
Synthese (2024) 203:8
https://doi.org/10.1007/s11229-023-04422-w

ORIG INAL RESEARCH

Realizing impossibilities

Jonathan Mai1

Received: 6 September 2023 / Accepted: 3 November 2023 / Published online: 21 December 2023
© The Author(s) 2023

Abstract
It is common in epistemic modal logic to model the epistemic states of agents via
box operators in the normal logic S5. However, this approach treats agents as log-
ically omniscient by requiring their knowledge to be closed under classical logical
consequence. A promising way of avoiding logical omniscience consists in extending
epistemicmodelswith impossible states, that is states, where complex formulas are not
evaluated recursively. However, this approach faces the dual problem of logical igno-
rancebymodeling agents as not evenminimally logically competent. In this paper Iwill
outline an epistemic logic that combines impossible states with dynamic realization
modalities akin to the dynamic announcement operators from public announcement
logic (PAL). I will show that this epistemic logic avoids both the problem of logical
omniscience and the problem of logical ignorance. Furthermore, I prove that so-called
successful updates in my logic can be characterized in the same way as in PAL and
that a similar logic due to Johan van Benthem can be simulated in my logic. Finally, I
will compare my epistemic logic with a similar one, which has recently been advanced
by JC Bjerring and Mattias Skipper.

Keywords Epistemic logic · Problem of logical omniscience · Impossible worlds ·
Dynamic epistemic logic · Formal epistemology

1 Logical omniscience and open worlds

It is common in epistemic modal logic to model the epistemic states of agents via box
operators in the normal logic S5. We quickly go through the syntax and semantics of
the single agent version of S5 which will also fix notation.

T.C. : Hyperintensional Formal Epistemology.
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For a finite or countably infinite set of propositional variables (or atoms) � the
language of basic epistemic logic for one agent is generated by the following BNF:

ϕ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | Kϕ (p ∈ �)

The intended reading of Kφ is that the agent knows that ϕ. We let an epistemic model
be a tuple M = (S, R, V ), where S �= ∅ is the set of epistemic states of the agent,
R ⊆ S × S models the relation of epistemic accessibility and V : � → ℘(S). We
let an S5 epistemic model be an epistemic model, whose accessibility relation is an
equivalence relation. The satisfaction relation between states and formulas in an S5
model is defined in the usual way with the clause for the K -operator being

• M, s |� Kϕ :⇔ M, t |� ϕ, for all t ∈ S with sRt .

Let ϕ be valid in an epistemic model M = (S, R, V ) (M |� ϕ), if M, s |� ϕ, for all
s ∈ S. Finally, we call a formula ϕ valid in a classM of epistemic models (M |� ϕ), if
M |� ϕ, for all M ∈ M; in case M is the class of all epistemic models we write |� ϕ,
instead of M |� ϕ.

It is well known that epistemic S5 is highly unsuited for formalizing the epistemic
states of agents that are resource bounded, that is, who have limited time and memory
for computing what they know.1 The reason for this representational mismatch is that
according to S5 the knowledge of agents is subject to closure conditions which require
inter alia that agents know everything that logically follows from what they know.
Even worse, these closure conditions already hold for the smallest normal epistemic
logic K, which is characterized by the class of all epistemic models. The collection
of these closure conditions can be addressed as the problem of logical omnscience.
Here are some of the most salient closure conditions, which we represent as closure
conditions on the set of K-validities.

• |� K (ϕ → ψ) → (Kϕ → Kψ) (Distribution)
• |� ϕ ⇒ |� Kϕ (Knowledge of validities)
• |� ϕ → ψ ⇒ |� Kϕ → Kψ (Closure under valid implications)
• |� ϕ ↔ ψ ⇒ |� Kϕ ↔ Kψ (Closure under valid equivalences)
• |� (Kϕ ∧ Kψ) → K (ϕ ∧ ψ) (Closure under adjunction)
• |� Kϕ → K (ϕ ∨ ψ) (Closure under weakening)

There are many different proposals of how best to solve the problem of logical
omniscience (for a survey see Fagin (1995a), Sim (1997)). On the impossible worlds
approach epistemic possibilities are not logically transparent to agents: Among the
epistemic alternatives there may be some that, unbeknownst to the agent, are logically
impossible in the sense of not respecting classical consequence. In particular, agents
may consider states epistemically possible that verify contradictions. Technically, this
approach is implemented by extending the set of states with non-standard states that do

1 It is worth pointing out, however, that epistemic S5 is a natural environment for representing an external
notion of knowledge, that is, a notion of knowledge according to which agents need not be able to compute
formulas they know. Consequently, this logic forms the backbone of the successful interpreted systems
approach in computer science which uses epistemic temporal logics to model the knowledge dynamics in
distributed systems such as processor networks (Fagin, 1995a).
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not representmodels from classical propositional logic and by restricting the definition
of logical notions to standard states. As non-standard states lie beyond the reach of
(classical) logic it is common to call them (logically) impossible worlds (Hintikka,
1975).2

There are two main versions of the impossible worlds approach. According to
the open world approach, impossible worlds are not closed under any non-trivial
consequence relation.3 Consequently, impossible worlds can be taken to be arbitrary
functions from formulas to (classical) truth-values (Cresswell, 1970, 1972; Rantala,
1982a, ?; Wansing, 1989; Jago, 2014; Priest, 2016). The relevantist approach, on the
other hand, holds that impossible worlds are closed under the consequence relation
of some relevant logic, FDE being the first choice among proponents of the approach.
Thus, after relevantism, impossible worlds can be equated with models from the
various model-theories for FDE in existence (Levesque, 1984; Priest, 1992; Fagin,
1995b; Levesque & Lakemeyer, 2000).

