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Abstract

The term robustness is ubiquitous in modern Machine Learning (ML). However, its
meaning varies depending on context and community. Researchers either focus on
narrow technical definitions, such as adversarial robustness, natural distribution shifts,
and performativity, or they simply leave open what exactly they mean by robustness.
In this paper, we provide a conceptual analysis of the term robustness, with the aim
to develop a common language, that allows us to weave together different strands
of robustness research. We define robustness as the relative stability of a robustness
target with respect to specific interventions on a modifier. Our account captures the
various sub-types of robustness that are discussed in the research literature, including
robustness to distribution shifts, prediction robustness, or the robustness of algorithmic
explanations. Finally, we delineate robustness from adjacent key concepts in ML, such
as extrapolation, generalization, and uncertainty, and establish it as an independent
epistemic concept.
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1 Introduction

Machine Learning (ML) models face a common problem: they achieve astonishing
predictive performance under testing conditions; yet, they often fail in real-world
deployment. To motivate the problem, consider some examples':

e Shortcuts: An ML model used to diagnose pneumonia from X-rays has been found
to achieve its predictive performance by exploiting confounding information—
e.g., hooks at the edges of the images. When transferred to real-world clinical
settings, this is likely to result in diagnostic errors (Zech et al., 2018).

o Natural Distribution Shifts: Despite performing as well as certified ophthalmol-
ogists in the diagnosis of diabetic retinopathy during training, a clinical field study
in Thailand showed that the ML model could not grade many of the fundus images,
since they were made under non-ideal lighting conditions (Beede et al., 2020).

e Adversarial Attacks: Small targeted manipulations—such as placing a colored
patch in the scene—have paralyzed the visual flow system of self-driving cars
(Ranjan et al., 2019).

e Performativity: Although the predictive performance of an ML model for estimat-
ing loan applicants’ default risks was initially fair across different demographics,
after a few months of use, the model disadvantages marginalized social groups by
assigning them higher interest rates. This is because more privileged social groups
have learned to game its functionality (Perdomo et al., 2020).

In each of these cases, the remedy is to improve the ML model’s robustness. But
what does it mean for an ML model to be robust? Despite being a key desideratum in
both, ML research and ML deployment, the notion itself is not well-defined. As a case
in point, it does not appear in any of the indexes of the highly influential textbooks
by Hastie et al. (2009), Shalev-Shwartz and Ben-David (2014), or Goodfellow et
al. (2016). Survey and benchmark papers on ML robustness rather focus only on
specific robustness notions, such as adversarial robustness (Dong et al., 2020; Dreossi
et al., 2019; Serban et al., 2020), robustness to natural distribution shifts (Drenkow
et al., 2021; Hendrycks et al., 2021; Koh et al., 2021; Taori et al., 2020), or shortcut
learning (Geirhos et al., 2020). Evidently, robustness research in ML is conceptually
fragmented.

Given that the concept of robustness is well-researched in philosophy of science
(Levins, 1966; Orzack & Sober, 1993; Schupbach, 2018; Weisberg, 2006; Wimsatt,
1981; Woodward, 2006), one might expect to find a ready-made general theory that can
be straightforwardly applied to robustness in ML. However, there are two obstacles:
Firstly, the debate on robustness analysis (RA) in science often focuses on parsimo-
nious analytical models that do not involve a learning process, which is why RA is
unable to capture the specifics of complex ML models. Secondly, although there is
considerable methodological overlap between RA in computer simulations (CS) for
scientific inquiry (Boge, 2021; Durdn & Formanek, 2018; Gueguen, 2020; Parker,
2011) and robustness research in ML, the former strand tends to tailor its theoreti-
cal frameworks to specific cases from High-Energy Physics or climate science. This

! The notions refer to robustness sub-types that we explain in Sect. 3.3.
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domain-specificity makes it challenging to apply theories of robustness from CS to
ML.

In this paper, we provide a unifying theory of robustness for ML and showcase how it
facilitates explaining and synthesizing different robustness sub-types in ML. We define
robustness as the relationship between two entities, a robustness target and a robust-
ness modifier, where the target remains (relatively) stable under relevant interventions
on the modifier (see Sect. 3). We identify crucial robustness targets and modifiers
within the ML pipeline and discuss strategies for ensuring robustness with respect to
these targets/modifiers. Our focus here is on the robustness of the model’s deploy-
ment performance under distribution shifts. Finally, we highlight what distinguishes
robustness from adjacent concepts in ML, such as extrapolation, generalization, and
uncertainty quantification (see Sect. 4). In particular, we argue that robustness is an
independent epistemic notion, presupposing the generalization capacities of the model
under training conditions, but going beyond that by shifting the focus to the reliable
real-world deployment of ML models.

Since ML models have become mainstays in many scientific fields, such as com-
putational neuroscience (Kriegeskorte & Douglas, 2018) or climate research (Ham
et al., 2019), we hope that our work also helps clarifying the requirements for scien-
tific inference with ML models, in addition to providing guidance for debates on ML
regulation.

To set the stage, Sect. 2 discusses the conceptual fragmentation of robustness in
ML, while also pointing out discontinuities between traditional RA in the sciences
and ML. Section 3 develops an account of robustness and shows how this account cap-
tures different robustness sub-types across the ML pipeline. Finally, Sect. 4 delineates
robustness from adjacent concepts in ML and statistics and addresses the normative
implications, resulting from the revaluation of robustness.

2 The (dis)unity of robustness in machine learning

In this section, we discuss the conceptual fragmentation of robustness research in ML
and situate our work within the philosophical robustness literature.

2.1 The conceptual fragmentation of robustness

Although robustness is ubiquitous in ML research and societal debates on ML regu-
lation, the concept itself is under-analyzed. This is surprising, to say the least. Like in
the debate on ML interpretability (Creel, 2020; Lipton, 2018; Sullivan, 2022; Watson,
2022), where the central concept lacks a clear definition, we believe that it is most
useful to start by tackling the conceptual foundations of robustness. Clarifying the
notion(s) of robustness is a prerequisite for ML researchers to get a better grip on (i)
what constitutes adequate evaluation criteria, (ii) where novel techniques to improve
robustness are needed, and (iii) what guarantees can be meaningfully provided for
robustness of ML models.
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What explains the conceptual fragmentation of robustness in ML? As we see it,
there are three possible conceptual explanations:

e Variety of Purposes: There may be different reasons and deployment scenarios
why and where robustness is desirable. In turn, this leads to a focus on different sub-
types of robustness.” For example, warding off adversarial attacks can be deemed
pivotal for self-driving cars but irrelevant to an epidemiologist, estimating virus
spread with ML models. In contrast, for the epidemiologist, remedying effects
arising from model performativity (see Sect. 3.3) is crucial.

e Categorical Heterogeneity: Robustness could be a vague umbrella term, denot-
ing a bundle of distinct phenomena without an underlying shared structure.
Consequently, a unified theory of robustness is destined to miss its mark.

e Reducibility: Perhaps robustness can be replaced by or reduced to other more
refined concepts from ML or statistics, such as generalization, extrapolation, or
uncertainty. If this is the case, little is gained by analyzing robustness as a separate
concept.

