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Daniel Kostić1 ·Willem Halffman2

Received: 12 January 2023 / Accepted: 30 August 2023 / Published online: 29 September 2023
© The Author(s) 2023

Abstract
The philosophical literature on scientific explanation in neuroscience has been dom-
inated by the idea of mechanisms. The mechanist philosophers often claim that
neuroscience is in the business of finding mechanisms. This view has been chal-
lenged in numerous ways by showing that there are other successful and widespread
explanatory strategies in neuroscience. However, the empirical evidence for all these
claims was hitherto lacking. Empirical evidence about the pervasiveness and uses of
various explanatory strategies in neuroscience is particularly needed because exam-
ples and case studies that are used to illustrate philosophical claims so far tend to be
hand-picked. The risk of confirmation bias is therefore considerable: when looking for
white swans, all one finds is that swans are white. The more systematic quantitative
and qualitative bibliometric study of a large body of relevant literature that we present
in this paper can put such claims into perspective. Using text mining tools, we identify
the typical linguistic patterns used in the alleged mechanistic, dynamical, and topo-
logical explanations in the literature, their preponderance and how they change over
time. Our findings show abundant use of mechanistic language, but also the presence
of a significant neuroscience literature using topological and dynamical explanatory
language, which grows over time and increasingly differentiates from each other and
from mechanistic explanations.
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1 Introduction

The philosophy of science has been marked by an ever-growing interest in scientific
explanations. This interest is especially unsurprising in the philosophyof neuroscience,
given the sheer diversity of modelling and explanatory practices in neuroscience (Gold
& Roskies, 2008). The philosophical literature on scientific explanation in neuro-
science has been dominated by the idea of mechanisms (Bechtel & Richardson, 2010;
Craver, 2007; Glennan, 2017). The basic idea can best be captured by the following
definition of a minimal mechanism (Glennan, 2017, p. 17):

A mechanism for a phenomenon consists of entities (or parts) whose activities
and interactions are organized so as to be responsible for the phenomenon.

The mechanist philosophers often claim that all explanations in neuroscience are
ultimately mechanistic in the above sense, or, at the very least, that they conform to
various degrees of completeness of this definition, e.g., there could be full-fledged
mechanisms, partial mechanisms or mechanistic sketches (Piccinini & Craver, 2011).
Furthermore, anything that does not fit this definition, or a degree of completeness
thereof, is not considered an explanation at all (Craver, 2016). Other diverse explana-
tory strategies are thereby reduced to a single mechanist formula and hence we call
this set of claims “mechanistic explanatory imperialism” (Kostić, 2022).

Mechanistic imperialism has been challenged by various arguments which show
that there are scientific explanations in science in general, and in neuroscience in
particular, that do not conform to the mechanistic mould. Among the contenders that
generated the most philosophical literature are the dynamical (Chemero & Silberstein,
2008; Favela, 2020, 2021; Gervais, 2015; Stepp et al., 2011; Venturelli, 2016; Verdejo,
2015;Vernazzani, 2019;Weiskopf, 2011) and topological explanations (Kostić, 2018b,
2019a, 2019b, 2020, 2022; Khalifa et al. 2022; Kostić & Khalifa, 2021, 2022).

We acknowledge that there are many other non-mechanistic kinds of explana-
tions across the sciences, e.g., computational (Chirimuuta, 2014), statistical (Walsh,
2014; Walsh et al., 2002), interventionist (Hitchcock & Woodward, 2003; Woodward
& Hitchcock, 2003), mathematical, and in general non-causal explanations (Lange,
2013), minimal model and optimality explanations (Batterman, 2010; Batterman &
Rice, 2014; Rice, 2021), and many other. However, here we focus on dynamical and
topological explanations for three reasons: (1) they directly and in depth challenge
mechanistic imperialism, especially in neuroscience; (2) these explanations use a rel-
atively distinct repertoire to express explanatory relations, and such repertoire can be
traced in the language used in scientific literature, and finally, (3) our aim in this paper
is not to represent the full range of explanatory repertoires in the neurosciences, but
to demonstrate that important competitors for mechanist explanations exist and thrive
in scientific practice.

Mechanistic imperialism can be interpreted in two ways. The first is that expla-
nations may look non-mechanistic, but these can, in principle, always be interpreted
as mechanistic by using the epistemic-normative frameworks developed by the new
mechanists. In this view, the scientists may use non-mechanistic terms in describing
their explanatory practices, but these descriptions actually conform to the mecha-
nists’ conception of scientific explanation. The second is a more empirical claim that
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the repertoire of mechanistic explanations prevails in neuroscientific practice. In the
former interpretation, the pervasiveness of one or the other scientific explanations is
determined solely through conceptual analysis, whereas in the latter, it requires empir-
ical evidence. As this paper investigates explanatory repertoires empirically, i.e., in
the language of research papers, it addresses directly the latter, empirical issue.

The empirical claims about the pervasiveness of one or the other kind of expla-
nations in neuroscience require empirical evidence, which so far has not been
forthcoming. The importance of empirical evidence about pervasiveness and uses of
“mechanisms” or any other kind of explanation in neuroscience is particularly needed
because examples and case studies that are used to illustrate philosophers’ claims do
not represent a statistically relevant sample, even if taken all together. Since demon-
strations of the pervasiveness of different kinds of explanation in the philosophical
literature rely on handpicked examples, the risk of confirmation bias is considerable:
when looking for white swans, all one finds is that swans are white. The more system-
atic quantitative and qualitative bibliometric study of a large body of relevant literature
that we present in this paper can put such claims into perspective by investigating:

(1) What are typical mechanistic, dynamical, and topological expressions used in
neuroscience papers?

