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Abstract
When P(E) > 0, conditional probabilities P(H |E) are given by the ratio formula.
An agent engages in ratio conditionalization when she updates her credences using
conditional probabilities dictated by the ratio formula. Ratio conditionalization can-
not eradicate certainties, including certainties gained through prior exercises of ratio
conditionalization.Anagentwhoupdates her credences only through ratio conditional-
ization risks permanent certainty in propositions against which she has overwhelming
evidence. To avoid this undesirable consequence, I argue that we should supplement
ratio conditionalization with Kolmogorov conditionalization, a strategy for updating
credences based on propositions E such that P(E) � 0. Kolmogorov conditionaliza-
tion can eradicate certainties, including certainties gained through prior exercises of
conditionalization. Adducing general theorems and detailed examples, I show that
Kolmogorov conditionalization helps us model epistemic defeat across a wide range
of circumstances.

Keywords Bayesian decision theory · Conditional probability · Regular conditional
distribution · Conditionalization · Epistemic defeat

1 Beyond ratio conditionalization

Bayesian decision theory studies an idealized rational agent who assigns subjective
probabilities, or credences, to propositions. The agent’s credences at each moment
conform to the probability calculus axioms. The agent conditionalizes on E when she
replaces her initial credences Pold(H) with new credences Pnew(H) given by

Pnew(H ) � Pold (H |E),
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where Pold(H |E) is the initial conditional probability of H given E. If Pold(E) > 0,
then Pold(H |E) is given by the familiar ratio formula:

Pold (H |E) � Pold (H&E)

Pold (E)
,

yielding the following formula for Pnew:

Pnew(H ) � Pold (H&E)

Pold (E)
. (1)

When an agent updates her probabilities in accord with (1), I will say that she engages
in ratio conditionalization.

Suppose that an agent is certain of H, in the sense that she sets Pold(H) � 1. If
Pold(E) > 0, then the ratio formula and the probability calculus axioms entail that
Pold(H |E) � 1. It follows that ratio conditionalization cannot eliminate certainties.
An agent who is certain of H and who updates her credences solely through ratio
conditionalization will remain forever certain of H.

A striking illustration arises through the very exercise of ratio conditionalization.
The ratio formula and the probability calculus axioms entail that Pold(E|E) � 1, so an
agent who conditionalizes onEmust setPnew(E)� 1. Shemust also setPnew(E|F)� 1
for any F such that Pnew(F) > 0. Thus, subsequent exercises of ratio conditionalization
cannot dislodge her newfound certainty in E, no matter what further evidence F she
receives. This situation is widely regarded as disturbing (Jeffrey, 1983; Levi, 1980;
Titelbaum, 2013; Williamson, 2000; Weisberg, 2009b). Surely an agent who condi-
tionalizes on E can later receive strong evidence against E! For example, a scientist
may conditionalize on the proposition that her experiment had a certain outcome and
later learn that the experiment had a different outcome (e.g. her laboratory assistant
initially misreported an experimental measurement). An agent who updates her cre-
dences only through ratio conditionalization risks permanent certainty in propositions
against which she has overwhelming evidence.

Partly in response to suchworries, Jeffrey (1983) develops an alternative framework
that de-emphasizes conditionalization. Jeffrey contends that empirical propositions
rarely if ever merit credence 1 and hence that one should rarely if ever update using
ratio conditionalization. He proposes an update strategy, now usually called Jeffrey
conditionalization, that does not mandate new certainties. Jeffrey conditionalization
applies when an external influence causes an agent to reallocate credences across a
partition containing countably many mutually exclusive, jointly exhaustive proposi-
tions E1, E2,…, Ei, …. Jeffrey proposes that, in response to the reallocated credences,
the agent should form new credences given by:

Pnew(H ) �
∑

i

Pold (H |Ei)Pnew(Ei). (2)

An agent who uses Jeffrey conditionalization rather than ratio conditionalization can
update her credences without acquiring new certainties.
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I think that Jeffrey conditionalization is a useful update strategy in some circum-
stances. However, I doubt that it can completely replace ordinary conditionalization.
Ordinary conditionalization figures crucially within scientific applications of the
Bayesian framework.Wholesale replacement of ordinary conditionalization by Jeffrey
conditionalization would require sweeping changes to scientific practice, with major
side effects both foreseen and unforeseen. It is far from clear that those changes would
preserve the explanatory and pragmatic achievements of contemporary Bayesian prac-
tice (Rescorla, 2022).

In any event, I will follow a different path. The basic idea I will pursue is that an
agent can eradicate certainties by conditionalizing on an E such that Pold(E) � 0.
Although Pold(H |E) � 1 whenever Pold(H) � 1 and Pold(E) > 0, there is no reason to
expect that Pold(H |E) � 1 when Pold(H) � 1 and Pold(E) � 0. On the contrary, one
would expect that Pold(H |E) < 1 for anyH that entails¬E. In principle, then, an agent
who conditionalizes on probability zero propositions can lose certainties—including
certainties gained through previous exercises of conditionalization.

Any account along these lines must look beyond the ratio formula to secure the
needed conditional probabilities. Among the options found in the literature, I favor an
approach that traces back to Kolmogorov (1933/1956) and that centers upon the notion
of a regular conditional distribution (rcd). Rcds are central to probability theory. They
also underlie countless scientific applications, especially within Bayesian statistics.
Only recently have their virtues begun to receive sustained philosophical attention
(Easwaran, 2008, 2011, 2019; Gyenis & Rédei, 2017; Huttegger, 2015; Huttegger &
Nielsen, 2020; Meehan & Zhang, 2020, 2022; Nielsen, 2021; Rescorla, 2015b, 2018a,
forthcoming). I will use them here to model certainty eradication across a range of
situations.1

Section 2 reviews basic aspects of rcds. Section 3 discusses how rcds support a
kind of conditionalization, which I call Kolmogorov conditionalization. Sections 4
and 5 explore how Kolmogorov conditionalization can eradicate certainties. Section 6
articulates a rational norm, Rigidity, that constrains Kolmogorov conditionalization in
many cases of epistemic defeat. Section 7 articulates a more general norm, General-
ized Rigidity, that accommodates additional cases. The analysis from Sects. 6 and 7
indicates that rcds coupled with suitable rational norms can model numerous defeasi-
ble inferences. Section 8 highlights cases of epistemic defeat that my approach does
not accommodate. Section 9 compares my approach with treatments due to Skyrms,
Titelbaum, and Williamson.

2 Regular conditional distributions

Consider an idealized agent with prior credences modeled by a probability space (�,
F , P), where � is a set,F is a σ-field over �, and P is a probability measure onF .2

Elements of � are outcomes. Elements of F , called events, serve as mathematical

1 Several previous authors have suggested that one might model epistemic defeat of certainties by allowing
conditionalization on an E such that Pold (E)� 0 (Pryor, 2013; Weisberg, 2009b). However, no one appears
to have developed the suggestion in any detail, and no one has yet drawn the connection with rcds.
2 See (Billingsley, 1995) for an introduction to measure-theoretic probability.
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proxies for propositions. For each A ∈ F , we construe P(A) as the credence that the
agent attaches to A. In a measure-theoretic setting, the ratio formula becomes:

P(H |E) � P(H ∩ E)

P(E)
,

with intersection of events serving as a proxy for conjunction of propositions.
How should we define P(H |E) when P(E) � 0? There is a pressing need for such

conditional probabilities, quite independent of the considerations raised in Sect. 1.
Scientific applications of Bayesian decision theory frequently require an agent to
update her credences based upon learning that random variable X has value x. For
example, an astronomer might learn that an asteroid has a certain velocity and, on that
basis, update her credences regarding the time that the asteroid will reach Earth. Let

X � x

be shorthand for the event {ω: X(ω)� x}. If X has uncountably many possible values,
then orthodox probability theory requires that P(X � x) � 0 for all but countably
many values x (Billingsley, 1995, p. 188). Thus, the ratio formula cannot supply all
the conditional probabilities P(H |x � x) that we need.

Kolmogorov (1933/1956) offers a theory of conditional probability that goes far
beyond the ratio formula.His central insight is that, whenP(E)� 0,we should consider
E not on its own but rather as embedded in a larger collection of events (some of which
may also have probability zero). Formally speaking, Kolmogorov’s theory centers on
a subset G⊆ F , where G is itself a σ-field. His theory addresses scenarios where
the agent gains new certainties over G and on that basis reallocates credences over
the rest ofF . New certainties over G can be acquired through perception, testimony,
introspection, or any other means. Some of the new certainties may only by implicit
in the agent’s mental activity. Kolmogorov constructs a systematic framework that
models credal updates in light of implicit new certainties over G .3

To understand Kolmogorov’s approach, it helps to formalize the intuitive notion
implicit new certainties over G . For each ω ∈ �, define δω: G → R by

δω(G) �
{
1 if ω ∈ G
0 if ω /∈ G

for each G ∈ G .

Call δω a certainty profile over G , and call ω an index of δω. Each certainty profile δω

models a scenario where the agent becomes certain that the true outcome does or does
not belong to any given G ∈ G .4 To illustrate, suppose the agent becomes certain that
random variable X has value x. Assuming that she represents x through any standard
notational scheme for the real numbers, she should be willing to affirm or deny that

3 Kolmogorov himself subscribed to a frequentist rather than subjectivist interpretation of probability. Thus,
I do not claim that he intended to model credal updates in light of new certainties. I claim only that his
mathematical framework serves this purpose admirably.
4 A single certainty profile can have many different indices. If outcomes ω and ν belong to precisely the
same members of G , then they index the same certainty profile: δω � δν .
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X’s value lies between a and b, for each a, b ∈Q. Thus, she should be willing to assign
probability 1 or 0 to each event

X−1(a, b) for any a, b ∈ Q.

Let σ(X) be the σ-field generated by these events, i.e. σ(X) results from starting with
the events X−1(a, b) and closing under complementation and countable union. The
agent’s new certainties over the events X−1(a, b) determine a unique certainty profile
over σ(X): namely, the certainty profile δω, where ω is any outcome such X(ω) � x.
This certainty profile is implicit in the agent’s newfound certainty that X has value x.

A certainty profile models a situation where the agent gains new certainties. In
some cases, the agent’s certainty profile δω tracks the truth:

For each G ∈ G , δω(G) � 1 iff the true outcome belongs to G. (3)

I will call (3) the factivity assumption. Kolmogorov’s framework accommodates sce-
narios where the factivity assumption prevails, and it also accommodates scenarios
where the factivity assumption fails. In what follows, I will discuss scenarios of both
kinds. As argued in (Rescorla, 2021), there is no principled reason to restrict attention
to scenarios where the agent conditionalizes on truths. People make mistakes all the
time. An agent’s certainties over G may bemisplaced, i.e. they may violate the factiv-
ity assumption. Undoubtedly, though, it is a good thing when the factivity assumption
prevails.

