), this view considers individual neuronal activations as vehicles of
representational content (Poldrack, 2021, pp. 1314, 1315). These descriptions of indi-
vidual neuronal activations are summarised in the form of tuning functions, which
characterise the dependence of neuronal firing on a stimulus feature (see Fig. 2). For
example, the dependence of the firing of neurons in the primary visual cortex on the

4 Typing mechanisms according to their representations is reflected in the scientific practice itself. For
example, Storrs et al. (2021) train architecturally different types of DCNNs. When they are shown to
equally correspond to the ventral stream using representational similarity analysis, the authors conclude
that DCNNs develop similar representations, and that the architectural features responsible for that result
are those that are shared across models. Thus, the architectural differences between models are not seen as
relevant differences.
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presence of edge-shaped stimuli has been classically characterised by a bell-shaped
tuning curve. Call this the Tuning Functions account. The Tuning Functions account
captures an attempt to map a mechanism schema of a DCNN on the level of tuning
functions to tuning functions in a neuronal population in the brain.

An alternative view considers neural manifolds as representational vehicles. Neural
manifolds are responses of a population of neurons or nodes to a variety of images of
an object—displaying it from different perspectives, varying in scale, location, etc.,
forming a continuous, low-dimensional surface inside the high-dimensional neural
representational space (DiCarlo & Cox, 2007). See Fig. 2. It has been proposed that
the object recognition capacity may depend on reformatting neural manifolds in rep-
resentational spaces in order to make them less entangled and more separable down
the processing hierarchy (DiCarlo & Cox, 2007; DiCarlo et al., 2012). Call this the
Neural Manifolds account. According to it, the mechanism schema of a DCNN lies
on the level of neural manifolds that one tries to map in the brain as well (Buckner,
2018; Poldrack, 2021).5

Mapping tuning functions and neural manifolds coheres well with the goals of
the neural network-based research programme to bridge “between explanatory levels,
from single units, through collective dynamics and onto behavior” (Doerig et al.,
2023, p. 436). However, whether these two accounts are compatible or competitors as
explainers has been a topic of recent discussions (Barack&Krakauer, 2021).6 Without
taking a stance on this question, I charitably consider that mapping representations on
both of these levels of analysis can yield an explanatory mechanism schema of object
recognition.

4 Comparing representational geometries of DCNNs and the ventral
stream

Representational similarity analysis (RSA) is a widely utilised framework in cognitive
neuroscience for assessing the similarity of processing of systems (Kriegeskorte et al.,
2008a, 2008b). Taking aside some recent intervention-based ways to compare the
workings of DCNNs and the brain (Bashivan et al., 2019; Sexton & Love, 2022), RSA
has been one of the two most frequently used ways of comparing representations of
brains andDCNNs, besides linearmappingof neuronal activations based on activations
of nodes in a DCNN (Schrimpf et al., 2020a). Thus, it forms an important evidential
basis for the assessment of the mechanistic explanatory potential of DCNNs. Indeed,
several scientific reviews mention RSA as a method of comparing DCNN with brain
representations with the goal of reaching mechanistic explanations (Doerig et al.,
2023; Kietzmann et al., 2019; Kriegeskorte, 2015; Lindsay, 2021).

5 The epistemic status of neural manifolds is, however, under-theorised, with an exception of Humphries
(2021). Various views can be found across the discourse. Some see them as descriptive, summarising tools
(Whiteway & Butts, 2019; Williamson et al., 2019), others as important organisational principles of neural
computation (Barrett et al., 2019). Yet another view is that they are a type of an entity the brain and DCNNs
use to compute (Gallego et al., 2017; Jazayeri & Ostojic, 2021; Vyas et al., 2020).
6 One relevant factor is that sets of different tuning functions can give rise to similarly shaped manifolds
(Kriegeskorte & Wei, 2021). Thus, if one’s goal is to obtain a description of neural tuning, bottoming out
on the level of manifolds will not be satisfying.
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In the philosophical literature, Buckner (2018) and Cao and Yamins (2021a) argue
for the mechanistic explanatory potential of DCNNs but they do not analyse whether
RSA-based evidence can corroborate DCNNs toward that goal. An exception to this is
the work of Kieval (2022) who argues that RSA can help uncover brain mechanisms
via shared causal patterns between DCNNs and the brain.

RSA is an analysis method that allows for an examination of a large number of
stimuli-elicited patterns, obtained by fMRI in human participants and by recording
activations of nodes in aDCNN. It is a pattern analysismethod that analyses activations
of DCNNs and brains multivariately as a population code. The activity of a population
of neurons (or nodes in a layer) elicited by a presentation of a stimulus is jointly taken
as representing properties of that stimulus.

