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Abstract
This article investigates the connection and dependence between the definiteness of
the totalities involved in mathematical structures and the determinateness of state-
ments about that structure. From a logical perspective, we investigate whether logical
principles expressing the definiteness of totalities license the use of classical logic.
From a philosophical perspective, this article provides a reconstruction of Solomon
Feferman’s claim that the definiteness of the natural number conception implies the
determinateness of arithmetical statements and therefore justifies the adoption of clas-
sical logic for arithmetical theories.

Keywords Definiteness · Determinateness · Conceptual structuralism · Truth ·
Pluralism

1 Introduction

One of the central questions in the philosophy of logic(s) is about the correctness or
adequacy of logic. Similarly, a central issue in the philosophy of logic andmathematics
is to provide principles and criteria for adopting a specific logic for a given mathe-
matical subject matter. These questions are sometimes framed in terms of correctness
or adequacy, as the question of providing the ‘correct’ logic of a given subject mat-
ter. Other times these questions are framed in epistemic terms: the issue of justifying
the employment of a target logic for a given subject matter. Well-known instances of
these questions in the philosophy of mathematics are for instance the following: Are
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we justified in adopting classical logic for the natural numbers? Are we justified in
doing so when reasoning about sets?

Quite famously, Solomon Feferman claimed that, for any mathematical subject
matter X , classical logic is licensed over X only if X is a definite subject matter.1

In his well-known Is the Continuum Hypothesis a Definite Mathematical Problem?
Feferman claims the following:

Since LEM is rejected in intuitionistic logic as a basic principle, that suggests
the slogan “What’s definite is the domain of classical logic, what’s not is that of
intuitionistic logic.” (Feferman, 2011, p. 23)

In this quote, Feferman suggests that there is in fact a relation between the so-called
‘definiteness’ of a domain and the adoption of LEM, the Law of Excluded Middle.
Feferman argues rather informally in several places that an example of such a con-
ception that licenses classical reasoning is ‘the’ natural number structure. Moreover,
Feferman argued extensively that, in contrast to the natural numbers, the set-theoretic
conception lacks definiteness and therefore, only intuitionistic reasoning is licensed
for it at best.2 Feferman’s work on this issue inspired a flourishing field of research,
most notably, the work on semi-intuitionistic and semi-constructive theories.3 Despite
this burgeoning literature inspired by Feferman’s work, his own philosophical frame-
work, Conceptual Structuralism, and his claims about the relation between classical
logic, intuitionistic logic, and the notion of definiteness, have received little attention
in the philosophical community.4

This article investigates the philosophical question about the connection and depen-
dence between the definiteness of the mathematical concepts involved in a structural
conception and the determinateness of statements within that structural conception.
This includes the question in what sense definite structural conceptions license the use
of classical logic. With this, the article provides an analysis of the requirements and
assumptions, in terms of definiteness, to secure classical logic for a specific concep-
tion.When investigating this issue, the article proposes a reconstruction of Feferman’s
claim that the definiteness of the natural number conception implies the determinate-
ness of arithmetical statements, and therefore, it justifies the adoption of classical logic
for arithmetical theories.

The article has the following structure: Sect. 2 introduces Feferman’s conceptual
structuralism together with the relevant concepts of definiteness and determinateness.
It makes these notions more precise and presents Feferman’s claim that definiteness
implies determinateness. Section 3 provides a rational reconstruction and investigation
of Feferman’s argument that definiteness implies determinateness. More precisely, we
focus on the ‘case study’ of the natural number conception and show ‘how much’

1 Here we take the word ‘subject matter’ to be informal. As we will see later, in his framework, Feferman
calls such subject matters ‘structural conceptions’ or ‘structural concepts’. The notion of ‘definiteness’ is
introduced and analysed later.
2 Examples are Feferman (2011, 2014).
3 See, for instance, Rathjen (2019). Feferman’s work is also connected to discussions about the nature of
infinity in mathematics (Koellner, 2017), and issues of mathematical potentialism (Linnebo & Shapiro,
2021).
4 Exceptions are Scambler (2016), Koellner (2017), Martin (2018) and Ferreirós (2022).
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definiteness is needed to imply determinateness over that structural conception. After
providing a philosophical analysis of some known dependencies between formal rep-
resentations of definiteness and determinateness, we provide our own analysis using
an axiomatic theory of truth and show explicitly what principles capturing the definite-
ness of the natural numbers give us the desired determinateness (Lemma 7). After that,
Sect. 4 provides a philosophical discussion of our analysis. With this paper, we clarify
Feferman’s rather informal claims about definiteness. Moreover, we hope to provide
some insights into the current understanding of Feferman’s conceptual structuralism
as a framework to evaluate these important issues in the philosophy of logic and over
other mathematical conceptions different from the natural numbers. Finally, this arti-
cle should (hopefully) be the beginning of a more general discussion of Feferman’s
framework in the context of mathematical and logical pluralism.

2 Feferman’s philosophy of mathematics

Before providing an interpretation of Feferman’s understanding of the notions of def-
initeness of a property or totality and of determinateness of statements, it will be
informative to consider briefly his broader view in philosophy of mathematics. Fefer-
man’s position is called conceptual structuralism and, as the name suggests, it is a form
of structuralism: mathematics is primarily about ‘structures’ and not about mathemat-
ical objects in isolation. More precisely, according to Feferman mathematics is about
structural conceptions.5 In contrast to other forms of structuralism, such as Shapiro’s
ante rem structuralism, structures are not understood as entities independent of the
mathematicians working with these conceptions.6 Importantly, Feferman’s structural-
ism is explicitly an anti-realist position and these conceptions do only exist within the
community of mathematicians. Although Feferman’s conceptual structuralism avoids
the infamous access problem of realist conceptions, it faces the objectivity challenge:
to explain the possibility of the objectivity of mathematical discourse. Feferman’s
answer to the challenge is to argue that mathematical discourse, at least in some
instances, is strongly intersubjective.7 Feferman’s argument for the determinateness
of arithmetical statements can be interpreted as one form of answering the objectivity
challenge.

The most relevant example of a structural conception discussed by Feferman is the
structure of the natural numbers, where 0 is some initial object, Sc is an operation,
and < a relation. The natural numbers N are generated from 0 by closure under Sc
and can be pictured as the following tuple:8

(N, 0, Sc,<).