(2) What is the preponderance of mechanistic, dynamical, and topological explana-
tions in the neuroscience literature?

(3) Howdoes the preponderance of these explanatory patterns in neuroscience change
over time?

In this study, we first defined strings of words to identify explanatory language
patterns in a qualitative analysis, and then searched for these strings in a large neuro-
science corpus from the Dimensions.ai repository. In a second step, we analysed the
distribution of typical language patterns in the corpus to provide comprehensive and
empirically grounded insights into the explanatory landscape of neuroscience.

In order to provide a philosophical context for our study, in the next section we
characterize more precisely each of the three kinds of explanations. In the interest
of space, we skip an overview of the debates between the mechanistic imperialist
and proponents of dynamical and topological explanations because review literature
of these debates is abundant (Kostić et al., 2020; Khalifa et al. 2022; Kostić, 2018a,
2019b, 2022).

2 Mechanistic, dynamical and topological explanations

2.1 Mechanistic explanation

According to some of the most prominent mechanist philosophers “Biologists seek
mechanisms that produce, underlie, or maintain a phenomenon” (Craver & Darden,
2013, p. 72).

The most influential definition of mechanistic explanation comes from an early
paper by Machamer and colleagues (Machamer et al., 2000, p. 3):
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Mechanisms are entities and activities organized such that they are productive
of regular changes from start or set-up to finish or termination conditions.

In this definition, entities in mechanisms could be neurons in a brain that are organized
in a certain way, e.g., connected into neural populations that make up brain regions.
But they also have to do something: they have to produce or change things through
some activity. For example, neurons release neurotransmitters in order to propagate
signals throughneuronal assemblies. This iswhere the comparisonwith someeveryday
notions of mechanisms might be useful: a mechanical watch that has stopped ticking
is not a mechanism in the above sense, because even though it has all the entities and
components necessary for a mechanism, it lacks an activity. The activities that produce
change in a mechanism are often linear in time, i.e., organized in sequences in which
earlier stages produce later stages. They can also be cyclical, e.g., the Krebs cycle in
the metabolism of sugar, in which some chemical compounds leave the mechanism
at key junctures, but their residue is used at the next stage to continue the process.
Finally,mechanisms can be described as underlying a phenomenonwewant to explain.
For example, the Hodgkin-Huxley model of action potential that explains the basic
mechanism of signal propagation between neurons does not produce the phenomenon;
it rather underlies it, or implements it (Craver & Darden, 2013, 50). All these ideas
can be best described by the so-called Craver diagram (Fig. 1).

For the purpose of this study, an exposition of more sophisticated distinctions of
mechanisms would be superfluous. The most important lesson to take from this is that,
typically, entities in a mechanism are linguistically described with nouns and activities
with verbs. In neuroscience, these entities can be neurons or neuronal assemblies,
causing phenomena by their activity. An example would be: cell membranes, ion
channels, Na levels (i.e., explanans consisting of entities or components) produce,
generate, or underly (or a verb expressing causation) action potentials (i.e., a higher-
level explanandum).

Fig. 1 Craver diagram. Linear mechanisms at the bottom; a phenomenon at the top is constituted or imple-
mented by the mechanisms at the bottom, which is represented with dotted lines between two levels
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2.2 Topological explanation

Topological explanations (proper) are a relatively recent development in the sciences
that was enabled by a seminal paper by Watts and Strogatz (1998), and soon followed
by several other key papers in different areas of science (Barabasi & Albert, 1999;
Barabási & Oltvai, 2004; Cupal et al., 2000; Stadler & Stadler, 2004).1

Neuroscience did not lag behind, and the publication of a highly influential paper
by Sporns and colleagues (Sporns et al., 2005) marked the birth of so-called network
neuroscience and the origin of topological explanations in neuroscience. In the grow-
ing philosophical literature on topological explanations, there is only one account that
provides necessary and sufficient conditions for a topological explanation in neuro-
science (Kostić 2020). According to this account:

a’s being F topologically explains why a is G if and only if:
(T1) a is F (where F is a topological property);
(T2) a is G (where G is a physical property);
(T3) Had a been F’ (rather than F), then a would have been G’ (rather than G);
(T4) a is F is an answer to the question why is a, G?

Networks are collections of nodes and edges, and topological properties are their
mathematically quantifiable patterns of connectivity. In this framework, the T1 and
the T2 conditions simply mean that the same system can have both a physical and
a topological property. For example, a brain which is denoted as an a in the scheme
above can be both computationally efficient (i.e., it uses optimal amount of energy
for processing information), which is its physical property G, and when represented
as a network of anatomical connections it also is a small-world network, which is its
topological property F. The T1 and T2 thus concern the representation of the system.

The T3 in Kostić’s scheme describes a counterfactual dependence between a sys-
tem’s topological and physical properties. In the example with the brain, the T3 tells
us that the brain would not have been computationally efficient if it had a random
or a regular topology instead of the small-world topology that it actually has. The T3
condition hence concerns the explanation because it tells uswhy something is the case.

