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Abstract
The issue of the relationship between predictive processing (PP) and the free energy
principle (FEP) remains a subject of debate and controversy within the research com-
munity. Many researchers have expressed doubts regarding the actual integration of
PP with the FEP, questioning whether the FEP can truly contribute significantly to
the mechanistic understanding of PP or even undermine such integration altogether.
In this paper, I present an alternative perspective. I argue that, from the viewpoint
of the constraint-based mechanisms approach, the FEP imposes an important con-
straint, namely variational free energy, on the mechanistic architecture proposed by
PP. According to the constraint-based mechanisms approach, high-level cognitive
mechanisms are integral parts of extensive heterarchical networks that govern the
physiology and behavior of agents. Consequently, mechanistic explanations of cog-
nitive phenomena should incorporate constraints and flows of free energy as relevant
components, given that the implemented constraints operate as long as free energy is
available. Within this framework, I contend that the FEP provides a relevant constraint
for explaining at least some biological cognitive mechanisms described in terms of
Bayesian generative models that minimize prediction errors.

Keywords Predictive processing · Mechanisms · Explanation · Constraints · Free
energy principle · Variational free energy

1 Introduction

It has been established that proponents of the PP framework seekmechanistic explana-
tions and that the various models of cognitive functions developed via PP are aimed at
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this kind of account (Friston et al., 2018; Gładziejewski, 2019). In line with this view,
it has been argued that PP provides a sketch of a mechanism (Gładziejewski, 2019;
Gordon et al., 2019; Harkness, 2015; Harkness & Keshava, 2017; Hohwy, 2015), i.e.,
an incomplete representation of a target mechanism in which some structural aspects
of a mechanistic explanation are omitted (cf. Piccinini & Craver, 2011). Understood
in this way, the sketch is defined in terms of functional roles played by the respective
components, disregarding to some extent their biological or physical implementation.
This raises the important question of how to understand the causal structure respon-
sible for predictive mechanisms. It can be a simple multi-level hierarchy from simple
neural levels of, e.g., pattern recognition, edge detection, color perception etc. (imple-
mented in the early sensory system), to high-level neural representations (implemented
deep in the cortical hierarchy [Sprevak, 2021]), to increasingly abstract and general
levels related to Bayesian beliefs and concerning the general properties of the world;
or it can be a subtler structure implemented by several different, partially independent
mechanisms responsible for various phenomena.1

The key to this type of practice is the recognition of cognition in the categories of
mechanistic causal relations (cf. Gładziejewski, 2019, p. 665). Gładziejewski suggests
that sketches of mechanisms provided by PP should be understood in the sense that
thesemodels “share common core assumptions about relevantmechanisms” but do not
describe a single cognitive structure (mechanism). This means that “there are a couple
of ways in which a collection of mechanisms that fall under a common predictive tem-
plate could provide a schema-centered explanatory unification” (Gładziejewski, 2019,
p. 666). This author points to four possible research heuristics which, by providing
sketches, may allow the identification of actual mechanisms:

1. There are separate neural mechanisms that follow the same predictive scheme;
2. Different levels within one hierarchy can explain different cognitive phenomena;
3. Various aspects of PP mechanisms are explanatory, which means that for a given

mechanism, certain aspects of its functioning may explain specific phenomena;
4. The ways in which distinct PP mechanisms become integrated may play explana-

tory roles (Gładziejewski, 2019, pp. 666–667).

Regardless of which of the indicated heuristics is actually employed by PP researchers
(whether it be one or a combination of several), there is no doubt that many supporters
of PP seek mechanistic explanations.

As can be seen, the thesis about the mechanistic nature of PP is already reasonably
well-founded, but it seems that in light of the view advocated by some mechanists (cf.
Bechtel, 2019; Winning & Bechtel, 2018), (at least) some mechanistic explanations
should include constraints and flows of free energy as their constitutive component.
This view, which I will refer to in this paper as the constraint-based mechanisms
approach,2 could be of great importance to many debates about PP and FEP theories

1 Regardless of how to understand the exact causal basis of the implementation of predictive mechanisms,
the mechanistic strategy of reconstructing these mechanisms by providing their sketches certainly corre-
sponds to the actual practice of PP researchers (cf. Gordon et al., 2019; Keller & Mrsci-Flogel, 2018).
2 This approach is based on the recent papers of William Bechtel and colleagues and, in a sense, unifies
their views as presented in various papers. The very concept of constraint-based mechanisms approach
has not appeared in the literature so far and, as such, is a novelty. The same is the case with heuristics of
constraint-based mechanisms, which can be taken as a distinctive feature of this approach.
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as it allows for a rethink of the relationship between PP, FEP, and FEP-based Active
Inference.

The possibility of a mechanistic integration of PP and the FEP has already been
raised by researchers. Some responses have also been offered. There are authors who
share the viewpoint that the FEP carries mechanistic implications for PP, asserting
that the FEP can be treated as a heuristic guide or regarded as a regulatory principle.
Supporters of the first position include Paweł Gładziejewski who, in his paper Mech-
anistic unity of the predictive mind, states that the FEP is “a powerful heuristic guide
for the development of PP” but “only puts extremely general constraint on the causal
organization of organisms, perhaps to the point of lacking any non-trivial commit-
ments about it” (Gładziejewski, 2019, p. 664). Another supporter, Dominic Harkness,
claims that “the upshot of this criticism lies within the free energy principle’s potential
to act as a heuristic guide for finding multilevel mechanistic explanations” (Harkness,
2015, p. 2). Jakob Hohwy supports the second position, claiming that the “FEP can be
considered a regulatory principle, ‘guiding’ or ‘informing’ the construction of process
theories” (Hohwy, 2020, p. 39), meaning that the FEP provides “distinct process the-
ories explaining perception, action, attention, and other mental phenomena” (Hohwy,
2020, p. 47).

However, some researchers are not convinced by the FEP or its explanatory relation-
ship with PP. For example, Daniel Williams in his recent paper Is the brain an organ
for free energy minimization? argues that “the claim that the FEP implies a substantive
constraint on process theories in cognitive science—namely, that they must describe
how the brain’s mechanisms implement free energy minimization—rests on a fallacy
of equivocation” (Williams, 2021, p. 8). Similarly, Mateo Colombo and Patricia Pala-
cios in their paper Non-equilibrium thermodynamics and the free energy principle in
biology note that “because of a fundamental mismatch between its physics assump-
tions and properties of its biological targets, model-building grounded in the free
energy principle exacerbates a trade-off between generality and biological plausibili-
ty” (Colombo & Palacios, 2021, p. 2). Colombo defends a slightly different position
in a paper co-written with Cory Wright, where they take into account that the analy-
sis carried out by the FEP’s supporters can be treated as sketches of mechanisms in
the sense of Piccinini and Craver (2011). They do, however, only treat them as weak
explanatory idealizations: “Some of the confusions in recent debates surrounding the
FEP, organicism, andmechanism depend on indulging this sort ofmetaphysicswithout
carefully considering the epistemic and pragmatic roles that ‘rampant and unchecked’
idealizations, like those involved in FEP, play in science” (Colombo &Wright, 2021,
p. 3486).

In this paper I will take a different starting point. I want to demonstrate by reference
to the constraint-based mechanisms approach, that the FEP offers an explanatory
relevant (variational) constraint for the causal organization of any and all systems
equipped with generative models, explained mechanistically by PP. In other words,
I will claim that the FEP provides a constraint which determines PP’s scheme of
mechanism.

This paper has the following structure: in Sect. 2, I present an overview of the PP and
FEP frameworks and explain why, when analyzing predictive mechanisms, one should
take into account the quantity described in the literature on the FEP as variational free
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energy (VFE). In Sect. 3, I sketch the newmechanical philosophy and its characteristic
systems tradition, describing explanations in terms of the identification and decompo-
sition of mechanisms. I also present the recent position based on mechanism, which
I refer to as the constraint-based mechanisms approach and—characteristic for this
approach—the so-called heuristics of constraint-based mechanisms. In the following
part, I formulate a mechanistic interpretation of PP and wonder if it can meet the norm
defined by the heuristics of constraint-based mechanisms. The context of the question
is set by the discussion on the FEP and its explanatory relationship with PP. In Sect. 4, I
discuss two main possible interpretations (realistic and instrumental) of the statement
that self-organizing systems minimize VFE. Discussing them is important because it
provides an initial answer towhether the FEP determines the energetic (in information-
theoretic sense) constraint for mechanistic PP. In Sect. 5, I articulate the position of
mechanistic realism, which asserts the feasibility of employing heuristics based on
the constraint-based mechanisms approach. I argue that the interpretation of the FEP,
which I called moderate realistic, is compatible with mechanistic realism. In Sect. 6,
I discuss Karl Friston’s argument from Bayesian mechanics that VFE coincides with
thermodynamic free energy (TFE). If Friston’s perspective is accurate, the FEP serves
a similar explanatory role in elucidating living organisms as thermodynamics does
in explaining physical systems. However, in this section, I reject Friston’s argument
because of its instrumental character, which precludes mechanistic realism and the
application of the heuristics of constraint-based mechanisms. As a result, in Sect. 7, I
present an argument in favor of moderate realism regarding the FEP and FEP-based
PP. This argument is supported by empirical evidence from investigations into neural
computations and the thermodynamics of information. Next I discuss the ontologi-
cal commitments of this position, and I also formulate a provisional response to the
objections of those authors who deny explanatory value to the FEP. In the Conclusion,
I summarize the analyses carried out.

2 Predictive processing and variational free energy

PP is a process theory of the brain that provides a computational model of cognitive
mechanisms and core processes that underwrite perception and cognition. Some advo-
cates of PP believe that it can be used to unify the models of perception, cognition,
and action theoretically (Clark, 2013; Hohwy, 2015; Seth, 2015). Specific versions of
PP are grounded in the same process of precision-weighted, hierarchical, and bidi-
rectional message passing and error minimization (Clark, 2013; Hohwy, 2020). In
this framework, perceptual and cognitive processes are conceived as being the result
of a computational trade-off between (hierarchical) top-down processing (predictions
based on the model of the world) and bottom-up processing (prediction errors tracking
the difference between predicted and actually sensed data). A characteristic feature of
this view is the assumption that, in order to perceive the world, the cognitive system
must resolve its uncertainty about the ‘hidden’ causes of its sense states. This is because
the causes of the sensory signals are not directly recognized or detected, but instead
must be inferred by a hierarchical, multi-level probabilistic (generative) model. In PP,
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the activity of the brain (or cognitive system) is understood as instantiating or lever-
aging a generative model (cf. Clark, 2016), which is, generally speaking, a model of
the process that generated the sensory data of interest. In short, PP purports to explain
the dynamics of the brain by appealing to hierarchically organized bidirectional brain
activity, cast as instantiating a generative model.