5 It is not clear whether Feferman in his 2014 uses the words ‘concept’ and ‘conceptions’ interchangeably,
but we reserve the notion ‘conception’ for structures and ‘concept’ for properties.
6 For a different form of conceptual structuralism, see Isaacson (2011). Feferman’s position is understood
as an eliminativist structuralist—in contrast for instance to Parsons’ non-eliminative structuralism, see Reck
and Schiemer (2020, Sect. 2.2).
7 Compare Feferman (2014) and also Koellner (2017) for a discussion.
8 See Feferman (2009; 2014, p. 6).
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Although this article focuses mainly on definiteness and determinateness, it is illus-
trative to provide more context by including Feferman’s view about the clarity and
lack thereof of some mathematical conceptions. The notion of clarity employed by
Feferman is informal and rather elusive.9 Feferman ascribes a special clarity to the
conception of the natural numbers:

The conception of the structure (N+, 1, Sc,<,+,×) is so intuitively clear that
(again implicitly, at least) there is no question in the minds of mathematicians as
to the definite meaning of such statements and the assertion that they are true or
false, independently of whether we can establish them in one way or the other.
(Feferman, 2014, p. 6)

Despite ‘clarity’ being a rather informal notion, Feferman seems to take the fact that
most mathematicians agree in their believes about arithmetic as a support for the
claim that the natural number conception is clear. Moreover, most mathematicians
seem to take the determinateness of arithmetical statements as a given. Such a form of
agreement in the case of arithmetic is an indicator of a strong form of intersubjectivity,
which is the base for answering the objectivity challenge.10 Feferman’s analysis does
not exclude the possibility of the same clarity (at some point) about othermathematical
conceptions.

According to Feferman, set theory, in contrast, is a structural conception lacking
clarity because its underlying totality, i.e. the universe of sets,V, is inherently indefinite
in the strong sense that any attempt to specify the concept is bound to fail. Accord-
ing to Feferman, the indefiniteness of the universe of sets implies the existence of
indeterminate statements about sets: an important example of such an indeterminate
statement is the Continuum Hypothesis, CH. As we will see later in more detail, the
indeterminateness of a statement is understood by Feferman as a failure of LEM for
that statement. So in the case of CH, Feferman draws the conclusion that CH ∨ ¬CH
does not hold.11 It is important to keep in mind that this is a much stronger claim than
the claim of the epistemic indeterminacy of CH.

Following the idea that some set-theoretic statements do not satisfy LEM, Feferman
rejects the use of unrestricted classical logical principles for a set-theoretic discourse.
In cases of indefinite domains or indefinite concepts Feferman refrains fromemploying
classical reasoning tout court but rather suggests the more cautious use of intuition-
istic logic or so-called semi-intuitionistic systems, where classical quantification is
permitted only for a restricted class of statements, whereas for unrestricted principles
only intuitionistic logic is used.12

Before discussing the notions of definiteness and determinateness in detail, we
clarify our use of them. Feferman employs these notions in several places for dif-
ferent purposes. Despite the risk of simplification we propose a more uniform use

9 Feferman’s use of this notion is critically discussed in Koellner (2017).
10 In this sense, Feferman’s argument based on agreement provides some empirical grounds for the informal
thesis that arithmetic is ‘clear’. This consensus would, however, provide empirical grounds at most.
11 Feferman conjectured that LEM fails for CH and in particular, LEM is not provable in Feferman’s semi-
intuitionistic set theory. For a careful argument and proof of Feferman’s conjecture, see Rathjen (2016) and
for more discussion Rathjen (2019). For a critique, see Koellner (2017).
12 Compare Feferman (2014, p. 82). For more information see Rathjen (2019).
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by understanding Feferman as roughly providing a three-layered framework for his
philosophy of mathematics: the top layer concerns structural conceptions and is about
structures understood as complex conceptions. Feferman employs informal notions,
such as clarity, to describe these structural conceptions. The middle layer concerns
single concepts that are involved within the structural conceptions. This is on the one
hand the underlying totality or in more familiar terms of structuralism the domain of
the structure and on the other hand it includes the basic properties, relations and oper-
ations of the structure.13 Feferman uses the notions of definiteness for the description
of these concepts. Finally, for the bottom layer, which concerns the level of statements
and theories, Feferman employs the notion of determinateness.14

2.1 Definiteness of totalities and determinateness of statements

Feferman connects the definiteness of a given totality with the definiteness of quantifi-
cation over this totality and Rathjen (2019, p. 3) provides the following interpretation
of the connection:

(D1) A totality D is definite if and only if quantification over D is a definite logical
operation, i.e., whenever R(y, �x) is definite over D, so are ∀y ∈ D R(y, �x) and

∃y ∈ D R(y, �x).
A given totality D is considered definite just in case for any definite property or relation
R over that totality, the definiteness of R is preserved when forming new relations by
using existential or universal quantification over D.

In the case of concepts, properties and relations Feferman’s understanding of def-
initeness is different. Feferman takes a property to be definite if for all elements of
the totality the property is true of those elements or it is not true of those elements. It
is natural to use a deflationary reading of the notion ‘true’ here, as also suggested by
Feferman himself:

One way of saying of a statement ϕ that it is definite is that it is true or false; on a
deflationary account of truth that’s the same as saying that the Law of Excluded
Middle (LEM) holds of ϕ, i.e. one has ϕ ∨ ¬ϕ. (Feferman, 2011, p. 23)

Therefore Rathjen’s interpretation of Feferman’s relevant notion of definiteness for
concepts in Rathjen (2019, p. 3) appears appropriate:15

(D2) A concept P is definite over a domain D iff LEM holds with regard to it, i.e.,

∀�x ∈ D[P(�x) ∨ ¬P(�x)].
13 These concepts are intensional and not extensional as the more common related versions in relational
structures. Feferman understands properties and operations as intensional objects—as he pointed out already
in Feferman (1979).
14 We should remark that this layer is not purely formal: these are interpreted statements and mathematical
theories.
15 In Scambler (2016, p. 556), Scambler agrees with Rathjen’s reconstruction of Feferman’s definiteness
and also proposes to understand the definiteness of a given totality as being equivalent to the definiteness
of quantification over that totality in the sense specified by Rathjen.
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To sum up, a property or relation R is definite just in case LEM holds for R. On the
other hand, a totality D is definite just in case, for any definite property or relation R,
unrestricted quantification over D preserves LEM for R. This seems a very intuitive
interpretation of Feferman’s claim, and for the purpose of this article we will follow
Rathjen’s reconstruction in most cases and only slightly deviate when we focus on
truth.