Our goal of establishing robustness as an independent epistemic concept and uni-
fying different strands of robustness research in one framework is compatible with
the variety of purposes explanation: throughout the paper, we showcase how different
strands of ML research, concerned with robustness in ML, are motivated by different
desiderata. That being said, we reject the latter two explanations: we will undermine
the categorical heterogeneity explanation in Sect. 3 by providing an account of robust-
ness that captures a wide variety of existing robustness sub-types. Moreover, we will
address the reducibility-explanation in Sect. 4 by arguing that robustness cannot be
reduced to the most promising candidate concepts, while also highlighting its specific
epistemic functions.

The list of possible explanations is not exhaustive. For example, there might be
also sociological factors, which we will not pursue in this paper, such as the hyper-
specialization of ML research: ML research is progressing rapidly, with theory lagging
far behind practical breakthroughs. To publish at major ML conferences, it is strategic
to focus on concise application problems rather than, say, an overarching theory of
robustness. Viewed in this light, conceptual fragmentation would be a side effect of
research and publication dynamics.

2.2 Robustness analysis in the sciences

The most refined philosophical discussions of the concept of robustness can be found
in the debate on RA in the sciences. RA describes a family of techniques that allow
discerning whether some phenomenon of interest is invariant, using independent
(or changing) means of detection (Schupbach, 2018; Wimsatt, 1981). This acts as
a safeguard against competing explanations of a result’s occurrence.

2A comparison case is again the interpretable ML (IML) literature (Molnar, 2020), where it is well-
established to distinguish between different purposes (e.g., recourse or scientific inference) and explanation-
targets (e.g., the model itself or the modeled phenomenon), resulting in different epistemic requirements
(Creel, 2020; Freiesleben et al., 2022; Zednik, 2021).
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The relevant account of RA is fairly liberal: it can be applied to a number of
different phenomena of interest, such as theorems, hypotheses, experimental setups,
model performance, and so on (Schupbach, 2018; Wimsatt, 1981). RA is particularly
valuable in disciplines that lack a unifying theoretical framework, such as in the life
sciences, or in disciplines that rely on highly idealized modeling assumptions, like
in economics, where it is difficult to empirically test whether the target system is
sufficiently well represented (Kuorikoski et al., 2010). Evidently, it is also highly
relevant for ML.

To understand the specifics of RA for ML, we start by considering RA for analytical
models as a contrast class. Here, the basic methodology (often called "triangulation’)
goes as follows (Weisberg, 2006): First, identify a group of sufficiently diverse models
that all predict a common result.’ Second, investigate whether all these models share
a robust property, such as the reliance on a specific variable or a generalizing theo-
retical property that can be proven. Third, provide interpretations of how the robust
mathematical strands in a model capture the causal structure of a given empirical
phenomenon of interest. Finally, formulate a robust theorem, which has the form:

Ceteris paribus, if [common core (causal) structure] obtains, then [robust
property] will obtain.
(Weisberg, 2006, p. 731)

As an illustration, the fact that greenhouse gas causation is an integral part of many
climate prediction models underscores that greenhouse gas concentration is causally
relevant for real-world increases in global warming (Lloyd, 2010, p. 982).

Against this backdrop, it is important to highlight some glaring differences between
the methodology of RA for analytical models and ML. Firstly, ML is an instrumental-
ist approach that prioritizes predictive performance over representational accuracy.*
Whether a model’s decision-function captures the structure of the target system mat-
ters only insofar as it enables greater predictive capacities.” Secondly, the opacity of
ML models (Boge, 2022; Creel, 2020; Sullivan, 2022) makes it challenging to achieve
a degree of transparency, necessary for detecting common model properties. Finally,
rather than comparing a set of sufficiently independent models to extract robust model
properties, ML aims to establish the robustness of an individual model by testing its
performance across sufficiently diverse data scenarios. Even when there is such a set
of diverse predictive models in ML, they are typically merged into an ensemble—
to achieve even greater predictive accuracy and improved robustness—rather than
scrutinizing their commonalities, (Zhang & Ma, 2012).

3 Note, however, that Schupbach (2018) criticizes appeals to evidential diversity in RA on the grounds that
all prevailing formal explications of such diversity are unsatisfactory.

4 Indeed, one of the key philosophical questions concerning ML in the sciences is whether deep neural
networks in particular possess meaningful representational properties. Strictly speaking, there are two issues
that need to be disentangled: (i) whether ML models possess representational capacities that are akin to
mental representations; (ii) whether ML models provide meaningful scientific representations of the target
system. Concerning (i), a good starting point, with a positive outlook, is Buckner (2018), whereas Boge
(2022) is a good starting point for (ii), albeit with a pessimistic view. We thank an anonymous reviewer for
this helpful comment.

5 Although an alignment of the model’s structural properties with the target system can be crucial for
enabling interpretability (Sullivan, 2022).
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Things get thornier when we compare RA for ML and CS. Due to the advent of CS
in fields such as High Energy Physics or climate science, the challenge is to determine
when we can trust a simulation model to generate credible experimental results and
under what conditions we are permitted to infer that a CS model faithfully represents
its target system (Boge, 2021; Durdn & Formanek, 2018; Karaca, 2022).

Just like in ML, RA for CS also strongly centers around predictive performance.
Indeed, despite differences in their model architectures, highly parameterized CS and
ML models might both be deemed to be instrumental devices that are used to make
accurate predictions (Boge, 2022). It is therefore not sufficient to consider (internal)
model properties to establish robustness of simulation models.

Consequently, a common means to determine the robustness of CS in the context
of climate science is to validate the model against historical climate events (Heiri
et al., 2014). Relatedly, in the Intergovernmental Panel on Climate Change (IPCC)
Assessment Report (currently in its 6th iteration), a key component of the RA is to
examine the performance spread of a model ensemble—for the purpose of estimating
the uncertainty of climate simulations (Arias et al., 2021, pp. 48-51).

Karaca (2022) emphasizes the robustness of experimental procedures to data selec-
tion, relating to the robustness of a specific means of detection with respect to the
inputs we feed to them. This seems conceptually closely connected to forms of adver-
sarial robustness, where the aim is that small variations in input data should not lead
to changes in the prediction (Szegedy et al., 2013). However, it remains to be seen in
what sense ML models can really be considered as experimental procedures, rather
than solely being methods for data analysis. Moreover, adversarial robustness in ML
raises some conceptual issues that are not captured by Karaca’s account.