Finally, the fourth condition provides criteria for using the counterfactual. Such cri-
teria are perspectival, in the sense that they provide a contextwhichmakes it intelligible
why some empirical property G counterfactually depends on a network connectivity
pattern, which is expressed as its topological property F (Kostić, 2023). Relevant
linguistic patterns in topological explanation therefore will be expressed as phrases
containing nounswhich denote topological properties and verbs denoting some formof
adependence. In the neuroscience literature, such an explanationwouldbe expressed as
a proposition in which a physical phenomenon (e.g., computational efficiency, robust-
ness, or controllability) counterfactually depends on topological properties (e.g., a
small-world, scale-free topology, or in general a connectivity pattern).

1 Even though some proto-topological explanatory language, based mainly on Euler and Erdős’work, was
present in the literature for much longer.
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2.3 Dynamical explanation

A dynamical explanation is typically used to explain evolution of a chaotic system, or
changes in a chaotic system over time. The possible states of a system are described
as its state space, in which actual changes over time, from one state to another, form a
trajectory. By using differential equations of nonlinear dynamical systems theory, it is
possible to quantify these changes over time, which uniquely determine the subsequent
states of the system, e.g., in systems becoming synchronized. Since the dynamical
explanation focuses on the mathematical properties of a dynamical model, entities,
activities and microphysical causal details of underlying mechanisms are explanato-
rily idle (Chemero & Silberstein, 2008; Favela, 2020, 2021; Gervais, 2015; Khalifa
et al. 2022; Stepp et al., 2011; Venturelli, 2016; Verdejo, 2015). As such, dynamical
explanation is typically used to explain the global behaviour of a system. For example,
in neuroscience, a dynamical explanation is used to explain why bimanual coordina-
tion (synchronous wagging of the same fingers on both hands) is in, or out of phase.
To that effect, a relevant linguistic pattern in dynamical explanations will be a noun
denoting a dynamical property and a verb such as “to determine” or to “shape”.

3 Methods and data

In this section, we explain howwewere able to detect these three different explanatory
patterns in a large body of neuroscience literature. We used basic text mining tools
to identify typical word patterns that resemble explanatory language. Our approach
had two stages. In the first stage, we used three sets of twenty neuroscience papers
each, which were cited as typical examples of mechanistic, dynamical and topologi-
cal explanations, respectively, in the philosophical literature that discusses these three
types of explanations (see appendices 1 and 2). These three sets were used as ‘training
sets’ to identify word patterns presumably typical of each of these explanations, to be
later tested in the larger corpus of neuroscience literature. We decided not to start with
a top-down hypothetical list of word patterns that could be expected to express expla-
nation according to three philosophical accounts of scientific explanation (Fletcher
et al., 2021; Bonino et al., 2022; Malaterre, Chartier, and Pulizzotto 2019; Mizrahi &
Dickinson, 2022a, 2022b), in order to avoid possible interpretative bias. Instead, our
approach was bottom-up, as we started with the actual explanatory language used in
neuroscience papers.

The full text of the three training sets was uploaded to the free text mining applica-
tion Voyant-tools.org. This web-based application provides easy tools for calculating
word frequencies, word co-occurrence, or quick access to the context of particular
words in the text (e.g., fifteen words before and after a word of interest, which is
easily expandable to a larger context if necessary). These tools allowed us to identify
meaningful terms and count recurring word patterns, excluding stop-words such as
“the”, “a”, or “was”, digits for page numbers or years of publication (1995, 2, 43,
etc.), connectives such as “and”, “or”, bibliographical abbreviations such as “et al.”,
etc. Among the most frequently occurring words, we identified terms that seemed to
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refer to elements typical for dynamical, topological, or mechanistic explanations, i.e.,
explanans, explanandum, or explanatory relation terms between them.

To analyse the most frequent terms, we used stemmed words, e.g., in order to count
“analysing”, “analysis”, “analytic” etc., as all belonging to the same term “analy*”, in
which the asterisk expresses an arbitrary suffix. A first joint inspection indicated that
the non-random explanantia terms, unique to each of the three types of explanations,
appeared among the twenty-five most frequent terms in each training set, since after
the twenty-five most frequent terms we observed that the terms became paper-specific
and no longer related to explanatory terms. This process revealed some terms that
seemed to occur uniquely in one of our training sets, but also terms that occurred most
frequently in the overlap, in one or both of the other sets. Although the philosophical
literature presented the neuroscience articles in our training sets as typical of particular
explanatory styles, these neuroscience articles do also frequently contain words that
that are not pertinent to the analysis of explanatory language. Hence, other terms
that occurred frequently in one of the training sets, just seemed accidental, such as
“mouse” or “visual*” (see Fig. 2). Expressions typical of topological, dynamical, or

Fig. 2 Most frequent 25 terms in the topological, dynamical, and mechanistic training sets and their overlaps
between the sets
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mechanistic explanations can therefore not be easily derived from the mere frequency
of particular words in such a training set.

After joint inspection of the terms in their contexts by both authors, it also became
clear that the explanandum would not be distinctive for the type of explanation: all
three types of explanations often aim for the same explananda terms, such as, for exam-
ple, motor functions or cognition. Rather, our reading of the text in the training set
showed that explanantia terms co-occurring with explanatory verbs express the most
distinctive explanatory relations. For example, in the phrase “dynamics also create
completely new behavioural constraints”, the explanans “dynamics” and explanatory
term “create” are typical of dynamical explanatory language, while “behavioural con-
straints” might conceivably also be explained in mechanistic or topological terms.
In identifying typical expressions, we aimed for distinct word patterns, typical for
specific explanatory schemes, rather than capturing all explanations.