Representations across voxels in a brain region or across nodes in a DCNN layer are
depicted in a multidimensional space, where each dimension of the space stands for
the activation level of a voxel in a brain, or a node in a DCNN. A pattern of activation
elicited by a presentation of a visual stimulus across a population of voxels or nodes
is then represented as a point in this multidimensional representational space. Thus,
all the stimuli presented to a brain region or a DCNN layer have their corresponding
points in this multidimensional space.

RSA works by quantifying the similarity structure of activation patterns elicited
by a set of stimuli across stages of processing, also called representational geometry
(Kriegeskorte et al., 2008a). Importantly, RSA does not aim to directly correspond
architectures of systems, numbers of nodes or neurons in a population, and sim-
ilar—these may be substantially different across systems that are compared. The
framework aims to compare representational geometries across systems, which are
of course dependent upon the particularities of the architectures they have.

To characterise a representational geometry for a brain region in a task (or a layer
in a DCNN), one forms a representational dissimilarity matrix (RDM). This is the first
step of the RSA methodology. In the second step, the similarity of RDMs of a brain
region and a DCNN layer is assessed.

In the first step, one forms an RDM for a brain region by quantifying how dis-
similar each two stimuli-elicited patterns are. Another RDM is formed for a DCNN
layer. For example, if the stimuli set are images of animate objects, such as faces,
and inanimate objects such as houses, then one calculates the dissimilarity between
every two patterns elicited by animates and inanimates in that set. An RDM is a square
matrix (see Fig. 3), whose rows and columns are indexed by visual stimulus presen-
tations, in this case, images of animate and inanimate objects. Then, each cell in the
matrix contains a numerical value standing for themeasured dissimilarity between two
stimuli-elicited patterns. The matrix is symmetric about a diagonal of zeros (standing
for the dissimilarity of each pattern from itself).

To quantify dissimilarity between two stimuli-elicited patterns one looks at their
distance in the multidimensional space. The bigger the distance, according to a partic-
ular similarity measure, the bigger the dissimilarity between the patterns. Often this
measure is correlation (Kriegeskorte et al., 2008a), which calculates distances as 1
− correlation across voxels in the brain, or nodes in a DCNN (1 standing for perfect
correlation minus their actual correlation). Thus, intuitively, an RDM captures how
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Fig. 3 An example of an empirical RDM obtained in the human IT cortex, reproduced from Kriegeskorte
et al. (2008b). Themost noticeable clusters are those formed by low dissimilarities in the upper left quadrant
between patterns elicited by animate objects, and lower right quadrant for patterns elicited by inanimate
objects. The other two quadrants describe high dissimilarities between patterns elicited by categories of
animates and inanimates

dissimilarly some images in a set of stimuli are processed by a model or the target
system.

For example, Fig. 3 illustrates the responses of the inferior temporal (IT) cortex
in humans clustering into two broad categories of animate and inanimate objects. IT
representations of animate objects are more similar to each other than to IT repre-
sentations of inanimate objects, and vice versa. To the extent that a new incoming
stimulus-elicited pattern is similar to patterns elicited by animates, it will tend to have
similar effects on downstreamneurons and the object recognition performance as other
animate objects. Such analysis of activation patterns through the lens of similarity sug-
gests which representational distinctions the IT cortex makes in order to successfully
perform the task.

After the formation of RDMs of a DCNN layer and a brain region, in the second
step, their dissimilarity is assessed. That comparison often looks at how correlated
their RDMs are and quantifies their dissimilarity as 1 − correlation as well.

4.1 Quantifying dissimilarity

The formation of an RDM requires the adoption of a similarity measure. While cog-
nitive psychologists extensively discussed the notion of similarity and the extent to
which it can be invoked as an explanatory or an evidential construct (Edelman, 1999;
Medin et al., 1993), such efforts are not paralleled in contemporary neuroscience.
Taking a look over the current research practices of using RSA to compare brains and
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DCNNs, or DCNNs among themselves, reveals that the field is not unified in quanti-
fying similarity in a particular way. Although correlation is often used as a similarity
measure, other similarity measures are also in play. Similarity measures used are cor-
relation and cosine distance (Cadieu et al., 2014; Cichy et al., 2016; Khaligh-Razavi &
Kriegeskorte, 2014; Mehrer et al., 2020; Xu & Vaziri-Pashkam, 2021), Euclidean and
Mahalanobis distances (Mehrer et al., 2020; Storrs et al., 2021; Xu &Vaziri-Pashkam,
2021), while Kornblith et al. (2019) devise a way of quantifying representational
geometry based on the dot product.

I contrast members of two broad families of similarity measures—correlation and
cosine distance, on the one hand, and Euclidean and Mahalanobis distances, on the
other (Bobadilla-Suarez et al., 2020). I primarily focus on correlation and Euclidean
distance to illustrate the fact that similarity measures provide different perspectives
on what distance is in representational space. Then in Sect. 5 I argue that correlation
and Euclidean distance pick out different types of mechanisms according to both the
Tuning Functions account and the Neural Manifolds account.