The generative model is defined as the joint probability of the “observable” data
e—sensory state, and h—a hypothesis about these data (trees, birds, glasses etc.).
In other words, a generative model is the product of p(h) (priors over states) and
p(e|h) (likelihood of evidence probability if the hypothesis is true). This means that
the generative model is a statistical model of how observations are generated (strictly
speaking, a description of causal dependencies in the environment and their relation
to sensory signal). It uses prior distributions p(h) (which determine the probability of
hypothesis before evidence) that the system applies to the environment about which
it makes inferences.

The model minimizes the so-called prediction errors, i.e., the differences between
the expectations of the organism—its “best guess” about what would be the case (what
caused its sensory states) and what the organism factually observes. To minimize
prediction errors, the generative model continuously creates statistical predictions
about what is happening or can happen in the world. This means that updating the
likelihoods and priors based on prediction errors is a mechanism that can be described
in terms of Bayesian inference, i.e., a statistical inference in which a Bayesian rule
is used to update the probability for a hypothesis as more evidence or data becomes
available.

Technically speaking, according to the Bayesian rule

p(h|e) � p(e|h)p(h)
p(e)

,

the generativemodelp(h|e) calculates the posterior probabilityp(e|h),which in practice
allows the system to assume the most probable hypothesis explaining the nature and
causes of the sensory signal, taking into account the available sensory data.3 This
hypothesis enables theminimization of the long-termaverage prediction error (Hohwy,
2020). Moving from p(h|e) to p(e|h), i.e., inverting the likelihood mapping, allows one
to update beliefs from prior to posterior beliefs (Smith et al., 2022, p. 3). Proponents
of the PP framework argue that the model approximates Bayesian inference rather
than computing it exactly (cf. Clark, 2013). In PP, the model implements an algorithm
that computes Bayesian inferences so that the prediction error is gradually minimized,
which maximizes the posterior probabilities of the hypotheses.

Thisway,when themodelminimizes the prediction error, it alsominimizes a certain
quantity that is always greater than or equal to the surprisal—negative log probability
of an observation/outcome—the surprisal model itself cannot be minimized directly
due to ignorance of the underlying causes of the sensory signals (Friston, 2009, p. 294).
This quantity refers to the objective function that is known asVFEor an evidence lower

3 In this sense, the model update proceeds in a rational manner.
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bound (cf. Winn & Bishop, 2005). The introduction of VFE helps to convert exact
Bayesian inference into approximate Bayesian inference.4

Why is this important? Approximate Bayesian inference uses VFE minimization,
which can be described as the difference between the approximate posterior distri-
bution of the model and the target distribution. The introduction of an approximate
posterior distribution over states, denoted q(e) (such that each q(e) ∈ Q is a possi-
ble approximation to the exact posterior distribution), makes simplifying assumptions
about the nature of the true posterior distribution. By iteratively updating the approx-
imate posterior (initially arbitrary), one can find a distribution that approximates the
exact posterior. The next step is to measure the similarity between approximated p(h|e)
and the true posterior p(e|h). Formally, this means minimizing the so-called Kullback-
–Leibler divergence (KL-divergence). It is important that KL-divergence cannot be
directly estimated, and therefore the model must optimize a different function (i.e.,
VFE) which bounds the model evidence. The smaller the VFE, the smaller the KL-
divergence. When KL-divergence is zero, then the distributions match. It gets larger
the more dissimilar the distributions become. In variational inference, the model iter-
atively updates approximate posterior q(e) until it finds the value that minimizes VFE
at which q(e) will approximate the true posterior p(e|h) (Smith et al., 2022; cf. Buckley
et al., 2017).

The association of PP with VFE helps explain how the generative model minimizes
prediction errors byBayesian inference approximation, which can be interpreted as the
way in which neural information processing mechanisms perform variational infer-
ence. This remark is crucial for further analyses.

To sum up: predictive mechanisms can be described in terms of the realization of
variational principles (cf. Friston et al., 2017). In research practice, this means that
in order to be able to concretize any variational inference algorithm, we must define
the forms of the variational posterior and the generative model, which in the case of
PP means (relying on the Laplace assumption) that posterior probability densities are
normal (Gaussian). With this assumption in place, free energy can be viewed as the
sum of the long-term average prediction error, which is supposed to be linked to the
FEP (cf. Friston, 2010). It means that in the context of PP, the process involves the
minimization of long-term average prediction error through the model’s optimization
of the statistics of an approximate posterior distribution. Modelers postulate and refine
this distribution to align with the desired target distribution (Millidge et al., 2021, p. 7).
This is an important observation for the very understanding of PP because it allows
us to think about the normative function of the predictive mechanisms, which is the
long-term average precision-weighted error in terms of free energy minimization.

4 VFE was introduced by Richard Feynman to solve an intractable inference problem in quantum elec-
trodynamics (Feynman, 1998, cf. Friston et al., 2006, p. 221). Minimization of a computable objective
function will approximate the minimization of the evidence. This evidence is always upper bounded by
VFE. This means that by introducing VFE, an intractable integration problemwas converted into a tractable
optimization problem; namely minimizing VFE (Dayan et al., 1995; Friston, 2011). Thus, in variational
inference, the model does not directly compute the intractable true posterior. Instead, it optimizes a tractable
upper bound on this divergence, called the VFE. VFE is a tractable quantity because it is the discrepancy
between two qualities (which we know as modeling subjects) i.e., the variational approximate posterior and
the generative model. And because VFE is an upper bound, minimizing it brings us closer to true posterior.
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At this point, however, difficulties arise regarding the linking of the PP framework
with the research framework motivated by the FEP. Before discussing them (cf. §4),
it is necessary to at least briefly explain what the FEP is.

The FEP was introduced by Karl Friston and colleagues as a mathematical frame-
work that specifies the objective function that self-organizing systemsneed tominimize
in order to change their relationshipwith the environment andmaintain thermodynamic
homeostasis (Friston, 2009, 2010, 2012; Friston & Stephan, 2007; Friston et al., 2006;
cf. Andrews, 2021). Originally, the FEP was a principle explaining how the sensory
cortex infers the causes of its inputs and learns causal regularities. What distinguished
the FEP from other theories of inference (cf. Gregory, 1966; Rock, 1983) is the fact
that all cognitive processes and functions, not only perceptual, can be explained in
terms of one unifying principle, which is the minimization of free energy (Bruineberg
et al., 2021, p. 3; cf. Friston, 2010). Later, the validity of the FEP was extended from
perception and action to organization of all self-organizing systems: from unicellular
cells to social networks (cf. Friston, 2009, p. 293; 2013; Wiese & Friston, 2021).5

According to the current formulation of this principle6 any self-organizing system
that is at a nonequilibrium steady-state (NESS) with its environment must minimize
its free energy.7 In other words, any “thing” that achieves NESS can be construed as
performing a Bayesian inference with posterior beliefs that are parameterized by the
thing’s (model’s) internal states. In other words, the FEP offers an interpretation of
mechanical theories of systems as if they possess (Bayesian) beliefs (Ramstead et al.,
2023, p. 2). This is related to the fact that the state flow of a given self-organizing
system can be described as a function of their NESS density. The system, if it exists,
can be described in terms of a random dynamic system (in terms of Dynamic System
Theory—DST) that evolves, which means that it can be said to change over time,
subject to random fluctuations. It must be added that any self-organizing system that
is at NESS, i.e., one that has an attracting set, can be described in terms of Markov
blankets (Friston, 2013; Friston et al., 2020; Wiese & Friston, 2021).8

5 In the light of the analyses carried out, one can invoke Jakob Hohwy’s observation that the FEP as a
mathematical principle is a regulatory principle. Hohwy is probably right when he states that the FEP itself
does not imply cognitive architecture (Hohwy, 2021, p. 47). However, it is important to answer whether
the FEP is a regulatory principle or has a specific explanatory power in the explanation of neurocognitive
mechanisms modelled by the PP framework.
6 I use the term “current” because the FEP and the Active Inference framework are constantly modified by
their proponents. This can of course be explained by the internal dynamics of the theory development, but
for this reason, for the opponents of using this research framework “FEP can appear like a moving target,
each time introducing new constructs that make the previous criticism inapplicable” (Bruineberg et al.,
2021, p. 2).
7 The notion of NESS comes from statistical mechanics, in which it denotes the energy dynamics between
the system and the surrounding heat bath. NESS is best understood as a breach of this balance.
8 The full presentation of Markov blankets goes beyond these considerations, so I will only discuss them
to the extent necessary for further analysis. The concept of Markov blankets comes from research on
Bayesian inference, Bayesian networks, and graphical modeling (Pearl, 1988; cf. Bruineberg et al., 2021),
and basically means a set of random variables which “shield” another set of random variables from other
variables in the system. One set of variables (we can call them states) makes states internal to the blanket
conditionally independent of external states. For aBayesian network (described in terms of a directed acyclic
graphical model) the Markov blanket comprises the parents, children, and parents of the children of a state.
Markov blankets allow for the division of blanket states into internal and external states via their conditional
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NESS density means a certain probability of finding it in a particular state when
the system is observed at random (Friston et al., 2020, p. 4). In this sense, everything
that exists is characterized by properties that remain unchanged or stable enough to
be measured over time. In other words, this means that the states of a given system
behave as if they are trying to minimize exactly the same quantity: the surprisal of
states that constitute the thing, system, and so on. That is, everything that exists will
act as if to minimize the entropy of its particular states over time. Thus, open systems
that are far away from equilibrium resist the second law of thermodynamics (Friston
& Stephan, 2007; cf. Davies, 2019; Ueltzhöffer, 2019). What exists must be in a
sense self-evidencing, meaning that it must maximize a particular model evidence or
equivalently minimize surprisal (cf. Hohwy, 2016). This way, according to Friston and
colleagues, it is possible to interpret the flow of (expected) autonomous states of the
model as a gradient flow on something what we know as VFE,9 and at the same time
allows us to think of systems that have Markov blankets as “agents” that optimize the
evidence for their own existence. In this sense, their internal states with the blanket
surrounding them are (in some sense) autonomous (Kirchhoff et al., 2018, p. 2; cf.
Friston et al., 2020). Autonomy understood in this way allows us to think of “agents”
as adaptive systems, where adaptivity refers to an ability to operate differentially in
certain circumstances. This means that a system that is not adaptive, suggesting that
it does not have a Markov blanket and cannot exist.10