With this tentative long-list of explanantia terms for each of the training sets,
developed in our joint inspection, we individually set out to identify such typical
word patterns, i.e., identifying phrases containing explanantia in combination with
explanatory relations, most often verbs (see appendix 3). Our long list included
explanantia terms such as “time”, “non-linear”, “state” for dynamic papers; “architec-
ture”, “topology”, or “connectivity” for topological ones; “neuro”, “neural”, “activity”
for mechanistic papers. After identifying phrases that we both independently judged
as characteristic, we discussed each phrase until we reached a consensus about which
phrases were characteristic examples of the three explanatory styles. For example, we
removed explanatory terms that express a vague relation (e.g., “correlates with…”, “is
associated with…”) without clear explanatory relationship. Some explanantia can-
didates, such as the term “time” or “non-linear”, had to be removed because they
returned too many phrases that were not explanatory, but referred to methodological
or technical descriptions.

Our selection is thus based on our joint understanding ofwhat constitutesmechanis-
tic, topological and dynamical explanations, as specified in theoretical section above.
If one of us raised doubt about whether an explanation was, for example, truly topo-
logical, then the expression was removed. Although this admittedly involves human
judgement, in this way we prioritised clear-cut expressions, at the expense of losing
many less explicit ones. Although one of us has taken a position in the philosophical
debate on explanations in previous work (Kostić, 2018b, 2019a, 2020, 2022, 2023;
Kostić & Khalifa, 2021, 2022), the other author has no intellectual stake in these
debates.

In the remaining phrases, we then counted the word distance between the explanans
and the explanatory term, i.e., the number of words between the characteristic terms.
For example, in “activity controls”, the word distance between “activity” and “con-
trols” is zero. In “activity that generally controls”, the distance between “activity”
and “controls” is two, i.e., two words, noted as “activity controls ~ 2”. We agreed to
consider only single digit distances, because in principle, data noise and a possibility
of false negatives increase with the higher limit on distance. The actual distances that
we found in our training sets are listed in the appendix 3.

The word patterns were expressed as a complex search string with which to search
the larger neuroscience literature via the Dimensions.ai database, which covers an
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exceptionally large number of research papers (almost 130 million). We limited the
research to the period 1990–2021 and to papers labelled as “neurosciences” in the
database (i.e., category 1109), totalling 2.199.526 papers. Since Dimensions is so
comprehensive, we surmise that a very similar procedure for selecting a corpus can
be used for just about all of the relevant literature (at least in English), avoiding
random sampling errors. The delineation of research fields in bibliographic databases
is generally somewhat ambiguous, but this should not fundamentally affect the results
of our analysis. Apart from the size advantage, Dimensions allows for searches in the
abstract and full text of articles, to the extent that Dimensions has access to them.

Three complex search strings were composed, one for each type of explanation,
with all combinations of explanantia terms and explanatory relation terms unique for
each type (for the search strings with the most hits in each corpus, see Table 1). The
search added the word distance after each first term in the expression and combined
all the expressions with a Boolean “OR” e.g., (“contribution of connectivity ~ 2”) OR
(“depends on connectivity ~ 1”) OR … In other words: the database would return
all articles that contain at least one of the word patterns that are typical of each of
three different kinds of explanation identified in our training set. When ran through
the large corpus of over two million papers in the Dimensions database, these search
strings had found different number of papers for each kind of explanations. Table 1
represents the search strings and how many papers each search string retrieved from
the Dimensions. A schematic of the method is provided in Fig. 3.

4 The results

The search in Dimensions returned a total of 443.966 papers, out of which 94% also
had abstracts. Among the search results, the mechanistic set was by far the largest,
while the dynamic and topological search strings each returned just over 30.000 results
(see Table 2). Thismay be the result of overly specific search strings for these two latter
sets, less specific mechanistic search strings, or an actual indication of the minority
share of the dynamical and the topological explanations: we do not claim we have
captured all papers of each explanatory type, just three characteristic sets. Our results
should therefore not be read as an accurate representation of shares of either of these
explanations in the literature, but as indicators of their presence and, as we show below,
of their relative development over time.

The actual number of papers matching our search strings for all three kinds of
explanations per year since 1990 is shown in the Fig. 4. These absolute numbers are
misleading when we attempt to spot trends, as in this same period the total number of
neuroscience papers also grew significantly.

The growing number of neuroscience papers in Dimensions since 1990, is shown
in Fig. 5.

As amoremeaningful representation of how the three types of explanations develop
over time, the share ofmechanistic, dynamical and topological explanations in the total
number of neurosciences papers is shown in the Fig. 6. Once again, the actual share
depends very much on the accuracy of the search strings, which is open to debate.
Nevertheless, the trends over time are systematic, suggesting that there is a shift in
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Fig. 3 Method used to identify papers with typically topological, dynamical, or mechanical explanatory
language

Table 2 The total number of
neuroscience papers in
Dimensions (1990–2021), and
the number of papers identified
through our search strings

Number of papers With
abstracts

Total neuroscience papers 2.199.526

Mechanistic search string 417.422 391.305

Dynamic search string 34.655 32.024

Topological search string 32.961 31.058

Total unique papers in our
corpus

443.966 415.401
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Fig. 4 The total number of papers per year, from 1990 to 2020, matching our search strings

Fig. 5 The total number of neuroscience papers from 1990 to 2020 in the Dimensions.ai

the explanatory language that is more than just an artifact of our search strings. Even
though small, the share of papers with topological explanatory language starts to grow
significantly after 2006. The share of papers with dynamic explanatory language is
similarly low, but consistent and grows steadily since 1990. Papers with mechanistic
explanatory language grew up to about 2002 and then seem to stabilise. The graph
also suggests that a large segment of papers (the remaining three quarters of the
neuroscience literature) either does not use explanatory terms at all (e.g., it reports
descriptive research), or uses explanatory terms not captured by our search strings.