Howshould our agent reallocate credence over the rest ofF in light of her newfound
certainty profile δω? To address this question, we will use a function C: F × � →
R. Intuitively, C(·, ω) encodes probabilities over F conditional on the truth of all
those G ∈ G such that δω(G) � 1. I will notate C(A, ω) as C(A|ω). When convenient, I
will notateC(·|ω) asCω. Our question now becomes what constraints we should place
uponC. Since we are using probability measures to model credences, we demand that:

Cω : F → R is a probability measure, for each ω ∈ �. (4)

Kolmogorov additionally demands that, for eachA∈F , the one-place functionC(A|·):
� → R is G -measurable:

C(A|·)−1(−∞, a) ∈ G , for each a ∈ R. (5)

As explained in (Rescorla, forthcoming), G -measurability formalizes the following
intuitive thought: the agent’s newfound certainties over G dictate the new credences
to be allocated overF . Call any function C that satisfies clauses (4) and (5) an update
rule for (�, F ) and G .5

5 Assuming that C satisfies the G -measurability requirement (5), C induces a well-defined mapping from
certainty profiles to credences: if δω � δν , then C(·|ω) � C(·|ν). See (Rescorla, forthcoming) for the proof,
which is straightforward.
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Kolmogorov supplements (4) and (5) with an additional constraint upon C. The
constraint is now usually called the integral formula:

P(A ∩ G) �
∫

G
C(A|ω)dP(ω), for each A ∈ F andG ∈ G . (6)

The integral formula generalizes the law of total probability: for any partition E1, E2,
…, Ei, … such that P(Ei) > 0 for all i,

P(A) �
∑

i

P(A|Ei)P(Ei). (7)

(7) follows from the ratio formula and the probability calculus axioms. Kolmogorov’s
approach turns the entailment around, treating the law of total probability (general-
ized to the integral formula) not as a theorem but as a definitional constraint upon
conditional probabilities.

A functionC:F × � →R satisfying clauses (4)–(6) is called a regular conditional
distribution (rcd) for P given G . One can show that there exists an rcd for P given
G in a wide variety of cases, including virtually all cases likely to arise in scientific
applications.6 I will frequently notate an rcd for P given G as PG .

As a special case, suppose that G is generated by a countable partition E1, …, Ei,
…, where P(Ei) > 0 for each i. Then there exists a unique rcd for P given G , defined
by:

PG (A|ω)�df P(A|Ei) � P(A ∩ Ei)

P(Ei)
if ω ∈ Ei.

In this way, Kolmogorov’s theory subsumes the ratio formula. Kolmogorov’s theory
also supplies conditional probabilities in numerous cases where the ratio formula goes
silent.

Rcds arewidely employedwithin probability theory (Billingsley, 1995; Kallenberg,
2002). Alternative theories of conditional probability are available (Dubins, 1975;
Popper, 1959; Rényi, 1955), but they have exerted little impact upon mathematical or
scientific practice. The main reason is that alternative theories typically impose few
quantitative constraints beyond the ratio formula on the relation between conditional
and unconditional probabilities, so they offer little useful guidance for computing
conditional probabilities. In contrast, the integral formula tightly constrains conditional
probabilities in relation to unconditional probabilities. Suppose that C and D are both
rcds for P given G . Then, for every A ∈ F ,

C(A|ω) � D(A|ω)

6 A probability measure P is perfect iff, for every random variable X: � → R, there exists a Borel set B⊆
X(�) such that P(X−1(B)) � 1. IfF is countably generated and P is perfect, then there exists an rcd for P
given any sub-σ-field G (Rao, 2005, pp. 134–135). These conditions are satisfied in virtually all scientific
applications of Bayesian decision theory. For further discussion of rcd existence, see (Rao, 2005).

123



Synthese (2024) 203 :50 Page 7 of 38 50

except perhaps for those ω belonging to a set of P-measure 0. Alternative theories of
conditional probability usually do not pin down conditional probabilities with nearly
so much determinacy. For detailed comparison of rcds with alternative theories, see
(Easwaran, 2019).7

3 Kolmogorov conditionalization

Rcds figure prominently in many scientific applications of Bayesian decision the-
ory, including within statistics (Florens et al., 1990; Ghosal & van der Vaart, 2017;
Schervish, 1995), economics (Feldman, 1987), and cognitive science (Bennett et al.,
1996). Something like the following picture underlies these applications. At time t0,
the agent has unconditional credences encoded by a probability space (�,F , P). She
also has conditional credences encoded by C, an rcd for P given G ⊆ F . At a later
time t1, an exogenous event causes the agent to acquire a new certainty profile δω over
G . Based upon her new certainties over G , she adopts new credences Cω overF . As
I will put it, she uses rcd C to conditionalize on δω. When an agent uses an rcd to
conditionalize, I will say that she engages in Kolmogorov conditionalization.8

In general, a probabilitymeasureP determines conditional probabilitiesC(A|·) only
up to measure 0. Thus, an agent’s unconditional credences do not typically determine
unique conditional credencesC. Wemust instead takeC as an extra primitive element.
This is an important difference between Kolmogorov conditionalization and ratio con-
ditionalization, since the ratio formula uniquely determines conditional probabilities
P(H |E) when P(E) > 0. The extra primitive element seems a small price to pay for
the benefits that it buys. Anyway, all theories of conditional probability agree that
unconditional probabilities do not uniquely determine conditional probabilities once
we move beyond the simple case where P(E) > 0.

Kolmogorov conditionalization is a very general update strategy, but it is not univer-
sally applicable. There are pathological cases where no rcd exists (Billingsley, 1995,
p. 443). Even when an rcd exists, it may not support conditionalization. To see why,
say that an update rule C for (�,F ) and G is proper at ω iff

Ifω ∈ G, thenC(G|ω) � 1 for all G ∈ G . (8)

If C is improper at ω, then there exists G ∈ G such that

C(G|ω) < 1&ω ∈ G,

7 As Easwaran (2019) notes, Rényi’s (1955) theory may be regarded as generalizing the rcd formalism.
Presumably, then, one could reformulate the ideas from the present paper using Rényi’s theory. I am not sure
whether the reformulation would yield any benefits, but the matter seems worth pursuing. More generally,
it would be worth investigating the extent which this paper’s ideas could be reformulated using various
alternative theories of conditional probability.
8 (Rescorla (2018a) proves a Dutch book theorem and converse Dutch book theorem for Kolmogorov
conditionalization. The theorems show that Kolmogorov conditionalization is the unique credal update
strategy that avoids a sure loss in certain natural learning scenarios. The theorems assume a factive setting.
(Rescorla, forthcoming) generalizes the theorems to a non-factive setting. See also (Meehan & Zhang,
2022).
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which conflicts with the certainty profile’s assignment:

δω(G) � 1.

When such a conflict arises, the agent cannot use C to extend δω to all ofF . Unfortu-
nately, there are cases where every rcd for P given G is improper at someω (Blackwell
& Dubins, 1975). Fortunately, impropriety occurs rarely if ever in practice. In actual
scientific applications, there usually exists an rcd that is proper everywhere.9 The
probability spaces considered in this paper support rcds that are proper everywhere.
For further discussion of impropriety, see (Easwaran, 2011; Meehan & Zhang, 2022;
Rescorla, forthcoming).

Let X be a random variable, and let Pσ(X) be an rcd for P given σ(X). Then Pσ(X)
dictates how to update credences in light of newfound certainty that X � x. Each pos-
sible value x corresponds to a distinct certainty profile that the agent might instantiate.
When there are uncountably many possible values x, the model posits uncountably
many possible mental states. Some readers may worry that any such model is inap-
plicable to ordinary humans, since it flouts the apparently finitary nature of human
representational and discriminative capacities. The model may seem applicable only
to an idealized superhuman with infinitary cognitive abilities that transcend our own.

In evaluating this objection, it is instructive to consider the Bayesian models
offered within current cognitive science. Cognitive scientists offer Bayesian mod-
els of numerous core mental phenomena (Griffiths et al., 2008), including perception,
motor control, decision-making, language acquisition, navigation, social cognition,
and causal reasoning. The models have achieved notable explanatory and predic-
tive success, especially as applied to perception (Rescorla, 2015a) and motor control
(Rescorla, 2016). Typically, themodels posit uncountablymany possiblemental states.
For example, Bayesian perceptual models describe how the perceptual system esti-
mates environmental conditions based on sensory stimulations (Knill & Richards,
1996). The models usually posit uncountably many possible sensory states (e.g.
uncountably many possible retinal states) that serve as possible inputs to Bayesian
inference. They also posit uncountably many outputs that might result from the
Bayesian inference (e.g. uncountably many possible estimates of an object’s shape,
size, or location). Nevertheless, the models generate powerful psychological explana-
tions (Rescorla, 2018b, 2020). Thus, a Bayesianmodelmay fruitfully apply to ordinary
humans even though it posits uncountably many mental states.

I distinguish two possible reactions to suchmodels. The first reaction accepts at face
value the postulation of uncountably many mental states. On this reaction, we accept

9 The following theorem gives a sufficient condition for propriety almost everywhere (Seidenfeld et al.,
2001, p. 1614): If G is countably generated, and PG is an rcd for P given G , then PG is proper at ω for
P-almost all ω. One cannot always remove the exceptional set where propriety fails (Blackwell & Ryll-
Nardzewsi, 1963). To articulate a sufficient condition for propriety everywhere (not just almost everywhere),
say that a function �: F → G is a selection homomorphism for G with respect to F iff (a) it respects
complementation and countable union, and (b) �(G) � G for every G ∈ G . The following theorem gives a
sufficient condition for existence of an everywhere proper rcd (Sokal, 1981): If F is countably generated,
and P is perfect, and there exists a selection homomorphism for G with respect to F , then there exists an
rcd for P given G that is proper at every ω. This sufficient condition is satisfied in many cases—including
typical applications of Bayesian decision theory.
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that an ordinary human can in principle instantiate uncountably many mental states.
The second reaction regards the postulation of so many mental states as an infinitary
idealization, akin to the postulation of an infinitely large biological population within
population genetics. On this reaction, a Bayesian model that posits uncountably many
mental states should eventually be replaced by amore psychologically realistic model.

Both reactions merit further exploration. The key point for present purposes is that,
on either reaction, there is a legitimate role for Bayesianmodels that posit uncountably
manymental states. The first reaction holds that suchmodels may be literally true. The
second reaction holds that they include infinitary idealizations to be banished from
a literally true description. Either way, the mere fact that a Bayesian model posits
uncountably many mental states does not bar it from making a useful theoretical
contribution. The present paper is offered in that spirit.