On the basis of the conducted analyses, it can be concluded that the FEP, as a
formal statement—the existential imperatives for any system that manages to survive
in a changing environment—can be treated as a generalization of the second law of
thermodynamics to NESS (Parr et al., 2020). In that sense, the FEP is true for any
bounded stationary system that is far from equilibrium, because the FEP applies to
all self-organizing systems at NESS (meaning that the FEP applies to all systems
equipped with the generative model because NESS density can be described in the
terms of generative model [Friston, 2019, p. 89; cf. Sakthivadivel, 2022]).11

Footnote 8 continued
independence. Then the blanket states can be further divided into sensory and active states where sensory
states are not influenced by internal states, and active states are not influenced by external states. Internal and
external states can only influence each other through a blanket (Friston, 2013). Understanding of Markov
blankets proposed by Friston differs from that introduced by Pearl. The latter understands blankets in an
instrumental way, as a mathematical construct. According to Friston, they gain an “ontic” interpretation
that is not “philosophically innocent” (Bruineberg et al., 2021; see also: Beni, 2021). Without going into
detail, I emphasize that in these analyses, I refer to Markov blankets in a Fristonian manner.
9 Information geometry is also related to the parameterizing states. Information geometry offers a formal-
ism for describing the distance between probability distributions in an abstract space. In this space, each
point represents a possible probability distribution. According to Friston (2019), all systems with NESS
distribution andMarkov blankets can be described in terms of information geometry (cf. Friston et al., 2020,
pp. 9–11). The analysis of this issue, however, goes beyond the scope of this paper.
10 Not all existing self-organizing systems are alive. The FEP also applies to such systems—non-biological
agents—which have a certain degree of independence from the environment (Wiese & Friston, 2021, p. 3).
11 This corresponds in someway to the concept of living organisms defended bymechanists as autonomous
dissipative structures, i.e., those “that […] actually use the second law of thermodynamics to their advantage
to maintain their organization” (Winning & Bechtel, 2018, p. 3; cf. Friston & Stephan, 2007; Kirchhoff
et al., 2018; Ueltzhöffer, 2019).
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3 Systems tradition of mechanistic explanation
and the constraint-basedmechanisms approach

In §1, I drew attention to the fact that many researchers either have doubts about the
actual integration of PP with the FEP—where the FEP would offer an explanatory
significant contribution to the mechanistic PP (cf. Gładziejewski, 2019; Harkness,
2015; Hohwy, 2020), or even negate such a possibility (cf. Colombo & Palacios,
2021; Colombo & Wright, 2021; Williams, 2021). In this paper, I propose a different
research perspective, according to which the FEP imposes an explanatory relevant
informational constraint (i.e., VFE) on the mechanistic architecture postulated by PP.
In order to justify this view, I will refer to the position I call the constraint-based
mechanisms approach. Before I develop my argument, however, it is necessary to
explain, albeit briefly, what this approach is.

Scientific research can be described in terms of discovering and describing mecha-
nisms. In many fields of science, it is assumed that in order to formulate a satisfactory
explanation of the phenomenon under study, one needs to provide a decomposition
of its mechanism. Mechanistic explanations are used with great success in neuro-
science as well as in biological, physical, and social sciences (cf. Glennan & Illari,
2018). This new mechanistic explanatory program became the dominant view across
many debates in the philosophy of science (Bechtel, 2008; Bechtel & Richardson,
1993/2010; Craver, 2007; Craver & Darden, 2013; Machamer et al., 2000).

The introduction of a new mechanism comes with the assumption that a distinction
should be made between explanations which are componential or constitutive and
etiological explanations, which explain a phenomenon by describing its antecedent
causes. Constitutive explanations detail a phenomenon by describing its underlying
mechanism, i.e., the relation between the behavior of a mechanism as a whole and the
organized activities of its individual components is constitutive (cf. Salmon, 1984).12

The latter’s explanations assume a strategy of decomposing high-level cognitive
capacities into components that are responsible for various information process-
ing operations, and then using various computational models, showing how these
operations together explain a given phenomenon. Decomposition is a characteris-
tic determinant of the ‘systems tradition’ (Craver, 2007; cf. Bechtel & Richardson,
1993/2010; Cummins, 1975; Fodor, 1968; Simon, 1969). In this tradition, explanation
is understood as a matter of decomposing systems into their parts to show how those
parts are organized in such a way to emphasize the explanandum phenomenon.

Systems tradition is currently the dominant approach to explanations formulated
in biology, system research, and cognitive neuroscience, while decomposition is the
central heuristic strategy in mechanistic explanations besides the identification of
mechanisms (Bechtel&Richardson, 1993/2010; cf. Bechtel, 2008; Craver, 2007; Illari
& Williamson, 2013). However, the mechanistic view of explanation has met with
controversy (cf. Koutroufinis, 2017; Silberstein & Chemero, 2013). Moreover, some

12 In this paper, by “explaining” I mean “constitutive explanations”.
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authors defend dynamical explanation as an alternative to mechanistic explanation (cf.
Stepp et al., 2011).13

3.1 What about constraints?

Some researchers (cf. Bechtel, 2018, 2019, 2021; Bechtel & Bollhagen, 2021; Win-
ning, 2020; Winning & Bechtel, 2018) point out that the decomposition strategy, as
understood by mechanism, assumes that there is a composition or causation relation-
ship (i.e., causal production) between processes present in mechanisms (where one
process, an organized set of causal processes is “responsible for” the implementa-
tion of another). Such a view, however, ignores two important features of cognitive
mechanisms:

1. Mechanisms of this kind primarily act to control production mechanisms, i.e.,
mechanisms which are responsible for bodily movement and physiological pro-
cesses. This type of relationship can be called control, and it is as important for
the understanding of the nature of mechanisms and their explanations as the rela-
tionships of causation and composition (Winning & Bechtel, 2018, p. 2). These
are, therefore, mechanisms that help to maintain the internal environment of the
given organisms. The analysis of control mechanisms is important because they
allow organisms to quickly adapt to their environment. Therefore, they perform an
important adaptive function and are responsible for the autonomy of the individual,
as they contribute to the maintenance of the existence of a given organism. In this
sense, they are normative because they contribute to the self-maintenance that is
the norm of autonomous living systems (cf. Bickhard, 2003). Self-maintenance is
the norm (what is good or bad for the system) in the sense that it “is not externally
interpreted or derived from an adaptive history but defined intrinsically by the very
organization of the system” (Barandiaran & Moreno, 2006, p. 174);

2. High-level cognitive mechanisms are components of a highly developed and com-
plex network of heterarchically organized control systemswhose aim is to perform
a given cognitive task (Bechtel, 2019, p. 621, cf. Pattee, 1991). By heterarchical
organization, I mean a such distributed causal network in which a given (pro-
duction) mechanism is regulated by multiple (control) mechanisms without these
control mechanisms being themselves subsumed under a higher-level controller.
This means that their organization is horizontal and not vertical, as is the case with
hierarchical organization (cf. Bechtel & Bich, 2021).14

13 My goal here is not to argue with models of explanations that are alternative to mechanism, or to discuss
their validity, especially since there are strong arguments that dynamic models are ultimately mechanistic
(cf. Bechtel & Abrahamsen, 2010; Kaplan & Bechtel, 2011; Zednik, 2008). I am rather interested in the
discussion that took place within mechanism about the limitations of this view (cf. Bechtel, 2018, 2019,
2021; Bechtel & Bollhagen, 2021; Winning & Bechtel, 2018; Winning, 2020).
14 “In both machines and human institutions, control mechanisms are often organized hierarchically. In
a hierarchy, individual control mechanisms are themselves controlled by higher-level control mechanism,
with a single controller ultimately in charge. The system is organized as a pyramid. In living systems,
however, control mechanisms are typically organized heterarchically” (Bich & Bechtel, 2021, p. 2). The
notion of heterarchy first introduced McCulloch (1945). See also Cumming (2016).
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These features (1) and (2) are extremely important and their omission in explaining
cognitive mechanisms makes these explanations incomplete, violating the standard
of mechanistic explanations (Craver & Kaplan, 2018). This may result in “incorrect
accounts of cognition” (Bechtel, 2019, p. 621).15 Taking account of these two aspects
of cognitive processes, i.e., their function in the production of control mechanisms and
their non-autonomous character, leads to the conclusion that their explanation should
also cover other components (some ofwhich are flexible and able to be operated on and
altered by other mechanisms) than those previously considered.16 This means that the
mechanisms are organized not only in terms of production and composition, but also
in terms of control. Such a view thus presupposes a revision of the systems tradition
in which “processes are controlled by other processes, and mechanisms are controlled
by other mechanisms, often hierarchically” (Winning & Bechtel, 2018, p. 3).