The currently most pronounced account of RA in CS, with a view on high energy
physics, was developed by Boge (2021). Of particular interest in the context of ML
may be his notion of ’inverse parametric robustness’, referring to the insensitivity of
parameter values to varying deployment conditions. While robustness of parameter
values to changing data is often attained in ideal settings, e.g., via maximum likelihood
methods or Bayesian updating (Lavin et al., 2021), this is often not the case in practice
for more complex simulation models, e.g. in high energy physics (Boge, 2021). There,
parameter values must be tailored to specific contexts, making it difficult to assign
meaning to them. In this respect, complex simulation models are similar to ML—
in ML, too, parameter values are highly sensitive to the deployment context and the
learning setup (Quinonero-Candela et al., 2008).° Our framework may provide a bridge
to concisely discuss such connections between ML models and simulation models.

Nevertheless, while there is much to gain from engaging with the RA literature on
CS, there are some structural barriers regarding the extent that the relevant accounts can
serve as a blueprint for a theory of robustness in ML. On the one hand, many accounts
of RA in CS are tailored to the demands of very specific scientific domains. With regard
to robustness in ML, on the other hand, we are dealing with various target systems and
application scenarios. Moreover, some robustness sub-types are specific to ML—most
pertinently ’adversarial robustness’ or ‘robustness of ML model explanations’. As a

6 In ML, even within a context, there are a variety of parameter values that induce models with similar
performance—the so-called ’Rashomon effect’ (Fisher et al., 2019; Miiller et al., 2023).
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result, in the next section, we first take a step back and develop a framework that allows
us to conceptualize robustness issues in ML in a systematic way.

3 A unified account of robustness in machine learning
3.1 Towards a definition of robustness in ML

This section provides a definition of robustness in ML—with the aim to discuss
robustness research in ML more concisely.’

3.1.1 Robustness is a multi-place concept

In common parlance, robustness is a predicate that applies to a single entity. For
instance, we might consider a person to be robust if her immune system is resilient.
Similarly, a coffee machine gets called robust, if it is generally reliable. Call the
entity that is robust the robustness target. The intuition underlying single-place notions
of robustness is that that the robustness target works stable across a wide range of
possible situations. However, leaving the range of situations unspecified makes it hard
to operationalize the concept. In order to get a better handle on what it means for
a target to be robust, it needs to be specified in relation to which other entity the
robustness target remains stable—hereinafter referred to as the robustness modifier.®
Robustness is therefore a multi-place concept.

3.1.2 Robustness is a causal concept

The key idea behind robustness is that the robustness target remains stable under
changes in the robustness modifier. Changes is causal terminology. That is, we are
concerned with two causally related entities, the target and the modifier. Presupposing
an interventionist framework of causality (Woodward, 2005), a target is robust if
it remains stable in light of potential manipulations to the modifier. Note that the
manipulations do not have to be executed in reality: for the target to be robust, it is
sufficient that the target would remain stable if they were executed.

It might be argued against this causal view of robustness in ML that the modifier
and the target can be in a purely functional relationship. However, two things should
be noted here: First, models, also the ones describing functional relationships, are
generally implemented in physical systems (Boge, 2019). Our causal view highlights
that, in ML, we are experimenting on physical implementations, which is why we
do not conduct a purely formal analysis of functions (Simon, 1995). Second, even
purely functional relationships can be investigated causally. If there are no causal

7 Our framework is designed with ML robustness in mind, however, we think it could also partially be
useful to analyze robustness in other (scientific) domains.

8 While the notion of a robustness modifier is implicitly present in many papers in the philosophical
robustness debate, such as Boge (2021), Schupbach (2018) and Weisberg (2006), we think it is important
to make it explicit.
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dependencies beyond the functional dependency between modifier and target, a causal
description is still possible, even though it means taking a sledgehammer to crack a
nut. However, if there are causal dependencies, a causal analysis of robustness is the
only one that makes sense.

3.1.3 Robustness is limited in domain

A robustness target is rarely ever stable with respect to all possible interventions on
the modifier (Boge, 2021; Schupbach, 2018; Wimsatt, 1981). If that is the case, then
the modifier is not a cause of the target and robustness is trivially given. Robustness
becomes a concern when the modifier causally impacts the target, but the target remains
stable with respect to certain interventions on the modifier. The changes to a modifier
will be referred to as its domain. The more significant the changes in the domain, the
more difficult satisfying robustness becomes.

3.1.4 Robustness has a tolerance level

There are few, if any, applications in which a robustness target must be perfectly stable
(Boge, 2021; Karaca, 2022). Rather, it is often sufficient for the robustness target to
remain stable to a certain degree against changes within the modifier domain. We call
the degree to which we demand target robustness the target tolerance. If the target
tolerance is high, then robustness is less demanding and vice versa. What constitutes the
right target tolerance depends on the application context and the assurances needed. For
example, the target tolerance for an ML model designed to support clinical decision-
making is considerably lower than for an ML model that has been designed to detect
emails from fraudulent academic publishers.

3.1.5 A definition of robustness

Based on these considerations, we can define robustness as a causal, multi-place
concept with limited domain and a specified tolerance level.”

Definition 1 The robustness target is said to be robust to the robustness modifier if
relevant interventions in the modifier, as specified by the robustness domain, do not
lead to greater changes in the target than specified by the target tolerance.

The idea expressed here is that the target must remain relatively stable with respect
to specific changes on the modifier. Now, the task is to show how our framework is

9 This definition can also be expressed mathematically using the do-operator from the causality literature
(Pearl, 2009). This formalization makes the notion precise and allows its operationalization in different
applications. Let T and M be random variables describing the robustness target and the robustness modifier
respectively, Dpy C M the domain, and a7 € R the target tolerance. We say that T is robust with
respect to M in domain Dyy with target tolerance a7 if and only if

forall m € Dy holds d7 (T, T go(My=m) < @T-

where d7 describes a distance function on the range of target T'.
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The ML Pipeline

1. task 2. data collection and 3. model training 4. real-world

conceptualization preparation and selection deployment
robustness *  predictions +  deployment
targets performance

* explanations
. " . . i . del class * deployment distribution
robustness predictor choice data size mo !
i ¢ dat: isiti * data augmentation *  hyperparameters * environment type

modifiers ata aquisition * training algorithm *  social dynamics

* performance metric + data splitting

+ regularization method

Fig. 1 The ML pipeline. It contains all relevant steps, ranging from problem conceptualization to model
deployment in a real-world environment

able to capture the peculiarities in ML. What are possible robustness targets, modifiers,
domains, and target tolerances? How can this framework capture current robustness
discussions in ML? A precondition for answering these questions is to take a look at
the ML pipeline.

3.2 The ML pipeline

The pipeline shown in Figure 1 encompasses the different steps in building and
deploying supervised ML models.