4 Certainty eradication

Kolmogorov conditionalization offers a crucial advantage over ratio conditionaliza-
tion: it can eradicate certainties. This is the flip-side of the fact that Kolmogorov
conditionalization can raise probabilities from zero. Here is a simple example (not
necessarily involving any kind of epistemic defeat). Suppose that P(X � x) � 0 and
P(X �� x) � 1. If the agent becomes newly certain that X � x, then she can use an
rcd Pσ(X) to conditionalize on a certainty profile δω corresponding to her newfound
certainty, i.e. a certainty profile indexed by an ω such that X(ω) � x. She can do so as
long as her rcd Pσ(X) satisfies the condition:

Pσ(X )(X � x|ω) � 1 & Pσ(X )(X �� x|ω) � 0.

By using Pσ(X) to conditionalize, she demotes her former certainty in X �� x all the
down to 0. In general, Kolmogorov conditionalization can raise probabilities from 0
to 1 or anywhere in between, and it can lower probabilities from 1 to 0 or anywhere
in between.

Here is a slightly more elaborate example (still not necessarily involving epistemic
defeat). Consider the following probability density function p(x, y) over R2:

p(x, y) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1
3/2 if 1/2 < x ≤ 1, 0 ≤ y ≤ 1/2
1/2 if 1/2 < x ≤ 1, 1/2 < y ≤ 1
0 otherwise

See Fig. 1. For any topological space T , let B(T ) consist of the Borel subsets of T .
By integrating p(x, y), we define a probability measure P over (R2,B(R2)):

P(H )�df
˜

H
p(x, y)dxdy, for any Borel set H⊆ R

2.
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Fig. 1 A simple probability
density function over R2. All
positive probability density is
concentrated in the unit square

Suppose an agent has credences given by P. For any x, we have

P(X � x ∩ Y ≤ 1/2) � 0

P(X �� x ∪ Y > 1/2) � P((X � x ∩ Y ≤ 1/2)c) � 1.

LetPσ(X) be an rcd forP givenσ(X).Using standardmathematical techniques (Billings-
ley, 1995, p. 432), one can show that Pσ(X) must satisfy (9) for almost all (x, y) such
that x lies in the unit interval:

Pσ (X )(X � x ∩ Y ≤ 1/2|x, y) �
∫
[0, 1/2] p(x, t)dt∫
[0, 1] p(x, t)dt

. (9)

We may choose Pσ(X) so that it satisfies (9) for all (x, y) such that x lies in the unit
interval. For all other (x, y) — these lie within an event whose P-measure is 0 — we
may choose Pσ(X)(.|x, y) to be some fixed, arbitrary measure. Pick x1 such that 0 ≤ x1
≤ ½. Then (9) yields

Pσ (X )(X � x1 ∩ Y ≤ 1/2|x1, y) �
∫
[0, 1/2] dt∫
[0, 1] dt

� 1/2, (10)

for any y. See Fig. 2. An agent who becomes certain that X � x1 and who updates her
credences using Pσ(X) will raise her credence in X � x1 ∩ Y ≤ ½ from 0 to ½. This is
the intuitively correct reaction: the agent concentrates all credal mass on the vertical
line X � x1 from 0 to 1, where the prior probability density p(x, y) is constant. Since
Pσ(X)(.|x1, y) is a probability measure, (10) entails

Pσ(X )(X �� x1 ∪ Y > 1/2|x1, y) � 1/2. (11)
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Fig. 2 Assuming 0 ≤ x1 ≤ ½,
probability density p(x, y) is
constant along the vertical line X
� x1. If the agent conditionalizes
based on newfound certainty
that X � x1, then she will
allocate all her credence
uniformly over this vertical line

Thus, our agent demotes her former certainty in X �� x1 ∪ Y > ½ from 1 to ½. In
contrast, pick x2 such that ½ < x2 ≤ 1. Then (9) yields

Pσ (X )(X � x2 ∩ Y ≤ 1/2|x2, y) �
∫
[0, 1/2] 3/2dt∫

[0, 1/2] 3/2dt +
∫
(1/2, 1] 1/2dt

� 3/4

3/4 + 1/4
� 3/4, (12)

which entails

Pσ(X )(X �� x2 ∪ Y > 1/2|x2, y ) � 1/4. (13)

See Fig. 3. An agent who become certain that X � x2 and who updates her credences
using Pσ(X) will raise her credence in X � x2 ∩ Y ≤ ½ from 0 to ¾, and she will lower

Fig. 3 Assuming ½ < x2 ≤ 1,
probability density p(x, y) is
higher along the bottom half of
the vertical line X � x2 than
along the top half. If the agent
conditionalizes based on
newfound certainty that X � x2,
then she will allocate all her
credence over this vertical line,
with more credal mass assigned
to the bottom half than the top
half
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her credence in X �� x2 ∪ Y > ½ in from 1 to ¼. Again, this makes intuitive sense: the
agent now concentrates all credal mass on the vertical line X � x2 from 0 to 1, and
p(x, y) is weighted three times higher along the bottom half of the line.

The foregoing observations prompt us to reflect upon the meaning of “certainty”
in Bayesian decision theory. “Certainty” may seem to connote immutable confidence
that a proposition is true. Yet that is not what “certainty” means—not if we define
“certainty” as “assignment of credence 1.” As noted in Sect. 2, the probability calculus
axioms entail thatP(X � x)�0 for all but countablymanyvalues x of a randomvariable
X. When you set P(X �� x) � 1 and P(X � x) � 0, it does not follow that you regard X
� x as metaphysically impossible, or that have definitively ruled out X � x, or that no
possible evidence could lead you to assign non-zero credence toX � x. All that follows
is that you regardX � x as vanishingly unlikely. The probability calculus axioms entail
that you must regard X � x as vanishingly unlikely for all but countably many values
x. Even though your credence in X � x is currently 0, you are prepared to raise this
credence in light of new evidence. If you do so, you must simultaneously downgrade
your certainty in X �� x. You will typically downgrade many other certainties as well,
as illustrated by (11) and (13). Kolmogorov conditionalization provides a principled
basis for these credal transitions.

5 Certainty gained, then lost

SinceKolmogorov conditionalization can eradicate certainties, it ismuchmoreflexible
than ratio conditionalization. In what follows, I leverage the increased flexibility to
model defeasible inference across a range of cases. This sectionwarms up bymodeling
an example where an agent conditionalizes on a proposition and then loses certainty
in the proposition. Defects in the model will motivate refinements made in Sect. 6.

At time t0, John awaits his medical test result for a rare disease. At time t1, he
receives his test result. Upon reading the report, he becomes certain that the test result
was positive. He conditionalizes on the positive test result, substantially raising his
credence that he has the disease. At time t2, John re-reads the medical report and
realizes that he misinterpreted it. In fact, the test result was negative. Intuitively, he
should now conditionalize on the negative test result and downgrade his credence that
he has the disease. But he cannot do so using ratio conditionalization because at t1 he
assigned zero credence to the negative test result. Call this example False Alarm.

Using rcds, we can elaborate False Alarm into a model that includes certainty
eradication at t2. Assume a suitable outcome space �, and let

Disease � the set of outcomes in which John has the rare disease.
No Disease � the set of outcomes in which John does not have the rare disease.
Positive � the set of outcomes in which the test has a positive result.
Negative � the set of outcomes in which the test has a negative result.

I assume that the test can only have a positive or negative result, so that Positive and
Negative are complements. Let F be the σ-field generated by Disease and Positive.
John’s credences at t0 are given by (�, F , P), where P is the unique probability
measure over F such that:
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P(Disease) � .025 P(No Disease) � .975
P(Positive|Disease) � .95 P(Positive|No Disease) � .05
P(Negative|Disease) � .05 P(Negative|No Disease) � .95

These credences reflect the base rate for the disease, the frequency of false positives,
and the frequency of false negatives. By the law of total probability,

P(Positive) � P(Positive|Disease)P(Disease) + P(Positive|No Disease)P(No Disease)
� .95 × .025 + .05 × .975 � .0725,

so that P(Negative) � .9275. By Bayes’s theorem,

P(Disease|Positive) � P(Disease)P(Positive|Disease)
P(Positive) � .025×.95

.0725 � 19/58

P(Disease|Negative) � P(Disease)P(Negative|Disease)
P(Negative) � .025×.05

.9275 � 1/742

At t1, John conditionalizes on Positive, acquiring new credences

Pt1(Positive) � 1
Pt1(Negative) � 0
Pt1(Disease) � 19/58

So far, so standard.
Now comes the less standard part. To model John’s credal transition at t2, let G be

the sub-σ-field

{0, Positive, Negative, �}.

John’s realization that the test was negative corresponds to a certainty profile δν , where
ν is any outcome belonging to Negative. We model John’s conditional credences at t1
by stipulating

μ(Disease|ω) �
{
19/58 if ω ∈ Positive
1/742 if ω ∈ Negative

μ(Positive|ω) �
{
1 if ω ∈ Positive
0 if ω ∈ Negative

These stipulations extend to a unique function μ: F × � →R such that μω is a
probability measure for each ω ∈ �. It is easy to check that μ is an rcd for Pt1
given G . Specifically, the integral formula is trivially satisfied. At t2, John uses μ to
conditionalize on δν , where ν is any outcome belonging toNegative. Thus, he acquires
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new credences

Pt2(Positive) � 0
Pt2(Negative) � 1
Pt2(Disease) � 1/742

He downgrades his certainty in Positive all the way down to 0 and downgrades his
credence in Disease from 19/58 to 1/742.

Our model illustrates the increased flexibility afforded by Kolmogorov conditional-
ization. Over the course of John’s credal evolution, his credence in Positive goes from
.0725 to 1 to 0, and his credence in Disease changes as dictated by his conditional
credences. The postulated credal transitions look quite reasonable, given John’s initial
credences.

Nevertheless, there is something disturbingly trivial about the model. I stipulated
that μ(Disease|ω) � 1/742 if ω ∈ Negative, but I could have stipulated μ(Disease|ω)
� .5, or .9999, or even 1. Each alternative stipulation would also yield an rcd for Pt1
given G . Thus, John’s unconditional credences at t1 leave his conditional credences at
t1 completely undetermined. Any alternative update ruleμ* would satisfy the integral
formula just as well as μ. Such extreme flexibility is undesirable. Ideally, a final
theory of rational inference will pin down more determinately how credences evolve
over time.

Our model of False Alarm shows that Kolmogorov conditionalization can, in prin-
ciple, support acquisition and loss of certainties. But the model taken on its own is
unsatisfying because it hinges upon arbitrary stipulation of an rcd μ. We must try to
do better.