A drift from the classical understanding of systems tradition does not mean a depar-
ture from the norms of mechanistic explanations, but rather their extension and the
recognition that the concept of constraint is also important from the explanatory per-
spective. The concept of constraint comes from classical mechanics. It was used to
describe the reduction of the degree of freedom available to components organized into
macroscale objects. Constraints define some limits on independent behavior but also
create possibilities (Hooker, 2013). For example, in contexts where there is a source of
(thermodynamic) free energy, constraints can be used to direct the flow of this energy.
This means that elements of biological mechanisms can be used to limit the flow of
available free energy so that work is done (which can be used to generate particular
phenomena). Some (control) mechanisms are therefore systems of constraints that
restrict the flow of free energy to perform work. Therefore, the operation of control
mechanisms leads to such behaviors or physiological processes that would not be pos-
sible if not for the changes that constraints make in the mechanisms of production.
Controlling the production mechanisms is essential because they are constrained to do
work as long as free energy is available. The same is true for artifacts. For example:
turning on the on/off switch enables the user of a given machine to control it so that
it can use energy and carry out its design activities (Bechtel, 2019, p. 623).17

Constraints understood in this way do not only (or at all) function as the context
or background conditions in which a given mechanism is implemented, but most of
all they are its constitutive (in the sense of being responsible for producing a given

15 This is not to say that the systems tradition does not recognize the importance of constraints (cf. Craver,
2007; Darden, 2006). I do claim, however, that it treats constraints as background conditions or as factors
that limit the space of possible mechanisms. In the constraint-based mechanisms approach, the constraints
are primarily control mechanisms.
16 Certainmechanists have engaged in discussions regarding specific controlmechanisms, such as circadian
mechanisms (Bechtel&Abrahamsen, 2010) and feedbackmechanisms (Bechtel, 2008,Ch. 7).Nevertheless,
they did not talk much about the effects of these mechanisms on others within certain complexes.
17 The concept of constraint, as used in this context, was originally proposed by Howard Pattee (1972)
and David Marr (1982). Marr drew attention to the fact that specific processes can be defined by indicating
and separating physical or natural constraints. The importance of Marr’s observation was not duly noted by
mechanists at first, but in recent years, several authors have advocated the necessity of referring to various
types of constraints, either in explaining neuronal mechanisms (cf. Weiskopf, 2016) or in explaining wide
cognition (Miłkowski et al., 2018).
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phenomenon, resp. mechanism) component because “mechanical systems inherently
contain a ‘thicket’ of constraints” (Winning, 2020, p. 20).18

Bechtel (2018, 2019, 2021), Bechtel and Bollhagen (2021), Winning and Bech-
tel (2018), and Winning (2020) emphasize the need to refer to constraints, linking
them with the necessity to include both constraints and energy flows as those ele-
ments which, apart from entities and activities, are relevant for the explanation of
mechanisms at higher levels of organization.19 It is the constraints and the flows of
free energy that make living organisms “dissipative structures”,20 which means “that
they actually use the second law of thermodynamics to their advantage to maintain
their organization” (Winning & Bechtel, 2018, p. 3; cf. Moreno & Mossio, 2014).
This way, living organisms—unlike most “things”—develop while maintaining their
autonomy, rather than being degraded by the flow of energy and interaction with the
environment.21

Biologicalmechanisms derive their causal efficacy frombeing constrained systems:
“An active causal power exists when a system within a larger system is internally con-
strained in such a way as to externally constrain under certain conditions” (Winning,
2020, p. 28). In other words, constraints determine the causal powers of mechanisms
in such a way that they direct the flows of free energy so that biological systems may
remain in a state of energy non-equilibrium with the environment. Such mechanisms
are part of a heterarchical network of controllers that guarantees the biological auton-
omy of a given system. Based on this, mechanisms are systems of constraints that
restrict the flow of free energy to perform work (Bich & Bechtel, 2021, p. 2).

Mechanisms are active and serve to maintain the autonomy of biological systems as
a result of the constrained flows of free energy. Including these kinds of constraints in
the explanation of activities means breaking with the standard account of mechanistic
explanation (systems tradition).22 If the energetic dimension is ignored, “at some
point, such research typically bottoms out” and “this process leaves the active nature

18 It is important that such a view to constraints is conditioned by the research perspective. However, an
explanatory strategy that favors certain constraints at the expense of others must be distinguished from the
fact that these constraints exist and define a given organism or structure (Pattee, 1972).
19 “Higher-level activities, just as those at the bottom-out level, depend upon the release of energy. Higher-
level entities also constrain those at the bottom level, determining how energy released in molecular motors,
ion pumps, etc. results in activities at higher levels” (2021, p. 21).
20 Far from the equilibrium state, these are stable stationary states, the formation of which is accompanied
by an increase in order.
21 For the purposes of the analyses, I assume that biological autonomy and the related self-organization
and integrity (which enable living organisms (systems) to achieve, maintain, and propagate a high degree
of complexity) define the “situatedness” of biological systems in their environment and their “grounding”
in thermodynamics. Thanks to this, biological systems do not disintegrate: they construct, maintain and
replicate themselves in a changing environment. It means that an organism lives as long as it remains in an
energetic non-equilibrium with the environment (cf. Friston & Stephan, 2007; Moreno & Mossio, 2014).
A paradigmatic example of such a system is a living cell that uses metabolic processes to convert energy
and materials from the environment into chemical energy and organic molecules, which are essential for
the processes that keep the cell alive. All living autonomous organisms “must procure matter and energy
from their environment and use these to construct and repair themselves” (Bich & Bechtel, 2021, p. 1).
22 Earlier, Darden (2006, p. 272) drew attention to this, claiming that the process of decomposition of
selected mechanisms consists in constructing, evaluating and revising them in relation to empirical and
experimental limitations. In other words: constraints limit the space of possible mechanisms to a specific
area that the model is to reconstruct (cf. Craver, 2007).
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of activities unexplained” (Bechtel & Bollhagen, 2021, p. 17) because “a completely
unconstrained systemwill have no behaviors; it would simply be a disorganizedmotion
of particles” (Winning & Bechtel, 2018, p. 7). The approach that takes into account
the need to refer to constraints and flows of free energy will be referred to as the
‘constraint-based mechanisms approach’ and its postulate as heuristics of constraint-
based mechanisms. It is important to emphasize that this approach is not so much a
break with the systems tradition, but its significant modification.23

3.2 What about predictive processing?

In §1, I have already discussed the mechanistic commitments of PP. We can now
take the next step. From the point of the view of the constraint-based mechanisms
approach we should note that, if PP explains its phenomena mechanistically, then it
is legitimate to ask whether the mechanistic explanations based on the PP framework
include constraints and the energy dimension as their constitutive component. This is
not a trivial or secondary question, because, according to the heuristics of constraint-
based mechanisms, mechanistic PP should also include energy processes. This case
is not obvious. Let us note, however, that there are indications that the above heuristic
is used by researchers working in the PP framework.

On the one hand, many of PP’s supporters use the term “constraint” in their consid-
erations to refer to perceptual inference in the brain. For example, “the only constraint
on the brain’s causal inference is the immediate sensory input” (Hohwy, 2013, p. 14),
but “immediate sensory input is not the only constraint; there are, in addition, gen-
eral beliefs about the world, specific hypotheses about the current state of the world,
and ongoing sensory input” (Anderson, 2017, p. 3) and “perceptual experience is
determined by the mutual constraint between the incoming sensory signal and ongo-
ing neural and bodily processes, and no aspect of that content can be definitively
attributed to either influence” (Anderson, 2017, p. 17). It is also worth adding that
the levels of bidirectional hierarchical structure are constraints for each other (Clark,
2013, p. 183; cf. Gordon et al., 2019). Conversely, some have suggested that “without
independent constraints on their content, there is a significant risk of post hoc model-
fitting” (Williams, 2020, p. 1753). However, it is not clear in what sense these authors
use this term and whether they use it in the same way.24

These various uses of the concept of constraint are difficult to relate directly to the
understanding of constraints as control mechanisms, which I defend in this paper. The
constraints discussed by these authors, however, reveal the non-trivial commitment of
PP. Namely: the functioning of predictive mechanisms depends on the existence of

23 This modification assumes the need to analyze (at least) some mechanisms in terms of heterarchical
organization and network organization of constraints.
24 One can also point to the “model” understanding of the concept of constraint concerning the very
architecture of model building in PP (Millidge et al., 2020). It is worth adding that Sprevak has recently
drawn attention to the difficulties faced by PP regarding the inclusion of the explanation of constraints: “In
general, it is not obvious how predictive coding should reconcile two opposing forces: (i) permitting the
implementation to be complex, idiosyncratic, and varied in ways that we do not yet understand; and (ii)
imposing some constraints on which physical states do and do not implement the model in order to render
the view empirically testable” (Sprevak, 2021, p. 26).
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various types of constraints, which on the one hand limit the content of the generative
model, and on the other hand, enable its adaptation to the environment, making it an
effective adaptive tool to maintain the autonomy of the organism. The perspective I
defend allows us to specify the functions of constraints in PP and to study them in
a more systematic way. What is important is the question of how certain constraints
are constitutive of predictive mechanisms. In other words, the point is to demonstrate
how such and such organization of predictive mechanisms constrains free energy so
that it is possible to perform the work required to generate particular phenomena, resp.
predictions.

On the other hand, broadly speaking, we have to note that the findings within the
FEP andNESSmathematics (expressed in the language ofDST)—according towhich,
if something exists then it must exhibit properties as if it is optimizing a VFE—look
like they coincide with the heuristics of constraint-based mechanisms whereby mech-
anisms are active and serve to maintain the autonomy of biological systems as a result
of the constrained release of free energy. It seems that mechanistic PP should take
into account the energetic dimension of predictive mechanisms. Is it really so? The
full answer to this question depends on further empirical solutions, and it is certainly
not only an a priori answer. Nevertheless, I argue that if the arguments presented
above are correct, then it should be asked if FEP-based PP meets the requirements
of the constraint-based mechanisms approach and allows one to think of predictive
mechanisms as constitutive control mechanisms for autonomous systems armed with
a generative model. I will devote my further analysis to answering this question.

4 What does it mean for the system that it minimizes variational free
energy?

The connection between PP and the FEP raises a number of doubts, which can be
reduced to two main issues: (1) the very interpretation of the FEP as a principle of
modeling self-organizing systems armed with generative models; (2) the question of
how the FEP determines the energetic (in the information-theoretical sense) constraint
for themechanistic PP. Letme start by outlining the first difficulty. I will devote another
section to the second.