3.2.1 Task conceptualization

Every supervised ML problem starts with task conceptualization. Here, developers
must address fundamental questions such as: What is the prediction target Y ? What are
the predictors X = (X1, ..., X,)? From what measurement procedure is the (l1abeled)
data obtained? With what loss function L should predictive success be measured?

3.2.2 Data collection and preparation

Once the fundamental modeling questions have been settled, ML practitioners move
on to the data. Using the selected measurement procedure, they are able to draw '©
a number of data-points (x®, y(i))izl,m,n from X, Y, where we call n the size of
the data. Provided that ML practitioners have additional information about the data
domain, e.g., whether a certain type of noise on the data or simple transformations like
mirroring or rotating images should (not) impact the prediction, they can additionally
augment the data; we call the original data set together with the augmented data the
augmented data-set. The next important step is to split this augmented data-set into
three junks, the training data, the validation data and the test data: the training data is
for training individual models; the validation data is for fitting hyper-parameters (see
below for an explanation); finally, the test data is held out of the training process to
make a precise estimate of the model’s expected prediction error. These three data sets

10 1 supervised learning, we often assume that this data is drawn independent and identically distributed
(iid.).
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must be randomly sampled from the augmented data-set'!, be disjoint and together
form the entire data-set.

3.2.3 Model training and selection

As a next step, the modeler is searching for a good prediction model. Here, she must
select an appropriate class of models (say tree ensembles, or a certain type of neural
network), a training algorithm (e.g., random forest algorithm for tree ensembles, and
stochastic gradient descent for neural nets), and then decide on a range of hyper-
parameters. Hyper-parameters are important to set up the optimization problem, as
they may restrict the model class or guide the model search. Examples of hyper-
parameters in ML are the splitting criterion in random forests or the learning rate in
stochastic gradient descent. By applying the training algorithm with specific hyper-
parameters to the training data, the modeler obtains a model from the model class with
low training error. The training error here describes the average prediction error on
the training data relative to a certain notion of loss/error.

To avoid over-fitting of the model to the training data, the modeler selects the
hyper-parameters based on the so-called validation error. Again, the validation error
is estimated by the average loss, but on the validation data set rather than the training
data. Importantly, the validation data set is generally not directly part of what the
training algorithm sees. Typically, this search for good models is repeated for other
model classes and hyper-parameter settings, leading to a set of different models with
similar low validation error. The model that is finally selected for deployment is usually
the one with the lowest average fest error (also called the empirical risk).!? The test
error gives a good estimation of the i.i.d. generalization error, describing the true
expected prediction error of the model under the assumption that the data we consider
is distributed similarly to the data we observed so far.

3.2.4 Real-world deployment

Eventually, the ML developer can deploy the ML model in the real-world on the task
she designed it to perform. Similar to the model training and selection process, the
model is again shown data. However, unlike the previous phase, the data is processed
live, often without human supervision or pre-processing. The context under which the
data is taken may change and the model’s predictions have practical consequences. We
say, the data is sampled from the deployment distribution. Crucially, the deployment
distribution can change over time and can be affected by predictions of the deployed
ML model itself.

For economic, moral, or legal reasons, it may be necessary to explain algorithmic
decisions to end-users (Vredenburgh, 2022). Consequently, these explanations may
be deemed an essential part of the ML deployment and may even affect the data which
our model is exposed to (Konig et al., 2022).

1 Where the proportion/size of the three data-sets is again a choice the modeler has to make.

12 The test error is defined just like the training-error, but is evaluated by using the test data rather than the
training data.
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In the following section, we discuss relevant robustness targets and modifiers in
current robustness research. The section is not intended to provide a comprehensive
picture of the research landscape on robustness in ML, but to systematize different
robustness sub-types through our conceptual framework.

3.3 Robustness targets and modifiers in ML

In principle, anything in the pipeline can serve as a robustness target or a modifier.
However, the modifiers must precede the targets in the pipeline, otherwise intervening
on the modifiers would never affect the target. Task conceptualization precedes all
conceivable targets and therefore contains universally relevant modifiers. However, it
is exceedingly difficult to evaluate the influence of these modifiers. Since there is little
to no research on modifiers related to task conceptualization, they are not discussed
here.

In this section, our emphasis lies on the most important robustness target in current
ML research—the deployment performance. At the same time, robustness research in
ML is not exhausted by a mere focus on deployment robustness. Therefore, we also
briefly discuss "ML model predictions’, and "ML model explanations’ as additional
robustness targets.

To illustrate the distinct challenges for each of these robustness targets, we use
the case-study (with some variations) of an ML model that predicts positive cases of
COVID-19 from radio-graphic images (DeGrave et al., 2021). The example is suitable
for our purposes because it is paradigmatic of an application that is subject to various
robustness concerns and where a failure of robustness can have serious consequences
for both, model authorities and data subjects.

3.3.1 When the target is the deployment performance

Since prediction is the main purpose of supervised learning, the deployment per-
formance is the most crucial robustness target. This is closely tied to the fact that
performance guarantees of the model during training are not transferable to novel
settings (Koh et al., 2021). The most established modifier here is the deployment dis-
tribution; if the model’s performance is highly sensitive to expected changes in the
deployment distribution, this should be deemed as a red-flag for utilizing the model—
especially if the resulting epistemic risks (Douglas, 2009) culminate in financial, legal,
or health concerns. Performance robustness checks to relevant modifications in the
deployment distribution are therefore integral for every model audit.

The deployment distribution itself is not the only relevant modifier in this context.
Other modifiers, which can be found in Figure 1, are the task conceptualization (e.g.,
the choice of predictors or the loss function), data collection and preparation (e.g., data
augmentation or data size), or the model training and evaluation step (e.g., the training
algorithm or hyper-parameter choices). These robustness modifiers are usually studied
with respect to a fixed deployment distribution scenario. For instance, we might want
to examine the impact of data augmentation on the deployment performance, under
the assumption that the model is used in an adversarial environment.
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It is important to distinguish between festing robustness and improving robustness.
When testing robustness, the task is to investigate whether an (fixed) ML model meets
robustness standards within an auditing process. By contrast, when aiming to improve
robustness, the focus is on amelioration strategies—which are methods that (help to)
generate models, performing strongly under deployment conditions. In our frame-
work, amelioration strategies can be described as modeling choices that improve the
performance compared to default modeling choices, conditional to a given deployment
distribution.

To highlight the difference between testing robustness in an audit and improving
robustness with amelioration strategies, consider our COVID-19 example. When we
evaluate our ML model on data from different deployment distributions (e.g., for
data stemming from other X-ray devices) we are testing robustness. A positive audit
(say, the deployment performance is similarly high across data from different X-
ray devices) increases our confidence in the model’s clinical applicability. However,
provided that the deployment performance is not robust to the relevant distribution
shifts, we must train a new ML model by leveraging amelioration strategies, designed
to improve model performance for these scenarios. In the COVID case, we may know
from experimental ML research that the predictive performance on a range of X-ray
devices increases for data augmentation techniques that change the background in
X-ray images. Thus, it is advisable to apply these techniques if we assume that the
model will be shown images from such X-ray scanners.