Correlation and cosine distance are angle-based measures (Bobadilla-Suarez et al.,
2020). Take as an example a multivariate space spanned by the activations of two
voxels to an image of an orange and an image of a pear (see Fig. 4). Then one can
imagine looking in the direction of the two stimulus-elicited patterns A and B from the
origin of this two-dimensional space. According to correlation and cosine distance,
the distance between these two stimulus-elicited patterns is a function of the angle
that these two points subtend with the origin. Cosine distance measures similarity
as the cosine of the angle that they subtend, while dissimilarity is calculated when
that number is subtracted from 1. Geometric interpretation of correlation relies on the
same logic, so that the distance between the two vectors is the cosine of the angle
they subtend after mean centering each condition (Mur et al., 2009; Ramírez, 2018;
Walther et al., 2016).

Fig. 4 Correlation and cosine distance measures are angle-based measures—similarity between an orange-
elicited response pattern and a pear-elicited response pattern is a function of the angle they subtend with
the origin, and stays the same across all pairs of vectors (A & B, A′ & B′) subtending the same angle. In
contrast, Euclidean distance is a magnitude-based measure that relies on measuring distances as the length
of a straight line so that the distances between vectors (dotted lines) are different
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In contrast, Euclidean and Mahalanobis distance measures are magnitude-based
(Bobadilla-Suarez et al., 2020). While Mahalanobis distance measures the distance
between a point and a distribution, Euclidean distance is a non-distributional measure.
Turning again to Fig. 4, the distance between two stimulus-elicited patterns A and B
according to Euclidean distance is their distance in Euclidean space (dotted lines in
Fig. 4). Intuitively, in the case of Euclidean distance in this example, one looks at the
space from above and measures distances that way. Euclidean distance between two
vectors is calculated as the square root of the summed squared differences along each
vector component (Mur et al., 2009; Ramírez, 2018; Walther et al., 2016).

Correlation and Euclidean distance provide different respects in which one can
quantify representational geometries. Since correlation relies on measuring angle-
based distances after the mean value subtraction, the overall mean in the region is
disregarded as a coding dimension (Ramírez, 2018; Ramírez et al., 2014). Thus, cor-
relation measures distances by looking at the pattern of differential population firing
across conditions. In direct contrast to this, as a magnitude-based measure Euclidean
distance quantifies representational geometries in virtue of tracking differences in
amplitude of population firing, and consequently the mean is taken as a coding dimen-
sion (Ramírez, 2018; Ramírez et al., 2014).7

Let us go back to the categorical structure of IT representations in Fig. 3. The
RDM reveals two clusters corresponding to animates and inanimates. Correlation,
then, implies that the between-category information needed for object categorisation
is not carried by the overall amplitude of the population response. Consequently,
a downstream neural population does not discriminate between patterns elicited by
animates and inanimates in virtue of the overall amplitude, which, in turn, implies that
outputting an appropriate label in the object recognition task does not depend upon
it either. In contrast, Euclidean distance sees precisely the differences in amplitude
as properties of population activations that carry such discriminative information and
lead to successful task performance.

4.2 Invariance properties of similarity measures

As mentioned in Sect. 4, the basis of RSA is the representation of stimuli-elicited
patterns in a multidimensional space. However, that representation abstracts away
from tuning functions of neurons in voxels or nodes in a DCNN, focusing on the
population-level response. Nevertheless, the overall population response in a voxel or
a DCNN layer is of course dependent upon tuning functions of individual neurons or
nodes that comprise them. In the case of RSA, a set of neurons in a population or nodes
in a layer tuned for some stimuli-related properties fully determines a corresponding
representational geometry (Kriegeskorte & Wei, 2021).

However, the same representational geometry can be implemented by different
sets of tuning functions (Kriegeskorte & Wei, 2021). This is a consequence of the
invariance properties of similarity measures.

7 SeeWalther et al., (2016, Fig. 1) for other illustrations of the ways Euclidean-based and correlation-based
geometries can be affected by common data manipulation techniques.
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Fig. 5 RotatingA andB in space affects the angle between them,which in turn affects judgments of similarity
based on correlation. However, their Euclidean distance stays the same. The figure is based onMehrer et al.,
(2020, Supplementary Fig. 5)

Invariance properties determine the conditions under which perturbations of points
in the representational space conserve a representational geometry quantified using a
particular similarity measure (Kornblith et al., 2019). Perturbations that a similarity
measure is invariant to are not considered relevant transformations of vectors for the
quantification of similarity. In practice, this means that a DCNN layer could exhibit
a pattern of responses that is some transformation of responses of human IT, but a
transformation that does not affect much its representational geometry.