Finally, Feferman suggests that a statement or sentence ϕ is determinate if and only
if either ϕ is true or the negation of ϕ is true. Formulas ϕ(x) are treated similarly and
determinate if for all elements of the domain they are true of those elements or not
true. Analogous remarks about the deflationary use of truth as in the previous case also
suggest here a reading via LEM: a formula ϕ(x) is determinate iff ∀x(ϕ(x) ∨ ¬ϕ(x))
holds. This understanding of determinateness of a statement ϕ, i.e., the fact that LEM
holds for ϕ, as equivalent to the fact that “classical truth” is applicable to ϕ, i.e., that ϕ
is true or its negation is, explains Feferman’s previously mentioned remark that ‘Since
LEM is rejected in intuitionistic logic as a basic principle, that suggests the slogan
“What’s definite is the domain of classical logic, what’s not is that of intuitionistic
logic.”

2.2 The dependence between definiteness and determinateness

Feferman argues that the definiteness of a concept is necessary for the determinateness,
or equivalently, for a classical notion of truth:

[T]he classical notion of truth in a structure need not be applicable unless we are
dealing with a conception (such as that of the structure of natural numbers) for
which the basic domains are definite totalities and the basic notions are definite
operations, predicates and relations. (Feferman, 2014, p. 80)

Feferman claims that, in order for the classical notion of truth to be applicable to a
conception C , the totality and operations, predicates and relations of that totality must
be definite.

(†) For a conception P , the definiteness of the totality and its basic notions are a
necessary condition for adopting a classical notion of truth in a structure.

This claim has some rationale, but also a sufficiency claim has some intuitive appeal.
We are interested in Feferman’s informal claim that the acceptance of the natural
number structure as definite ‘implies’ the acceptability of classical logic for the natural
numbers. Our focus will be on reconstructing a possible argument from definiteness
to determinateness and to show how the definiteness—as spelt out in this section—of
the natural numbers with the definiteness of its properties and relations implies the
determinateness of statements about the natural numbers. This is a non-trivial task: the
very idea that definiteness implies LEM is in tension with the possibility of accepting
the natural numbers as a definite totality whilst accepting LEM for restricted classes
of formulas. In the case of Heyting Arithmetic HA, for example the decidability of
identity is not sufficient to establish LEM for all the arithmetical sentences.
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3 From definiteness to determinateness

This section reconstructs a possible argument from definiteness to determinateness.
We analyse different possibilities of making the definiteness of the natural number
structure precise and explicit by additional principles. Then we inquire whether these
additional principles are sufficient to guarantee a unique truth value. With this we
clarify in what sense and to what extent the definiteness of a totality implies deter-
minateness.16 More precisely, we consider how the definiteness of the totality of the
natural numbers, implies LEM over that totality. Additionally, we provide a truth the-
oretic argument for a classical notion of truth in a natural number structure.

Following Feferman’s suggestion to employ an intuitionistic framework for the
investigation of possibly indefinite domains or concepts we start with an intuitionistic
version of arithmetic, the familiar Heyting arithmetic, HA. With this we try not to
trivialize the argument by presupposing too much determinacy from the start.

3.1 Hi and HA

We will use a Hilbert-style axiomatic version of intuitionistic logic, Hi. For details
we refer the reader to Troelstra and Schwichtenberg (2000, p. 51). The intuitionistic
theory of Heyting arithmetic HA has the same axioms as the classical counterpart
Peano arithmetic PA. Following standard presentations of HA we consider it to be
formulated in the language of PRA, i.e., it contains function symbols for all primitive
recursive functions.17

Identity for natural numbers is taken to be a definite basic concept and therefore
classical. Also the numbers themselves are taken as definite in the sense of having
decidable identity criteria. With this we do not presuppose that the natural numbers
form a definite totality.

The quantifier free part of HA is given by the axioms of PRA with induction for-
mulated as a rule for quantifier free formulas, also referred to asQF. This intuitionistic
subtheory of HA also referred to as PRAi is based on an extensional conception of
identity and the determinateness of identity is provable, i.e., PRAi � x = y ∨ x �= y.18

It is well-known that this PRAi provable determinateness extends to all quantifier free
formulas, i.e., for all A ∈ QF

PRAi � A ∨ ¬A.

The proof is carried out by induction on the logical complexity of quantifier free
formulas and indicates that the logical connectives of intuitionistic logic are accepted
as determinateness preserving.

This is a first version of the argument from definiteness to determinateness. Assum-
ing the definiteness of identity and the primitive recursive terms as well as the

16 The motivation for these additional principles is taken from Feferman’s remarks on the clarity of the
natural number structure and should be understood as an assumption in need of justification.
17 For details we refer the reader to Troelstra and Dalen (1988).
18 See Troelstra and Dalen (1988, p. 128).
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definiteness of the logical connectives, we can establish the determinacy of the state-
ments of the quantifier free fragment.

Since HA is a stronger theory the natural question arises whether it establishesmore
determinacy, i.e., determinacy for a larger class of formulae. There is a well-known
upper bound for the question of determinacy connected with the constructiveness of
HA. One of the reasons for considering HA as a constructive theory is the fact that HA
has both the disjunction property (DP) and the numerical existence property (NEP).

If HA � A ∨ B, then HA � A or HA � B (DP)

If HA � ∃x A, then there is a numeral n, such that HA � A(n) (NEP)

In connection with the question of provable determinacy the disjunction property
implies in combination with Gödel’s second incompleteness theorem that we cannot
expect for a �0

1-statement A that HA � A ∨ ¬A.
Let us try to approach the question more systematically. For a class of formulas

� we let (�-DET) be the principle A ∨ ¬A for all formulas A ∈ �.19 Our previous
remarks can then be stated as follows: HA proves (�0–DET), but does not prove
(�1–DET). An investigation into more exact bounds would be interesting, but will not
be pursued further here. Rather we will consider several additional general logical
principles, understood as possible definiteness claims, and see how they impact on the
question of determinacy.

3.2 Non-constructive principles

In the setting of intuitionistic logic a quite natural suggestion is to connect the assump-
tion of the definiteness of the underlying domain with the so-called constant domain
conception. From a semantic point of view, more concretely Kripke semantics, the
motivation is to consider only models with the same domain. So for the classical mod-
els associated with the nodes of the frame we have a constant domain D in contrast
to the more general intuitionistic picture that allows for growing domains along the
accessibility relation.