Relevantist approaches are troubled by the fact that they treat agents as perfect
reasoners in a relevant logic. If one is interested in representing the epistemic states of
a knowledge based agent, that is a system whose knowledge is the deductive closure
of a knowledge base (a finite set of purely propositional formulas), closure under
relevant consequence may be acceptable. However, it is evident that the epistemic
states of human agents are not closed under classical consequence nor under relevant
consequence. Thus, the relevantist approach simply reproduces the problem of logical
omniscience, but nowwith a logicweaker than classical logic (Fagin&Halpern, 1988).

Open world approaches are more promising, since they allow epistemic states to
resist any non-trivial deductive closure. However, a dual problem arises here: Open
world approaches seem to deprive agents of even the most basic logical competence.
Let’s call impossible worlds that are not closed under any non-trivial consequence
relation open worlds. Any minimally logically competent reasoner a who knows that
ϕ ∧ ψ , should be in a position to know ϕ. But not so on the open world approach,
or so it appears: Suppose that open world s is an epistemic possibility of a that does
not verify ϕ and suppose further that every epistemic alternative of a makes ϕ ∧ ψ

true. On the open world approach this implies that a knows that ϕ ∧ ψ and that a
does not know ϕ. It seems to follow that open world approaches model agents that are
logically ignorant, that is agents, which are not even minimally logically competent.
We call this apparent consequence the problem of logical ignorance for open world
approaches (Lewis, 2004), (Jago, 2014). In the next section we will propose a solution
to this problem. This proposal augments the open world approach with techniques
from dynamic epistemic logic.

2 DELmeets the impossible

Every adequate solution to the problem of logical ignorance must answer the question
which properties of the open world approach lead to the problem and how these

2 The term ‘non-normal states’ is also in use.
3 On the open world approach even the most anarchic states are closed under the identity relation on the
set of formulas.
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properties can be eliminated. My claim is that the problem arises on account of the fact
that open world approaches lack the means to represent informational or epistemic
actions such as observation, communication or inference. More precisely, resource
bounded agents such as humans have the cognitive resources to update their epistemic
states in such a way that, after the update, they can realize that worlds they took to be
epistemically possible before the update are in fact logically impossible and so do not
count as epistemic alternatives any more.

I call the kind of epistemic action that induces the elimination of impossible worlds
realizations. Intuitively, realizations consist in recognizing that certain formulas should
be true in every world, given that certain other formulas are true in all the possible
worlds. Realizations may be connected to acts of inference, but I will not discuss this
issue here. Realizations of formulas ϕ can be formalized as dynamic modalities [ϕ] in
a logic that takes a basic epistemic logic with open worlds as its static base and adds
machinery from dynamic epistemic logic (DEL) on top. In particular, the dynamic
component is a slight modification of the simplest dynamic epistemic logic, namely
public announcement logic or PAL (Plaza, 2008; Gerbrandy & Groeneveld, 1997; van
Ditmarsch, 2008). The resulting logic will deliver validities that tell us that agents are
not logically ignorant. In this way we can solve the problem of logical ignorance while
at the same time avoiding logical omniscience. Here are the formal details.

We extend the language of basic epistemic logic with a clause for realizationmodal-
ities. So, for a set of atoms � the realization language for one agent, denoted by L, is
given by the BNF:

ϕ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | Kϕ | [ϕ1]ϕ2 (p ∈ �)

The intended interpretation of [ϕ]ψ is that after every realization of ϕ, ψ holds. Let’s
turn to the structures on which the realization language will be interpreted.

Definition 1 (i) An open world frame is a tuple F = (W ,W ∗, R) such that W ,W ∗
are sets with W �= ∅,W ∩ W ∗ = ∅ and R ⊆ (W ∪ W ∗)2.

(ii) A valuation on an open world frame F = (W ,W ∗, R) is a pair (V , V ∗) such that
V : W → 2� and V ∗ : W ∗ → 2L.

(iii) An open world model is a tupel M = (F, (V , V ∗)), where F is an open world
frame and (V , V ∗) is a valuation on F .

Points from the set W ∪ W ∗ are called states or worlds; points from W are addressed
as possible states and the points from W ∗ are called impossible states.

Satisfaction in states from open world models can then be defined as follows.

Definition 2 Let M = (W ,W ∗, R, V , V ∗) be an open world model.