For example, correlation is scale-invariant (see Fig. 4). Uniformly multiplying vec-
tors in state space with a certain number does not affect how similar stimuli-elicited
patterns are, as long as they keep subtending the same angle. From the perspective of
the origin, one cannot detect how far away A and B are from A′ and B′, since both
pairs of vectors lie on the same horizon. In contrast, being a magnitude-based mea-
sure Euclidean distance considers differences in amplitude as meaningful differences.
Perturbations affecting the amplitude affect representational geometries.

Another example is the rotation of points in multivariate space. In Fig. 5, after
rigidly rotating vectors A and B in space along with other data points, their similarity
will stay the same according to Euclidean distance (Mehrer et al., 2020). In contrast,
correlation is not invariant to such rotations since they affect the angle between vectors
and therefore their similarities (Mehrer et al., 2020).

Each such transformation of vectors that leaves a correlation-based or a Euclidean-
based representational geometry intact often entails a change on the level of tuning
functions able to implement the geometry. The same population-level response and
its representational geometry can be yielded by populations of neurons with different
tuning functions (Kriegeskorte & Wei, 2021). That the relationship between sets of
tuning functions and a representational geometry is many-to-one is a consequence of
the invariance properties of similarity measures.

4.3 The choice of similarity measure is theoretically non-trivial: a case study

In the previous two sections, I have discussed how similarity measures pick out dif-
ferent properties of population-level responses in order to quantify a representational
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geometry, and that due to the invariance properties of similarity measures multiple sets
of tuning functions can implement the same representational geometry. In this section,
I illustrate that correlation-based and Euclidean-based representational geometries are
implemented by non-identical sets of tuning functions. The choice of a similarity mea-
sure one applies is non-trivial since it can lead to theoretically meaningfully different
conclusions.

To illustrate my point I turn to the study of Ramirez et al. (2014), which deals with
the representations of faces at different rotational angles in human fusiform face area
(FFA). Responses in FFA were recorded using fMRI. While participants were fixating
on the centre of the screen, stimuli of faces at different angles (− 90°, − 45°, 0°, 45°,
90°) were shown at two positions—above and below the fixation cross.

Ramirez et al. quantify the representational geometry of faces at all rotational angles
in FFA, for two positions (above and below the fixation cross). See Fig. 6. They tested
two hypotheses related to the kind of tuning that can account for the representational
geometry in FFA. One hypothesis was that neurons in FFA are primarily unimodally
tuned for a single preferred view. According to another hypothesis, FFA neurons could
exhibitmirror-symmetric encodingof face orientations, so that the responses are highly
similar for faces presented at − 45° and 45°, as well as − 90° and 90°. Two represen-
tational distance matrices were formed capturing which representational geometry of
a region would be expected if it were the case that unimodally tuned neurons encode
face orientation across retinal positions, and if it were the case that mirror-symmetric
neurons encode it. Finally, these two representational distancematriceswere compared
with the empirical distance matrix of the FFA responses.

When the authors used correlation to quantify the representational geometries,
the unimodal tuning hypothesis was favoured, as it captured more variance than the
geometry based on mirror-symmetric tuning. However, when Euclidean distance was
used, the two hypotheses were indistinguishable.

Fig. 6 An empirically obtained correlation-based RDM of face rotational angles in FFA across two retinal
positions (left), adapted from Ramirez et al. (2014). If correlation is used to quantify RDMs, the unimodal
tuning hypothesis better accounts for the RDM. If Euclidean distance is used, both hypotheses can account
for the RDM
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Therefore, the choice of similarity measure used to quantify the representational
geometry of FFA has a consequence for a theoretically meaningful conclusion that
is drawn. Unimodal tuning is a hypothesis that stems from view-dependent theories
of object and face representation, and it is a hypothesis that is favoured if corre-
lation is chosen to quantify the representational geometry of FFA. On the other
hand, the hypothesis of mirror-symmetric tuning was first put forth by proponents
of view-independent theories of the object and face representation according to which
individual cells respond tomirror-symmetric rotational angles, thus partially achieving
view-point invariance (Ramírez, 2018). However, when representational geometries
were quantified with Euclidean distance, both unimodal as well as mirror-symmetric
tuning could account for the representational geometry of human FFA.

5 Implementational view on themechanism of object recognition:
different similarity measures correspond different types
of mechanisms

When RSA provides the mapping between DCNNs and the brain, in order to satisfy
the 3M requirement, an issue arises due to a variety of similarity measures used in
that framework. In this section, using Sect. 4, I argue that correlation and Euclidean
distance pick out different representational vehicles, according to theTuningFunctions
and the Neural Manifolds accounts, that they correspond in DCNNs and the brain.