6 Rigidity

I now advance a rational norm, inspired by Jeffrey (1983), that tightly constrains
credal evolution. I call the norm Rigidity. Section 6.1 introduces Rigidity. Section 6.2
discusses howRigidity yields an improved treatment of False Alarm and similar exam-
ples.

6.1 Minimal change in conditional probabilities

Consider again the situation emphasized by Jeffrey: an external influence causes an
agent to reallocate credences across a partition E � {Ei}, and on that basis the agent
must assign credences to all remaining propositions. Why should we accept Jeffrey’s
recommended credal update strategy (2)? Beginning with Jeffrey (1983), and continu-
ing through the later literature (e.g. Earman, 1992, pp. 34–35; Joyce, 2009, pp. 35–35;
Weisberg, 2009b), philosophers often motivate (2) by citing the invariance condition

Pold (H |Ei) � Pnew(H |Ei) for all H and all Ei such that Pnew(Ei) > 0. (14)

(2) follows from (14) together with the law of total probability (7).
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The rationale underlying (14) is that, when all credal change stems from reallo-
cation across a partition, probabilities conditional on partition propositions should
remain fixed. Intuitively: reallocating probabilities across a partition tells you nothing
new about how probability mass should be distributed inside any member of the par-
tition. Credal reallocation over the partition provides no rational basis for changing
your credences conditional on a given partition proposition. As Joyce (2009, p. 36)
notes, this rationale reflects “a kind of minimal change ‘ethos’ which prohibits the
posterior from introducing distinctions in probability among hypotheses that are not
already inherent in the prior or explicitly mandated by new evidence.” (14) enforces
the minimal change ethos by holding conditional probabilities as fixed as possible,
given that probabilities assigned to partition propositions have changed.

The rationale for (14) has a causal dimension: we assume that an external event
triggers the transition from Pold to Pnew by instilling new credences across a partition
E . Different authors express this causal assumption in different ways. Earman (1992,
p. 34) says that credal changes are “generated” by new credences across the partition.
Joyce (2009, pp. 35–36) posits an event whose “only immediate effect” is to fix new
credences for partition propositions. In (Rescorla, 2021), I said that the new credal
assignment over the partition “mediates” the transition from Pold to Pnew. The core
idea behind these varying formulations is that an event alters the agent’s credences
entirely by way of altering her credences over E . Intuitively: we restrict attention
to situations where all credal change stems from the new credal assignment over E .
Virtually all discussions of Jeffrey Conditionalization assume a restriction along these
lines, although the restriction often figures only implicitly.

An important task for formal epistemology is to analyze more systematically the
assumed restriction on causal structure. In (Rescorla, 2021), I offered one possible
analysis. But I will not assume that analysis, or any other analysis. Even lacking a
detailed analysis, the basic idea seems clear enough for present purposes.

It will prove helpful to articulate a more precise statement of the diachronic credal
norm corresponding to (14). In (Rescorla, 2021), I formulated the norm as imposing
the following requirement:

If an agent begins with credences Pold , and E � {Ei} is a countable set of
mutually exclusive, jointly exhaustive propositions such that Pold (Ei) > 0 for

each i, and she subsequently adopts new credences Pnew such that
∑

i

Pnew(Ei) � 1, and the new credal assignment over Emediates the transition

from Pold to Pnew, then Pold (.|Ei) � Pnew(.|Ei) for all i such that Pnew(Ei) > 0,
(15)

where the clause “the new credal assignment over E mediates the transition from
Pold to Pnew” reflects a causal assumption that credences change solely due to the
new credal assignment over E . For present purposes, one could equally well express
the causal assumption through the language used by Earman (“generated”) or Joyce
(“only immediate effect”).
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The antecedent of (15) confines attention to situations where Pold(Ei) > 0 for each i,
and the consequent addresses only those Ei such that Pnew(Ei) > 0. These restrictions
ensure that conditional probabilities, as specified by the ratio formula, arewell-defined.
However, I see no reason to impose the restrictions once we have in hand conditional
probabilities beyond those given by the ratio formula. The intuitive rationale supplied
by Joyce’s minimal change ethos applies just as well to cases where Pold(Ei) � 0 or
Pnew(Ei) � 0.

Indeed, the rationale applies just as well to numerous cases that do not feature a
countable partition E . Consider an agent with credences modeled by a probability
space (�, F , P), and let G ⊆ F be a sub-σ-field. G may or may not be generated
by a countable partition. Suppose that the agent has conditional credences over F
given G , modeled by update rule C. Suppose that there occurs an exogenous shift in
credal mass across G , inducing further credal changes across F . Following Meehan
and Zhang (2020), I propose that the agent’s conditional credences C should remain
fixed. More carefully, credal transitions should satisfy the following requirement:

RIGIDITY: If an agent begins with unconditional credences Pold over F and
conditional credences Cold over F given G , and she subsequently adopts new
credences Pnew over F and new conditional credences Cnew over F given G ,
and the new credal assignment over G mediates the transition from Pold and
Cold to Pnew and Cnew, then Cold � Cnew,

where the clause “the new credal assignment over G mediates the transition from Pold

and Cold to Pnew and Cnew” reflects a causal assumption that the agent’s conditional
and unconditional credences change solely due to the new credal assignment over G .
Again, we could equally well substitute other locutions that express the same causal
assumption. Like (15), Rigidity is a minimal change principle. It leaves conditional
probabilities as fixed as possible, given that credences over G have changed. Intu-
itively: credal reallocation across a sub-σ-field provides no rational basis for changes
in credence conditional on the sub-σ -field.

It would be good to explore more fully the basis for Rigidity. In this paper, I focus
on applying Rigidity. Actually, I will apply a fairly weak consequence of Rigidity:

WEAK RIGIDITY: If an agent begins with credences Pold over F and con-
ditional credences Cold over F given G , and she subsequently adopts new
credences Pnew over F and new conditional credences Cnew over F given G ,
and Pnew|G � δω for some ω, and the new credal assignment over G mediates
the transition from Pold and Cold to Pnew and Cnew, then Cold � Cnew,

where Pnew|G is the restriction of Pnew to G . Weak Rigidity confines attention to cases
where the new credal assignment over G is a certainty profile. For discussion of cases
where the new credal assignment over G is not a certainty profile, see (Meehan &
Zhang, 2020).
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Fig. 4 The agent gains new certainty profile δω and responds by usingC to conditionalize on δω . Complying
with Weak Rigidity, she retains her conditional credences C. In this diagram, and in subsequent such
diagrams, unconditional credences lie above the dotted line and conditional credences lie below the dotted
line

6.2 Credal evolution conforming to Rigidity

I propose the following picture of credal evolution. At t0, an agent has unconditional
credences modeled by a probability space (�,F , P) and conditional credences mod-
eled by C, an rcd for P given G . At t1, an exogenous change instills certainty profile
δω over G . Assume that C is proper at ω. Then the agent can use C to conditionalize
on δω, adopting Cω as her new credal allocation overF . Her unconditional credences
at t1 are modeled by (�,F ,Cω). Complying with Rigidity, she retains her conditional
credences C. See Fig. 4.

Theorem Let (Ω , F , P) be a probability space, let G ⊆ F be a sub-σ -field, and let
C be an rcd for P given G . Suppose that C is proper at ω. Then C is an rcd for Cω

given G .

Proof The only non-trivial clause is the integral formula, with Cω serving as the
unconditional probability measure: we must show that

Cω(A ∩ G) �
∫

G
C(A|ν)dCω(ν), (16)

for every A ∈ F and G ∈ G . Fix A ∈ F and G ∈ G . Define

H�df {v ∈ � : C(A|ω) � C(A|v)}.

C(A|·): � → R is G -measurable, and H is the inverse image of {C(A, ω)} under
C(A|·), so H ∈ G . Since ω ∈ H, it follows from (8) that

Cω(H ) � 1 & Cω

(
Hc) � 0.

We now calculate:

∫

G
C(A|ν)dCω(ν)�

∫

G∩H
C(A|ν)dCω(ν) +

∫

G∩Hc
C(A|ν)dCω(ν)

�
∫

G∩H
C(A|ω)dCω(ν)+0 � Cω(A)

∫

G∩H
dCω(ν) � Cω(A)Cω(G ∩ H ).
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Either ω ∈ G or ω /∈ G. If ω ∈ G, then (8) entails

Cω(G) � 1,

so that

Cω(A)Cω(G ∩ H ) � Cω(A) � Cω(A ∩ G),

which confirms (16). If ω /∈ G, then (8) entails.

Cω(G) � 0,

so that

Cω(A)Cω(G ∩ H ) � 0 � Cω(A ∩ G),

which also confirms (16). We have therefore shown that C is an rcd for Cω given
G . �

Consider again the agent depicted in Fig. 4: she beginswith unconditional credences
(�,F ,P) and conditional credencesmodeled byC, then transitions based on certainty
profile δω to new unconditional credences Cω while holding fixed her conditional
credences C. We have assumed that C is proper at ω. (Otherwise, the agent cannot
use C to conditionalize on δω in the first place.) Our theorem entails that C is also an
rcd for the agent’s new unconditional credal allocation Cω. The agent may therefore
continue to use C to conditionalize. If a new exogenous change instills a new certainty
profile δν at t2, then she can use C to conditionalize on the new certainty profile δν ,
so long as C is proper at ν. See Fig. 5.

Figure 5 is quite general. It applies to a wide range of situations in which an agent
gains a certainty profile δω over a sub-σ-field and then gains a different certainty profile
δν over the same sub-σ-field. I do not say Fig. 5 applies to all such situations. If an
rcd does not exist, or if every rcd is improper at ω or ν, then Fig. 5 does not apply.
However, such situations arise rarely if ever in scientific applications.

To illustrate the virtues of Fig. 5, let us revisit False Alarm. We saw in Sect. 5 that
John can use μ at t2 to conditionalize on his newfound certainty in Negative. The
worry raised in Sect. 4.2 was that μ seemed arbitrary. Why should John update his
credences using μ rather than another rcd μ*? Rigidity enables a principled answer.
The key point here is that μ encodes conditional probabilities that John has at t0.
The conditional probabilities follow from our choice of P and from the ratio formula.

Fig. 5 The agent gains new
certainty profile δω and responds
by using C to conditionalize on
δω . Then she gains new certainty
profile δν and responds by using
C to conditionalize on δν
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Fig. 6 Credal evolution in False Alarm. John’s initial unconditional credences P determine his conditional
credencesμ, via the ratio formula. John becomes certain ofPositive and responds by forming new credences
μω , where ω is any arbitrary outcome belonging to Positive. Then he becomes certain of Negative and
responds by forming new credencesμν , where ν is any arbitrary outcome belonging toNegative. Complying
with Weak Rigidity, he retains his conditional credences μ throughout this process

When John conditionalizes on Positive at t1, Rigidity mandates that he leave those
conditional probabilities fixed. John’s fixed conditional probabilities, codified by μ,
serve as a basis for conditionalization when at t2 he becomes certain of Negative.
Hence, Rigidity rationalizes the choice of μ rather than any alternative rcd μ*. Given
John’s unconditional credences at t0, μ is the unique rcd that conforms to Rigidity.
See Fig. 6.