(i) For every w ∈ W we set:

• M, w |� p :⇔ V (w)(p) = 1;
• M, w |� ¬ϕ :⇔ M, w �|� ϕ;
• M, w |� (ϕ ∧ ψ) :⇔ M, w |� ϕ and M, w |� ψ ;
• M, w |� Kϕ :⇔ M, v |� ϕ, for all v ∈ W ∪ W ∗ with wRv;
• M, w |� [ϕ]ψ :⇔ M, w �|� ϕ or M �ϕ,w |� ψ .
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(ii) For every w∗ ∈ W ∗ and every ϕ ∈ L we let

• M, w∗ |� ϕ :⇔ V ∗(w∗)(ϕ) = 1.

In the last clause of (i) M �ϕ is the submodel of M generated by the set of impossible
states where ϕ is true. More precisely M �ϕ= (W ,W ∗

ϕ , Rϕ, V , V ∗
ϕ ), where

• W ∗
ϕ = {w∗ ∈ W ∗ : M, w∗ |� ϕ};

• Rϕ = R ∩ (W ∪ W ∗
ϕ )2;

• V ∗
ϕ = V ∗ � W ∗

ϕ .

As usual, validity in models is restricted to possible states. We let ϕ be valid in
open world model M (M |� ϕ), if M, w |� ϕ, for every w ∈ W . ϕ is valid in an open
world frame F (F |� ϕ), if ϕ is valid in every model M based on F , that is every
M = (F, (V , V ∗)) for some (V , V ∗) on F . ϕ is valid in a class F of frames, if F |� ϕ,
for every F ∈ F. In case F is the class of all open world frames we write |� ϕ instead
of F |� ϕ. Let’s call the resulting logic realization logic.

It is obvious that realization logic avoids the problem of logical omniscience by
invalidating the epistemic closure conditions mentioned in section 2. But it also avoids
the problem of logical ignorance for open world approaches. To show this, we need
the following simple lemma. Let a factual formula be any formula containnig no
occurrences of K or of [ϕ], for any formula ϕ.

Lemma 3 Let M = (W ,W ∗, R, V , V ∗) be an open world model, v ∈ W ∪ W ∗ and
ψ be factual. Then it holds that

M, v |� ψ ⇔ M �ψ, v |� ψ.

Proof If v ∈ W the result follows by a straightforward induction on the structure of
formulas. If v ∈ W ∗ the result is immediate by the definition of V ∗. ��

Now, consider the argument concerning conjunction from section 1. The argument
aimed to show that on open world approaches agents may know conjunctions without
being in an position to know one of the conjuncts. Realization logic, however, yields
validities, which tell us that agents knowing some conjunction with factual conjuncts
know either conjunct after realizing that the respective conjunct is true. This, I take
it, amounts to an agent being in a position to know the conjunct: After performing
a certain epistemic action, the agent knows the conjunct. So agents are not logically
ignorant when it comes to conjunction reduction, at least when restricted to factual
formulas. The validities showing this are the formulas

• K (ϕ ∧ ψ) → [ϕ]Kϕ, where ϕ is factual;
• K (ϕ ∧ ψ) → [ψ]Kψ , where ψ is factual.

That the first of these formuals is valid in every open world model can be shown as
follows. Suppose M, w |� K (ϕ ∧ ψ) and v ∈ W ∪ W ∗

ϕ with wRϕv. If v ∈ W we
have M, v |� ϕ and so by Lemma 3, M �ϕ, v |� ϕ. The same follows, if v ∈ W ∗

ϕ . So,
M, w |� [ϕ]Kϕ. The validity of the second formula is shown analogously.

More generally, realization logic validates the following relativized versions of
the K-validities characterizing logical omniscience (again with partial restrictions to
factual formulas).
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Proposition 4 For every ϕ,ψ ∈ L it holds that:

(a) |� K (ϕ → ψ) → (Kϕ → [ψ]Kψ), if ψ is factual.
(b) |� ϕ ⇒ |� [ϕ]Kϕ, if ϕ is factual.
(c) |� ϕ → ψ ⇒ |� Kϕ → [ψ]Kψ , if ψ is factual.
(d) |� ϕ ↔ ψ ⇒ |� [ϕ]Kϕ ↔ [ψ]Kψ , if ϕ and ψ are factual.
(e) |� (Kϕ ∧ Kψ) → [ϕ ∧ ψ]K (ϕ ∧ ψ), if ϕ and ψ are factual.
(f) |� Kϕ → [ϕ ∨ ψ]K (ϕ ∨ ψ), if ϕ and ψ are factual.

Proof The only non-trivial case is (d). We prove its left-to-right direction. Let M be
any model based on a frame F and let M, w |� [ϕ]Kϕ,ψ . Furthermore, consider
any v ∈ W ∪ W ∗

ψ with wRψv. We show that M �ψ, v |� ψ . If v ∈ W ∗
ψ the result is

immediate by Lemma 3. Suppose v ∈ W . Then we have thatwRϕv. Since M, w |� ψ ,
it holds that M �ϕ,w |� ϕ. Two applications of Lemma 3 then yield M �ψ, v |� ψ . ��

Each of these relativized validities of realization logic says that agents can update
their epistemic state in such a way that after the update they know the respective
K-validity. In other words, although agents’ epistemic states are not subject to the
closure conditions constituting logical omniscience, agents are in a position to know
the validities characterizing these conditions. Thus, on our approach agents are not
logically ignorant, nor are they logically omniscient.