If one types mechanisms according to their representations (see Sect. 3.1), the
implementational view on the mechanism of object recognition allows for typing
mechanisms according to the representational vehicles systems have. Representa-
tional vehicles are types of neural states that carry representational content, and that
are causally relevant for the operation of a mechanism downstream and its task per-
formance (Bechtel, 2007). If it is shown that different similarity measures pick out
different representational vehicles, then they pick out different mechanism types that
they correspond in DCNNs and the ventral stream.

5.1 The neural manifolds account

It may seem far-fetched at first sight that the quantification of representational geome-
tries can in principle capture something about the underlyingmechanismof the system,
since analyses of similarities of processing may seem too detached from the actual
workings of the mechanism. This, however, is incorrect. Representational geometries
can in principle reveal some core features of representational vehicles responsible for
object recognition.

Let us go back to the example of the representational geometry in human IT in
Fig. 3, which is reproduced by a DCNN (Khaligh-Razavi & Kriegeskorte, 2014).
The structure of similarities between responses elicited by images of animate and
inanimate objects form two clusters. These low-dimensional subspaces revealed in IT
and a DCNN layer are neural manifolds of animates and inanimates. The structure of
similarities between patterns elicited by animates and inanimates describes the shape
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of their neuralmanifolds. Thismay bemore visible in Fig. 2, where the shape of cat and
dog manifolds is depicted. A quantification of representational geometry can capture
the shapes of representational vehicles according to the Neural Manifolds account.

Shapes of manifolds have a potential causal relevance for processing downstream.
From the perspective of a downstream neural population or a DCNN layer that is
meant to distinguish between animates and inanimates and output a label in the task,
similarity relations between stimuli-elicited patterns lying on differentmanifolds serve
to distinguish them (Buckner, 2018;Kriegeskorte&Kievit, 2013;Kriegeskorte&Wei,
2021). For example, if a newly incoming stimulus-elicited pattern ismore similar to the
previously encountered patterns elicited by animates and thus falls into the manifold
for animates, it will tend to have similar effects on downstream neurons and the
object recognition task performance as other animate objects—it will get recognised
as an animate object. This similarity structure of inputs is implicit in the weights of
a DCNN—the weights ensure the treatment of new but similar inputs similarly. The
generalisation ability may thus depend on the sensitivity of DCNNs and the ventral
stream to the similarities between previously encountered inputs and the new ones
(Rumelhart et al., 1986).

The quantification of representational geometry can describe shapes of neuralmani-
folds relevant for processing downstream and the object recognition task performance.
However, the issue arises that the shape of manifolds is defined differently depend-
ing on whether correlation or Euclidean distance is used to quantify a corresponding
representational geometry. As discussed in Sect. 4.1, correlation does not describe
the shape of neural manifolds in terms of the amplitude, while Euclidean distance
does precisely that. Correlation thus does not take the amplitude of a population level
response as defining of representational vehicles, in virtue of which a downstream
population can distinguish between animates and inanimates and output a label in the
task. The application of Euclidean distance entails the exact opposite conclusion.

Thus, in principle a representational geometry can capture shapes of manifolds as
representational vehicles that are defining of a mechanism type. The issue is, however,
that different similarity measures pick out different types of mechanisms in order to
correspond DCNNs and the ventral stream.

5.2 The tuning functions account

The categorical structure of the population code in Fig. 3, exhibited by a DCNN as
well (Khaligh-Razavi & Kriegeskorte, 2014), is derivative from the activations of
many individual neural cells or nodes. Even though it may seem that representational
geometries are too detached from tuning functions, they nevertheless directly depend
upon them (Kriegeskorte & Wei, 2021). A representational geometry can in principle
capture some abstract properties of similarity of responses arising from a population
tuned in a particular way. These properties of similarity determine which sets of tuning
functions can implement a given geometry. However, it is important to note two things
based on the discussion in Sect. 4.

First, due to the invariance properties of similarity measures, as discussed in
Sect. 4.2,many sets of tuning functions can exhibit the same representational geometry.
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Right from the start, the relationship between tuning functions and a representational
geometry ismany-to-one. Thus, one should not conclude that two systems have similar
tuning functions in case they have similar representational geometries.

Second, as discussed in Sect. 4.3 in the case of Ramirez et al. (2014) study, sets of
tuning functions that can implement a correlation-based representational geometry and
a Euclidean distance-based representational geometry are non-identical, a matter that
can be fairly theoretically meaningful as their example shows. Quantifying geometry
in a particular way does fix a set of tuning functions that can implement it, as not all
tuning functions will do. However, different similaritymeasures pick out non-identical
sets of tuning functions.

Therefore, depending on how one chooses to quantify a representational geometry,
different sets of tuning functions will seem to be plausibly instantiating it. If tuning
functions are representational vehicles, different similarity measures pick out different
sets of representational vehicles. Since the implementational view on the mechanism
of object recognition types mechanisms according to their representational vehicles,
different similarity measures pick out different mechanism types to correspond across
DCNNs and the ventral stream.