I stated earlier that under the mathematical framework of the FEP, PP looks like it
coincides with the heuristics of constraint-based mechanisms. But why do I use the
terms “looks like” and “as if”?25 I do it because this is how some proponents of the
FEP define its application to autonomous systems: “physical systems that look as if
they encode probabilistic beliefs about the environment”; “self-organising system that
looks as if it is modelling its embedding environment” or “all systems that look as
if they engage in inference” (Ramstead et al., 2023, pp. 1, 2, 18) and so on. What
does the phrase “as if” mean? SimonMcGregor defines its use as follows: “To say that
something behaves ‘as if’ it has propertyX usually implies that it does not, in fact, have
property X. However, there is clearly a sense in which a system possessing property
X must also behave as if it had property X; it is in this, less restrictive, sense that we

25 I use those two terms interchangeably in this context.

123



Synthese (2023) 202 :58 Page 15 of 33 58

intend the phrase ‘as if’. In other words, we classify both the regulation of temperature
by a thermostat, and also the pursuit of prey by an eagle, as ‘as if’ agency” (McGregor,
2017, p. 72). McGregor distinguishes between two senses of “as if”. In the first one
(“instrumental”), the system can be described as if it had a given property, even though
it does not actually have it, and in the second (“realistic”), it can be described as if it
had a given property precisely because it has it.26

This duality allows us to see that the use of the phrase “as if” in relation to systems
that are supposed tominimize VFE can be interpreted in at least several ways: from the
realistic interpretation, whereVFE is a quantity (ormeans a quantity) that isminimized
by biological systems that maintain their organization – in this approach, VFE cannot
be reduced to researches’ construction or explained only in terms of the practice of
modeling27; to various anti-realistic or instrumental interpretations in which the FEP
is a construction devised by scientists to describe the dynamics of any self-organizing
system that is at NESS with its environment without any implications for their actual
causal structure. In this approach, VFE looks like a quantity that relates to the models
made by scientists, while the FEP serves to designate a model structure on the basis
of which specific models are constructed (cf. Andrews, 2021).28

The discussion so far concerning the ontological and epistemological commitments
of the FEP is rich. It is worth mentioning the papers of Andrews (2021, 2022), Bru-
ineberg et al. (2021), Kirchhoff et al. (2022), Ramstead et al. (2022) or Van Es (2021).
I will not discuss them here. However, I would like to draw attention to the fact that
the mechanistic perspective adopted in this paper is realistic (see §5) and therefore
imposes certain theoretical commitments on the understanding of the FEP and VFE,
which bringmy positions closer to a realistic interpretation of the FEP, which I will call
moderate.29 It is moderate in the sense that it assumes that systems can be described
as if minimizing VFE, because they implement some causal mechanism that can be

26 Indeed, in the latter sense (as one reviewer pointed out to me), there is no need to describe a system as
behaving “as if” it had a given property if this is indeed how the system behaves. However, we can still relate
the phrase “as if” to our best models or simulations and assert that the given model or simulation behaves
“as if” it had a certain property of the target system. In this context, the term “as if” serves to acknowledge
the use of models or simulations as approximations or representations that imitate certain aspects of the
target system’s behavior.
27 This interpretation assumes that systems can be described as if minimizingVFE, because they implement
some causal mechanism that can be described (approximately) in terms of minimizing VFE, resp. long-
term average prediction error. In other words, there is a definite causal pattern that is the object of scientific
interpretation.
28 In addition to the above-mentioned positions, one should also take account of the views of authors such
as Williams (2021), Colombo and Wright (2021) or Colombo and Palacios (2021), who treat the FEP as (at
best) a general idealization. Their views can be collectively described as eliminativism about the FEP.
29 The notion of moderate realism I have proposed can be related to some extent to Hilary Putnam’s (1978,
cf. Hacking, 1981) distinction betweenmetaphysical realism and internal realism. The first position assumes
that the world contains a specific set of objects that exist independently of the human mind and the ways
of its conceptual articulation. Our theories are true if they denote what the world is like. The position of
internal realism (i.e., the moderate realism I propose) assumes that objects in the world depend on accepted
conceptual schemes. Thus, there may be different objects, depending on the conceptual schemes adopted.
This means that there is no fixed set of objects that exists independently of conceptual schemes.
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described (approximately) in terms of minimizing VFE, resp. long-term average pre-
diction error (see §6).30

Therefore, considering the goal I have set for myself in this paper, which is to apply
the heuristics of constraint-based mechanisms in relation to PP and determine the
energetic constraint for the mechanistic architecture proposed by this framework, it is
important to acknowledge that the FEP provides a relevant (variational) constraint for
the causal organization of all autonomous systems equipped with generative models,
as explained mechanistically by PP. If this is true, than the FEP provides a relevant
constraint for PP’s scheme of mechanism.31

5 Mechanistic realism and the free energy principle

Many mechanists emphasize that there are objective structures in the world that are
in some sense richer than mere aggregations of causes. Entities, their hierarchical-
heterarchical organization and the operations binding them, produce mechanisms.
The task of scientists is to identify and decompose them (cf. Bechtel, 2008; Craver,
2007; Craver & Darden, 2013; Machamer et al., 2000). This view can be called mech-
anistic realism. It is not a clear-cut position, as recently demonstrated by Dewhurst
and Isaac (2023), because its ontological commitments are unclear. There is no space
in this paper to discuss this issue in more detail, but I believe it is reasonable to say that
the architecture implied by the heuristics of constraint-based mechanisms assumes a
certain mechanistic realism in relation to the causal patterns present in the world (cf.
Winning, 2020). In other words, the fact that production mechanisms are limited and
activated in one way or another by specific constraints and flows of free energy sug-
gests that the causal relationships between specific patterns or, in Bayesian modeling
terminology, sensory signal statistics cannot be described merely as an aggregation
of causes (cf. Craver & Bechtel, 2007). This means that there must be some facts
about the structure of mechanisms that explain them and determine what mechanisms
should be and what components and operations will appear at a given level of their
hierarchical-heterarchical structure (Dewhurst & Isaac, 2023; cf. Craver, 2013).

30 This interpretation should be distinguished from the approaches that treat self-organizing systems as
literally minimizing VFE, while the use of the phrase “as if” implies that systems behave as if they were
minimizing VFE, because in fact they implement the mechanism of VFE minimization, resp. long-term
average prediction error (in this view, the phrase “as if” is redundant – see footnote 26). In this sense,
my analysis corresponds to the critique of what Kirchhoff, Kiverstein & Robertson (2022) call the literalist
fallacy. The fallacy is that the instrumentalist position is accepted or adopted due to the belief that FEP-based
models are not literally mapped onto real target systems.
31 It is important to bear in mind that based on the difference between realistic and instrumental, resp.
antirealistic approaches to the FEP, one can distinguish between free energy minimizing systems that use
gradients (VFE-users) and systems that are just minimizers of those gradients (VFE-minimizers) (Kuhn,
2022, pp. 94–95). Consequently, if there are any VFE-users that exist, theymust actually minimize VFE and
not just be described as minimizing VFE. This would mean that the FEP indicates an energetic constraint
that has significant causal powers necessary for the implementation of specific mechanisms regulating the
work of those systems. From this perspective, it is reasonable to claim that the human brain armed with the
generative model is actually a VFE-user (cf. Kuhn, 2022, p. 95).
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Because of this realistic nature of the mechanistic explanations, I argue that if the
heuristics of constraint-based mechanisms can be applied to VFE-constrained predic-
tive mechanisms, then realismmust be assumed for the FEP. Instrumentalism imposes
no commitments on the explanations regarding the architecture of the mechanisms,
and treats themechanisms themselves as useful fictions. The heuristic interpretation of
the FEP defended by Gładziejewski (2019) and Harkness (2015), while not excluding
realism in relation to mechanisms, denies any explanatory power to the FEP.32 In this
sense, it does not allow VFE flows to be treated as significant for the functioning of
predictive mechanisms.

I can now present the realistic interpretation of what it means to say that self-
organizing systems minimize VFE. The moderate realistic interpretation, which I
defend, does not impose strong commitments on mechanistic architecture that would
involve committing the literalist fallacy (cf. Kirchhoff et al., 2022). Moderate realism
assumes that the concepts implied by Bayesian modeling are not precisely mapped
to the target phenomena. Thus, they can be treated as approximations (cf. Laudan,
1981; Weisberg, 2007). Bayesian formal structures are rather non-arbitrary (in the
instrumental sense) interpretations of causal patterns in the world, which, according to
mechanistic realism, have specific structures that cannot be reduced to being aggregates
of causes.

I argue that the proper interpretation that allows PP to be integrated with the FEP
framework in accordance with the heuristics of constraint-based mechanisms, follows
a moderate realistic approach to the FEP. Why? In order to answer this question, it is
necessary to look at the arguments that concern the possibility of linking VFE with
TFE.

It seems that the first step in demonstrating that VFE is a relevant constraint for
predictive architecture has been made. To sum up: in accordance with the realistic
approach to the FEP, VFE is not only a scientists’ construct, but in a sense models
the actual property of the target phenomena, which do not have to be treated as exact
representations of formal structures.

We thus come to the second difficulty, which I indicated at the beginning of §4:
does the FEP determine the energetic (in the information-theoretical sense) constraint
for the mechanistic PP, and to what extent?

6 Is variational free energy the same thing as thermodynamic free
energy?

Let us first cite the observation of William Bechtel, who explicitly states that “The
notion of free energy invoked in mechanical action is distinct from the free-energy
principle articulated by Friston (…). The conception of free energy required in the
account of mechanisms is that appealed to in mechanics to explain work of any form”

32 Let us recall: in linewith the classic view ofHerbert Simon, heuristics strategies allow researchers to limit
their investigations to particular regions within a given space (cf. Simon, 1977). However, it is important
to emphasize that heuristics as such “cannot itself provide evidence for any particular hypothesis over an
empirically equivalent alternative” (Zednik & Jäkel, 2016, p. 3969). “They are not adequate explanations”
and “often provide only the illusion of understanding a mechanism” (Craver, 2006, pp. 361, 373).
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(Bechtel, 2019, p. 634; cf. Bich & Bechtel, 2021, p. 52). This claim seems to exclude
the idea of using VFE as a constraint for mechanistic PP, at least in the sense that
Bechtel and colleagues propose.However, it seems that it is doubtful, however,whether
Bechtel rightly excludes Fristonian VFE. In the quoted paper, he refers to a 2010
piece by Friston. In this work, free energy is understood as “an information theory
measure that bounds or limits (by being greater than) the surprise on sampling some
data, given a generative model” (Friston, 2010, p. 127) and as such it is distinguished
from the thermodynamic free energy referred to by Bechtel (cf. Moreno & Mossio,
2014). However, in more recent papers, Friston argues, based on the mathematical
relationships between non-equilibrium dynamics, variational inference, and stochastic
thermodynamics, that VFE is the same as TFE, because VFE “is consistent with the
notion of free energy as the thermodynamic energy available to do work when an
ensemble is far from equilibrium” (Friston, 2019, pp. 66–67; Parr et al., 2020).33 This
statement, as I will soon show, may raise reasonable doubts and ultimately does not
justify the belief that VFE is a constraint for mechanistic PP.