As an additional probe into the discriminatory power of our search strings, we
analysed the overlap between the three sets. It has been suggested before (Overton,
2013; Petrovich & Viola, 2022) that the explanatory language used by scientists is not
always entirely consistent and we may hence expect that some papers mix different
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Fig. 6 The ratio of mechanistic, topological and dynamical explanations in the total number of neuroscience
papers from 1990–2020

explanatory terms. Figure 7 presents the number of papers in each set and the various
overlaps between the sets. The largest overlap exists with papers with mechanistic
explanatory language: about two-thirds of the papers in the dynamic and two-thirds of
the papers in the topological set also contain mechanistic explanatory language. The
overlap is smallest between papers in the topological and dynamic sets. However, an
interesting trend can be observed if we represent the development of the summated
overlaps between the three sets over time (Fig. 8). Whereas the three sets nearly
coincided up to about 2006, i.e., dominated bymechanistic explanatory language, after
2006 there is a steady trend towards less overlap: papers start to use more exclusively
mechanistic, dynamic, or topological explanatory language.

5 Discussion: the explanatory landscape in neuroscience from 1990
to 2021, its trends, and the limits of text miningmethodology

Our search strings returned only a limited set of the neuroscience literature, namely
about a fifth. This may imply that we either missed a substantial part of the explana-
tory repertoires, or that a substantial part of the neuroscience literature does not use
explanatory expressions (or both). Non-explanatory papers may be descriptive, i.e.,
they may be review articles, or papers that provide new data sets, describe new imag-
ing techniques, or new tools for data analysis; or technical in nature, i.e., propose new
experimental protocols, slight improvements on certain techniques, or in general be
concerned with some form of “tinkering in the lab” (Bickle, 2021). Of course, these
non-explanatory uses would require further analysis. So, pace the new mechanists’
claims that neuroscience is in the business of discovering mechanisms and ipso facto
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Fig. 7 Overlap in search results (number of papers). (Script venn.js by Ben Frederickson, d3.js by Mike
Bostock)

mechanistic explanations, it may be the case that a large part of neuroscience is in
some other business than providing explanations, mechanistic or any other kind for
that matter. Our study could not map out what that other business is, simply because
the search strings were developed to identify specific and most typical explanatory
linguistic patterns, and excluded less clear-cut expressions.

Having said that, within the fifth of the neuroscience literature that we analysed, our
search strings suggest that mechanistic explanatory language is indeed predominant.
Nevertheless, a significant number of dynamical and topological explanations papers
exist, and their share slowly grows over time. The growth of topological explanation
papers takes off around 2006. On the other hand, the number of papers that use the
language of dynamical explanations show a steady growth without take-off points
since the beginning of our corpus, the year 1990.

Unsurprisingly, the explanatory language is mixed. The topological and dynamical
papers use mechanistic language too, which could be an artifact of noise generated by
our search strings, or imprecise use of terms by neuroscientists, or a combination of
multiple forms of explanation used in the same paper, probably a bit of all. However,
the fact that the overlap of topological, dynamical andmechanistic language decreases
over time, i.e., that theydifferentiate over time,may also indicate that loosemechanistic
language was initially used as a placeholder for a more abstract non-mechanistic
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Fig. 8 The total, summated overlap between dynamic, topological and mechanistic papers decreases over
time

explanation, with which it is replaced over time as the ideas about dynamical and
topological explanations start to develop and specialize.

The low number of topological explanation papers in our set (ca 0,5% of neuro-
science papers) is to be expected, given that topological explanations were suggested
relatively recently in the seminal paper by Sporns and colleagues (Sporns et al., 2005).
To avoid contamination, we were also quite restrictive in the search terms we judged to
be specifically indicative of topological explanations. On the other hand, topological
explanations do use a more specific language in their explanantia, and because of that
they are more discernible by our search strings. In contrast, mechanistic language is
used more loosely (Dupré, 2013; Kostić & Khalifa, 2022; Ross, 2021; Woodward,
2013), and so our (or any) search strings cannot discriminate between a genuine and
platitudinous mechanistic explanatory language.

Our analysis has several limitations. One limitation is that we did not have access
to a larger group of raters to do an extensive validation of our search strings in order
to estimate false positives and false negatives. This more extensive validation, in our
estimate, would require a separate study, which is out of the scope of this paper. Our
analysis therefore depends on our assessment of what counts as typical explanatory
language, with the potential bias of one of the authors’ previous work on one of the
three types of explanation discussed in this paper. Another limitation is built into
how searches work in the Dimensions database, with search strings producing a hit
regardless of whether a stringwas used once ormultiple times in the text. This includes
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casual aswell as systematic use of explanatory language.A full-text analysiswithmore
powerful tools, on a sample of neuroscience papers to keep it feasible, could provide
more fine-grained results for a subset of papers. Such analysis could also use Natural
Language Processing techniques, e.g., text data analyses that distinguish nouns from
verbs. Perhaps, this method could better discern the explanatory language especially
in papers that use mixed language.

Finding ‘pure’ dynamical, mechanistic and topological languagemight be possible,
but it would require more precise assessment of every paper. Moreover, given that we
are trying to detect different explanations by mapping explanatory language used by
scientists, it would be possible to argue that these linguistic differences are a matter
of conceptual sloppiness in the neuroscience literature that cannot be reduced to some
overarching philosophical explanatory scheme. Nevertheless, these techniques can
help to put theoretical debates in philosophy of science in an empirical perspective, in
a systematic way, rather than based on hand-picked examples.