6 Representational view on themechanism of object recognition:
RSA does not correspond representational content across systems

While similarities of representational geometries can in principle be mechanistically
informative similarities for the implementational view on the mechanism of object
recognition, as argued in the previous section, they underdetermine the similarity of
representational content, relevant for the representational view on the mechanism of
object recognition.

Not infrequently an inference is made that RSA precisely allows for a mapping
between representational content across systems. Consider Kieval’s (2022) conclusion
that a match-up of representational geometries between a model and the brain occurs
“precisely because they both instantiate the same causal patterns between mechanism
and stimulus conditions” (Kieval, 2022, p. 19). Roskies (2021, p. 5926) also states
that “the degree to which the content is similar in structure to the domain with which
it is being compared is indicative of its representational content”. Such inferences that
slide from the acknowledgment of correspondence of representational geometries to
the claim of similar representations being used to track properties of stimuli also occur
in the scientific literature (for some examples see Dujmović et al. (2022)). There is
enough empirical evidence available showing that such inferences are fallacious.

6.1 The neural manifolds account

A representational geometry describes relational properties of similarity between
stimuli-elicited patterns in a system. It is entirely consistent with a significant match-
up of representational geometries between two systems that one system exhibits given
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relational properties of similarity in virtue of tracking shape-related properties of stim-
uli, while another exhibits given relational properties of similarity in virtue of tracking
texture-related properties. In fact, humans rely on shapes in object recognition, while
DCNNs often rely on texture in order to perform the task (Bowers et al., 2022). Geirhos
et al. (2018) showed this for certain types of DCNNs, whose representational geome-
tries, on the other hand, have been shown by Storrs et al. (2021) to be equally similar
to that of human IT. This suggests that the possibility of two systems exhibiting sim-
ilar representational geometries while nevertheless representing different properties
of the world depends in part on the structure of the world. DCNNs are particularly
successful in task contexts where there is some repeated structure present in the envi-
ronment (e.g. based on texture), which can be exploited by utilising convolutions and
weight sharing applied hierarchically, building up more and more complex features
out of simpler ones. The brain could perform the same task by exploiting yet another
repeated structure in the environment (e.g. related to shapes). If objects similar in
texture are also similar in shape (“the mimic effect” as Dujmović et al. (2022) call it),
then DCNNs and the ventral stream may exhibit similar representational geometries,
while tracking different stimulus-related properties.

If this analysis is correct, then neural manifolds across DCNNs and the ventral
stream may have similar shapes but implement different representational spaces—a
shape-related and a texture-related representational space. The match of representa-
tional geometries underdetermines the similarity of representational content.

6.2 The tuning functions account

Given that such properties of manifolds are dependent upon tuning functions in the
population (Kriegeskorte &Wei, 2021), DCNN nodes and the ventral stream neurons
would have to be tuned to shape-related and texture-related properties of the stimuli
as well.

Another example illustrating that the match of representational geometries under-
determines similarities of representational content across systems is based on the case
study of Ramirez et al. (2014), discussed in Sect. 4.3. When the representational
geometry of FFA was quantified using Euclidean distance, both unimodal tuning as
well as mirror-symmetric tuning were able to account for it, two competing hypothe-
ses stemming from different theoretical frameworks on object and face recognition
(Hummel, 2013; Ramírez, 2018). The former derives from view-dependent theories
of object and face representations, while the latter derives from view-independent the-
ories. Thus neurons and nodes can be tuned to different properties of stimuli while
exhibiting similar representational geometries. Additional problems arise due to dif-
ferent similarity measures—as the example of Ramirez et al. (2014) shows, they may
lead us to ascribe different representational content to individual neurons.

Therefore, similarities of representational geometries alone underdetermine sim-
ilarities of content, because the relationship of content ascriptions to vehicles
instantiating similar representational geometries is many-to-one, contra Roskies
(2021) and Kieval (2022). As DCNNs evolve and model selection based on RSA
continues, this point should be kept in mind.
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7 DCNNs are not how-actually mechanism schemata of object
recognition

A mechanism schema is how-actually explanatory if there is a mapping between the
core features of a mechanism type it posits and the target system that is relevant for
object recognition, as per the 3M requirement (Craver & Kaplan, 2020). However, the
framework of RSA comes with a diversity of similarity measures serving the role of
the mapping function, which pick out different types of mechanisms on the level of
representational vehicles that they map in a model and the target system, as argued in
Sect. 5. But which type of mechanism is relevant for object recognition? If there is no
arbitration between them in terms of relevance for object recognition, it is clear that
current DCNNs are not how-actually mechanism schemas of object recognition.