What is Friston’s argument for equating VFE with TFE, and why is it important?
I will start with the second point. Let us recall: the fact that cognitive mechanisms
are active and can serve to maintain the autonomy and self-organization of biological
systems is a result of the constrained flows of free energy. It is important to explain
“how that free-energy is converted into a specific activity” (Bechtel & Bollhagen,
2021, p. 3). It seems that Friston goes a step further: mechanisms are constrained and
made active not only by the energy in the thermodynamic sense, but also the energy
in the information-theoretical sense (i.e., VFE) that the system optimizes to achieve
NESS (cf. Friston, 2013;Wiese&Friston, 2021). If Friston is right, then there are some
phenomena that need to be explained by taking into account the energetic constraint
of VFE. This means that there are mechanisms that are implemented because they
minimize the VFE quantity.

Let us now return to the identification of VFE with TFE. If VFE coincides with
TFE, then it looks like the FEP (as a framework for explainingminimization of VFE) is
fundamental to explainingmany biological and cognitivemechanisms by analogywith
the scientific importance of explanations using statistical mechanics and the concept
of TFE. In the latest papers, Friston and colleagues introduce the concept of Bayesian
mechanics, which “is a probabilistic mechanics, comprising tools that enable us to
model systems endowed with a particular partition (i.e., into particles), where the
internal states (or the trajectories of internal states) of a particular system encode the
parameters of beliefs about external states (or their trajectories)” (Ramstead et al.,
2023, p. 1). In other words, according to these authors, Bayesian mechanics is exactly
the same as all these other mechanics but with the added variational energy constraint
(i.e., the assumption of Markov blankets) (Friston, 2019, p. 122). We will therefore
take a closer look at Friston’s argument in favor of equating VFE with TFE. I will call
it an argument from the Bayesian mechanics.

In this perspective, the assumption of the compatibility of TFE and VFE can entail
both ontic commitments characteristic of the realistic interpretation of the FEP and

33 Friston earlier integrated predictive coding with the FEP (Friston, Kilner, & Harrison, 2006) by identi-
fying the Rao and Ballard’s energy function (Rao & Ballard, 1999) with VFE.
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epistemic commitments characteristic of instrumentalism. In the latter case, instru-
mentalism would imply treating TFE and VFE as constructs of scientists, or useful
fictions. As I will argue in the remainder of this paper, however, that from the point of
view of the constraint-basedmechanisms approach tomechanistic PP, instrumentalism
cannot be reconciled with mechanistic realism. This means, therefore, that the appli-
cation of the heuristics of constraint-based mechanisms to mechanistic PP is possible
only in two cases: either when the compatibility of TFE andVFE is justified in realistic
terms, or when both of these quantities are treated as independent interpretations of
such and such patterns or causal structures present in the world (cf. Weisberg, 2013).

6.1 The Bayesianmechanics argument

According to Friston and colleagues, the concept of VFE can only be applied on the
basis of Bayesian mechanics: “At the core of Bayesian mechanics is the variational
free energy principle (FEP)” (Ramstead et al., 2023, p. 2). This belief, however, reveals
a deeper assumption about the nature of mechanics: every kind of mechanics has its
own reified constructs (such as thermodynamic energy, temperature, second law or
very VFE). It means, Friston claims, that the existence of this type of construct is
justified by a given type of mechanics (classical, statistical, quantum, or Bayesian).
For example, from the point of view of quantummechanics, the temperature construct
has no object reference. According to Friston, recognizing the existence of this type of
reified constructs presupposes the so-called ensemble assumption (that all particles in
your ensemble are exchangeable) which entails a weak coupling between fast and slow
modes (Friston, 2019, p. 47).34 In statistical physics or thermodynamics, the ensemble
assumption is an idealization according to which there are collections of a very large
number of systems in different (quantum) states with commonmacroscopic attributes.
The ensemble is distinguished by which thermodynamic variables are held constant
(cf. Gibbs, 1902). This means that their properties result from the laws of classical or
quantum mechanics. The ensemble assumption, Friston argues, translates into a weak
coupling between internal particles and their Markov blanket, which means that the
states of the ensemble are partitioned so that the states of each constituent particle
can be identified with the homologous states of another. This makes it possible to
associate the NESS density with an ensemble density. This means that instead of
describing the probability of a given particle appearing in a certain state over time,
the NESS density describes a greater number of particles that occupy the same (or
adjacent) states (Friston, 2019, p. 64).

So, how does the use of the ensemble assumption inBayesianmechanics differ from
its use in other mechanics? Friston claims that Bayesian mechanics adds a variational
energy constraint (i.e., assumption ofMarkov blankets).With this additional constraint
in place, one can speak of states of something as relative to something else, which is
directly applicable to living organisms or neural structures. According to Friston, only

34 For example:mechanisms that underwrite self-organization rest upon bottom-up causation and top-down
causation, which means top and bottom-up causation is necessary in the sense that it defines what variables
and relevant variables (in the language of the renormalization group) matter (define the coupling and the
shape of the coupling). Top down causation means that these variables also have a very slow dynamic, and
crucially contextualize and constrain the dynamic at the lower faster level (cf. Ellis, 2012).
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Bayesian mechanics can do this (cf. Parr et al., 2020). The other types of mechanics
assume that a Markov blanket and the states outside the blanket can be ignored, which
is related to, for example, talking about a heat bath or a thermal reservoir in terms of
statistical mechanics (Friston, 2019, p. 122).

This is where the important question arises as to why only Bayesian mechanics
should allow the separation of internal and external states. Why should this not be
possible to achieve through, for instance, a constraint-based mechanistic approach
as understood by Bechtel and colleagues or the biological autonomy approach as
characterized by Barandiaran, Moreno, Varela and so on? According to Friston and
colleagues, it is important to bear inmind that the above-mentioned approaches already
assume solutions that are only enabled by the Bayesian mechanics. The new mechan-
ical philosophy of neural mechanisms or an account of biological autonomy based on
autopoiesis are only possible on the basis of the ensemble assumption with a varia-
tional constraint. To be more precise: the statement that there are some mechanisms,
presupposes the mechanistic nature of certain phenomena. Friston claims that without
the ensemble assumption, it seems impossible. Nevertheless, it is not difficult to see
that the ensemble assumption follows from the assumptions of statistical mechanics,
thermodynamics, or evenmechanistic realism (cf. Dewhurst & Isaac, 2023). However,
Friston argues, it is only on the basis of Bayesian mechanics that one can recognize
active mechanisms (e.g., information processing neuronal mechanisms) that are char-
acteristic for the organization of living systems such as, for example, bacteria and our
brains (Friston, 2019, p. 1). In other words, only Bayesian mechanics allows us to
explain why biological systems “exist the way they do” (Sakthivadivel, 2022, p. 2),
i.e., indicate what physical mechanisms and constraints enable biological systems to
be what they are, rather than being inanimate matter.

According to Friston, VFE can be applied only in the realm of Bayesian mechanics
and thus refers to autonomous or active things, while TFE can only be applied in the
realm of the statistical ensemble. Thus, both of these mechanics are based on quantum
mechanics (cf. Friston et al., 2022, pp. 5–6). For this reason, it can be said that VFE
and TFE are two consequences or expressions of the same thing of a more elemental
mechanistic or quantum nature.35

6.2 Instrumental interpretation of the Bayesianmechanics argument

Note that, if the Bayesian mechanics argument is valid, then VFE is an explanatory
relevant constraint for the PP’s mechanistic architecture. This means that according
to the heuristics of constraint-based mechanisms, predictive mechanisms are active
because they are a result of the constrained release of free energy (both in terms
of TFE that crucial for physical mechanisms and VFE as constitutive for information
processing neuralmechanisms). Frommypoint of view themain difficulty in accepting
this argument lies in its instrumental interpretation defended by Friston and colleagues
(cf. Friston, 2019; Friston et al., 2022).

35 “The ensuing Bayesian mechanics is compatible with quantum, statistical, and classical mechanics and
may offer a formal description of lifelike particles” (Friston, 2019, p. 1).
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In instrumental interpretation this argument assumes that TFE and VFE turn out
to be two sides or aspects of some more primal dynamics, which, depending on the
measurement tools, in one case reveals properties are thermodynamic, in another vari-
ational. In this sense, “Bayesian and stochastic mechanics are equivalent formulations
of the same thing.One can either regardBayesian inference is a necessary consequence
of thermodynamics (i.e., gradient flows on a thermodynamic potential). Alternatively,
Bayesian mechanics is a corollary of thermodynamics” (Friston, 2019, p. 119). As
Friston claims, each type of mechanics posits a different kind of reified constructs,
and what they all have in common are random dynamic systems. This means that VFE
and TFE can be understood as constructs that are relativized to the description and
method of measurement, and each type of mechanics is a complementary description
of the behavior of dynamic systems.

Therefore, we should distinguish the map (models developed by science) from the
territory (what the models represent) (cf. Friston, 2019, p. 123; Andrews, 2021). In the
instrumental interpretation, the FEP allows for the construction of “a map of that part
of the territory which behaves as if it were a map” (Ramstead et al., 2022, p. 8). In this
sense, VFE is a tool that is used to explain the dynamics of self-organizing systems
(given the state of our knowledge) (Ramstead et al., 2022, p. 17) without making any
ontological commitments regarding the representational or architectural properties of
these systems. Therefore, the FEP is only a tool formodeling phenomena. It is arbitrary
in the sense in which the choice of measurement tools or labels to name objects is
arbitrary.