As ameans for identifying which robustness phenomena are at stake for a given ML
application, the following questions can provide guidance: Is the deployment distri-
bution similar to the training distribution? Does the deployment distribution naturally
change over time? Does the environment adapt strategically to the model, to the detri-
ment of the predictive performance (we call such environments adversarial)? Does
the involvement of the predictive model itself affect the environment?

3.3.2 Robustness in the classical i.i.d. setting

While most robustness issues arise from a mismatch between the training- and
the deployment distribution, robustness can also be a concern when training and
deployment conditions are identical. In such cases, robustness researchers are mainly
concerned with amelioration strategies that ensure strong performing models. Show-
ing that the (high-dimensional) training and the deployment distribution satisfy the
i.i.d. assumption is possible but requires vast data sets and computational resources
to test with classical statistical testing methods (Lehmann et al., 2005). Thus, the
i.i.d. assumption in ML is mainly justified with domain knowledge.' Ensuring robust
performance in an i.i.d. setting is what classical ML research and statistical learning
theory are all about (Bishop & Nasrabadi, 2006).

ML models can fail to i.i.d. generalize for various reasons. For instance, a model
may have both, low training and low test error, but once it is deployed in a similar
setting, its predictive performance drops—that means, the performance is not robust

13" As an aside, scientific disciplines like structural biology may use large benchmark data-sets, where the
data are highly standardized, satisfying the i.i.d. assumption in turn by design.
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with respect to modifications in the test data sampling. This problem can occur because
the data-set used for training and testing is not a statistically representative sample of
the underlying data distribution. In consequence, the model learned to exploit features
that are only predictive within the sample but not within the whole population (Althnian
etal., 2021).

This becomes evident in the case of shortcut learning, where the model relies on
spurious correlations in its predictions, rather than the intended features (Geirhos et al.,
2020): in the example of COVID-19 prediction, imagine a case where most positive
COVID cases in the training data were females, which is why the model takes the form
of the pelvic to be predictive of COVID. Or suppose that a model relies on hand-written
annotations on X-ray images by clinicians, which are not available under deployment
conditions. Shortcut learning resembles surface learning of students in classrooms,
relying on simple decision-rules in order to pass an exam (Geirhos et al., 2020). The
problem of shortcuts is that they might go unnoticed in training and only occur in
deployment scenarios because external validation data may not be available. This is a
particularly pressing issue for rare/novel diseases. In order to prevent shortcut learning,
an amelioration strategy is to remove confounding information from the data (DeGrave
et al., 2021) and ensure that the data is representative of the underlying distribution.

There are several amelioration strategies for the goal of achieving i.i.d.
generalization—acting on various modifiers within the ML pipeline. They all can
be subsumed under the term regularization (Goodfellow et al., 2016). The simplest
regularization technique is data augmentation, in which existing data instances are
transformed (e.g., by flipping directions or changing the contrast in X-rays) and added
to the training data (Rebuffi et al., 2021). Data augmentation increases the data size,
which is a key factor for successful i.i.d. generalization (Geirhos et al., 2021). Other
regularization techniques focus on the learning process rather than the data. (Li et al.,
2020; Srivastava et al., 2014; Tibshirani, 1996).

3.3.3 Robustness to natural distribution shifts

The deployment distribution rarely ever remains the same as in training conditions.
Natural distribution shifts can result from changing environmental conditions that
lead to a mismatch between the deployment and the training distribution (Xie et al.,
2019). Applied to the ML model used for detecting COVID-19, different lighting in the
room, new cameras (with a different resolution), or changes in the patient demograph-
ics can all induce distribution shifts (Finlayson et al., 2021; Hendrycks & Dietterich,
2019; Liu et al., 2020). Time itself may even induce natural distribution shifts as it
impacts societal norms, data-subjects’ behavior, and large-scale environmental con-
ditions. Ultimately, we must be aware that we are predicting future events based on
data from the past, which can raise both epistemic and ethical concerns (Hardt & Kim,
2022).

One example of a natural distribution shift is a so-called label-shift (Lipton et al.,
2018). It describes a case where the deployment distribution of the prediction target
is different to its training distribution. In the COVID case, suppose that we try to
predict whether a person has COVID-19, based on a set of symptoms, such as dry
cough, fever, or sense of smell. For this purpose, we rely on data available from the
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year 2020. However, by the end of 2022, the virus has mutated several times: features
that have been clear signs of COVID in 2020, such as dry cough and a loss of smell
are not as prevalent for COVID variants in 2022 (Whitaker et al., 2022). Different
approaches allow to ameliorate models against label-shifts, depending on whether
only the distribution of labels or also of the covariates changes (Garg et al., 2020).

Amelioration strategies to prepare for natural distribution shifts act again on various
steps in the ML pipeline and include adjusting the model architecture (Li et al., 2020),
using tailored data augmentation ( Huang et al., 2018), modifying the optimization
technique (Madry et al., 2017; Yang et al., 2020), or retraining the model (Finlayson
etal., 2021).

3.3.4 Adversarial robustness

Adversarial robustness subsumes cases where the deployment environment is an adver-
sarial actor (Huang et al., 2011). This means that the deployment distribution changes
such that the ML model produces erroneous predictions. In the current literature,
adversarial distribution shifts can be described as modifications to the original data
distribution by adding imperceptible but intelligently designed changes/noise (Serban
et al., 2020; Yuan et al., 2019).14

Several papers have shown that standardly trained ML models are not robust to
such modifications in the deployment distribution, called adversarial attacks (Good-
fellow et al., 2014; Szegedy et al., 2013); these attacks can be efficiently executed in
real-world scenarios (Athalye et al., 2018; Song et al., 2018) and performed even if the
attacker has only application programming interface (API) access to the model—as
these attacks transfer between different models (Papernot et al., 2016). As an example
of an adversarial attack in the medical domain, consider a case where humanly imper-
ceptible noise is added to medical images to fool the ML model into classifying moles
as malignant skin tumors, while reporting high confidence (Finlayson et al., 2019).

Fundamental research on the causes of ML models’ vulnerability to adversarial
attacks led to various amelioration strategies: in the context of adversarial attacks,
amelioration strategies are usually called defenses (Goodfellow et al., 2014; Tanay &
Griffin, 2016).!5 However, common defenses based on data augmentation (adversarial
training), architectural defenses, or anomaly detection are only partially successful:
they just tend to work for certain adversarial attacks (Serban et al., 2020; Shafahi
et al., 2019; Zantedeschi et al., 2017). The effectiveness of such defense strategies is
therefore subject to controversies, particularly since they might (negatively) impact the
i.i.d. performance by constraining the amount of available predictive features (Tsipras
et al., 2018; Yang et al., 2020).