That the components of an explanatory mechanism have to be responsible for the
phenomenon to be explained is a key aspect of mechanistic explanation that has been
stressed by all prominent definitions of mechanisms (Illari & Williamson, 2012).
However, the community of researchers using RSA to compare DCNNs and the brain
relies on applying different similarity measures without any arbitration in terms of
relevance for the explanandum capacity of object recognition. In relation to correlation
and Euclidean distance, does the amplitude of the population-level response carry
discriminative categorical information a downstream area may use?

Except for a couple of exceptions (Bobadilla-Suarez et al., 2020; Ramírez, 2018;
Ramírez et al., 2014), similarity measures and the issue of their relevance for the task
at hand are not frequently discussed in neuroscience. The lack of consideration of
relevance is apparent when one looks at the totality of studies using DCNNs to model
object recognition.On the onehand, there aremanypapers (Cichy et al., 2016;Khaligh-
Razavi & Kriegeskorte, 2014; Storrs et al., 2021) that aim to assess the similarity of
the brain and DCNN workings by focusing on the neural level of analysis. They do
not analyse whether the properties similarity measures pick out to compare systems
on the neural level of analysis are relevant for the phenomenon to be explained, in this
case, object recognition task performance.

On the other hand, there are studies like Geirhos et al. (2020) that probe the work-
ings of systems, in this case architecturally different DCNNs, with atypical stimuli
like silhouette pictures or drawings. They then analyse whether they make similar
kinds of errors on a trial-to-trial basis like humans. However, this analysis of the task
performance is not related to the neural level of analysis across these systems.

The work on the neural level of analysis and on the level of task performance
proceeds in parallel as things now stand and they are not brought in contact (with
the exception of Ding et al. (2021), unrelated to RSA). But the work on mechanisms
in philosophy of science precisely suggests that relating quantified representational
geometries to task performance is of crucial importance for the success of mechanistic
explanation (see also Ritchie et al. (2019)), and the idea of runnability of DCNNs
(Sect. 3.1) embeds the same assumption.

One useful test of the relevance of a similaritymeasure for object recognition would
be to see if it manages to predict the similarity of task performance across compared
systems, based on the quantified similarity of their population codes. For example, if
one took different DCNN architectures, tracked which kinds of errors they make on
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the level of task performance, and probed their workings with atypical stimuli similar
to Geirhos et al. (2020), would their similarity of task performances correlate with
the similarity of their representational geometries quantified by a particular similarity
measure? If a similarity measure does track properties in virtue of which one can
quantify the structure of the population codewhichwouldbepredictive of the similarity
of task performance across these DCNNs, then it would not happen, for example, that
DCNNs are judged as highly similar on the level of geometries but turn out to be
dissimilar on the level of task performance. In that case, we would say that a similarity
measure likely does not track properties relevant for object recognition. Certainly,
intervening on neural populations and altering the structure of the population code
would be the gold standard for testing its relevance but looking into the correlation
between similarity across mechanisms and across their task performance would be a
good start.

Given that the relevance of similaritymeasures used as a part of the RSA framework
is not assessed, it is underdetermined which of the mechanism types picked out by
similarity measures are relevant for object recognition. Thus, DCNNs are not how-
actually mechanism schemas of object recognition. While explanatory models help us
answer what-if-things-had-been-different questions about a target system’s behaviour,
DCNNs do not do this with respect to representational vehicles.

8 DCNNs are not how-possibly mechanism schemata of object
recognition

It is not just the practices surrounding the use of similarity measures that hinder reach-
ing the goal of mechanistic explanation. The crucial part relates to the ways DCNN
models are architecturally constructed, giving rise to the issues of underdetermina-
tion of similarity measures. Few and biologically implausible architectural constraints
leave DCNNs too highly idealised and too detached from the target system for the pur-
poses of explaining representational mechanisms in the brain, even in a how-possibly
way.

A how-possibly model does not demonstrate only that something is possible, in this
case reproducing object recognition based on a DCNN architecture, but it accounts for
how it occurs (Brainard, 2020), elucidating the link between the explanandum and the
explanans (Machamer et al., 2000). In this context, this amounts to portraying some
core properties of representational vehicles that define a mechanism type underlying
object recognition.

A how-possibly model is a loosely constrained conjecture (Craver, 2007;Weiskopf,
2011). The amount of evidential support for it can be low. However, the value of such
models is in linking a hypothesised type of mechanism to an explanandum in a way
that constrains the domain of models one may want to explore further by introducing
a boundary condition on the space of possible models.

Take a classic example of a how-possibly model—Schelling’s checkerboard model
of residential segregation (1971). The model is highly idealised but posits one core
difference-maker for the explanandum—that people do not prefer the minority status.
While it was previously thought that only racial discrimination could lead to residential
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segregation, thismodel transformedour understanding of the explanandumby showing
that it can be a result of non-discriminatory preferences. In order to fulfil the role of a
how-possibly model, this model posits a difference-maker that acts as a boundary on
the class of models we may want to explore further.