From this perspective, FEP-based models address the causal structure of the world
in the sense that they are epistemically useful. Their use in modeling some empirical
data may speak in their favor (cf. Smith et al., 2022). However, it is difficult to talk
about their mechanistic character in this case (at least if mechanisms are understood
ontically). Thismeans that the constructions postulated by the FEP or PP can be treated
as useful fictions (cf. Ramstead et al., 2020; van Es, 2021; van Es & Hipólito, 2020).

Wehave to conclude that instrumental interpretation does not allow for a satisfactory
mechanistic integration of the FEP and PP from the perspective of the constraint-based
mechanisms approach, because instrumentalism imposes no mechanistic commit-
ments regarding the causal structures under study. Therefore, it is challenging to regard
it as compatible with the earlier-discussed mechanistic realism, which I deemed nor-
mative for the using of heuristics of constraint-based mechanisms (cf. §5). In such a
situation, the only possible position justifying the mechanistic integration of the FEP
and PP seems to be moderate realism about the FEP. Is it really so?

7 Moderate realism about the free energy principle and predictive
processing

According to the moderate realistic interpretation of the FEP, the system minimizes
VFE because it implements some causal mechanism that can be described (approxi-
mately) in terms of minimizing VFE. In this sense, VFE can be treated as a constraint
of such active mechanisms, which researchers explain in terms of the minimization of
long-term average prediction errors. In other words, there are causal structures whose
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organization cannot be reduced to an aggregation of causes and must be explained in
terms of mechanisms constrained by quantity flows described in terms of minimizing
VFE or maximizing mutual information between sensory states and internal states
(cf. Friston, 2010; Friston et al., 2022).36 In the moderate interpretation that I defend,
this means that some mechanisms are systems of constraints that restrict the flow of
information to perform work (cf. Bich & Bechtel, 2021, p. 2) in such a way that they
minimize the discrepancy (i.e., prediction error) between estimate-based predictions
of the system and the actual sensory stimulation coming from the input to stay atNESS.
Why are these systems VFE-users and not just prediction error-users? Because, the
minimization of prediction errors by the approximation of Bayesian inference happens
through VFE minimization (cf. §2).

The argument from neural computation supports the adoption of a moderate realis-
tic interpretation of the FEP. According to this argument, there is a trade-off between
neural information processing and thermodynamic energy consumption, the explana-
tion of which makes it possible to understand how some states of biological systems
have characteristically low Shannon entropy, which enables them to adapt and survive
in the environment.

7.1 Argument from neural computation

Research on the thermodynamics of information clearly indicates the existence of a
trade-off between neural information processing and thermodynamic energy consump-
tion. There is an energetic cost of information processing (cf. Levitin, 1998; Niven &
Laughlin, 2008; Sagava & Ueda, 2011). This energy cost can be associated both with
Landauer’s principle, according to which information erasure increases the entropy of
the environment, i.e., energy dissipation (Landauer, 1961; cf. Sartori et al., 2014), and
with Gregory Bateson’s observation that information (a single bit of information) is a
difference which makes a difference, which in the case of living organisms means that
the power of a given process by metabolic energy depends precisely on the difference
(information) contained in certain states of the organism. For this reason, Bateson
claims that the mechanical interaction of muscles can be treated as a computational
model (Bateson, 1987, p. 322).

It has recently been shown that the minimum energy required by a biological sen-
sor to detect a change in an environmental signal is proportional to the amount of
information processed during this event (Sartori et al., 2014). Sengupta et al. (2013)
proved that minimizing VFE is a significant constraint to the tendency to maximize
both metabolic and statistical efficiency in the sense that the motivation for mini-
mizing VFE is to maintain a constant external environment that is encoded by the
physical variables measured by TFE. Thus, the reference to the VFE constraint allows
for the explanation of the homeostatic nature of neural processes, which mathemat-
ically means that states of biological systems have characteristically low Shannon
entropy, understood—according to the ergodic theory—as the long-term average of
self-information or surprise. Without reference to informational VFE, we would not

36 Such mechanisms can be associated with the existence of systems that I previously defined after Peter
Kuhn as VFE-users (see footnote 31).
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be able to explain not only the homeostatic nature of neural computational mecha-
nisms, but also their energy consumption, which is related to their ability to transmit
information (cf. Laughlin, 2001). In other words, from this perspective, it follows that
the use of only thermodynamics to explain the work of the brain is not fully justified.

A full explanation of how the brain works, i.e., what makes neural mechanisms
active and able to perform their functions, requires taking into account information
constraints that can be characterized in terms of VFE minimization. They are respon-
sible for action potentials in the brain’s sensory system, forming a neural code that
efficiently represents sensory information by minimizing the number of spikes needed
to transmit a given signal according to Barlow’s (1961) principle of efficient coding
(cf. Abbot & Dayan, 2005, pp. 123–150).

The argument from neural computation can be formally justified by the interpreta-
tion of Jarzynski equality (Jarzynski, 1997) proposed by Friston (2019). According to
Friston, Jarzynski equality shows that whenever you do any belief updating by chang-
ing the information inherent in the configuration of any dynamical system (e.g., belief
updating in the Bayesian generative model), there is necessarily a thermodynamic
work cost. Any Bayesian belief updating involves a change in biophysical encoding
of these beliefs, or any belief updating has to have a concomitant energy expendi-
ture in terms of thermodynamic free energy. Furthermore, it is important to highlight
that this thermodynamic cost we actually measure that in brain imagining using brain
mapping to detect the thermodynamic activity in terms of activation foci in the brain
(cf. Davatzikos et al., 2001).37

I argue that both empirical and formal findings will most probably determine that
there are such phenomena (e.g., the neural computations performed by brains), the
explanation of which, according to the constraint-basedmechanisms approach, should
take into account the energetic constraint of VFE. Otherwise, such an explanation fails
to capture the characteristic properties that distinguish the biotic systems that are at
NESS from those that can be thermodynamically described as a heat bath.

7.2 Ontological commitments of themoderate realism

If it is true that the free energy flows constitutive of the active mechanisms can be
described in terms of minimization of VFE, then it seems that there are no formal
obstacles to acknowledging that the mechanistic decomposition of generative models
minimizing the average prediction error should refer to the minimization of VFE
as a constitutive constraint for these mechanisms. For this reason, I argue that one
should adopt moderate realism about the FEP and PP. Its legitimacy is supported by
explanatory considerations, integration possibilities regarding PP and perhaps other
research frameworks, as well as relatively weak ontological commitments regarding
the architecture of target phenomena. Moderate realism allows one to maintain the
quantity of VFE without incurring the debts of adopting instrumentalism.

37 Jarzynski equality can be used in two ways. Either as formal support for the argument from neural
computation, or, as suggested by Friston (2019), as justification for the choice of the Bayesian mechanics
as the appropriate explanatory framework for systems armed with generative models which are “shielded”
by Markov blankets. The latter solution leads, of course, to the difficulties I pointed out in my discussion
of and instrumentalism about the FEP.

123



58 Page 24 of 33 Synthese (2023) 202 :58

Let’s take a closer look at these ontological commitments that result from adopting
moderate realism about PP and FEP, resp. VFE. Firstly, this position assumes that
formal structures such as generative models, VFE or TFE, are interpreted as part of
explanations in the ontic sense, i.e., the exhibitions “of the ways in which what is
to be explained fits into natural patterns or regularities … [and] usually takes the
patterns and regularities to be causal” (Salmon, 1984, p. 293, cf. Craver, 2013). In this
sense, moderate realism corresponds to mechanistic realism and the constraint-based
mechanisms approach. In practice, this means that moderate realism does not map
literally the formal structure (generative model or Bayesian network) onto the target
phenomena, which would involve committing the literalist fallacy, but assumes that
there are structures that cannot be reduced solely to the aggregation of causes and
which implement some causal mechanism that can be described (approximately) in
terms of generative models minimizing VFE, resp. long-term average prediction error.
Therefore, it is important to assert that the formal structures (Bayesian modeling in
our case) are such and such, because the world has genuinely causal structures, at least
some of which are entities and activities organized to form mechanisms responsible
for the phenomena that are described in terms of Bayesian optimization.

This view can be further elucidated through the findings of Kirchhoff, Kiverstein,
andRobertson. These authors state that realism in science does notmean that all entities
postulated by a given theory or model are literally true (Kirchhoff et al., 2022, p. 12). A
theory may incorporate both “OK-entities” (such as electrons and similar entities) and
“supposedly non-OK-entities” (such as numbers or theoretical ideals) (Psillos, 2011,
p. 6). Consequently, it is important to acknowledge that each model includes parts
that are fictional entities, which bear resemblance to target systems in various ways.
These fictional entities facilitate the understanding of real system dynamics within the
model (Kirchhoff et al., 2022, p. 13), but they do not themselves represent specific
causal structures in a literal sense. The expectation of a literal interpretation of fictional
entities gives rise to the literalist fallacy, as mentioned earlier. One such fictional entity
is VFE. Therefore, process theories like PP should be viewed as approximations of
the actual causal structures or patterns in the world. They are approximations due to
the inherent complexity of target systems. Hence, I argue that moderate realism posits
that a given model fits the data without a literal mapping. Instead, it is approximately
true in relation to the data (cf. Kirchhoff et al., 2022, p. 16; Stanford, 2003).