3 Successful updates

In the present section and the next we look more closely at some of the properties of
realization logic. Here we discuss successful updates, which is a standard theme in
PAL (Gerbrandy, 1998; van Ditmarsch, 2008). It is tempting to assume that after the
realization of any formula, the formula holds. However, in general this is not the case.
First let’s fix some terminology.

Definition 5 Let ϕ ∈ L.
(i) An open world model M1 = (W1,W ∗

1 , R1, V1, V ∗
1 ) is a submodel of open world

model M2 = (W2,W ∗
2 , R2, V2, V ∗

2 ) if the following conditions hold:

• W1 ⊆ W2 and W ∗
1 ⊆ W ∗

2 ;• R1 = R2 ∩ (W1 ∪ W ∗
1 )2;

• V1 = V2 � W1 and V ∗
1 = V ∗

2 � W ∗
1 .

(ii) ϕ is closed under submodels, if for all open worldmodelsM1 and allw ∈ W1∪W ∗
1

it holds that: If M1, w |� ϕ and M2 is a submodel of M1 with w ∈ W2 ∪W ∗
2 , then

M2, w |� ϕ.
(iii) ϕ is a successful update, if |� [ϕ]ϕ.

Not all formulas are successful updates. For a start, note that the satisfaction of a
formula that contains the K -operator can change due to the elimination of impossible
worlds, where the formula in question does not hold. A simple example is the model
M = ({w}, {w∗}, {(w,w∗)}, V , V ∗) with V ∗(w∗)(p) = V ∗(w∗)(¬Kp) = 0 and V
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arbitrary. It is evident that M, w |� ¬Kp, but M �¬Kp, w �|� ¬Kp. So, M, w �|�
[¬Kp]¬Kp.

What are conditions for a formula to be a successful update?We can give a necessary
syntactic condition, which coincides with that which holds for PAL. We start with
another simple lemma.

Lemma 6 Every formula closed under submodels is a successful update.

Proof Let M be any model based on an open world frame F and let w ∈ W with
M, w |� ϕ. Since M �ϕ is a submodel of M and w ∈ W ∪ W ∗

ϕ we have that
M �ϕ,w |� ϕ. ��

Next we define the set of formulas which will turn out to contain only formulas
whose satisfaction is preserved under submodels.

Definition 7 The set of stable formulas is the least subset of L generated by the BNF

ϕ::=p | ¬p | (ϕ1 ∧ ϕ2) | Kϕ | [¬ϕ1]ϕ2 (p ∈ �)

Now, we can prove the main result concerning successful updates for realization
logic.

Proposition 8 Every stable formula is closed under submodels.

Proof A straightforward induction on the structure of stable formulas. We show the
case involving realization modalities. Assume towards a contradiction that M, w |�
[¬ψ]χ and N , w �|� [¬ψ]χ , where N is a submodel of M that contains w. Since
N , w |� ¬ψ , the induction hypothesis implies that M, w |� ¬ψ and so M �¬ψ,w |�
χ . Because N �¬ψ is a submodel of M �¬ψ and w is contained in N �¬ψ , we have
that N �¬ψ,w |� χ . Contradiction, since N �¬ψ,w �|� χ . ��
Corollary 9 Every stable formula is a successful update.

4 Van Benthem’s access logic

Johan van Benthem has formulated a dynamic epistemic logic that is meant to model
realizations in our sense. Indeed, our logic follows some suggestions van Benthem
makes in passing as to how to reformulate his own logic more along the lines of PAL
by using impossible worlds (van Benthem, 2008, 2011). Van Benthem conjectures
that the resulting logic should be equivalent with his own. In this section we show that
van Benthem is wrong and that his logic can be simulated in ours. First let’s briefly
outline the syntax and semantics of van Benthem’s logic, which I will call (for reasons
that will become clear shortly) access logic.

The languageLa of access logic extends the language of realization logic by adding
a unary sentential operator I with the syntactic clause that Iϕ is a formula, for any
factual formulaϕ. Sets that contain only factual formulas are themselves called factual.
Models for the access language are tuples M = (W ,Wa,∼ π, ), where
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• W �= ∅ is set of possible states;
• Wa ⊆ W × ℘(La) is the graph of a total function from states to factual sets;
• ∼ ⊆ W ×W is an equivalence relation modelling epistemic indistinguishability;
• π is a valuation sending atoms to subsets of W .

If (w, X) ∈ Wa , (w, X) is termed an access state and X its access set. Models in
addition obey the restriction that epistemically indistinguishable states have the same
access set: If w ∼ v and (w, X), (v,Y ) ∈ Wa , then X = Y .