6 Conclusion

Explanatory language in neuroscience papers is not exclusivelymechanistic. Our anal-
ysis has shown that a relatively small but growing share of neuroscience papers uses
topological and dynamical terms to explain neural phenomena. We were also able to
show that the explanatory repertoires in the neuroscience literature are differentiat-
ing over time: the explanatory language appears to become more exclusively either
mechanistic, topological, or dynamical. Nevertheless, expressions of different types
of explanatory language are regularly mixed in neuroscience papers.

Our study has shown that typical explanatory language can be identified by search-
ing for particular word patterns. This approach could be expanded in several ways.
First, similar word patterns could be identified for other types of explanation, such
as the statistical language of correlation and association. Second, longer strings with
more explanatory word patterns could be used to identify how explanation types are
distributed throughout all of neuroscience. Our search strings returned only a fifth of
neuroscience papers. Adding additional explanatory expressions will likely capture a
larger share of the literature, although this would raise the share of false negatives and
unwieldy data sets might then require smaller literature samples. Third, more refined
natural language processing techniques could be used, such as techniques that analyse
grammatical structures, e.g., distinguishing verbs from nouns.

We see no principled obstacle in applying our approach to life sciences in general,
or, in fact, any other domain of science. The three types of explanation on which
we focused in this paper are also used in other sciences, and repositories such as
Dimensions.ai could provide corpora for them as well. Explanatory terms are most
likely specific to each research field, but a similar two-step approach could be used,
establishing dominant terms and then specific explanatory patterns for each field.
However, in other fields, statistic or interpretative patterns may be more prevailing.

In studying the structure and dynamics of physics as a science, philosophers of
science focus on its theories, i.e., how theories are formed, interrelated, and change
over time. However, given the sheer diversity of explanatory styles in neuroscience,
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understanding its structure and dynamics seems rather a vexing task (Gold & Roskies,
2008). In this paper we focused on the neuroscience, and by mapping out different
explanatory strategies in the large body of neuroscience literature, we have chosen an
empirical approach to provide an overview of its structure and dynamics.

By looking at language use in a large corpus of literature, we provide empirical evi-
dence about the explanatory landscape in neuroscience in general, and in that way, we
avoid epistemic biases resulting from focusing solely on a limited and hand-picked
examples that are typical of philosophical literature on scientific explanations. Our
study demonstrates that the actual explanatory language in neuroscience is diversify-
ing, rather than being exclusively or ever more mechanistic.
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Appendix 1: lists of philosophical papers used to extract typical
examples of mechanistic, topological and dynamical explanations

Philosophical accounts of mechanistic explanation

• Bechtel, William, and Robert C. Richardson. 2010. Discovering Complexity:
Decomposition and Localization as Strategies in Scientific Research. MIT Press
ed. Cambridge, Mass: MIT Press.

• Carl F. Craver., 2007. Explaining the Brain: Mechanisms and the Mosaic Unity of
Neuroscience. Oxford: New York: Oxford University Press: Clarendon Press.

• Carl F., Craver and Lindley, Darden. 2013. In Search of Mechanisms: Discoveries
across the Life Sciences. University of Chicago Press.

• Khalifa, Kareem, Farhan Islam, J. P. Gamboa, Daniel A. Wilkenfeld, and Daniel
Kostić., 2022. “Integrating Philosophy of Understanding With the Cognitive Sci-
ences.” Frontiers in Systems Neuroscience 16 (March): 764,708. https://doi.org/10.
3389/fnsys.2022.764708.
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• Machamer, Peter, LindleyDarden, and Carl F. Craver. 2000. “Thinking aboutMech-
anisms.” Philosophy of Science 67 (1): 1–25. https://doi.org/10.1086/392759.

• Piccinini, Gualtiero, and Carl Craver. 2011. “Integrating Psychology and Neuro-
science: Functional Analyses asMechanism Sketches.” Synthese 183 (3): 283–311.
https://doi.org/10.1007/s11229-011-9898-4.

Philosophical accounts of topological explanation

• Khalifa, Kareem, Farhan Islam, J. P. Gamboa, Daniel A. Wilkenfeld, and Daniel
Kostić., 2022. “Integrating Philosophy of Understanding With the Cognitive Sci-
ences.” Frontiers in Systems Neuroscience 16 (March): 764,708. https://doi.org/10.
3389/fnsys.2022.764708.

• Kostić, Daniel, Claus C Hilgetag, and Marc Tittgemeyer. 2020. “Unifying the
Essential Concepts of Biological Networks: Biological Insights and Philosophi-
cal Foundations.” Philosophical Transactions of the Royal Society B: Biological
Sciences 375 (20,190,314): 1–5. https://doi.org/10.1098/rstb.2019.0314.

• Kostić, Daniel. 2018a. “Mechanistic and Topological Explanations: An Introduc-
tion.” Synthese 195 (1): 1–10. https://doi.org/10.1007/s11229-016-1257-z.

• ———. 2018b. “The Topological Realization.” Synthese 195 (1): 79–98. https://
doi.org/10.1007/s11229-016-1248-0.

• Kostić, Daniel. 2019. “Unifying the Debates: Mathematical and Non-Causal Expla-
nations.” Perspectives on Science 2019, 27 (1): 1–6. https://doi.org/10.1162/posc.