Let us now delve into the relationship between the FEP and PP. Friston argues
that Bayesian mechanics provides a “formal description of lifelike particles” (Friston,
2019, p. 1). This means that the Bayesian mechanics, by establishing a relationship
between TFE and VFE, tells researchers something about mathematical models, i.e.,
formal structures, and only about them. Consequently, process theories such as PP are
indispensable for addressing target phenomena. In line with the stance I advocate, the
existence of control mechanisms that constrain the flow of free energy (both in terms
of TFE and VFE) enables the formulation of theorems regarding the interplay between
state theory (the FEP) and process theory (PP). Therefore, it is crucial to distinguish
between three distinct elements: the FEP as a formal principle, PP as a computational
modeling framework grounded in this formal principle, and the biological systems
that PP is employed to model, which are independent of the FEP.
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How, then, is the transition from the FEP to target phenomena possible? On one
hand, if the view presented in this paper is correct, mechanistic PP, employing the
heuristics of constraint-based mechanisms, is utilized to model control mechanisms
and systems. One such control system is the brain, modeled by predictive coders as
a hierarchical generative model that approximates Bayesian inference. On the other
hand, the relationship between VFE and TFE established by Bayesian mechanics
informs us about target phenomena because computational models of these systems
in PP are constructed using the mathematics of the FEP. Ultimately, this implies that
the position of moderate realism concerns not only the FEP and Bayesian mechanics
themselves, but rather the application of the FEP in a specific process theory, such
as PP, which is a concrete FEP-based model. It is important to note that the FEP, as
a formal principle, does not imply any ontological commitments or resolutions (cf.
Andrews, 2021).38 These commitments and resolutions arise at the level of applying
the FEP through a particular process theory. The use of the constraint-based mech-
anisms approach justifies why such an understanding of PP should be interpreted in
terms of moderate realism.

There are also further benefits of the FEP and PP interpretation presented here.
According to the position defended by Friston, FEP is a (normative) state theory
that things may or may not conform to it, and PP is a process theory—a hypothesis
on how that principle is realized (Friston et al., 2018, p. 21). It means that PP as
the process theory provides “a possible (mechanistic) story about how the FEP is
implemented in real-world, target systems” (Kirchoff et al., 2022, p. 6).39 The proposed
mechanistic integration of PP with FEP reveals that the FEP serves as a normative
theory for PP, setting a norm that mechanistically non-trivial PP models should strive
to meet, assuming the utilization of the constraint-based mechanisms approach and its
heuristics. According to this norm, PP models should have an energetic component if
they are to be mechanistic.40

The view I defend can be treated as a voice in the discussion on the status of PP
and its relation to the FEP, because FEP not only constrains the space of possible
algorithms for PP (cf. Spratling, 2017), but also indicates energetic constraint for the
causal organization of all autonomous systems, including those that are armed with

38 For this reason, it can be argued that there should ultimately be no moderate realistic interpretation of
the FEP itself. However, if the perspective I am advocating is correct, then the integration of the FEP with
the PP based on it can be seen as part of a broader scientific view that could align with a properly developed
moderate realism. This perspective largely aligns with what Kirchhoff, Kiverstein & Robertson describe
as scientific realism, which asserts that one reasonable goal of our best scientific theories and models is to
provide descriptions and explanations of reality that are either literally true, probably true, or approximately
true (Kirchhoff et al., 2022, p. 1).
39 In the sense, that „The free energy minimizing dynamics at play are implemented by different kinds
of mechanisms in different individual organisms and species, as a function of the coupling between their
evolved phenotypes and biobehavioural patterns and the niches they inhabit and the scales under scrutiny”
(Ramstead et al., 2017, p. 6). In this view, the FEP can be regarded as a target-directedmodel in theWeisberg
sense (2013) (cf. Andrews, 2021; Kirchoff et al., 2022).
40 It is worth adding that research on systems responding to a stochastic driving signal emphasizes that there
is a profound connection between the effective use of information and efficient thermodynamic operation:
“any system constructed to keep memory about its environment and to operate with maximal energetic
efficiency has to be predictive” (Still et al., 2012, p. 1).
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generative models and are or should be the subject of (mechanistic) explanations for-
mulated on the basis of PP. In practice, this means that all autonomous systems that
can be described in terms of (Bayesian) generative models realizing updating pri-
ors and likelihood based on (average) prediction error should be treated as if they
approximate Bayesian inference constrained by VFE. In other words: FEP offers a
normative framework for the PP process theory, and that the PP explains the (biolog-
ically reliable) implementation of the FEP in terms of hierarchical and heterarchical
active mechanisms that implement the generative model.

7.3 Why the free energy principle is not a heuristic or a regulatory principle
or an idealization

The analyses carried out in this paper allow to refer to various positions concerning
the explanatory status of FEP and its relation to PP. If the approach proposed here
is valid, it has certain consequences for a number of discussions among PP and FEP
researchers (see §1). Due to the limited space, I can only give provisional answers to
the questions raised.

Foremost, I think that the presented approach allows for a new way of describ-
ing the PP-FEP relationship. If the FEP refers to self-organizing adaptive systems, as
described in DST and that are at NESS with their environment, then with the appropri-
ate interpretation of the notion of mechanism, dynamical FEP models may in fact turn
out to be descriptions of mechanisms: “dynamical models and dynamical analyses
may be involved in both covering law and mechanistic explanations—what matters is
not that dynamical models are used, but how they are used” (Zednik, 2008, p. 1459).41

In this view, the FEP provides specific constraint for a PP’s scheme of mechanism.
Therefore, it is a stronger commitment than that suggested by Gładziejewski (2019)

and Harkness (2015), stating that the FEP offers (only) heuristics. The approach I pro-
pose suggests that the FEP is not so much a heuristic that can aid the process of
designing experiments or constructing a space of possible mechanisms, but above all
points to a constitutive constraint—VFE, which is needed “not just for mechanisms to
perform work, but also to maintain the mechanisms themselves” (Winning & Bechtel,
2018, p. 11). VFE as a constraint determines the causal powers of mechanisms in such
a way that the flows of (variational) free energy guarantee that biological systems may
remain in a state of energy non-equilibrium with the environment. Such mechanisms
are part of a heterarchical network of controllers that guarantees the biological auton-
omy of a given system. From this point of view, biotic mechanisms are systems of
constraints that restrict the flow of free energy to perform work.42

41 An example of this type of practice can be found, among others, in Badcock et al., (2019, p. 105): “mech-
anisms involve a dynamic, bidirectional relationship between specialized functional processingmediated by
dense, short-range connections intrinsic to that scale (i.e., its local integration); and their global (functional)
integration with other neural subsystems via relatively sparse, long-range (e.g., extrinsic cortico-cortical)
connections”.
42 “Higher-level activities, just as those at the bottom-out level, depend upon the release of energy. Higher-
level entities also constrain those at the bottom level, determining how energy released in molecular motors,
ion pumps, etc. results in activities at higher levels” (Bich & Bechtel, 2021, p. 21).
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For the above reasons, it is also difficult to agree with Hohwy’s thesis that the FEP is
a regulatory principle. Surely Hohwy is right when he states that the “FEP itself (does
not) implies cognitive architecture” and adds that “notions of architecture will need to
build on assumptions about the particular system in question, whichwill constrain pro-
cesses for message passing structure” (Hohwy, 2021, p. 47). However, the constraint
relationship is reciprocal: on one hand, a particular system constrains flow of VFE,
and on the other hand, those flows constrain the system to perform given work. There-
fore, the FEP, as an explication of the dynamics of flows of VFE, possesses a specific
explanatory power in the explanation of cognitive phenomena, distinct from its regu-
latory function. Therefore, it is agreeable to conclude, following Tomasz Korbak, that
the FEP can be regarded as a functional principle that offers a general framework for
understanding the mechanisms involved in free energy minimization, which can then
be further specified through concrete models applied to specific phenomena (Korbak,
2021, p. 2754).

It seems that these considerations may also shed some light on a number of critical
works concerning either the FEP itself or its relationship with the PP. In Introduction,
I referred to the papers of Williams, Colombo, Palacios and Wright. Let us recall:
Colombo and Palacios (2021) emphasize that there is an inalienable tension between
the “physics assumptions and properties of its biological targets”, which in practice
makes it impossible to use the FEP to explain living organisms or, in other words,
to integrate it with models developed by mechanists and/or organicists (cf. Colombo
& Wright, 2021). This objection seems to be thwarted by emphasizing, as I do in
my paper, the mechanistic status of explanations of biological phenomena offered in
terms of constraints and free energy flows. If, for living organisms, autonomy is a
constitutive property (cf. Moreno & Mossio, 2014; Ruiz-Mirazo & Moreno, 2004;
Varela, 1979), then the FEP—contrary to what Colombo and Palacios claim—offers
specific constraints tomechanistic explanations formulated on the basis of biology and
neuroscience, in the sense that it allows one to treat descriptions, using the language
of DST, as sketches of mechanisms.

From this perspective, it is also difficult to agree with the belief of Colombo and
Wright that the FEP offers a weak explanatory idealization. Even if, as these authors
claim, the analyses carried out by FEP supporters can be treated as (weak explanatory)
sketches ofmechanisms, then in the light of the constraint-basedmechanisms approach
and arguments presented here, sketches of free energy flow mechanisms can be used
in the formulation of schemes of mechanisms with specific explanatory powers.

Finally, let’s note that conducting a detailed discussion that addresses all the afore-
mentioned positions and responds to every objection exceeds the scope of the intended
framework for this analysis. Nevertheless, I believe that the general direction of the
response has been set.

8 Conclusions

In this paper, I defended the view that the FEP indicates an explanatory relevant
constraint (i.e., VFE) for cognitive mechanisms that can be mechanistically explained
by PP. The argumentsmade herewere based on the postulate of somemechanists about
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the need to include in the explanations such constitutive components as constraints
for mechanisms and free energy flows. I found that the position defined by me as the
constraint-based mechanisms approach has important implications for PP, because the
actual research practice in this framework corresponds to the heuristics of constraint-
based mechanisms and is related to those approaches that assume the FEP to be a
normative framework for the process theory realized by PP. According to the presented
approach, non-trivial PP models should include an energetic component, if they are to
be mechanistic. The discussion presented here has great importance for considering
the relationship between PP, the FEP, and Active Inference.

The advantage of the position I defend—moderate realism about the FEP and PP
—is, firstly, that it implies only minimal commitments regarding the architecture of
target phenomena; and secondly, it does not reduce the constructions used by scientists
to their purely instrumental functions, recognizing them, for example, as useful fic-
tions. I argue that the approach presented here may also contribute to the formulation
of a mechanism scheme, which would be defined by a common predictive template
combining various mechanisms under one PP flag. Last but not least, this approach (I
believe) also enables fruitful discussions with those researchers who regard the FEP
as an explanatory weak heuristic, idealization or regulatory idea, as well as with those
who deny any explanatory power to the FEP.
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