The recursive definition of the satisfaction relation between models, access states
and formulas has the following main clauses:

• M, (w, X) |� p :⇔ w ∈ π(p);
• M, (w, X) |� Kϕ :⇔ M, (v, X) |� ϕ, for all v ∈ W with w ∼ v;
• M, (w, X) |� Iϕ :⇔ ϕ ∈ X and M, (w, X) |� ϕ;
• M, (w, X) |� [ϕ]ψ :⇔ M, (w, X) �|� Kϕ or M �aϕ, (w, X ∪ {ϕ}) |� ψ .

Here, for an access model M = (W ,Wa,∼, π), let

M �aϕ := (W , {(v,Y ∪ {ϕ}) : (v,Y ) ∈ Wa},∼, π).

Additionally, the satisfaction relation is subject to the requirement that M, (w, X) |�
ψ , for all ψ ∈ X , which we call the access requirement. Validity of formulas in an
access model is defined as satisfaction in every access state of the model.

Some remarks may be in order: First Iϕ has as its intended interpretation that the
agent is explicitly informed that ϕ, while Kϕ is to be understood as saying that the
agent is implicitly informed that ϕ. Secondly, access states are ways in which the
agent cognitively accesses epistemic states, the access consisting in factual formulas
that represent aspects of the state for the agent. Finally, note that under the access
requirement the satisfaction conditions of formulas of the form Iϕ can be simplified
to M, (w, X) |� Iϕ iff ϕ ∈ X .

Obviously, implicit information is subject to logical omniscience. Explicit infor-
mation, on the other hand, can easily avoid any of the omniscience closure conditions
simply by syntactically filtering out unwanted formulas. In addition, access logic can
solve the problem of logical ignorance by providing validities that tell us that agents
can extend their access to states in such ways as to know the omniscience formulas in
question. For instance, the following restriction of the distribution axiom is valid in
all access models.

K (ϕ → ψ) → (Kϕ → [ψ]Iψ),

where ψ is factual.
So, access logic appears to be similar to realization logic. However, these logics

are not equivalent, contrary to what van Benthem conjectured. To see this note that
the following recursion axiom is valid in every access model.

[ϕ]Kψ ↔ (Kϕ → K [ϕ]ψ)
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While the left-to-right direction is valid in every open world model, this is
not the case for the right-to-left direction. Here is a counter model: Let M =
({w}, {w′, w′′, w′′′}, R, V , V ∗) with wRw′, wRw′′, wRw′′′ and V ∗(x)([p]q) =
V ∗(x)(p) = 1, for x = w′, w′′, w′′′ and V ∗(w′)(q) = 0.

Even though realization logic and access logic are not equivalent in the sense of
having exactly the same validities in the intersection of their languages, we may ask
whether the logics can simulate each other.More precisely: Does every access model
induce an open world model such that both have exactly the same validities from
the access language? And conversely, does every open world model induce an access
model such that bothmodels validate the same formulas from the realization language?
We can answer the first question in the affirmative; the second is still open.

The proof that follows will proceed by induction on a complexity measure that is
standardly used in completeness proofs for PAL (van Ditmarsch, 2008).

Definition 10 Let c : La → N be defined by recursion as follows:

• c(p) = 1;
• c(¬ϕ) = 1 + c(ϕ);
• c(ϕ ∧ ψ) = max{c(ϕ), c(ψ)};
• c(Kϕ) = 1 + c(ϕ);
• c(Iϕ) = 1 + c(ϕ);
• c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ).

It is easy to show that the ordering ofLa induced by this complexity measure preserves
the subformula ordering of this language.

Now, we can turn to the embedding result.

Proposition 11 Every access model M induces an open world model M ′ such that for
all ϕ ∈ La we have:

M |� ϕ ⇔ M ′ |� ϕ.

Proof For any access model M = (W ,Wa,∼, π) let M ′ = (W ,W ∗, R, V , V ∗) with

• W ∗ = Wa ;
• R = ∼ ∪ {(w, (v, X)) : (v, X) ∈ Wa and w ∼ v};
• V (p)(w) = 1 :⇔ w ∈ π(p), for every w ∈ W ;
• V ∗(ϕ)(w, X) = 1 :⇔ M, (w, X) |� ϕ, for every (w, X) ∈ W ∗.

We can then define satisfaction in states from M ′ as follows. Let M ′, (w, X) |�
ϕ :⇔ V ∗(ϕ)(w, X) = 1. For every w ∈ W :

• M ′, w |� p :⇔ V (w)(p) = 1;
• M ′, w |� ¬ϕ :⇔ M ′, w, �|� ϕ

• M ′, w |� (ϕ ∧ ψ) :⇔ M ′, w |� ϕ,ψ ;
• M ′, w |� Kϕ :⇔ M ′, v |� ϕ, for all v ∈ W ∪ W ∗ with wRv;
• M ′, w |� Iϕ :⇔ M ′, w |� ϕ and ϕ ∈ X , for the unique X with (w, X) ∈ W ∗.
• M ′, w |� [ϕ]ψ :⇔ M ′, w �|� Kϕ or M ′a �ϕ,w |� ψ .
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Here, M ′a �ϕ= (W , {(w, X ∪ {ϕ}) : (w, X) ∈ W ∗}, Rϕ, V , V ∗
ϕ ), where Rϕ , V ∗

ϕ are
the obvious restrictions.