From a syntactic point of view, more concretely a Hilbert-style axiomatic perspec-
tive, the assumption of constant domains corresponds to the following principle:

∀x(A ∨ B) → ∀x A ∨ B for x /∈ FV (B) (CD)

Adding the principle (CD) to Hi forms an intermediate logic. This logic has some
special features.Although it has the disjunctionproperty, a proof-theoretic presentation
requires some extra work.20

19 This corresponds to (�-LEM) as for example investigated in Akama et al. (2004) .
20 A rather complicated sequent system developed by Kashima and Shimura (1994) allows one to establish
cut-elimination and the disjunction property (DP). For DP see Theorem 5.6 in Kashima and Shimura (1994)
and compare Aschieri (2018). The extra complications arise because the straightforward multi-conclusion
system does not allow for cut-elimination (nor interpolation) as explained in López-Escobar (1983) and
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Afirst observation is that constant domains allow us to establish that for determinate
predicates either everything satisfies the predicate or there exists a counterexample, a
principle also called bounded omniscience principle:

∀x(A(x) ∨ ¬A(x)) → ∀x A(x) ∨ ∃x¬A(x) (BOS)

The principle (BOS) is connected to determinateness claims for the quantifiers and is
equivalent to a definiteness claim for the existential quantifier21:

∀x(A(x) ∨ ¬A(x)) → ∃x A(x) ∨ ¬∃x A(x) (DET∃)

Since �Hi ∃x¬A(x) → ¬∀x A(x) we also have that (BOS) implies that the univer-
sal quantifier preserves determinateness

∀x(A(x) ∨ ¬A(x)) → ∀x A(x) ∨ ¬∀x A(x) (DET∀)

Let us now see these principles’ impact on the question of determinacy. For our
purposes it might appear interesting to consider HA over the intermediate logic of con-
stant domains. However, as we will see in this case (CD) is a rather strong assumption.
Whereas HA itself and the logic of constant domains have the disjunction property,
HAcd , i.e., HA over the logic of constant domains, fails to retain this property.

Proposition 1 1. HAcd does not have the disjunction property;
2. HAcd does not have the numerical existence property.

There are several ways to establish this, but there is a simple reason. In combi-
nation with the arithmetical axioms, (CD) is strong enough to establish (LEM) for all
arithmetical formulae.22 Interpreting the definiteness of the quantifiers by (CD) and
the definiteness of the basic concepts by the arithmetical axioms allows us to provide
an inductive proof on the logical complexity of formulas. The arithmetical axioms
guarantee the determinateness of the atomic formulas, intuitionistic logic establishes
the closure under the logical connectives and (CD) the closure under quantifiers.

HAcd = PA

A similar reasoning is available if we have both (DET∃) and (DET∀). In the setting
of arithmetic (BOS) is also called the numerical omniscience principle (NOS).With the

Footnote 20 continued
Mints et al. (2013). The straightforward system is gained by replacing the rule: �⇒A

�⇒∀x A(x) with a rule

allowing contexts in the consequent �⇒�,A
�⇒�,∀x A(x) .

21 Compare Crosilla and Linnebo (2023, fn. 10). The determinateness of A implies the determinateness of
¬A as well as the equivalence ¬¬A ↔ A. With the intuitionistic valid equivalence ∀x¬A ↔ ¬∃x A we
get the desired equivalence.
22 Compare Troelstra (1973, p. 92).
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equivalence of (NOS) and (DET∃) and the fact that (NOS) implies (DET∀)we also have
a collapse into classical reasoning in the case of HA overHi plus (NOS). With this we
would have in the three cases a simple argument from definiteness to determinateness
and a reason for using classical logic for first-order arithmetic. All three principles
that we considered to be ‘natural’ formalizations of definiteness, namely (CD), (NOS)
and (DET∃) and (DET∀), therefore imply determinateness in a strong sense.

A remaining question is whether there are ‘natural’ versions of definiteness that
only imply a partial form of determinateness. In order to have some interesting form
of partial determinateness for arithmetical statements of low complexity, we seem to
be forced to consider principles weaker than (NOS) and (CD).23 Let HAD∀ be HA over
the intermediate logic Hi + (DET∀),24 then

Lemma 1 Let A be a �1 sentence, then HAD∀ � A ∨ ¬A.

The argument is simple. If A is �1, then it is of the form ∀x B(x) with B bounded.
Since HA � ∀x(B(x) ∨ ¬B(x)) we have HAD∀ � ∀x B(x) ∨ ¬∀x B(x).

Since the proof only employs the principle (DET∀) we can use the Lemma to see that
HAD∀ does not have the disjunction property. Let conHAD∀ be the�0

1 sentences stating
the consistency of HAD∀. Then by the Lemmawe get HAD∀ � conHAD∀ ∨¬conHAD∀ .
By Gödel’s second incompleteness theorem we know that neither HAD∀ � conHAD∀
nor HAD∀ � ¬conHAD∀ .

It remains to establish that HAD∀ is weaker than PA. For this we can use a simple
Kripke model of HA in which (DET∀) holds but (DET∃) does not. We can employ a
frame with two worlds wN , wM, where wN is associated with the standard model
N and wM with a nonstandard model M of PA, that contains a nonstandard element
c witnessing a proof of 0 = 1. Since M |� proofH A(c, 0 = 1) we have wM �
proofH A(c, 0 = 1) in the Kripke model. And since wM is accessible from wN ,
wN � ¬∃x proofH A(x, 0 = 1) and also wN � ∃x proofH A(x, 0 = 1) since HA is
consistent in the standard model. Since proofH A is �0(PR) this shows that (DET∃) is
not satisfied in this model. However, inM as well asN there are nonproofs of 0 = 1
and so ¬∀x proofH A(x, 0 = 1) is satisfied in the model.

A natural suggestion for a systematic investigation could be to define a hierarchy of
determinateness principles along the arithmetical hierarchy, however, in the intuition-
istic setting a suitable choice for an ‘arithmetical hierarchy’ is not as straightforward
as in the classical case. We will not pursue such an investigation but rather switch to
a truth theoretic setting.

Before continuing with our analysis using an axiomatic theory of truth, we should
clarify the result of the present section. We showed how the definiteness of the con-
ception of natural numbers, once made precise formally, implies the determinateness
of arithmetical statements. However, our argument does not focus on (and does not

23 Considering restricted forms of (LEM), i.e.,(�-LEM) we have that �1-LEM does not imply �1-LEM over
HA whereas the converse is the case. Compare Akama et al. (2004).
24 Alternatively in the setting of PRA we could consider a limited principle of omniscience (LPOpr ):

∀x f (x) = 0 ∨ ∃x f (x) �= 0 for f ∈ PR (LPOpr )
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determine) what must motivate the acceptance of the conception of natural numbers
as definite. In the case of Feferman, the purported clarity of the natural numbers seems
to motivate his acceptance of the definiteness of the conception of natural numbers
and of the logical operators on it.25

3.3 Truth over intuitionistic logic

In this subsection we consider the options of employing a truth predicate in order
to analyze whether the determinacy given in HA can be expanded to a wider range
of formulae. Here the basic motivation stems from Feferman’s remarks, as quoted in
Sect. 2.2, that a notion of truth in a structure is only justified for a conception with a
definite totality and definite basic concepts.26

Againwe assume that in the arithmetical settingwe have the definiteness of the basic
concepts and with it the determinateness of the quantifier free formulas. Additionally,
we will now also use a primitive truth predicate for the arithmetical language.