Current DCNNs are not analogous. In its interaction with the application of correla-
tion and Euclidean distances, one and the sameDCNN can be seen as instantiating two
differentmechanism schemas, that imply contradictory answers towhat-if-things-had-
been-different-questions, for example about the role of the overall response amplitude
as the vehicle of representation. Is the class of models researchers should further
investigate such that models instantiate a mechanism schema according to which the
overall amplitude of the population response matters for representational vehicles, or
the one according to which it does not matter? Approaching from the angle of tuning
functions—which mechanism schema outlines a promising class of models regard-
ing tuning across stages of processing? Current DCNNs do not delimit the space of
promising models across similarity measures-induced mechanism schemas of their
workings. They do not play that directive role expected of a how-possibly model,
by helping us navigate the space of the population coding strategies on the level of
manifolds or tuning. Since DCNNs do not impose such a boundary, they are not how-
possibly mechanism schemata of object recognition. We are left in the dark about the
representational and implementational properties of the mechanism of object recog-
nition—they may lie anywhere in the vast space of vehicles and content that can yield
representational geometries quantified in diverse ways.

This rampant underdetermination happens because of the highly idealised status
of DCNNs. The types of architectural constraints embedded in current models often
do not reflect theoretically informed hypotheses on constraints on population cod-
ing strategies the brain may use. Many current architectures within the performance
optimisation-driven approach embed only several architectural constraints (Storrs
et al., 2021; Xu & Vaziri-Pashkam, 2021), some of which are known to be implau-
sible. For example, many DCNNs aim to mimic the hierarchical processing of the
visual cortex in a feedforward way although the ventral stream is a seat of a lot of
recurrent processing, and the number of layers may not meaningfully correspond to
the stages of processing in the ventral stream (models may have from 8 to 200 lay-
ers). Some features are invoked for engineering reasons rather than the reasons of
biological resemblance, such as inception modules or residual connections.8 These
architectural features do not allow DCNNs to converge to solutions that would be suf-
ficiently constraining and instructive for the goals of learning about representations in
the target system. If DCNNs were made in theoretically more informed ways about
the biological structure of the ventral stream (Revsine et al., 2023), this would help
them converge to solutions that would not be as under-constraining for our goals in
their interaction with RSA and would be able to impose a boundary on the class of
possible representational vehicles.

Contrast this current performance optimisation-driven approachwith some classical
models such as, for example, a model proposed by Riesenhuber and Poggio (2000).

8 This approach can be contrasted with that of Revsine et al. (2023) who offer a how-possibly neural
network model reflecting biologically inspired architectural features, that in an interaction with stimuli
properties can explain RSA-based discordant results about tuning properties in higher visual areas.
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The model expanded on HMAX (Riesenhuber & Poggio, 1999) which accomplished
size and translation invariance by positing cells tuned to specific views of specific
objects with an addition in the form of a hypothesis about object-tuned cells ensuing
after view-tuned cells, where the former accomplish invariance to rotation in depth
and illumination by pooling over the latter. In the case of this model, there is an
explicit hypothesis about how representations differ across stages of processing, and
how they accomplish invariance necessary for object recognition. Comparing such a
model using RSA with the brain is much less underdetermining than in the case of
DCNNs.

The architectural constraints of current DCNNs do not reflect similar theoretical
considerations about the biological structure and representational strategies across
stages of processing. DCNNs are then compared with the brain using a variety of sim-
ilarity measures that are not arbitrated between on the grounds of relevance. Hence,
this whole practice of DCNN model building and RSA-based comparisons proceeds
entirely in a theory-free way about population coding. Consequently, object recogni-
tion is not mechanistically explained either in a how-possibly or how-actually way.

9 Conclusion

It has been claimed both across neuroscience and philosophy that DCNNs can be
or that they already are mechanistic explanations of object recognition, while RSA
has been taken to be able to corroborate DCNNs as mechanistic explanations. The
arguments presented suggest that there are aspects of the current scientific practice
of using DCNNs with RSA that are not conducive to the goal of mechanistically
explaining object recognition and learning about the representations in the ventral
stream. There are readily available constraints the scientific practice could use that
would be beneficial towards this goal. The first suggestion is to architecturally con-
strain DCNNs more carefully, by invoking biological constraints known to exist in
the ventral stream. More theoretically informed architectural constraints would help
models converge to solutions that would not be under-constraining for the purposes
of learning about representational vehicles in the target system and would be able to
reduce the underdetermination arising from multiple similarity measures used in this
context. The second suggestion is that the relevance of similarity measures should also
be tested rigorously. Given that current scientific practice does not reflect these con-
cerns, DCNNs are neither how-actually nor how-possibly mechanistic explanations
of object recognition.
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