One interpretation about the nature of adversarial attacks dominates in recent
research. According to this view, the vulnerability of ML models to adversarial attacks

14° Adversarial robustness also includes data-poisoning—e.g., the modification of the training data prior to
the training process with the goal of creating weak-spots in the model (Biggio et al., 2012). Since we are
concerned with modifications in the deployment and not in the training distribution, we focus on adversarial
robustness in the above sense.

15 Similar to the defenses against adversarial attacks, there are also defenses against data poisoning
(Steinhardt et al., 2017).
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results from the very nature of association-based supervised ML (Buckner, 2020; Ilyas
et al., 2019); the models learn to exploit all patterns inherent in the data that contain
predictive information, including such patterns that are inscrutable to human cognition
or only associative but not causal for the prediction target (Freiesleben, 2022). The
reliance on these non-causal, humanly inscrutable patterns is exploited in adversarial
attacks, leading to the vulnerability of ML models to such changes. This view con-
tributes to a revised understanding of what is required to cope with adversarial attacks:
The problem becomes to separate legitimate predictive features from non-legitimate
humanly inscrutable predictive features (Buckner, 2020), and causes from mere asso-
ciations (Scholkopf, 2022); both tasks are tremendously hard and cannot be readily
used to design novel defenses.

3.3.5 Robustness to model-induced distribution shifts

The model’s predictions themselves can lead to distribution shifts by causing changes
in people’s behavior. This phenomenon is called performative prediction (Perdomo et
al., 2020). The underlying problem is common in social science experiments: in virtue
of their being studied upon, research subjects may (unconsciously or deliberately)
adjust their behavior, which then impacts the validity of the generated data (Jiménez-
Buedo, 2021).'® To illustrate this with a variation of our COVID prediction model:
assuming that the model is used to inform triage decisions (e.g., by estimating the
risk of severe disease progression), certain patient groups (high-risk patients or people
distrusting algorithms) may refuse to visit a given hospital. In turn, the model might
be used for demographics other than those for which it was trained.

To preserve high model-performance, the most common amelioration strategy
is to retrain the model on the new data; but again, the retrained model enters the
performativity-cycle. Interestingly, there exist equilibrium states where the perfor-
mance is high and predictions do not result in further distribution shifts (Brown et al.,
2022; Perdomo et al., 2020). That being said, these equilibrium states are bound to very
demanding conditions, which is why the results also permit a negative interpretation.

One special kind of performative prediction that is well-studied in ML is strategic
classification. It describes distribution shifts that occur because individuals strate-
gically optimize their behavior to reach a desired classification outcome—e.g., by
making small financial transactions to boost one’s credit score (Hardt et al., 2016).
Preventing strategic behavior that leads the model to mis-classifications (also called
gaming), while incentivizing agents to achieve their desired outcome through ade-
quate means, proves difficult for developers and policymakers, not the least because
it involves a challenging causal inference problem (Miller et al., 2020).

3.3.6 Robustness targets beyond performance

Having discussed robustness phenomena related to predictive performance, we now
turn to other robustness targets:

16 In the philosophy of social science, reactivity is the more common term than performativity.
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3.3.7 When the target is ML model predictions

Predictions of an ML model f are another robustness target, with the feature values of
the data being the most central modifier. Here, the goal is to determine whether the ML
model makes its predictions based on meaningful features. To give an example from
clinical medicine, TomaSev et al. (2019) developed an ML model that predicts the risk
of acute kidney failure for patients up to 48 hours in advance. In the course of the model
evaluation, the investigators manipulated the feature weights of diagnostic markers to
assess how it impacts the predicted output. This is to ensure that the model tracks
clinically meaningful information, increasing confidence in its clinical applicability
in turn. Model-agnostic IML!7 is another strategy to detect biases in ML models. For
instance, individual conditional expectation (ICE) curves describe the sensitivity of
individual predictions to changes in a single feature (Goldstein et al., 2015).

Aside from providing sanity checks, procedural algorithmic fairness can be another
objective regarding the robustness of model predictions. The underlying idea here is
that the model makes accurate predictions across different demographic groups for
the right reasons (Barocas et al., 2017; Schwobel & Remmers, 2022). Pragmatically,
for many instances of consequential decision-making, this means that the predictions
should not be affected by sensitive attributes, such as gender or ethnicity (Grgi¢-Hlaca
et al., 2018; Kusner et al., 2017; Morseet al., 2021). Several amelioration strategies
have been proposed to enable procedurally fair ML models, relying on data augmen-
tation (Sharma et al., 2020), architectural adjustments (Du et al., 2020), and feature
selection (Dwork et al., 2012; Gajane & Pechenizkiy, 2017; Grgi¢-Hlaca et al., 2018).
Intriguingly, robustness and fairness are increasingly thought together in model eval-
uation (Li et al., 2021; Xu et al., 2021), which is why it has been argued that they
converge (Lee et al., 2021).

3.3.8 When the target is ML explanations

Explanations are increasingly becoming an important aspect of the ML pipeline when
it comes to deployment in high-stakes scenarios. After all, judges, clinicians, and poli-
cymakers need to understand and justify why consequential decisions are being made.
As a result, ML explanations have established themselves as an important robustness
target. The primary concern here is to which extent the explanations provided by vari-
ous Interpretable Machine Learning (IML) methods faithfully represent the inner logic
of the ML model (Rudin, 2019). Several ML research papers have demonstrated that
standard IML methods provide non-robust explanations with respect to modifications
in the trained ML model, hyperparameter choices of the IML technique, or changes
to the input: Popular IML techniques such as Local Interpretable Model-Agnostic
Explanations (LIME) ( Ribeiro et al., 2016), SHapley Additive exPlanations (SHAP)
(Lundberg & Lee, 2017), and counterfactual explanations (Wachter et al., 2017) can all
be tricked to provide any desired explanation by modifying the model in areas without

17 The name model-agnostic stems from the fact that the model is seen as an input-output mapping, ignoring
the specific model structure (Scholbeck et al., 2019).
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data support (Lakkaraju & Bastani, 2020; Slack et al., 2020, 2021 );18 In a similar man-
ner, methods that aim to highlight the model’s attention in a decision (called saliency
based techniques) are highly unstable in light of constant or small noisy changes in
images (Ghorbani et al., 2019; Kindermans et al., 2019); Surprisingly, saliency maps
have shown to be robust to the specifics of the ML model, which gives an example
of a robustness statement that must be interpreted negatively (Adebayo et al., 2018);
Lastly, feature importance scores vary across equally well performing models Fisher
etal. (2019).