We start by discussing some truth principles for an extension of HA by a typed
truth predicate. Similar to the classical setting one of the natural desiderata is the
derivability of all disquotation principles for arithmetical formulae ϕ:

T(�ϕ�) ↔ ϕ

whereas in the classical setting the theory CT with classical truth principles is a natural
theory, the situation for intuitionistic logic is not so obvious, especially since we do
not intend a trivial collapse argument.

We still would like to employ compositional principles. One of the desiderata for
our theory of truth should be symmetry, i.e., the inner logic should correspond to the
outer intuitionistic logic, where the former is the logic inside the scope of the truth
predicate, whereas the latter is the logic outside the scope of the truth predicate.

Without the interdefinabilities it might appear that we need truth principles for
all the primitives ∧,∨,→,⊥,∀, ∃. However, due to the observations in Burr (2004)
we can simplify the picture: over HA we can define ⊥ by 0 = S0 and A ∨ B by
∃z[(z = 0 → A) ∧ (z �= 0 → B)], and moreover we can also define conjunctions27

and therefore one could simply use (→,∀, ∃) as primitives only.
We introduce a theory of intuitionistic truth IT. Our arithmetical languageLA com-

prises the logical symbols ⊥,→,∧,∨, ∃,∀,=, the arithmetical symbols +,×, S, 0
and additionally primitive function symbols for sufficiently many primitive recursive
functions. The language LT is the expansion of LA by a one-place predicate T.

Our base theory is a version of HA for the expanded language. Since coding works
perfectly fine in HA we use common conventions. For an expression e, #e is the
Gödelnumber of e. The numeral for n is n. We use s, t, .. as variables ranging over

25 To determine precisely why arithmetic or other mathematical conceptions should be accepted as clear
or definite to start with would involve an (probably empirical) investigation of the purported agreement
mentioned by Feferman, and would exceed the scope of our theoretical investigation.
26 An alternative would be to work in a partial setting such as FDE, for instance with the theory of truth
PKF. See for instance Halbach and Horsten (2006) for a presentation of the theory.
27 See Lemma 3 (iv) in Burr (2004).
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closed terms and �ϕ� for sentences of LA, i.e. ∀s... is short for ∀x(ctA(x) → ...); ∃s...
is short for ∃x(ctA(x) ∧ ...) and ∀�ϕ�... is short for ∀x(sentA(x) → ...); ∃�ϕ�... is
short for ∃x(sentA(x) ∧ ...), where ctA(x) is the formula representing the primitive
recursive set of (codes of) closed terms of LA in HA and sentA, the set of (codes of)
sentences in LA. We also use �ϕ ẋ� as a shorthand for sub(�ϕ�,num(x)) as usual and
the dot notation for the representation of the respective syntactic function, for example
∧. .28
Our truth theoretic principles are the universal closures, in the sense of ∀�ϕ� → ...,

of the following:

(IT1) T(�ϕ(ẋ1, . . . , ẋn)�) → ϕ(x1, . . . , xn) ϕ ∈ �0

(IT2) ϕ(x1, . . . , xn) → T(�ϕ(ẋ1, . . . , ẋn)�) ϕ ∈ �0

(IT3) T(�ϕ�) → T(�ψ�) → T(�ϕ →. ψ�)

(IT4) T(�ϕ →. ψ�) → T(�ϕ�) → T(�ψ�)

(IT5) ∀x T(�ϕ ẋ�) → T(�∀. v ϕ�)

(IT6) T(�∀. v ϕ�) → ∀x T(�ϕ ẋ�)

(IT7) ∃x T(�ϕ ẋ�) → T(�∃. v ϕ�)

(IT8) T(�∃. v ϕ�) → ∃x T(�ϕ ẋ�)

We call the resulting theory IT for intuitionistic truth over intuitionistic logic with
induction for LT.29

A few clarifications about the plausibility of the axioms for truth are in order. (IT1)
and (IT2) are unproblematic even from aweak, deflationary understanding of truth. The
compositional principles guarantee that the inner and the outer logic agree. Addition-
ally, logically equivalent formulas are intersubstitutable in truth-theoretic contexts.
This follows from the following claim concerning a standard provability predicate
PrI�0 for the intuitionistic version of I�0, the arithmetical theory with induction
restricted to �0-formulae.

Lemma 2 In IT we can derive:

∀�ϕ�(PrI�0(�ϕ�) → T(�ϕ�))

Proof We can reformulate the theory I�0 with axioms whose syntactic complexity is
�0. Then the disquotation principles (IT1) and (IT2) establish the truth of the axioms
and (IT3) and (IT4) guarantees that modus ponens preserves truth. A cut-elimination
argument establishes that generalisation is not used. ��
With this we can show that (i) disquotation for ⊥ is derivable, (ii) the commutation
with negation holds and (iii) the internal logic of T is consistent.

Lemma 3 In IT we can derive:

28 For a standard reference for this convention, see Halbach (2014).
29 Compare Leigh and Rathjen (2012) for type-free theories of truth in an intuitionistic setting.
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(i) T(�⊥�) ↔ ⊥;
(ii) ¬T(�ϕ�) ↔ T(�¬ϕ�);
(iii) ¬T(�ϕ ∧ ¬ϕ�).

Proof For (i) we use (IT1) and (IT2); for (ii) we use (IT3) and (IT4) as well as (i); for
(iii) we formalize the proof of A ∧ ¬A → ⊥ in I�0 and then use Lemma 2. ��

The aim of the following is to transfer the provable classicality of the �0-fragment
to the full language of arithmetic. In contrast to classical arithmetic we do not have
a prenex normal form for arithmetical formulas and with it the familiar arithmetical
hierarchy of�n- and�n-formulas. However, there is an alternative characterization–at
least of the �n’s–via 	n sets of formulas due to Burr (2004).

Following Burr (2004) one defines 	n in the following manner:

(i) 	0 :↔ �0.
(ii) 	1 :↔ �1.
(iii) Suppose that 	n−1 and 	n−2 are defined for n ≥ 2. 	n is the class of formulae

of the form ∀x(ψ → ∃zχ), where ψ is in 	n−1 and χ is in 	n−2 and x may
occur in both ψ and χ .

These 	n correspond to the classical �n , in fact they are classically equivalent to
them.30 Moreover, they exhaust the full language, i.e., for all ϕ ∈ LA there is an n
and a ψ ∈ 	n such that HA derives ϕ ↔ ψ .31 This means that we can reduce the
arithmetical vocabulary to {→,∀, ∃,=}.