Our revised analysis of False Alarm illustrates the benefits that Rigidity offers to
Kolmogorov conditionalizers. By constraining conditional credence, Rigidity guides
the course of iterated Bayesian inference. Here is another example along the same
lines:

Mismeasurement Jane is a scientist with credencesP at time t0.X is a randomvariable
that reflects the outcome of an experiment. At t1, Jane becomes certain that X � x1 and
updates her other credences on that basis. At t2, she realizes that her certainty in X �
x1 was misplaced: she misread a measuring instrument, or the measuring instrument
was poorly calibrated, or she was deceived by her assistant, etc. Jane becomes newly
certain that X � x2. How should she proceed?

Using Rigidity, we can elaborate Mismeasurement so as to include a principled
credal update at t2. Stipulate that Jane has conditional credences at t0 given by Pσ(X),
an rcd for P given σ(X). At t1, she becomes certain that X � x1 and on that basis
acquires new credences Pσ(X)(.|ω1), where ω1 is any outcome such that X(ω1) � x1.
Complying with Rigidity, she carries her conditional credences Pσ(X) forward from t0
to t1. At t2, she becomes certain that X � x2 and on that basis acquires new credences
Pσ(X)(.|ω2), where ω2 is any outcome such that X(ω2) � x2. Given Rigidity, her
conditional credences at t0 uniquely determine how she should update her credences
upon becoming certain at t1 that X � x1 and also how she should update her credences
upon becoming certain at t2 that X � x2. See Fig. 7. Jane can implement Fig. 7 as long
as Pσ(X) is proper at ω1 and ω2.

More specifically, suppose that at t0 Jane has the probability density p(x, y) given
by Fig. 1. This is not a useful density for real-world applications, but it suffices for
heuristic purposes. At t1, Jane becomes certain that X � x1, where 0 ≤ x1 ≤ ½. She
forms new credencesPσ(X)(.|x1, y), where y is any real number. In particular, she forms
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Fig. 7 Credal evolution in Mismeasurement

the credences given by (10) and (11). At t2, she becomes certain that X � x2, where
½ < x2 ≤ 1. She forms new credences Pσ(X)(.|x2, y), including the credences given by
(12) and (13). Over the course of her credal evolution, her credence in X �� x1 ∪ Y >
½ goes from 1 to ½ to ¾.

False Alarm and Mismeasurement illustrate how Rigidity can steer Kolmogorov
conditionalizers through rational acquisition and loss of certainties. In each example,
the agent’s initial doxastic state dictates how she should reallocate credence when
she becomes certain of a conditioning proposition and also when she later becomes
certain of a conflicting proposition.

Of course, wemust assume initial conditional and unconditional credences to derive
a determinate credal reallocation policy. But this is no problem for my approach,
because all Bayesian theorizing assumes that the agent has certain initial credences.
One must always assume some credal starting point. As noted in Sect. 2, the assumed
credal starting point will usually include primitive conditional credences over and
above the agent’s unconditional credences once we move beyond simple cases where
the ratio formula prevails. The essence of the Bayesian framework is to place rational
constraints on credal evolution given the agent’s initial conditional and unconditional
credences. That is precisely what Rigidity accomplishes.

Figure 5 lends itself to iteration. Consider an agent who transitions from certainty
profile δω1 to certainty profile δω2 to certainty profile δω3 , and so on, all over a fixed
sub-σ-field G . So long as C is proper at each index ω1, ω2, ω3, …, ωn, … the agent
can carry C forward at each stage, using it as her fixed update rule. At each stage, the
agent downgrades certainties acquired at the previous stage. See Fig. 8.

Fig. 8 Sequential credal updates conforming to Weak Rigidity. At each time tn after the starting point t0,
the agent gains new certainty profile δωn and responds by using C to conditionalize on δωn , yielding new
credences Cωn . Complying with Weak Rigidity, she retains her conditional credences C
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7 Generalized rigidity

Rigidity applies to situations where credences shift over a single fixed conditioning
sub-σ-field G . In many applications, though, there is not a single fixed condition-
ing sub-σ-field. Instead, the agent accumulates new evidence over a non-decreasing
sequence of sub-σ-fields:

G1 ⊆ G2 ⊆ G3 . . . ⊆ Gn ⊆ . . .

For example, an agent might progressively learn the values of random variables X1,
X2, …, Xn, …, a situation we can model using the sub-σ-fields:

σ(X1) ⊆ σ(X1, X2) ⊆ σ(X1, X2, X3) ⊆ . . . ⊆ σ(X1, X2, . . .Xn) ⊆ . . .

Iwill nowgeneralizeRigidity so as to accommodate sequential evidence accumulation.

7.1 Minimal change revisited

Consider an agent who begins with unconditional credences modeled by a probability
space (�,F , P). Fix G 1 and G 2 such that G 1 ⊆ G 2 ⊆ F . Suppose that the agent has
conditional credences overF given G 2, modeled by an update rule C:F × � → R.

Suppose that there is an exogenous shift in credences across G 1, inducing additional
credal changes over the rest ofF . I submit that this shift should leave fixed the agent’s
credences conditional on G 2. More precisely, I propose the following requirement on
credal evolution:

GENERALIZED RIGIDITY: If an agent begins with credences Pold over F
and conditional credences Cold over F given G 2, and she subsequently adopts
new credences Pnew overF and new conditional credences Cnew overF given
G 2, andG 1 ⊆G 2, and the new credal assignment overG 1 mediates the transition
from Pold and Cold to Pnew and Cnew, then Cold � Cnew,

where the clause “the new credal assignment over G 1 mediates the transition from
Pold and Cold to Pnew and Cnew” registers that the agent’s credences change solely
due to the new credal assignment over G 1. Generalized Rigidity demands that, in
such situations, credences conditional on G 2 remain constant. Note that Generalized
Rigidity entails Rigidity. Like Rigidity, Generalized Rigidity is a minimal change
principle. Intuitively: credal reallocation across a sub-σ-field provides no basis for
changing credences conditional on a larger sub-σ -field.

To illustrate, consider a partition E � {Ei} and a finer-grained partitionD � {Eij},
where

Ei �
⋃

j

Eij.

Suppose that the agent at time t1 gains new credences over E and that these new
credences cause her to reallocate credences over all remaining propositions. Intuitively,
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Fig. 9 Two credal updates
conforming to Weak
Generalized Rigidity. Note that
the agent no longer has
conditional credences PG1

at t2

the agent’s new credal allocation over E should not lead her to change her probabilities
conditional on members of D . Reallocating credence over the Ei should not affect
how credence is allocated within each Ei, so it should not change how credence is
allocated within each Eij. Indeed, one can easily show that Jeffrey conditionalization
in response to new credences overE leaves fixed all conditional probabilitiesP(H |Eij).
Let G 1 � σ(E ), the σ-field generated by E , and let G 2 � σ(D), the σ-field generated
by D . Note that G 1 ⊆ G 2. If the agent updates using Jeffrey Conditionalization, she
will conform to Generalized Rigidity as applied to G 1 and G 2.

As with the original version of Rigidity, I focus exclusively on a weak consequence
of Generalized Rigidity:

WEAK GENERALIZED RIGIDITY: If an agent begins with credences Pold

overF and conditional credences Cold overF given G 2, and she subsequently
adopts new credences Pnew over F and new conditional credences Cnew over
F given G 2, and G 1 ⊆ G 2, and Pnew|G 1 � δω for some ω, and the new credal
assignment overG 1 mediates the transition fromPold andCold toPnew andCnew,
then Cold � Cnew.

WeakGeneralizedRigidity entailsWeakRigidity. Iwill useWeakGeneralizedRigidity
to model cases of defeasible inference that cannot be modeled using Weak Rigidity.

7.2 Credal evolution conforming to generalized rigidity

I propose the following picture of credal evolution. At t0, an agent has unconditional
credences modeled by a probability space (�, F , P). She also has conditional cre-
dences modeled by PG1 , a proper rcd for P given G 1, and PG2 , a proper rcd for P given
G 2, where G 1 ⊆ G 2. Moreover, for each ω ∈ �, PG2 is an rcd for PG1 ( . |ω) given
G 2. At t1, an exogenous change instills certainty profile δω1 over G 1. In response, the
agent uses PG1 to conditionalize on δω1 , adopting PG1 ( . |ω1) as her new credal allo-
cation over F . The agent retains the same fixed conditional credences PG1 and PG2 ,
as mandated by Generalized Rigidity. At t2, an exogenous change instills certainty
profile δω2 over G 2. In response, the agent uses PG2 to conditionalize on δω2 , adopting
PG2 ( . |ω2) as her new credal allocation overF . Her credences conditional on G 2 are
still given by PG2 , as Generalized Rigidity mandates. See Fig. 9.

Note that, at t2, Generalized Rigidity does not require the agent’s credences condi-
tional on G 1 to be given by PG1 . This is as it should be. To see why, fix events E and F
such that P(E ∩ F) > 0. If the agent ratio conditionalizes on E ∩ F, then she will not
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Fig. 10 Sequential credal updates conforming toWeak Generalized Rigidity. At each time tn after the initial
starting point t0, the agent uses PGn to conditionalize on δωn , adopting new credences PGn ( . |ωn). Note
that the agent no longer has conditional credences PGn−1

at time tn

usually retain her initial conditional probabilities P(H |E). She is now certain of E, so
her new credence in H conditional on E is simply her new unconditional credence in
H:

Pnew(H |E) � Pnew(H ) � P(H |E ∩ F),

which may differ from P(H |E). Intuitively: newfound certainty in F may alter cre-
dences conditional on E. Restating the point using the rcd formalism, let G 1 be the
σ-field generated by {E}, and let G 2 be the σ-field generated by {E, F}. Assume that
PG1 is an rcd for P given G 1 and that PG2 is an rcd for P given G 2, where these rcds are
given by the ratio formula. If ω2 ∈ E ∩ F , then PG1 may not be an rcd for PG2 ( . |ω2)
given G 1. Intuitively: newfound certainties regarding G 2 may alter probabilities con-
ditional on G 1.

We may extend Fig. 9 to scenarios where the agent sequentially accumulates evi-
dence at times t1, t2, …, tn, … regarding sub-σ-fields

G1 ⊆ G2 ⊆ G3 . . . ⊆ Gn ⊆ . . .