By induction on the complexity of access formulas ϕ we show that for all w ∈ W :

M, (w, X) |� ϕ ⇔ M ′, w |� ϕ.

The base case c(ϕ) = 1 is trivial. Suppose that c(ϕ) = n + 1 and that the result holds
for all formulasψ with c(ψ) ≤ n. If ϕ is a negation, a conjunction or has the form Iψ ,
the result follows straightforwardly from the induction hypothesis. Let ϕ have the form
Kψ and assume thatM, (w, X) |� Kψ and that v ∈ W ∪W ∗ withwRv. If v ∈ W , we
have w ∼ v and so by the induction hypothesis it follows that M ′, v |� ψ . If v ∈ W ∗,
we have v = (v′,Y ) ∈ Wa and w ∼ v′. By the induction hypothesis this implies
that M ′, v |� ψ . The other direction is shown similarly. Finally assume that ϕ has the
form [ψ]χ . Let M, (w, X) |� [ψ]χ and M ′, w |� Kψ . Since c(Kψ) < c([ψ]χ) the
induction hypothesis implies that M, (w, X) |� Kψ . So, Ma �ψ, (w, X ∪ {ψ}) |� χ .
Since c(χ) < c([ψ]χ) the induction hypothesis implies that M ′a �ψ,w |� χ . So,
M ′, w |� [ψ]χ . The other direction is shown analogously. ��

It may be conjectured that realization logic can be simulated in access logic as well.
The reason for this conjecture lies in two facts: Firstly, as van Benthem himself points
out (van Benthem, 2011), access logic is a dynamization of the general awareness
logic of Fagin and Halpern (1988). Realization logic itself is a dynamization of the
open world approach. Secondly, it is an established result that the general awareness
approach and the open world approach can simulate each other (Wansing, 1990; Thi-
jsse, 1993). Future work has to show whether the conjecture concerning access logic
and realization logic is correct.4

5 Bjerring and Skipper’s logic

The idea that non-omniscient yet non-ignorant agents are best modeled via epistemic
logics that combine impossible worlds with techniques from dynamic epistemic logic
is not entirely new. Although a relative newcomer to the scene of epistemic logic, the
idea has already been spelled out in a variety of different logical systems (Rasmussen,

4 One anonymous reviewer suggested that the open world counter model to the recursion axiom defined
above in conjunction with the embedding result might yield a proof for the claim that every open world
model induces an equivalent access model, thereby settling the second embedding question I raised above.
The referee’s idea seems to be that the open world counter model induces an equivalent access model, which
thus also would be a counter model to the recursion axiom. It is not clear how such a proof should work.
Firstly, the embedding result I proved, guarantees that every access model corresponds to an equivalent
open world model. So the result cannot be used to infer that the open world counter model induces an
equivalent access model. Secondly, even if we could construct an equivalent access model for the specific
open world counter model, this would be far from having proved an embedding result, because the counter
model is a particular model and not an arbitrarily chosen one.
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2015; Bjerring & Skipper, 2018; Solaki, 2019, 2022).5 In this section I situate realiza-
tion logic with respect to this research. However, since these logics involve a certain
amount ofmathematical complexity and space limitations should not be overextended,
it is not possible to compare realization logic with all of these in a way that would
do each of them justice. Instead, I will contrast realization logic with one of the most
influential systems among those mentioned, namely the logic advanced by Bjerring
and Skipper in Bjerring and Skipper (2018).6

Bjerring and Skipper’s logic (in what follows abbreviated by ‘BS logic’) combines
an open world approach with machinery from dynamic epistemic logic in order to
model non-omniscient agents that are logically competent. Logical competence is
intuitively spelled out via a notion of trivial consequence that is relative to deductive
resources. The deductive resource of an agent is determined by a pair consisting of a
set of inference rules R and a natural number n, where n is the greatest natural number
m, such that the agent can easily perform m inference steps by applying rules from R.
A formula ϕ is then defined to be a trivial logical consequence from a formula set 	
relative to a resource (R, n), if ϕ can be deduced from 	 by at most n applications of
inference rules from R. Finally, an agent a with associated resource (R, n) is defined
to be logically competent, if a can deduce ψ , where ψ is any formula that is a trivial
consequence of a’s belief set relative to (R, n).

To formalize this intuitive notion of logical competence the language of basic
epistemic logic is extended by countably infinitely many deduction operators to the
language LBS of BS logic:

ϕ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | Bϕ | 〈n〉ϕ | [n]ϕ (p ∈ �, n ∈ N)

Here, B is a belief operator and the intended reading of 〈n〉ϕ ([n]ϕ) is that after some
(every) sequence of n inference steps, ϕ holds.