• Kostić, Daniel. 2020a. “General Theory of Topological Explanations and Explana-
tory Asymmetry.” Philosophical Transactions of the Royal Society B: Biological
Sciences 375 (20,190,314): 1–8. http://dx.doi.org/10.1098/rstb.2019.0321.

• ———. 2020b. “Minimal Structure Explanations, Scientific Understanding and
Explanatory Depth.” Perspectives on Science 2019 27 (1): 48–67. https://doi.org/
10.1162/posc.

• Kostić, Daniel, and Kareem Khalifa. 2021. “The Directionality of Topological
Explanations.” Synthese, November. https://doi.org/10.1007/s11229-021-03414-y.

• Ross, Lauren N. 2021. “Distinguishing Topological and Causal Explanation.” Syn-
these 198 (10): 9803–20. https://doi.org/10.1007/s11229-020-02685-1.

Philosophical accounts of dynamical explanation

• Chemero, Anthony, and Michael Silberstein. 2008. “After the Philosophy of Mind:
Replacing Scholasticism with Science*.” Philosophy of Science 75 (1): 1–27.
https://doi.org/10.1086/587820.

• Favela, Luis H. 2020. “Dynamical Systems Theory in Cognitive Science and Neu-
roscience.” Philosophy Compass 15 (8). https://doi.org/10.1111/phc3.12695.

• ———. 2021. “TheDynamical Renaissance in Neuroscience.” Synthese 199 (1–2):
2103–27. https://doi.org/10.1007/s11229-020-02874-y.

• Gervais, Raoul. 2015. “Mechanistic and Non-Mechanistic Varieties of Dynamical
Models in Cognitive Science: Explanatory Power, Understanding, and the ‘Mere
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Description’Worry.” Synthese 192 (1): 43–66. https://doi.org/10.1007/s11229-014-
0548-5.

• Khalifa, Kareem, Farhan Islam, J. P. Gamboa, Daniel A. Wilkenfeld, and Daniel
Kostić., 2022. “Integrating Philosophy of Understanding With the Cognitive Sci-
ences.” Frontiers in Systems Neuroscience 16 (March): 764,708. https://doi.org/10.
3389/fnsys.2022.764708.

• Stepp, Nigel, Anthony Chemero, and Michael T. Turvey. 2011. “Philosophy for the
Rest of Cognitive Science.” Topics in Cognitive Science 3 (2): 425–37. https://doi.
org/10.1111/j.1756-8765.2011.01143.x.

• Venturelli,A.Nicolás. 2016. “ACautionaryContribution to thePhilosophyofExpla-
nation in theCognitiveNeurosciences.”Minds andMachines 26 (3): 259–85. https://
doi.org/10.1007/s11023-016-9395-0.

• Verdejo, Víctor M. 2015. “The Systematicity Challenge to Anti-Representational
Dynamicism.” Synthese 192 (3): 701–22. https://doi.org/10.1007/s11229-014-05
97-9.

Appendix 2: lists of neuroscientific papers in three training corpora

Mechanistic training corpus

1. Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005).
Reward, motivation, and emotion systems associated with early-stage intense
romantic love. Journal of neurophysiology, 94(1), 327–337.

2. Bahrami, B., Lavie, N., & Rees, G. (2007). Attentional load modulates responses
of human primary visual cortex to invisible stimuli. Current Biology, 17(6),
509–513.

3. Barsalou, L.W. (2008). Grounded cognition.Annual review of psychology, 59(1),
617–645.

4. Dux, P. E., Ivanoff, J., Asplund, C. L., &Marois, R. (2006). Isolation of a central
bottleneck of information processing with time-resolved fMRI. Neuron, 52(6),
1109–1120.

5. Haynes, J. D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R. E.
(2007). Reading hidden intentions in the human brain. Current biology, 17(4),
323–328.

6. Henson, R. (2006). Forward inference using functional neuroimaging: Dissoci-
ations versus associations. Trends in cognitive sciences, 10(2), 64–69.

7. Kelso, S. (2010). Instabilities and phase transitions in human brain and behav-
ior. Frontiers in Human Neuroscience, 4, 23.

8. Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. (2006).
Diminishing reciprocal fairness by disrupting the right prefrontal cortex. sci-
ence, 314(5800), 829–832.

9. Logothetis, N. K. (2008). What we can do and what we cannot do with
fMRI. Nature, 453(7197), 869–878.
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10. Logothetis, N.K.,&Pfeuffer, J. (2004).On the nature of theBOLD fMRI contrast
mechanism. Magnetic resonance imaging, 22(10), 1517–1531.

11. Marder, E. (2015). Understanding brains: details, intuition, and big data. PLoS
biology, 13(5), e1002147.

12. Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2004). Sensorimotor simulations
underlie conceptual representations: Modality-specific effects of prior activa-
tion. Psychonomic bulletin & review, 11(1), 164–167.

13. Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging
data?. Trends in cognitive sciences, 10(2), 59–63.

14. Sanfey,A.G.,Rilling, J.K.,Aronson, J.A.,Nystrom,L.E.,&Cohen, J.D. (2003).
The neural basis of economic decision-making in the ultimatum game. Sci-
ence, 300(5626), 1755–1758.

15. Sengupta, P., & Samuel, A. D. (2009). Caenorhabditis elegans: a model system
for systems neuroscience. Current opinion in neurobiology, 19(6), 637–643.

16. Silvanto, J., Cowey, A., Lavie, N., &Walsh, V. (2005). Striate cortex (V1) activity
gates awareness of motion. Nature neuroscience, 8(2), 143–144.

17. Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., &
Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing
about color. Neuropsychologia, 45(12), 2802–2810.

18. Sompolinsky, H. (2014). Computational neuroscience: beyond the local cir-
cuit. Current opinion in neurobiology, 25, xiii-xviii.

19. Sumner, P., Tsai, P. C., Yu, K., & Nachev, P. (2006). Attentional modulation of
sensorimotor processes in the absence of perceptual awareness. Proceedings of
the National Academy of Sciences, 103(27), 10,520–10525.

20. Swartz, K. J. (2004). Towards a structural view of gating in potassium chan-
nels. Nature Reviews Neuroscience, 5(12), 905–916.

Topological training corpus

1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. D. (2006). A
resilient, low-frequency, small-world humanbrain functional networkwith highly
connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.

2. Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., &
Miyashita,Y. (2012). Functional connectivity between anatomically unconnected
areas is shaped by collective network-level effects in the macaque cortex. Cere-
bral cortex, 22(7), 1586–1592.

3. Alexander-Bloch, A. F., Vértes, P. E., Stidd, R., Lalonde, F., Clasen, L., Rapoport,
J., … & Gogtay, N. (2013). The anatomical distance of functional connec-
tions predicts brain network topology in health and schizophrenia. Cerebral
cortex, 23(1), 127–138.

4. Betzel, R. F., Medaglia, J. D., Papadopoulos, L., Baum, G. L., Gur, R., Gur, R.,
…&Bassett, D. S. (2017). The modular organization of human anatomical brain
networks: Accounting for the cost of wiring.Network Neuroscience, 1(1), 42–68.
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5. Betzel, R. F., Gu, S.,Medaglia, J. D., Pasqualetti, F.,&Bassett, D. S. (2016). Opti-
mally controlling the human connectome: the role of network topology. Scientific
reports, 6(1), 1–14.

6. Gu, S., Betzel, R. F., Mattar, M. G., Cieslak, M., Delio, P. R., Grafton, S. T., …
& Bassett, D. S. (2017). Optimal trajectories of brain state transitions. Neuroim-
age, 148, 305–317.

7. Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Yu, A. B., Kahn, A. E.,
… & Bassett, D. S. (2015). Controllability of structural brain networks. Nature
communications, 6(1), 1–10.

8. Helling, R. M., Petkov, G. H., & Kalitzin, S. N. (2019, January). Expert system
for pharmacological epilepsy treatment prognosis and optimal medication dose
prescription: computational model and clinical application. In Proceedings of the
2nd International Conference on Applications of Intelligent Systems (pp. 1–6).

9. Hilgetag, C. C., & Goulas, A. (2016). Is the brain really a small-world net-
work?. Brain Structure and Function, 221(4), 2361–2366.

10. Honey, C. J., Thivierge, J. P., & Sporns, O. (2010). Can structure predict function
in the human brain?. Neuroimage, 52(3), 766–776.

11. Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure
of cerebral cortex shapes functional connectivity on multiple time scales. Pro-
ceedings of the National Academy of Sciences, 104(24), 10,240–10245.

12. Hutchison, R.M.,Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D.,
Corbetta, M.,…&Chang, C. (2013). Dynamic functional connectivity: promise,
issues, and interpretations. Neuroimage, 80, 360–378.

13. Kaiser, M., & Hilgetag, C. C. (2004). Edge vulnerability in neural and metabolic
networks. Biological cybernetics, 90(5), 311–317.
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Appendix 3: Mechanistic explanations: distinctive word patterns

Explanatory
relation

Max words
between

Explanans Max words
between

Explanatory
relation

Depends on 3 Activity 3 Controlling

Controlled by 1 3 Control

Result of 1 1 Crucial

Generate by 4 1 Generate

underlying 3 1 Affects

1 Dictates

1 Regulate

4 Produce

5 Modulate

5 Switch

1 Underlying

4 Results in

0 Precedes

2 Elicit

4 Responsible for

OR
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Explanatory
relation

Max words
between

Explanans Max words
between

Explanatory
relation

Produced by 2 Neuron 1 Switch

Controlled by 0 Neuronal 0 Evoked

Performed by 0 Neural

Respond to 0

Dynamical explanations: distinctive word patterns

Explanatory
relation

Max words
between

Explanans Max words
between

Explanatory
relation

Depend on 2 dynamic 6 Predict

Driven by 1 dynamical 6 Influence

Governed by 2 1 Constraint

Dependent on 5 3 Underlie

Result from 5 6 Determine

Determined by 3 5 Effect on

Underlying 1 6 Explain

Generated by 2 4 Produce

2 Lead to

1 Generate

1 Create

1 Work to

Topological explanations: distinctive word patterns

Explanatory relation Max words
between

Explanans Max words
between

Explanatory
relation

Contribution of 2 Connectivity 4 confer*

Depends on 1 Topolog* 9 constitut*

Determined by 4 Architectur* 4 constrain*

Effect* of 2 1 determin*

Explanation of 3 2 enhance*
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Explanatory relation Max words
between

Explanans Max words
between

Explanatory
relation

Influence of 2 1 explain*

Predicted 2 2 facilitate*

Role of 3 4 impact*

5 Influence*

6 play* role

8 predict*

3 relevant
for

5 responsible
for

6 shap*

3 underlies

To avoid unnecessary repetition in the table, some of the terms are stemmed, e.g.,
explain* captures terms such as: explain, explains, explaining, or explained.
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