Since �0 formulas are provably decidable and �1 and 	1 coincide, we can define
a partial truth predicate T0, such that HA proves the Tarski clauses for �0 formulas.
Then it is also possible to define partial truth predicates Tn for all finite stages of
the intuitionistic arithmetical hierarchy, such that HA � Tn(�ϕ( �̇x)�) ↔ ϕ(�x) for all
ϕ ∈ 	n .32 Our primitive truth predicate corresponds to these definable truth predicates
on the relevant fragment, and therefore we have the uniform T-biconditionals for the
full language.

Lemma 4 IT � T(�ϕ( �̇x)�) ↔ ϕ(�x) for all ϕ ∈ LA.

In the next step, we consider the question of determinacy. Our starting point is the
HA-provable determinacy of the �0-fragment. By formalizing the proof in HA we
get the following:

Lemma 5 HA � ∀�ϕ�(�0(�ϕ�) → ∀�x(T0(�ϕ( �̇x)�) ∨ T0(�¬ϕ( �̇x)�))).

Without further assumptions we cannot use Lemmas 4 and 5 directly to infer the
determinacy of all arithmetical formulas.We consider again additional principlesmoti-
vated by the assumption that the natural numbers form a definite totality. In the setting
with a truth predicate we make this assumption explicit as the claim that if a formula
is truth determinate then also all its universal, and existential generalizations are truth

30 Compare Lemma 2 in Burr (2004).
31 Actually I�0 is sufficient. Compare Corollary 4 in Burr (2004).
32 Compare Burr (2004, Theorem 7, p. 54).
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determinate. Since we can code finite sequences we will simplify notation in the fol-
lowing and only use a single free variable x instead of �x and do not explicitly mention
the additional parameters.

∀x(T(�ϕ(ẋ)�) ∨ T(�¬. ϕ(ẋ)�)) → T(�∀. xϕ(ẋ)�) ∨ T(�¬. ∀. xϕ(ẋ)�) (TDET∀)

∀x(T(�ϕ(ẋ)�) ∨ T(�¬. ϕ(ẋ)�)) → T(�∃. xϕ(ẋ)�) ∨ T(�¬. ∃. xϕ(ẋ)�) (TDET∃)

Moreover, we require that the determinacy of truth—as in Lemma 5—is preserved
by implication, that is, that for any two formulas ϕ,ψ of LA we have that if they are
determinate, then the implication is also determinate.With our intuitionistic arithmeti-
cal hierarchy we need the conditional to be determinateness preserving:

∀x(T(�ϕ(ẋ)�) ∨ T(�¬. ϕ(ẋ)�)) ∧ ∀x(T(�ψ(ẋ)�) ∨ T(�¬. ψ(ẋ)�)) → (TDET→)

∀x(T(�ϕ →. ψ(ẋ)�) ∨ T(�¬. (ϕ →. ψ)(ẋ)�))

Lemma 6 IT proves (TDET→)

Proof We argue in IT.
Assume that

(T(�ϕ�) ∨ T(�¬. ϕ�)) ∧ (T(�ψ�) ∨ T(�¬. ψ�))

Then we can establish

(T(�ϕ�) ∧ T(�ψ�)) ∨ (T(�ϕ�) ∧ T(�¬ψ�)) ∨ (T(�¬ϕ�) ∧ T(�ψ�)) ∨ (T(�¬ϕ�) ∧ T(�¬ψ�))

We also have that all the disjuncts except the second imply T(�ϕ → ψ�), whereas the
remaining disjunct implies T(�¬(ϕ → ψ)�). ��

The resulting theory is called DIT, i.e. IT plus (TDET∀), (TDET∃). In DIT we can
show that all arithmetical statements are determinate.

Lemma 7

DIT � ∀ �ϕ� ∀x (T(�ϕ(ẋ)�) ∨ T(�¬ϕ(ẋ)�))

Proof By internal induction.
For 	0-formulas we use Lemma 5 and the fact that our primitive truth predicate T

corresponds with T0 on �0-formulas. For 	1-formulas we use (TDET∀).
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For n ≥ 2 we argue as follows: If 	n(�ϕ�), then �ϕ� = �∀. x(ψ →. ∃. zχ)� and
	n−1(�ψ�) and	n−2(�χ�). By induction hypothesisψ andχ are truth determinate. By
(TDET∃) also ∃zχ is determinate. By (TDET→) we have that ψ → ∃zχ is determinate
and with (TDET∀) ϕ itself is determinate. ��

Lemma 7 shows how the additional determinacy, in terms of (TDET∀), (TDET∃),
implies the determinateness of the whole arithmetic language. In this sense, the truth-
theoretic framework makes explicit how the definiteness of the natural numbers—
modulo the truth-theoretic formulation—licences the adoption of classical logic for
the natural numbers. The remainder of the paper offers a philosophical discussion of
our results about definiteness and determinateness.

4 Philosophical discussion

In the previous sections, we investigated the claim that definiteness implies deter-
minateness. We showed how one could extend Heyting Arithmetic with additional
principles, which allow us to recover (either partial or total) determinateness, in the
form of LEM. In the remainder of this article, we will make some important, initial
philosophical remarks on the dependence between definiteness and determinateness.
Moreover, we provide a philosophical analysis of the investigation provided in the
previous section.

4.1 Definiteness and intrinsic justification

We saw that in an arithmetical context there are several ways to recover the principle
of LEM from different principles of definiteness. Starting from the definiteness of basic
concepts and an understanding of the definiteness of the totality of natural numbers
as the definiteness of the logical operations of quantification one can establish the
determinacy of all arithmetical statements. In more detail, we assume that identity
and the primitive recursive operations are definite, the logical connectives as well
as the quantifiers are determinacy preserving. The determinacy preservation of the
quantifiers over the natural numbers is expressed by, following Rathjen, as: if P is a
definite property, so that for all n, P(n) holds or¬P(n) holds, then also ∀x P(x) holds
or ¬∀x P(x) holds as well as ∃x P(x) holds or ¬∃x P(x) holds.

We saw that the extension of Heyting Arithmetic with the definiteness of both
quantifiers proves LEM for the full arithmetical language, recovering Peano Arithmetic
PA. The same result holds if one extends HA either with the schema (CD) expressing
that the first-order domain is constant or with the numerical omniscience schema
(NOS). The fact that a variety of seemingly harmless principles of definiteness force
a collapse into classical logic in the setting of arithmetic might be interpreted as an
indication for the naturalness of accepting the determinacy of arithmetical statements
as implied by a definite conception of the natural numbers.