Suppose that PGn is a proper rcd for P given G n. Suppose also that, for each ω ∈ �,
PGn+1 is an rcd for PGn ( . |ω) given G n+1. At tn, an exogenous change instills certainty
profile δωn over G n. In response, the agent uses PGn to conditionalize on δωn , adopting
PGn ( . |ωn) as her new credal allocation overF . ComplyingwithGeneralizedRigidity,
she retains the conditional credences given byPGn ,PGn+1 ,PGn+2 ,…,PGn+m ,… She uses
those conditional credences for credal updates at tn+1, …, tn+m, …. In this manner, the
agent’s initial conditional credences dictate her credal evolution as she sequentially
gains new evidence. See Fig. 10.
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In presenting Figs. 9 and 10, I made two assumptions about the rcds PGn . First, PGn

is proper at ωn. Second, PGn+1 is an rcd for PGn ( . |ωn) given G n+1. Only under those
assumptions can a Kolmogorov conditionalizer use the rcds PGn to conditionalize at
each time stage tn.

Unfortunately, there is no global guarantee that the two assumptions are satisfiable.
That PGn+1 is an rcd for P given G n+1 does not guarantee that it is an rcd for PGn ( . |ωn)
given G n+1. Even if it is, it may not be everywhere proper. Thus, a Kolmogorov
conditionalizer may not be able to comply with Fig. 10 even when rcds PG1 , PG2 ,…,
PGn , … exist. Luckily, though, Sokal (1981) has proved that my assumptions are
satisfiable in numerous cases, including all or virtually all cases likely to arise in
scientific applications. Sokal shows that, under rather mild conditions, there exist PG1 ,
PG2 ,…, PGn , …. such that, for all n,

PGn is an rcd for P given Gn

PGn is proper at ω, for all ω ∈ �

PGn+1 is an rcd for PGn (.|ω) given Gn+1, for all ω ∈ �

Sokal’s theorem ensures that, in numerous cases, a Kolmogorov conditionalizer can
update her credences in accord with Fig. 10.10

More specifically, consider a standard setup from Bayesian statistics (Florens et al.,
1990): we start with a parameter space (A, A ) and a sample space (S, S ) and form
the product space (A,A ) ⊗ (S,S ) � df (A × S,A ⊗ S ).11 The parameter space (A,
A ) models possible states of the worlds. The sample space (S, S ) models evidence
the agent may receive. In many applications, (S,S ) has the form:

(T1, T1) ⊗ (T2, T2) ⊗ (T3, T3) . . . ⊗ (Tn, Tn) . . .

and models a stream of incoming evidence received at times t1, t2, …, tn, …. Each
outcome then has the form

ω � (ω0, ω1, ω2, ω3, . . . , ωn, . . .),

where ω0 ∈ A and ωn ∈ Tn for n > 0. Define random variable Xn: A × S → Tn by
projection onto the nth coordinate:

Xn(ω) � ωn.

10 Here is the theorem proved by Sokal: Let (�,F , P) be a probability space, where P is perfect and F is
countably generated. Let G 1, G 2, G 3 …, G n, …. be a sequence of sub-σ -fields such that G n ⊆ G n+1 for
every n. Suppose that there exist functions �n such that (a) �n is a selection homomorphism for G n with
respect to F , for every n; and (b) �n° �n+m � �n, for every n, m. Then there exist PG1

,PG2
,…, PGn ,

… such that for every n: (i) PGn is an rcd for P given G n; (ii) PGn is proper at ω, for every ω; and (iii)
PGn (A|ω) � ∫

PGn+1
(A|ν)PGn (dν|ω), for all A ∈ Fand all ω ∈ Ω . It follows that PGn+1

is an rcd for
PGn ( . |ω) given G n+1, for every ω ∈ Ω .
11 A ⊗ S is the σ-field generated by sets of the form D × E, where D ∈ A and E ∈ S .
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To model sequential evidence accumulation regarding the sample spaces (Tn, T n),
we use certainty profiles over the sub-σ-fields

σ(X1), σ(X1, X2), σ(X1, X2, X3), . . . , σ(X1, X2, . . . , Xn), . . .

In this setting, Sokal’s theorem applies whenever the probability space (A × S, A
⊗ S , P) meets mild conditions—conditions that are almost always met in the daily
practice of Bayesian statistics.12 Assuming the conditions met, there exist functions

Pσ (X1), Pσ (X1,X2), Pσ (X1,X2,X3), . . . , Pσ (X1,X2, ...,Xn), ...

such that, for all n,

Pσ (X1,X2, ...Xn) is an rcd for P given σ(X1, X2, . . . , Xn)
Pσ (X1,X2, ...Xn) is proper at ω, for all ω ∈ �

Pσ (X1,X2, ...Xn+1) is an rcd for Pσ (X1,X2, ...Xn)(.|ω) given σ(X1, X2, . . . , Xn+1), for all ω ∈ �

A Kolmogorov conditionalizer with these initial conditional and unconditional cre-
dences can update her credences in compliance with Generalized Rigidity.

Here is a simple example of Generalized Rigidity in action.

Rabies Infection Pierre, who lives in nineteenth century Paris, is bit by a rabid dog
on his 35th birthday. Knowing that rabies is 100% fatal, Pierre becomes certain that
he will die before his 37th birthday. A week later, Pierre learns that Louis Pasteur has
invented a vaccine for rabies and that the vaccine is highly effective if delivered soon
enough after a bite by a rabid animal. Pierre contacts Pasteur and receives the vaccine.
Pierre is not convinced that the vaccine will work, but he is no longer certain that he
will die before his 37th birthday.

Using Generalized Rigidity, we can elaborate Rabies Infection into a model that
includes principled acquisition and loss of certainties. Let � be a suitable outcome
space, and let

Rabies � the set of outcomes in which Pierre is infected with rabies on his 35th
birthday.

Vaccine � the set of outcomes in which Pierre receives an effective rabies vaccine
within a week after his 35th birthday

Dead � the set of outcomes in which Pierre dies before his 37th birthday

12 The functions�n presupposed by Sokal’s theorem are easily shown to exist in the present context (Sokal,
1981, p. 544). Thus, one need only assume that P is perfect and that A ⊗ S is countably generated.
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LetF be the σ-field generated by {Rabies, Vaccine,Dead}. Suppose Pierre has initial
conditional and unconditional credences before his 35th birthday given by:

P(Rabies) � 1/30, 000, 000
P(Vaccine) � 0
P(Dead |Rabies ∩ Vaccine) � 1/2
P(Dead |Rabies ∩ Vaccinec) � 1
P(Dead |Rabiesc) � P(Dead |Rabiesc ∩ Vaccine) � 1/500

These credences reflect the following factors: the low rate of exposure to rabies in
nineteenth century Paris; non-existence of an effective rabies vaccine, so far as Pierre
initially knows; the chancy nature of a new vaccine for a fatal illness; the certain death
that follows from a rabies infection absent an effective treatment; and the chance of
death from other causes. Assume that P(A|A) � 1 for all A. Through the law of total
probability and the ratio formula, our assumptions determine a unique probability
measure P over F . For example, we compute:

P(Dead) � P(Dead |Rabies ∩ Vaccine)P(Rabies ∩ Vaccine)

+P
(
Dead |Rabies ∩ Vaccinec

)
P
(
Rabies ∩ Vaccinec

)

+P
(
Dead |Rabiesc)P(

Rabiesc
)

� 0 + 1/30, 000, 000 + 1/500 × 29, 999, 999/30, 000, 000 ≈ .00200003327

and

P(Dead |Rabies) � P(Dead |Rabies ∩ Vaccinec) � 1.

Let G 1 be the σ-field generated by {Rabies}, and let G 2 be the σ-field generated by
{Vaccine, Rabies}. Our stipulations determine a privileged rcd for P given G 1, defined
by

PG1 (A|ω) �
{
P(A|Rabies) if ω ∈ Rabies
P(A|Rabiesc) if ω /∈ Rabies

and a privileged rcd for P given G 2, defined by

PG2 (A|ω) �

⎧
⎪⎪⎨

⎪⎪⎩

P(A|Rabies ∩ Vaccine) if ω ∈ Rabies ∩ Vaccine
P(A|Rabies ∩ Vaccinec) if ω ∈ Rabies ∩ Vaccinec

P(A|Rabiesc ∩ Vaccine) if ω ∈ Rabiesc ∩ Vaccine
P(A|Rabiesc ∩ Vaccinec) if ω ∈ Rabiesc ∩ Vaccinec

It is not hard to check that, for every ω, PG2 is an rcd for PG1 ( . |ω) given G 2. Let ω

be the true outcome. When the rabid dog bites Pierre, he becomes certain of Rabies
and responds by forming new credences PG1 ( . |ω). In particular, he becomes certain
of Dead. Complying with Generalized Rigidity, his credences conditional on G 2 are
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Fig. 11 Credal evolution in Rabies Infection. ω is the true outcome

still given by PG2 . When he receives the rabies vaccine, he becomes certain of Vaccine
and responds by forming new credences PG2 ( . |ω), so that his credence in Dead goes
from 1 to ½. See Fig. 11.

Rabies Infection illustrates the advantages that Weak Generalized Rigidity offers
over Weak Rigidity. Pierre’s initial conditional credences carry forward in accord
with Weak Generalized Rigidity. The conditional credences determine how he should
conditionalize both when he learns that he is infected with rabies and when he later
learns that he has received a rabies vaccine. In this manner,Weak Generalized Rigidity
helps us model situations where the agent accumulates evidential certainties (modeled
by certainties overG 1 and then overG 2).Weak Rigidity only helps usmodel situations
where evidence gained at a later time eradicates evidential certainties gained at an
earlier time (modeled by shifting certainties over G 1).

Relatedly, Weak Generalized Rigidity is much more useful than Weak Rigidity
when the factivity assumption (3) prevails. To apply Weak Rigidity in a non-trivial
way, we must consider a scenario where a certainty profile δν over G supplants a con-
flicting certainty profile δω over G . Conflicting certainty profiles cannot both satisfy
the factivity assumption. At least one of them must be misplaced. In contrast, Gen-
eralized Rigidity helps us model cases where the agent conditionalizes on a certainty
profile that satisfies the factivity assumption and subsequently conditionalizes on a
distinct certainty profile that also satisfies the factivity assumption. Pierre correctly
becomes certain that he is infected with rabies, then correctly becomes certain that
he received an effective rabies vaccine. At neither time does he acquire misplaced
certainties over a conditioning sub-σ-field. Nevertheless, evidence gained at the later
time defeats evidence gained at the earlier time. He gains strong evidence that he will
die before his 37th birthday (he was infected by rabies), then subsequently receives
strong defeating evidence (he has received an effective rabies treatment). Thus, Gener-
alized Rigidity helps us model cases of epistemic defeat where the defeated evidence
is veridical and the defeating evidence is also veridical.13

13 Some readersmay protest that, whilemymodel of Rabies Infection does not explicitly invoke non-factive
conditionalization, Pierre’s initial certainty that no effective rabies vaccine exists must result somehow
from non-factive conditionalization. I disagree. Pierre may have come to set P(Vaccine) � 0 based solely
on veridical evidence. For example, let Expert be the proposition that the renowned medical expert Dr.
Charbonnet asserts that no effective rabies vaccine could ever exist. Suppose Pierre has complete faith in
Charbonnet and therefore sets P(Vaccine|Expert) � 0. If Charbonnet tells Pierre that no effective rabies
vaccine could ever exist, Pierre will conditionalize on the true proposition Expert and hence set P(Vaccine)
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Here is a more elaborate example along similar lines.