Ensuring the robustness of explanations becomes particularly challenging for
recourse recommendations, whose purpose is to inform end-users of potential actions
they can take to achieve a desired outcome, such as getting a loan request accepted
(Hancox-Li, 2020; Venkatasubramanian & Alfano, 2020). In this vein, Upadhyay et al.
(2021) studies robustness failures in recourse explanations due to model shifts, whereas
Konig et al. (2022) show that recourse explanations themselves may induce distribution
shifts in the deployment distribution—in virtue of which recourse recommendations
often fail to provide reliable action guidance. This is because recourse recommenda-
tions provoke end-users to change their behavior. To counteract this performativity
of recourse recommendations, Konig et al. (2022) develop an amelioration strategy
whose basic idea is to constrain the given explanations based on causal knowledge.

3.4 Modifier domain and target tolerances in ML

Modifier domains describe a range of situations that the modifier might be in. Depend-
ing on the modifier, this can be a set of alternative data splits, regularization strategies,
or deployment distributions. The choice of a good modifier domain is up to the user
and is always context dependent. What modification might occur? What is the worst-
case scenario for which we need to provide guarantees? Universal modifier domains
generally make little sense, since there always exist some deployment distributions
where the model performance drops—as has been demonstrated by the no-free lunch
theorems (Sterkenburg & Griinwald, 2021; Wolpert, 2002).

Just like the modifier domains, the target tolerance is context specific. It depends
on the degree of robustness needed, the distance function, and also the scaling of
features/performances. In light of this, the modifier domain, distance function, and
target tolerance can be seen as the fine-tuning parameters in the study of robustness.

4 The irreducibility of robustness

In Sect. 2.1, we raised the possibility that robustness in ML may be reducible to other
concepts. In this section, we now refute this idea by arguing that robustness is neither
reducible to, nor identical with, other central concepts in ML, such as extrapolation
or generalization. Instead, our claim is that robustness is a complementary epistemic

18 Adapting the selection of data points to generate the explanation may defend against some of these
attacks but not all of them (Vre§ & gikonja, 2021).
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Fig. 2 Interpolation vs extrapolation. The blue dots describe the data along predictor x and target y. For
value x = 3 (green), the correct target value y is unknown, but x lies close to values for which we know
y—so we must interpolate to predict y for x = 3. For value x = 10 (red), the correct target value is also
unknown, but it lies outside of the range of the data we have—thus we must extrapolate to predict y for
x =10

concept to uncertainty quantification regarding the deployment of ML models under
real-world conditions.

4.1 Robustness is not reducible to extrapolation

Extrapolation describes the prediction of data that lies geometrically outside of the
manifold, spanned by the training data (Brezinski & Zaglia, 2013). Usually, extrapola-
tion is contrasted with interpolation, describing the prediction of data that lies on this
manifold (Bishop & Nasrabadi, 2006; Goodfellow et al., 2016; Hasson et al., 2020).
However, it is difficult to draw a clear line between interpolation and extrapolation in
practice, because how exactly the manifold is spanned by the training data is contro-
versial: is it only the data-set itself, its linear hull, its convex span, or some completely
different geometric closure of a set (see Figure 2 for an intuition)?

What is less controversial,'? is that current ML models are designed for interpola-
tion, rather than extrapolation (Barnard & Wessels, 1992; Haley & Soloway, 1992).
Extrapolation only works if we incorporate a strong inductive bias in learning: that is,
if we encode knowledge about the data generating process into the learning procedure
(Gordon & Desjardins, 1995; Mitchell, 1980). It is debatable whether deep neural nets
can exhibit such a strong inductive bias, as it has been shown that they can even fit
random noise perfectly (Zhang et al., 2021).

It seems as if extrapolation and robustness handle similar problems, provided that
both are concerned with reliable predictions on data that might lie outside of the training
data. However, there is an important difference: in the case of extrapolation, we assume
that the prediction task has not really changed. What differs, instead, is the data; the
data either stems from the same distribution as the training data but is not represented
in it. Alternatively, it results from a change in the distribution of predictors P(X) (this
is often referred to as a covariate shift). What must remain constant in extrapolation

19 (Balestriero et al., 2021) see the strengths of ML in extrapolation. However, they use the convex hull for
their notion of manifold, which can be argued is too narrow.
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is the relationship between the predictors and the targeti.e. P(Y | X). For robustness,
this is not necessary (think of label-shifts). Thus, at most, extrapolation is a sub-type
of robustness but not vice versa.

Extrapolation is often studied in the context of causal inference, namely the extrap-
olation of causal effects to a target system under real-world interventions (Khosrowi,
2022; Reiss, 2019). This causal notion of extrapolation comes closer to our notion of
robustness: real-world interventions lead to distribution shifts, and conversely, distri-
bution shifts can always be described as interventions in the data-generating causal
mechanism (Pearl, 2009). However, this causal strand of research presumes a very
different conceptual framework, focusing on causal assumptions about the relation
between the target system and the original model. Our account, by contrast, only
makes assumptions about the deployment distribution.

4.2 Robustness goes beyond (i.i.d) generalization

A model i.i.d. generalizes if it has low error on unseen test data from the same distri-
bution as the training data. One reason why ML models might fail to i.i.d. generalize is
that they fail to interpolate the data due to over- or under-fitting (Bishop & Nasrabadi,
2006; Hastie et al., 2009). Alternatively, the model may fail to extrapolate due to an
unsuitable inductive bias, or because it has been trained with too little data.

Li.d. generalization does not capture robustness because it does not deal with pre-
dictive performance in the presence of distribution shifts. Instead, i.i.d. generalization
provides performance assurances in a static environment. For performance robustness
instead, everything revolves around changes in the environment and their impact on
model performance.

Nevertheless, i.i.d. generalization is a necessary, though not sufficient condition for
robustness. If an ML model does not generalize well under i.i.d. conditions, robustness
is the least of its problems. Robustness, by our definition, is a relative concept that
refers to the initial state of the model under training conditions. For example, if the
initial model fits the training data poorly, it will most likely also perform poorly under
distribution shifts. Consequently, even though robustness as a concept is generally
applicable, an analysis of robustness in ML models is only meaningful if a sufficient
level of i.i.d. generalization has been achieved.