It appears much more difficult to find interesting and natural principles of defi-
niteness that do not provide a full collapse. For example the definiteness of universal
quantification alone is not sufficient to recover LEM for the entire language. However,
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from the perspective of definiteness of the totality of natural numbers it appears more
natural to accept both quantifier principles. Moreover, from the perspective of the nat-
ural numbers as a clear structural conception with a definite domain, the numerical
omniscience principle appears to have somemotivation. Of course, this is not intended
as an argument against a fully constructive understanding of the natural numbers and
the coherence and use of Heyting arithmetic.

For the discussion of Feferman’s idea that the definiteness of the natural number
structure implies the determinateness of all arithmetical statements, we take these
results as making explicit how much definiteness is needed to license the use of clas-
sical logic over the natural number structure. From Feferman’s perspective, who takes
the natural numbers as given, not much definiteness is needed; it is only needed that,
whenever LEM holds for a property P , LEM can be lifted to both ∀x P(x) and ∃x P(x).

Let us try to be a little bit more explicit on how to understand the connection
between the structural conception of the natural numbers as a definite totality and the
determinacy principles for the quantifiers by considering the notions of intrinsic and
extrinsic justification. This terminology is used for example in the discussion about
finding ‘new’ axioms of set theory. Maddy puts the issue quite clearly and succinctly:

It has become customary to describe these two rough categories of justification
as ‘intrinsic’ – self-evident, intuitive, part of the ‘concept of set’, and such like
– and ‘extrinsic’ – effective, fruitful, productive. (Maddy, 2011, p. 47)

In general, we can say that a principle is intrinsically justified by some mathematical
conception just in case ‘it follows’ from that conception. The informal notion of
‘follows from’ needs some clarification. Although we do not attempt a substantial
explanation here, we distinguish a conceptual or semantical reading from an epistemic
reading of the connection.33

Using these terms, we can reformulate the dependence between definiteness and
LEM as follows: LEM is intrinsically justified by a structural conception of the natu-
ral numbers that takes it as a definite totality. Such a definite conception of natural
numbers provides an intrinsic ground for NOS (and therefore for LEM). From this per-
spective, the scepticism about the truth of NOS would seem unreasonable and should
be independently motivated, meaning that an argument for the indefiniteness is nec-
essary. In the case of arithmetic, although it is not impossible to conceive of them as
not forming a definite totality, strong convincing arguments for their indefiniteness are
not to be expected.

In contrast to the conception of natural numbers, the conception of set is drastically
different. According to Feferman, it lacks ‘clarity’. Feferman also argues extensively
against the claim that the sets form a definite totality. For example, in his (Feferman
(2011), p. 1) Feferman claims that “the concept of arbitrary set [...] is vague or under-
determined and there is no way to sharpen it without violating what it is supposed to
be about”. This purported indefiniteness has implications on the determinateness of
set-theoretical statements, as one can see from Feferman’s claim about the status of
the Continuum’s Hypothesis:

33 Martin (2018) provides some more information.
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My own view – as is widely known – is that the Continuum Hypothesis is
what I have called an “inherently vague” statement, and that the continuum
itself, or equivalently the power set of the natural numbers, is not a definite
mathematical object. [...] On my view, it follows that the conception of the
whole of the cumulative hierarchy, i.e., the transfinitely cumulatively iterated
power set operation, is even more so inherently vague, and that one cannot in
general speak of what is a fact of the matter under that conception. (Feferman et
al., 2000, p. 405)

This quote suggests a reading of the implication from definiteness to determinate-
ness as conceptual or semantic.34 Feferman seems to suggest that the ‘unclarity’ of
the conception of set—in term of its vagueness or underdetermination—implies the
indeterminateness of some set-theoretical statements and thereby indefiniteness of
unrestricted quantification in the context of set theories. The indefiniteness of set the-
ory is for Feferman a reason to reject unrestricted principles of omniscience for the
concept of set. This is motivated by the idea that—following Feferman—principles of
omniscience are not meaningful when formulated unrestrictedly quantifying over the
whole universe of sets. In the set-theoretic context, Feferman would only accept omni-
science principles in a bounded formulation, where the quantifiers in the formulation
of omniscience do not quantify unrestrictedly over the whole universe of sets.35

4.2 Definiteness and implicit commitments

The second reading of the implication from definiteness to determinateness is epis-
temic in the following sense: if one accepts the concept of the natural number structure
as definite, then one ought to accept LEM for the full language. An epistemic reading
is motivated also given Feferman’s interest in implicit commitments: the acceptance
of LEM can be interpreted as an implicit commitment of anyone accepting the natural
numbers as definite. Most notably, Feferman considered the acceptance of so-called
‘reflection principles’ for arithmetic as implicit in the acceptance of theories of arith-

34 As for Feferman’s reasons to think that the conception of set is vague, he also seems to have here
(similarly to the arithmetical case) some empirical considerations. In his article Feferman (2011), he takes
the purported disagreement about CH as an indicator that set theory lacks clarity. As Feferman recognises,
this would only provide weak evidence for his claim, which seems mainly conceptual. In fact, he claims
that “none of this by itself establishes that CH is not a definite mathematical problem, but it surely has to
give one pause and ask if the concepts of arbitrary set and function that are essential to its formulation are
indeed as definite as one thought, despite their ubiquity in modern mathematics” (Feferman, 2011, p. 8).
35 In Feferman (2012), Feferman uses:

∀n(φ(n) ∨ ¬φ(n)) → ∀nφ(n) ∨ ∃n¬φ(n) (NOS)

for the numerical omniscience. In the context of semi-constructive set theories, he uses the following
principle:

∀x ∈ a[φ(x) ∨ ¬φ(x)] → ∀x ∈ a(φ(x)) ∨ ∃x ∈ a(¬φ(x)) (BOSb)

whereas Feferman uses the label (BOS), we deviate slightly to avoid a conflict with our previous use in
Sect. 3.2.
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metic.36 Similarly, accepting logical principles such as LEM are implicit in accepting
definite concepts. In this sense, the implication would express a conditional (rational)
obligation: if the natural numbers are accepted to be a definite totality—as suggested
by Feferman and reconstructed by Rathjen—rejecting classical logic is not rationally
supported. The implication’s strong epistemic reading seems to be suggested by Fefer-
man in his brief discussion of the structural conception given by the powerset of the
natural numbers. He claims the following:

If S(N ) [i.e., the powerset of the natural numbers] is considered as a definite
totality, the classical notion of truth is applicable and the semantics of second-
order logic must be accepted. (Feferman, 2014, p. 81) [our emphasis]37

From the perspective of the epistemic reading, we also better understand the essen-
tial role of the notion of truth; without the notion of truth, the acceptance of the natural
numbers as a definite conception only motivates a schematic or local acceptance of
LEM. For any given sentence ϕ in the language of arithmetic, one would be implicitly
committed to accept LEM for ϕ. Importantly, one would not be able to claim one’s own
acceptance of LEM; this is due to its schematic formulation. In contrast to this scenario,
the notion of truth allows us to make the acceptance of LEM completely explicit. This
is the content of Lemma 7, where the truth predicate allows us to quantify over all
arithmetical sentences and state the acceptance or validity of LEM as a single sentence.
Philosophically, we can take this as being an explicit articulation of an agent’s global
acceptance of LEM for his structural conception of the natural numbers.