Ring Time A timer will ring during an interval [x, x + y]. Frank chooses the start time
x, and Mary independently chooses the interval length y. Sarah believes that, given x
and y, the timer is equally likely to ring at any time z falling in the interval [x, x + y].
At t0, Sarah is certain that Frank will choose a start time between 0 and 100, and she
believes that he is equally likely to choose any start time within that interval. She is
certain that Mary will choose interval length y0. At time t1, Sarah learns that Frank
chose start time x1 ∈ [0, 100]. This discovery, combined with her certainty that the
interval length is y0, leads Sarah to become certain that the timer will ring during the
interval [x1, x1 + y0]. At t2, Sarah learns that Mary chose interval length y2 > y0. This
discovery eradicates Sarah’s certainty that the timer will ring during the interval [x1,
x1 + y0].

Using Generalized Rigidity, we can fill in the story to rationalize Sarah’s certainty
loss at t2. We use a probability space (R2,B(R2), π ) to codify Sarah’s credences over
possible start times x and interval lengths y. We use C: B(R) × R

2 →R to codify
Sarah’s credences over ring times conditional on start time x and interval length y.
Given how I described Sarah’s initial credences, we naturally choose π and C defined
by

π�df U[0, 100] ⊗ δy0

C(.|x, y)�df U[x, x+y]

where ⊗ is the product measure (Billingsley, 1995, pp. 232–233) and U[a, b] is the
uniform distribution over [a, b]. We define a probability measure P over the larger
space (R3, B(R3)):

P(A) �
∫ [∫

IA(x, y, z)Cx, y(dz)

]
dπ (x, y), for any A ∈ B(R3) (17)

where IA is the indicator function for A:

IA(ω) �
{
1 if ω ∈ A
0 if ω /∈ A

P encodes Sarah’s credences over start times x, interval lengths y, and ring times z.14

It is easy to show that, for our choice of C and π , the measure P defined by (17)
concentrates all probability mass over the event

Footnote 13 continued
� 0. Thus, the credences posited by my model may arise through the exercise of factive conditionalization.
Whether Pierre is rationally permitted to set P(Vaccine|Expert) � 0 is a trickier question that I must set
aside for limitations of space.
14 Definition (17) is a special case of the Ionescu Tulcea extension theorem, which shows that under highly
general conditions one can convert conditional probabilities and select unconditional probabilities into a
global unconditional probability measure (Kallenberg, 2002, p. 116).
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Fig. 12 Sarah’s credences at t0. The whole probability space is three-dimensional, but Sarah’s initial credal
mass lies entirely in the two-dimensional sub-space (pictured here) where Y � y0. Sarah assigns credence
1 to the grey parallelogram

{(x, y0, z) : 0 ≤ x ≤ 100& x ≤ z ≤ x + y0}.

See Fig. 12. Let X and Y be projection mappings onto the x and y coordinates, respec-
tively. Then the following function Pσ (X ,Y ) :B(R3) × R

3 → R is an rcd for P given
σ(X, Y ):

Pσ (X ,Y )(.|x, y, z) � δx ⊗ δy ⊗U[x, x+y].

Note that Pσ (X ,Y ) embeds the conditional credences C into corresponding conditional
credences over the larger space (R3, B(R3)). One can also show that the following
function Pσ(X): B(R3) × R

3 → R is an rcd for P given σ(X):

Pσ (X )(.|x, y, z) � δx ⊗ δy0 ⊗U[x, x+y0].

Intuitively: newfound certainty that the start time is x, combined with prior certainty
that Y � y0, induces a uniform distribution over ring times falling in the interval [x, x
+ y0]. In addition, one can show that Pσ (X ,Y ) is an rcd for Pσ(X)(.|x, y, z) given σ(X,
Y ), for any x, y, z.15

At t0, Sarah has unconditional credences codified by P along with conditional
credences codified by Pσ(X) and Pσ (X ,Y ). At t1, she becomes certain that Frank chose

15 Proofs for all mathematical claims made in this paragraph are straightforward but tedious.
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start timeX � x1.Wemodel her newfound certainty through a certainty profile δ(x1, y, z)
over σ(X), where y and z are arbitrary. Wemay assume that Frank really did choose x1,
so that δ(x1, y, z) satisfies the factivity assumption. Sarah conditionalizes using Pσ(X),
forming new credences:

Pσ (X )(.|x1, y, z) � δx1 ⊗ δy0 ⊗U[x1, x1+y0].

Thus, she is newly certain of the event

{x1} × {y0} × [
x1, x1 + y0

]
.

In other words: she is certain that John chose X � x1, that Mary chose Y � y0, and
that the timer will ring in the interval [x1, x1 + y0]. See Fig. 13. Complying with
Generalized Rigidity, she retains Pσ(X) and Pσ (X ,Y ) as conditional credences at t1. At
t2, she becomes certain that Mary chose the interval length y2 > y0. We model Sarah’s
newfound certainty through a certainty profile δ(x1, y2, z) over σ(X, Y ). We may assume
that Sarah is correct, so that δ(x1, y2, z) satisfies the factivity assumption. In response to
her new certainty profile, she conditionalizes using Pσ (X ,Y ). Her credences are now
given by:

Pσ (X ,Y )(.|x1, y2, z) � δx1 ⊗ δy2 ⊗U[x1, x1+y2].

Fig. 13 Sarah’s credences at t1. She assigns credence 1 to the event (pictured here by a black line segment)
formed by intersecting the line X � x1 with the grey parallelogram
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See Fig. 14. Thus, Sarah is newly certain of the event

{x1} × {y2} × [
x1, x1 + y2

]
.

See Fig. 15. Her newfound certainty that Y � y2 eradicates her certainty (gained at t1)
that the timer will ring in the interval [x1, x1 + y0].

In both Rabies Infection and Ring Time, the agent’s credences evolve according
to Fig. 9. Some certainties gained at t1 are subsequently lost at t2. The examples
demonstrate that Kolmogorov conditionalization, aided by Weak Generalized Rigid-
ity, can induce principled acquisition and loss of certainties even when the factivity
assumption (3) prevails.

Fig. 14 Credal evolution in Ring Time

Fig. 15 Sarah’s credences at t2. Her credal mass lies entirely in the two-dimensional sub-space (pictured
here) where Y � y2. She assigns credence 1 to the dotted black line segment reaching to (x1, x1 + y2)
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8 Scope and limits

I have illustrated Weak Rigidity and Weak Generalized Rigidity with four toy exam-
ples: False Alarm, Mismeasurement, Rabies Infection, and Ring Time. The toy
examples only hint at the scope of Fig. 10. Sokal’s theorem guarantees the exis-
tence of suitable rcds across diverse circumstances, including the vast majority of
cases likely to arise in scientific applications. Whenever suitable rcds exist, a Kol-
mogorov conditionalizer can sequentially update her credences while complying with
Weak Generalized Rigidity. Quite often, the sequential credal updates will eradicate
certainties gained through earlier credal updates.

Although Weak Generalized Rigidity is widely applicable, there are situations
where it does not apply. Weak Generalized Rigidity imposes a substantive constraint
onlywhen the agent gains new certainties over a conditioning sub-σ-fieldG . As Jeffrey
emphasizes, though, an agent may gain new credences over G that are not certainties.
Jeffrey focuses on situationswhereG is generated by a countable partition. The general
case, where G is not necessarily generated by a countable partition, has received some
attention (e.g. Diaconis & Zabell, 1982; Hild et al., 1999; Meehan & Zhang, 2020)
but not as much as it deserves. I suspect that Generalized Rigidity can shed light upon
the general case. In any event, there are plainly situations where Weak Generalized
Rigidity offers little help.

Even if we restrict attention to credal changes sparked by new certainties, Weak
Generalized Rigidity does not always offer useful guidance. Consider a variant of
Mismeasurement: Jane learns at t2 that her laboratory assistant (who reported the
result of the experiment measuring X’s value) is a pathological liar. Clearly, Jane
should downgrade her certainty in X � x1. Assuming that X does in fact have value
x1, we cannot model this case using Weak Generalized Rigidity. Weak Generalized
Rigidity imposes a substantive constraint on cases falling into two categories:

(i) An agent acquires a certainty profile over a sub-σ-field G , then subsequently
acquires a different certainty profile over G , and so on.

(ii) An agent acquires a certainty profile over a sub-σ-field G 1, then acquires a cer-
tainty profile over a sub-σ-field G 2 such that G 1 ⊆ G 2, and so on.

Our new variant of Mismeasurement does not fall under either (i) or (ii):

(i) Distinct certainty profiles overG cannot both conform to the factivity assumption.
So category (i) does not include caseswhere the agent gains true evidence at every
stage.

(ii) If certainty profiles over G 1 and G 2 both satisfy the factivity assumption, and
G 1 ⊆ G 2, then certainties over G 1 gained at t1 persist when the agent gains new
certainties over G 2 at t2.

Neither category (i) nor category (ii) includes cases where true evidence eradicates
certainty in a true conditioningproposition. Somy framework cannotmodel howJane’s
credences change in response to learning that her lab assistant is a pathological liar.
More generally, my framework does not help us model an agent who conditionalizes
on a true proposition E but later learns truths that defeat her warrant for E.16

16 See (Weisberg, 2009a) for related discussion in connection with ratio conditionalization and Jeffrey
conditionalization.
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In response, one option is to abandon the assumption that the sub-σ-fields are non-
decreasing. Rather than consider a sequence of sub-σ-fields such that

G1 ⊆ G2 ⊆ G3 . . . ⊆ Gn ⊆ . . . ,

we can instead consider a sequence of sub-σ-fields

G1, G2, G3 . . . , Gn, . . .

that is not necessarily non-decreasing. An agent may conditionalize based on new
certainties over G 1, then conditionalize based on new certainties over G 2, and so
on. Kallenberg (2010) has investigated iterated Kolmogorov conditionalization in this
alternative setting. The alternative setting does not assume that G n ⊆ G n+1, so Gener-
alized Rigidity does not apply. In the alternative setting, the agent can gain certainties
over G n and subsequently lose those certainties in response to new certainties over
G n+1 even though all certainties conform to the factivity assumption. In future work, I
will use the alternative setting tomodel caseswhere true evidence eradicates newfound
certainty in a true conditioning proposition.