One might argue that generalization is really not about the model’s performance in
ani.i.d. setting, but rather in an out of distribution (0.0.d.) setting (Geirhos et al., 2020).
O.o.d. is usually contrasted with i.i.d., highlighting that the samples may be drawn
from a different distribution (e.g., due to distribution shift) or they are not sampled
independently. Even though intuitively, 0.0.d. generalization is similar to our notion of
robustness, there are good reasons to prefer robustness over o0.0.d. generalization as a
concept: Firstly, 0.0.d. generalization as a formal predicate lacks a proper operational-
ization of its success conditions. It remains unspecified to which distribution exactly
the model should generalize, how strict the notion for marginal performance drops is,
or if 0.0.d. generalization requires i.i.d. generalization. Precisely these success condi-
tions have been provided for robustness in this paper. Secondly, 0.0.d. generalization
puts the focus exclusively on the deployment performance, whereas robustness is the
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more powerful meta-concept that can be applied to any target, including predictions
or explanations. Finally, unlike o.0.d. generalization, robustness in ML is an inher-
ently causal concept. It therefore goes beyond model audits, by enabling control and
informing amelioration strategies.

4.3 Robustness complements uncertainty quantification

Building on our conceptual framework for robustness, it can be argued that the objec-
tive of uncertainty quantification in ML is to estimate the sensitivity of a target state
with respect to an indeterminate modifier scenario. In plain words, how do uncer-
tainties in the modifiers within the ML pipeline propagate forward to the relevant
target?

There can be different kinds of uncertainties involved in ML, dependent on the
modifier: (i) uncertainties can arise in our data, e.g., due to flawed instruments (Abdar
et al., 2021; Hiillermeier & Waegeman, 2021); (ii) there can be uncertainties in the
learning process, since many optimizers and models contain stochasticity (Hennig
et al., 2015; Molnar et al., 2021; Nadeau & Bengio, 1999); (iii) or, there can be
uncertainties about the deployment environment faced (Abdar et al., 2021; Koh et al.,
2021).

Interestingly, the first two of these types of uncertainties have counterparts in the
philosophical debate on CS, by way of uncertainties related to measurement and
uncertainties due to computation (Boge, 2021; Parker, 2017; Tal, 2012). And the
parallels between uncertainty in ML and CS go even further. For instance, the concepts
of aleatoric (non-reducible) and epistemic (reducible) uncertainty in ML (Hiillermeier
& Waegeman, 2021) closely match the notions of statistical and systematic uncertainty
by Staley (2020). Similarly, different sources of epistemic uncertainty, such as limited
computational resources or imperfect modeling, closely matches what Parker (2017)
calls dynamical model error and numerical error.

Relevant uncertainty targets in ML are the same as for robustness targets: pre-
dictions, performance, and explanations—and many papers in the field evaluate
uncertainty for these targets (Hiillermeier & Waegeman, 2021; Molnar et al., 2021;
Nadeau & Bengio, 1999). We see that robustness and uncertainty quantification are
both powerful meta-concepts in ML for assessing the reliability of model properties.?’
Given the strong similarity between uncertainty quantification and robustness in ML,
is there a way to delineate both notions?

There are indeed clear differences between the two concepts in ML. First, in uncer-
tainty quantification, the modifier states are weighted according to their likeliness.
By contrast, in robustness, all states that are within the modifier domain are on equal
footing. While a single outlier scenario within the modifier domain may break robust-
ness, the uncertainty of the target state may remain low because that outlier scenario is
considered unlikely. Second, robustness only considers scenarios within the modifier
domain, whereas uncertainty quantification considers all possible scenarios—although

20 Indeed, they can be even applied to each other; one can study the robustness of uncertainty quantification
(Hein et al., 2019; Kristiadi et al., 2020), or quantify the uncertainty of performance robustness (Nadeau &
Bengio, 1999).
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it may not assign positive weight to all of them. Third, uncertainty quantification esti-
mates the uncertainty in the target state, however large it may be. Robustness, on the
other hand, is a binary predicate that describes whether the target state does not change
more than specified by the target tolerance.

More fundamentally, robustness as a property encodes causal knowledge about
the object of interest. That is, it tells model-developers that the robustness target
remains stable (given a certain tolerance level), compared to an initial state under
certain interventions. Even though uncertainty encodes similar knowledge, the two
can be seen as complementary notions when it comes to guiding actions. Robustness
assures that even in a worst-case scenario, the robustness target does not change more
than specified by the tolerance level. Contrastingly, even if it would have devastating
effects, uncertainty quantification may give us optimistic estimates for the expected
target state, provided that the worst-case scenario is unlikely to occur.

Although both robustness and uncertainty quantification are meta-concepts that can
help to analyze the sensitivity of any target, we find that robustness is most beneficial
when it comes to the overall model evaluation, whereas uncertainty quantification may
be more crucial for individual predictions. Uncertainty quantification is particularly
important when the model is utilized under conditions where assurances for the overall
performance are insufficient; think of cases where an ML model is used as a support tool
to guide consequential decision-making. Here, communicating the model’s uncertainty
enables policymakers to assess the model’s confidence for single instances. If the
reported uncertainty is low, the human decision-maker may defer to the model, whereas
if the uncertainty is high (by whatever predefined standard), decision-makers should
abstain from giving much weight to the algorithmic predicted output (Kompa et al.,
2021).

Unlike for individual predictions, uncertainty quantification is often less feasible
for overall model evaluation: Assigning probabilities to the target state necessitates
assigning probabilities to scenarios in the modifier domain. However, especially for the
modifiers that are most relevant for model performance, such as learning algorithms,
data splitting, or deployment distributions, such an assignment either does not make
any sense or the necessary information is not available.

5 Conclusion

Whenever ML models are deployed in environments where the stakes are high, it is
important to implement appropriate guardrails. However, i.i.d generalization by itself
is insufficient to provide the necessary assurances, since even high performing ML
models are vulnerable to changes in the deployment distribution. We believe that the
concept of robustness—having distinct epistemic functions from other concepts in
ML and statistics—can help to provide much needed guardrails.

The starting point of this paper was the observation that, so far, the usage of robust-
ness in ML has either been entirely context dependent or simply left vague. The
key contribution of our framework is to provide a common language for robustness
research. What is meant by robustness is fully specified by a given robustness target,
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modifier(-domain), and target tolerance. Through this lens, we have analyzed a vari-
ety of robustness sub-types, while also discussing possible strategies for improving
robustness in ML. Lastly, we hope our work emphasizes the value of (philosophical)
conceptual analysis in the fast-moving landscape of ML research.

Looking ahead, one task of future work could be to investigate the role of robust-
ness within the wider nexus of trustworthy and reliable ML (Duede, 2022; Duran &
Formanek, 2018). In scientific contexts, for example, it would be important to explore
and understand the relationship between ML robustness and the reproducibility of
ML models. In domains such as clinical medicine or criminal justice, again, it may
not suffice to confine the analysis on model performance. Rather, the ML model must
be understood as part of a socio-technical system in which the successful interplay
between the ML model and human decision-makers is crucial. This interplay between
model and human, in turn, may require additional guarantees, such as prospective
studies on clinician-ML interaction (Genin & Grote, 2021). Overall, we hope that this
paper will prove to be a useful point of reference for future research on trustworthy
ML.
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