Turning to semantic matters, let a doxastic model for one agent be a tupel M =
(W p,Wi , f , V ), where

• W p,Wi are non-empty sets of possible and impossible worlds, respectively, and
W := W p ∪ Wi ;

• f : W → ℘(W ) is an accessibility function sending every world to the set of
worlds that are doxastic alternatives for the agent;

• V : W → ℘(LBS) is a valuation function.

To define the semantic clauses for the deduction modalities, we need some definitions.
Let 	 ∪ 
 ∪ {ψ} ⊆ LBS . Say that 	 �n

R ψ , if the agent can deduce ψ from 	 in at
most n steps via rules from R (where (R, n) is the resource of the agent). Let	 �n

R 
,

5 The interesting paper (Sedlár, 2021) develops a general logical framework that allows to embed many
epistemic logics for non-omniscient agents. This framework arises fromgeneralising neighbourhood seman-
tics for modal logic in such a way that epistemic or doxastic contents are explicitly represented without
building any specific assumptions about them into the generalised models. It would be interesting to inves-
tigate whether the framework is strong enough to simulate the various dynamic open world approaches
mentioned above. This might give the task of comparing them to each other a more solid logical basis.
6 For instance, the strong influence ofBjerring andSkipper (2018) is recorded in Solaki (2019) by describing
Bjerring and Skipper’s approach as ‘the closest antecedent’ of Solaki et al.’s proposal.
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if 	 �n
R ψ , for all ψ ∈ 
. For a doxastic model M , any w ∈ W and n ∈ N define the

n-radius of w by

wn :=
{

{w}, if w W p;
{w′ ∈ Wi : V (w) ⊆ V (w′) ∧ V (w) �n

R V (w′)}, if w ∈ Wi .

The elements of wn are the n-expansions of w. Note that impossible worlds can have
more than one n-expansion.

For a doxastic model M let C : ℘(℘(W )) → ℘(℘(W )) be a function, called
a choice function, such that, for all X ⊆ ℘(W ) we have: C(X) is the set of all
choice sets for X , if X is a set of non-empty and pairwise disjoint sets; otherwise, let
C(X) = ∅.7 Deduction modalities 〈n〉, [n] are interpreted via relations ∼n between
pointed doxastic models, that is, pairs (M, w) consisting of doxastic models M and
worlds w ∈ W . The idea is that pointed models characterize doxastic states of an
agent and that (M, w) ∼n (M ′, w′), if (M ′, w′) is a doxastic state that the agent can
reach from the state (M, w) by performing at most n inferential steps. This idea is
captured formally by letting (M, w) ∼n (M ′, w′), if the set of doxastic alternatives
of w in M is replaced by a choice set of the n-expansions of these alternatives. If
M = (W p,Wi , f , V ) and w ∈ W , let g : W → ℘(W ) be an (w, n)-variation of f ,
if for every v ∈ W we have:

g(v) :=
{
c, if v = w;
f (v), else,

where c ∈ C({un : u ∈ f (w)}). Fn(M, w) denotes the set of all (w, n)-variations of
f . Finally, let M = (W p,Wi , f , V ), M ′ = (W ′p,W ′i , f ′, V ′),w ∈ W andw′ ∈ W ′.
Then define (M, w) ∼n (M ′, w′) iffw = w′,W = W ′, V = V ′ and f ′ ∈ Fn(M, w).
In the definition of the satisfaction relation between worlds and formulas the belief
operator and the boolean connectives are treated analogously to the case of realization
logic. As regards deduction modalities, a pointed model (M, w) satisfies 〈n〉ϕ ([n]ϕ)
iff ϕ is satisfied in some (every) ∼n-successor of (M, w). Logical consequence is
defined as preservation of satisfaction in every possible world from every doxastic
model.8

For BS logic we can prove the following result:

• If {ϕ1, . . . , ϕn} �n
R ϕ, then {Bϕ1, . . . , Bϕn} |� 〈n〉Bϕ,

where |� denotes logical consequence as defined above. It is evident that BS logic
can model non-omniscient agents. The result above is supposed to show that BS logic

7 As usual, a choice set for a set of sets Y is a setU withU ⊆ ⋃
Y andU ∩ y a singleton, for every y ∈ Y .

The axiom of choice guarantees that every set of non-empty and pairwise disjoint sets admits a choice set.
8 The satisfaction definition given by Bjerring and Skipper in addition contains clauses for two different
falsity relations, depending on whether the worlds involved are possible or impossible. In possible worlds
falsity is non-truth, while in impossible worlds falsity is truth of the negation. These clauses are immaterial
for the following comparison between BS logic and realization logic and therefore are not considered any
further here.
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also captures logical competence. Assume that (R, n) is the resource of the agent,
(M, w) satisfies Bϕ, for some w ∈ W p, and ϕ �n

R ψ . By the result it then follows
that (M, w) satisfies 〈n〉Bψ . Thus, according to BS logic, agents have the ability to
believe formulas ‘immediately’ (that is, after performing some easy inference steps)
which trivially follow from their beliefs.