Clearly, Fig. 10 is not general enough to handle all cases of epistemic defeat. Still,
it is general enough to handle many cases of epistemic defeat. In that respect, it marks
significant progress over theories that rely solely on ratio conditionalization.

9 Comparisons

To clarify the scope and limits of my approach, I will now compare it with three
treatments found in the literature. The treatments are due respectively to Skyrms
(1983), Titelbaum (2013), and Williamson (2000).

9.1 Skyrms onmemory

Skyrms (1983, p. 157) notes that, when we update credences through ratio condition-
alization, “there is a certain peculiar sense in which we lose information every time we
learn something. That is, we lose information concerning the initial relative probabili-
ties of statements not entailing S” whenever we ratio conditionalize on S. He proposes
that we “give a probability assignment a memory” (p. 157), so as to retain informa-
tion that would otherwise be lost. He suggests two information retention strategies.
The basic idea behind both strategies is to maintain a record of earlier probabilities
P, so that conditional probabilities P(H |F) can be computed using the ratio formula
even after conditionalizing on a proposition E incompatible with F. The first strategy
records unconditional probabilities from each time stage. The second strategy records
initial unconditional probabilities along with total evidence to date.

By maintaining a record of previous unconditional probabilities and using that
record to compute conditional probabilities, Skyrms’s treatment reflects roughly the
same “minimal change ethos” as Rigidity and Generalized Rigidity. However, his
proposed strategies retain more information than is needed to handle the defeasible
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inferences analyzed in this paper. If an agent conditionalizes on E and subsequently
wishes to conditionalize on an incompatible F, then she does not need access to her
initial unconditional probabilities. She only needs access to suitable probabilities con-
ditional on F. By retaining earlier unconditional probability assignments, Skyrms’s
two strategies retain extraneous information. In contrast, my approach retains only
the needed conditional probabilities. In Mismeasurement, for example, Jane can con-
ditionalize on X � x1 at t1 and then (in accord with Weak Rigidity) use the same
conditional probabilities to conditionalize on X � x2 at t2. Jane’s unconditional prob-
abilities from t0 do not matter at t2. All that matters are her t1 conditional probabilities,
as enshrined by Pσ(X).

More importantly, Skyrms’s two strategies do not handle examples featuring initial
conditional probabilities beyond the ratio formula. We have seen that such examples
arise routinely in scientific practice. We have also seen that the standard mathematical
and scientific solution is to use rcds. My proposal builds upon the standard solution,
carrying forward conditional probabilities as codified by rcds in accord with Weak
Generalized Rigidity. In this way, my approach handles numerous cases that Skyrms’s
does not, such as Rabies Infection, Ring Time, and versions ofMismeasurement where
X has uncountably many possible values.17

Skyrms writes that, “[a]fter conditionalizing on S, one might wish to be able to
decide that this was an error and ‘deconditionalize’” (1983, p. 157). He models decon-
ditionalization using the second of his information retention strategies: the agent adds
proposition S to her total evidence at one time stage and deletes S from her total
evidence at a later time stage (p. 159); conditionalizing on total evidence at the later
time stage yields the desired deconditionalization. Notably, though, Skyrms does not
formally model the factors that impel the agent to delete S from her total evidence.
For that reason, his proposal does not model everything we would like to model about
deconditionalization.

The situation is roughly comparable if we employ the rcd formalism. Consider
yet another variant of Mismeasurement, in which Jane decides at t2 that it was a
mistake to conditionalize on X � x1 and retreats to her former uncertainty regard
X’s value. By stipulation, Jane’s t2 credences over σ(X) are given by P. In accord
with Rigidity, she carries forward her conditional probabilities Pσ(X) from t1 to t2.
Then it is straightforward to show that her t2 credences over the entire space are
given by P. Thus, Jane’s renewed uncertainty regarding X’s value carries her back to
her t0 credences, as one would intuitively expect. In this manner, the rcd formalism
conjoined with Rigidity helps us model Jane’s evolution from uncertainty regarding

17 Skyrmsmentions a third strategy that uses Jeffrey conditionalization rather than ordinary conditionaliza-
tion. This third strategy may be useful for some purposes, but I do not think it fits current scientific practice
very well. As indicated in Sect. 1, scientific applications of the Bayesian framework almost exclusively fea-
ture inferences that employ ordinary conditionalization rather than Jeffrey conditionalization. Virtually all
of those inferences are vulnerable to epistemic defeat (e.g. a scientist may update based on the wrong value
of an experimental variable, as in Mismeasurement). Replacing ordinary conditionalization with Jeffrey
conditionalization would leave us unable to model such inferences as they occur in current practice. In con-
trast, my account preserves the central role that ordinary conditionalization plays within current scientific
practice while accommodating types of epistemic defeat not typically explicitly addressed by that practice.
My account extends current scientific practice, whereas an account grounded in Jeffrey conditionalization
revises current scientific practice.
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X’s value to certainty and then back to uncertainty. But the result is arguably not too
satisfying because it does not explicitlymodelwhy Jane decides that it was amistake to
conditionalize on X � x1. A more satisfying treatment would explicitly model Jane’s
t2 evidence and how that evidence reinstates her t0 credences over σ(X). I believe that,
ultimately, deconditionalization requires us to grapple with the issues raised in Sect. 8.

9.2 Titelbaum on certainty loss

Titelbaum (2013) models certainty eradication within a broadly Bayesian framework.
He advances a diachronic norm,Generalized Conditionalization, that generalizes ratio
conditionalization but can also accommodate some caseswhere agents lose certainties.
He admits, though, that his framework does not satisfactorily handle “cases in which
an agent becomes certain of a claim in response to a piece of evidence, then withdraws
that certainty upon encountering a defeater” (pp. 296–298).

Suppose that evidence e gained at t1 leads an agent to become certain of hypothe-
sis h and that further evidence d gained at t2 eradicates her newfound certainty in h.
Titelbaum’s framework allows this to happen, but only within a model that stipulates
certainty in h at t1. Such a model cannot capture why the agent’s doxastic state at
t0 mandates her certainty in h at t1 in response to evidence e. As Titelbaum puts it,
“nothing in the model is tracking e’s influence on h” (p. 297). In contrast, my frame-
work can model how an agent’s initial credences (both conditional and unconditional)
mandate new certainties at t1 and loss of those certainties at t2. False Alarm, Mismea-
surement, Rabies Infection, and Ring Time all have that form. In each case, my model
tracks e’s influence on h at t1 (e.g. learning that he was bit by a rabid dog leads Pierre
to become certain that he will soon die of rabies) and d’s influence on h at t2 (e.g.
learning that he received a rabies vaccine leads Pierre to lose that newfound certainty).
So my framework supplies substantive rational constraints beyond those supplied by
Titelbaum’s.

9.3 Williamson on evidence

Williamson (2000, pp. 205–206) suggests that you can gain evidence and assign it
probability 1, then gain new evidence that has non-zero probability and on that basis
rationally downgrade the probability of the old evidence. His main example runs as
follows. You inspect a red ball and a black ball before placing them in an empty bag,
which leads you to become certain that you placed a red ball and a black ball in the
bag. You then execute 10,000 draws with replacement that all turn out red. According
to Williamson, you should lose your certainty that you placed a black ball in the bag.

The proposition that you drew red 10,000 times has non-zero probability, so condi-
tionalizing on that proposition cannot dislodge your certainty that you placed a black
ball in the bag. Thus, as Williamson (pp. 219–220) emphasizes, his analysis mandates
major revisions to Bayesian decision theory. He proposes an alternative framework
that retains some Bayesian elements while rejecting the core Bayesian idea that agents
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should respond to new evidence by conditionalizing on it (p. 220).Williamson’s frame-
work is designed to handle the bag example and other examples where evidence with
non-zero probability supposedly dislodges certainties.

I see no reason to revise Bayesian decision theory along the lines suggested by
Williamson. On the contrary, the standard Bayesian analysis of the bag example seems
correct to me: if you really are certain that you placed a black ball in the bag, then
drawing red 10,000 times cannot rationally dislodge that certainty. Of course, it is
very unlikely that you would draw red 10,000 times if you placed a black ball in the
bag. But unlikely events sometimes occur, and they are not in themselves a sound
basis for certainty eradication. Perhaps you should not have initially become certain
that you placed a black ball in the bag, yet given that you did become certain your
certainty should persist despite the 10,000 red draws. Here it is crucial to distinguish
between certainty that you placed a black ball in the bag and certainty that the bag
currently contains a black ball. Even if you are certain of the first proposition, it
does not follow that you are (or should be) certain of the second. After all, the black
ball might have surreptitiously escaped through a small hole or some other chicanery.
Drawing red 10,000 times may rationally lead you to downgrade your credence that
the bag currently contains a black ball while remaining certain that you placed a black
ball in the bag.

At any rate, my framework cannot model situations (if such there are) where
evidence with non-zero probability rationally dislodges certainties. It can model
numerous situations where evidence with probability zero rationally dislodges cer-
tainties. It models these situations without any revision to Bayesian decision theory.
On my approach, certainties cannot be dislodged by mere unlikely evidence, but they
can be dislodged by vanishingly unlikely evidence.

10 Conclusion

Philosophers should retire the canard that conditionalization always leaves certainties
in place. This canard reflects an overly narrow focus on the ratio formula and distorts
scientific practice. Kolmogorov conditionalization can eradicate certainties, including
certainties gained through prior exercise of conditionalization. It generates reason-
able credal updates across a range of cases, especially when supplemented with Weak
Generalized Rigidity. Overall, then, Kolmogorov conditionalization offers significant
advantages over ratio conditionalization, including an improved ability to model epis-
temic defeat.

I do not say that Kolmogorov conditionalization provides a universal basis for
defeasible inference. No doubt there are situations where Jeffrey conditionalization or
some other credal update strategy would bemore appropriate. There are also situations
where Kolmogorov conditionalization is inapplicable, such as when rcds do not exist
or are improper. Still, Kolmogorov conditionalization is a valuable addition to the
Bayesian toolbox. Furtherworkwill surely reveal additional philosophical applications
beyond those discussed here. I submit that rcds have great potential to enrich formal
epistemology, as they have already enriched other disciplines where Bayesian decision
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theory plays a prominent role. There awaits a vast terrain that philosophers have barely
explored.
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