Despite the fact that truth allows us to express the acceptance of LEM globally,
an additional argument would be required to draw the stronger conclusion that the
structural conception of the natural numbers is unique. The uniqueness of the structural
conception is a stronger notion of the determinacy of arithmetical truth. A standard
structuralist understanding of the determinacy of arithmetical truth would require an
‘absolute’ truth as truth in ‘all’ arithmetical structures. One might wonder whether the
definiteness of the natural numbers is strong enough to secure this form of determinacy
of truth. However, definiteness and LEM are prima facie insufficient to secure truth
in ‘all’ arithmetical structures. A possible strategy to argue for such a strong form of
determinacy would be to employ categoricity theorems for arithmetical structures. In
the setting of conceptual structuralism, such a categoricity theorem could then be used
to establish the ‘uniqueness’ of the natural number conception.38

36 See Feferman (1962, 1964).
37 We should point out, however, that a more cautious reading of the epistemic implication is possible:
definiteness can be understood as providing only a warrant to accept classical logic, without being an
obligation. We think that both readings are possible and not exclusive. An investigation of these readings
needs independent attention.
38 An interesting example of a mathematical conception prima facie definite but non-categorical is the
conception of dense linear order without endpoints. See Martin (2018) for a brief discussion. To investigate
the relation between definiteness and categoricity would exceed the scope of this article. For the discussion
about the philosophical uses of categoricity, see Parsons (2008), Button and Walsh (2016, 2018), Maddy
and Väänänen (2022), Fischer and Zicchetti (2023) and Picollo and Waxman (2023).
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4.3 Definiteness and pluralism

As we saw, Feferman’s framework based on the notion of definiteness can be used
to evaluate important questions in the philosophy of logic and, in particular, ques-
tions about which logic should be adopted for a given mathematical subject matter.
In his discussion in Feferman (2014), Feferman uses the notion of definiteness to dis-
tinguish between mathematical conceptions licensing classical logic and conceptions
licensing intuitionistic logic at best. This seems to suggest a pluralist understanding
of Feferman’s philosophy of logic. To our best knowledge, Feferman never explicitly
proposed a pluralism about logic. However, the pluralist reading of his position seems
quite natural. Different logics are best suited for different mathematical conceptions
or subject matters: classical logic is the logic of definite conceptions, whereas intu-
itionistic logic is the logic of indefinite conceptions. For theories about definite and
indefinite totalities, such as second-order arithmetic, some semi-intuitionistic logic
will do.39 Feferman’s position seems to carry traces of a relativist pluralist position
about mathematical domains because it does not claim the existence of a single correct
logic for all branches of mathematics.

Although a simple domain relativist position would still be consistent with logical
monism, Feferman’s position is nevertheless compatible with a pluralist stance about
logic aswell. This is connectedwith Feferman’s antirealist philosophy ofmathematics;
since not all mathematical structures, qua abstract conceptions, are alike—some are
definite, and some are not—different logics are appropriate for different mathematical
conceptions. In contrast to a realist structuralist position, Feferman’s structuralism is
compatible with the idea that there might be no fact of the matter as to whether a
structural conception is definite. The notion of clarity and definiteness of conceptions
would be central to such a pluralist position.

There is hope to find agreement on what the ‘correct’ logic is only for conceptions
that are clear enough and guarantee sufficient intersubjectivity. This dependence on
the clarity of the structural conceptions might appear problematic, but it also enables a
form of logical pluralism that is not only a form of domain relativism. Since the notion
of ‘clarity’ is rather imprecise and gradual it appears not counterintuitive to expect a
variety of logics to be appropriate. There might be more possibilities besides classical
or intuitionistic logic. This suggests a quite intuitive generalisation of Feferman’s
framework to a more substantial form of pluralism.

There are several possible reasons for Feferman to focus primarily on classical and
intuitionistic logic. One of these is his focus on the question of indefinite versus defi-
nite totalities. Connecting indefinite totalities with intuitionistic reasoning has a strong
tradition, as Dummett and others exemplify.40 Although the choice of intuitionistic
logic is motivated it might not be the only reasonable candidate. Work on potential-
ism suggests that modal logics could play a reasonable alternative,41 or even mixed

39 These are called ‘partially open-ended structures’ in Feferman (2014), as Feferman sometimes uses the
word ‘open-ended’ as synonymous with ‘indefinite’.
40 CompareRathjen (2019) for a connection betweenFeferman’s notion of indefinite totality andDummett’s
discussion of indefinite extensibility.
41 See for example Parsons (1983) or Linnebo (2013).
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variations of modal and intuitionistic logics.42 Intuitionistic logic has some appeal in
cases where we have open-ended conception with some intuition of possible exten-
sions of the domain. However, one could also imagine abstract structures in which
not only growing domains are an option but also a shrinking of the domain is a viable
possibility.

By including other forms of underdetermination in the discussion other logicsmight
be appropriate. Whereas Feferman makes use of free logics or logics of partial terms
in his work on unfolding he famously critizised many-valued logics such asK3 or LP
in Feferman (1984) as not well-suited for ‘sustained ordinary reasoning’.43 Despite
Feferman’s criticism, we might want to consider mathematical conceptions that prima
facie motivate alternative logics. One example is a Kripkean conception of type-free
truth based on the fixed point models. In the four valued case the fixed points form a
complete lattice and the internal logic is FDE. Besides the fact that an intuitionistic
conditional is too strong for a transparent version of the logic of truth there might
be additional reasons to consider ‘weaker’ logics. It might be of interest to consider
not only growing domains by considering ‘larger’ fixed-points but also to consider
‘smaller’ fixed-points. Analogously to Feferman’s semi-intuitionist systems one could
then also consider mixed logics with classical principles for the number quantifiers
and partial logics for the arithmetical subsets definable by partial predicates.

One could use Feferman’s framework to characterise all sorts of logic weaker than
intuitionistic logic, as logics of particular mathematical conceptions. This suggests an
interesting logical pluralism, claiming that different logics are best suited for differ-
ent subject matters. And this pluralism would be motivated—modulo the notion of
definiteness—by a pluralism about the definiteness of mathematical conceptions.
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