Let’s turn to a comparison between BS logic and realization logic, which will also
highlight some shortcomings of the former. Firstly, the semantics for the deduction
modalities of BS logic involves what in the AI literature is sometimes called a syn-
tactic approach (Levesque, 1984): The satisfaction conditions of deduction formulas
essentially refer to syntactic objects like formulas and inference rules. That’s because
the ∼n-successors of pointed models (M, w) are determined by the set of n-radii
of the doxastic alternatives to w and every such n-radius is in turn determined by the
resource (R, n) of the agent. In contrast, realization logic appeals only to non-syntactic
objects when it comes to the satisfaction conditions of realization formulas. After all,
the submodels where the operand formulas of realization modalities are evaluated are
just tupels of sets.

Sometimes it is objected to syntactic approaches that theymake ad hoc assumptions
about what syntactic objects are assigned to what agents as their deductive resources
or as their objects of belief (Levesque, 1984). However, every serious logic that tries
to avoid logical omniscience uses a semantics for epistemic or doxastic operators that
involves syntactic objects to a more or less apparent degree: Awareness logics use
awareness functions, which output sets of formulas, impossible world approaches use
impossible states that may be formally equated with sets of formulas9 and syntactic
approaches use syntactic entities as deductive resources or as objects of knowledge or
belief.

Secondly, in BS logic the semantics of the deduction modalities is evidently much
more complex than the semantic treatment of realization modalities in realization
logic. This property of BS logic is potentially problematic as it may complicate the
study of its metalogical features such as expressiveness, succinctness or computational
complexity. The same aspect of BS logic could also limit its use as an applied logic
to describe resource bounded reasoning. For the relative complexity of the semantics
makes model building much more difficult than in the case of realization logic.

Thirdly and relatedly, the usual formalisms of dynamic epistemic logic use model
transformations that are familiar from classical model theory and that therefore are
well understood mathematically. Realization logic sticks to this way of formalizing
dynamics by using a simple mechanism of submodel construction. BS logic, on the
other hand, employs model transformations whose model theoretic underpinnings are
not entirely clear (at least to me). This has to do with the liberal use of choice functions
in BS logic. Bjerring and Skipper seem to presuppose that in their semantics choice
functions never output the empty set. But this is the case only if, for every worldw, the
set containing exactly the n-radii of successors ofw is a set of non-empty and pairwise
disjoint sets. It is clear that every n-radius of any world is non-empty. However, it is
not straightforward to see that a situation never occurs, where the set of n-radii of

9 In Routley and Routley (1972) impossible states are defined as sets of formulas called ‘set-ups’. Note
that the Routleys are advocates of relevantism, so that set-ups are closed under some relevant logic.
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successors has the form {{w}, {w, v}, {v}}, for some worlds w, v with w �= v. Such a
set does not admit a choice set.

The conceptual idea behind BS logic, namely that logically competent agents can
update their doxastic states via deduction actions, is a very promising one.Nonetheless,
I think that the formalism Bjerring and Skipper use to implement the idea is not
optimal. It is worth pointing out that there are regular dynamic logics used in AI,
such as descriptive dynamic logic (Sierra et al., 2002), that are specifically designed
to model deduction actions via program modalities and that are easily adaptable to
an open world approach. Indeed, I have recently worked out an epistemic logic that
combines open worlds with machinery from descriptive dynamic logic that allows
a simple proof of Bjerring and Skipper’s central result mentioned above. This logic
has a comparatively simple semantics and is based on well understood mathematical
formalisms (Mai, 2022).

6 Coda on hyperintensionality

What is the hyperintensional picture that emerges from the current approach? I take
propositions to be entities that play certain roles, like being themeanings of declarative
sentences and being the primary truth bearers. Let’s call a proposition hyperinten-
sional, if its identity is not determined by its truth-conditions. Now, there has been
a lot of philosophical debate on whether propositions are hyperintensional and what
hyperintensionality precisely consists in. I think that the intuitive notion of proposition
is a quite messy one with different conceptual desiderata pulling in different direc-
tions. It is questionable that we can single out one precisely defined kind of objects
comprising all and only the propositions (Lewis, 1986).

My take is that we may choose to model propositions in different ways, depending
on the context and our interests. In the case of propositions expressed by attitude reports
there aremany contexts wherewe are interested in the linguistic ways speakers express
their attitudes. In these contexts we should regard the propositions expressed by the
attitude reports in question as hyperintensional propositions. My favourite way of
modeling hyperintensional propositions that are attitude contents is to treat them as
sets of possible or impossible worlds and that may well be the best modeling we have
at present.

However, there are also contexts, where the choice of words speakers use to give
voice to their attitudes is immaterial to our interests. In these cases we may model the
attitude contents expressed as coarse-grained objects such as sets of possible worlds.
Different types of propositions are suited for different purposes and I do not seewhywe
should favour one typeover all the others. So, according to the present approach attitude
reports at least sometimes report attitude relations to hyperintensional propositions,
which are sets of possible or impossible worlds. Realization logic is meant to model
the reasoning of resource bounded agents regarding some of these attitude relations.
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