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Abstract
The relationship between topological explanation and mechanistic explanation is
unclear.Most philosophers agree that at least some topological explanations aremech-
anistic explanations. The crucial question is how to make sense of this claim. Zednik
(Philos Psychol 32(1):23–51, 2019, https://doi.org/10.1080/09515089.2018.1512090)
argues that topological explanations are mechanistic if they (i) describe mechanism
sketches that (ii) pick out organizational properties of mechanisms. While we agree
with Zednik’s conclusion, we critically discuss Zednik’s account and show that it fails
as a general account of how and when topological explanations are mechanistic. First,
if topological explanations were just mechanism sketches, this implies that they could
be enriched by replacing topological terms with mechanistic detail. This, however,
conflicts how topological explanations are used in scientific practice. Second, Zed-
nik’s account fails to show how topological properties can be organizational properties
of mechanisms that have a place in mechanistic explanation. The core issue is that
Zednik’s account ignores that topological properties often are global properties while
mechanistic explanantia refer to local properties.We demonstrate how these problems
can be solved by a recent account of mechanistic completeness (Craver and Kaplan
in Br J Philos Sci 71(1):287–319, 2020, https://doi.org/10.1093/bjps/axy015; Kohár
and Krickel in Calzavarini and Viola (eds) Neural mechanisms—new challenges in
the philosophy of neuroscience, Springer, New York, 2021, https://doi.org/10.1007/
978-3-030-54092-0_17) and use a multilayer network model of Alzheimer’s Disease
to illustrate this.
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1 Introduction

In recent years, the idea that neuroscientists givemechanistic explanations has become
increasingly popular. There is a broad consensus that mechanistic explanation involves
structural and functional decomposition, i.e., breaking down a system into concrete
parts and activities to identify the causal relationships that realize or constitute the
phenomenon. However, it remains an open question to what extent mechanistic expla-
nations can capture what is distinctive about research in systems neuroscience, in
particular network analysis in systems neuroscience. Contrary to mechanistic expla-
nation, network analysis seems to abstract away from concrete parts and activities
to instead focus on the topological properties of connectivity patterns, with the aim
of explaining how they determine the behavioral dynamics of the systems exhibiting
those patterns. Some authors have argued that network analysis differs from mecha-
nistic explanation insofar as the explanatory power of these topological explanations
is based on their topological properties and does not depend on concrete parts and
activities in a specific organization (Huneman, 2010; Kostić, 2018; Rathkopf, 2018).
By contrast, authors such as Craver (2016) and Zednik (2019) have argued that topo-
logical explanations can only be genuinely explanatory if they can be understood as
mechanistic explanations. However, it remains unclear how we can make sense of
this. In this article, we will clarify under which conditions topological explanations
are indeed mechanistic explanations by critically engaging with Zednik’s account of
topological explanations as mechanism sketches.

The article is structured as follows. In Sect. 2, we first offer a brief introduction to
multilayer network analysis and discuss the idea of topological explanation. Also, we
present an example of howmultilayer network analysis can be used to explain cognitive
decline in Alzheimer’s Disease. In Sect. 3, we explain what mechanistic explanation
entails. In Sect. 4we give a critical analysis of Zednik’s account of topological explana-
tion as mechanism sketches that pick out organizational properties of mechanisms.We
show that both aspects of this account are problematic because, first, it ignores the fact
that topological properties are usually global properties while mechanistic explanan-
tia refer to local organizational properties, and, second, topological explanations are
not sketches of mechanisms that are made complete by replacing topological terms
with mechanistic detail—they are good and complete mechanistic explanations the
way they are. In Sect. 5, we put forward a recent account of mechanistic completeness
by Kohár and Krickel (2021), according to which the completeness of a mechanistic
explanation is measured relative to a contrastive explanandum. This account helps us
to address the problems for Zednik’s account by showing how topological properties
as global organizational properties can be part of a complete mechanistic explanation.
Thereby, we will show under which conditions topological explanations can be under-
stood as mechanistic explanations. We will illustrate this by means of the Alzheimer’s
Disease example presented in Sect. 2.

123



Synthese (2023) 202 :14 Page 3 of 21 14

2 Multilayer networkmodels and topological explanation

2.1 Multilayer networks andmultiplexes

A network is an abstract representation or model of a real-world system. The model
consists of entities, called “nodes”, which refer to specific properties of the original
components of the system, and the connection patterns between them, their links.
Single models can be used to model only one type of connection between a predefined
set of nodes (otherwise it cannot be handled by normal graph theory algorithms).
To represent systems consisting of components with multiple types of connections, or
other similar features, we need tomodel layers in addition to nodes and links. Different
layers represent different aspects or features of the nodes that represent the components
of the target system. In a multilayer model of commuter travel for instance, locations
across a city may be the nodes. Consequently, we can partition the set of links into
intralayer links, that is, links that connect nodes set in the same layer, such as the
bus routes running between these locations in one layer, and the subway connections
within another layer. Interlayer or coupling links are those links that connect nodes
set in different layers. The resulting models are called “multilayer networks”.

Multiplex networks are a sub-type of multilayer networks in which the same set of
nodes is represented in every layer. The connections between nodes might be different
in each layer.1 In an interconnected multiplex network, nodes are connected only to
themselves across all layers. The layer’s connectivity, measured with respect to a spe-
cific definition of similarity (e.g., cross-correlation, spectral coherence, etc.) can be
analyzed by focusing on activity in different frequency bands, time-varying activity
and activitywith respect to different tasks.Multilayer networks have been used to study
various complex phenomena, appearing in various different types of systems such as
social, biological, and transport systems (Boccaletti et al., 2014; De Domenico et al.,
2014; Mucha et al., 2010). They are also increasingly used in network neuroscience to
integrate different neuroimaging modalities sources of information on brain structure
and function (e.g., structural and functional MRI; among other so-called “neuroimag-
ing modalities”), or to study brain networks over different time points, among others
(De Domenico, 2017; Vaiana & Muldoon, 2020).

2.2 Topological properties and topological explanation

In addition to just taking more data into account—whether to improve spatiotemporal
resolution, provide a more comprehensive view, enhance measurement parameters or
constrain certain data types—multilayer networks offer further opportunities to study
the properties of connectivity patterns that shape the behavior of complex systems.
That is, multilayer network analysis can explain the behavior of complex systems by
referring to their topology. This type of explanation is called topological explanation.

1 Note that multilayer/multiplex terminology describing particular systems may vary, as no universally
conventional classification for the different variations of a network of networks exists. We adhere to the
definitions put forward by Kivelä et al. (2014).
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Aclassic examplemight help to further illustratewhat kind of properties topological
explanations appeal to. In their seminal publication, Watts and Strogatz (1998) used
network representations to explore the dynamics of infectious diseases. They used
two central topological properties to assess the dynamics of this phenomenon. The
first property is called the “characteristic path length”. While the path length between
any two nodes is the number of edges found on the shortest path between them,
characteristic path length is a property of the whole graph, being the average path
length over all pairwise combinations of nodes in the graph. The second property is
the graph’s “clustering coefficient”, defined as the probability that two neighbors of a
givennode are themselves neighbors (where the term“neighbor” indicates the presence
of a direct link between the nodes, regardless of spatial adjacency). On noticing that
clustering coefficient and characteristic path length were very often anti-correlated
in the empirical datasets they observed, with many networks having high clustering
coefficients but very low characteristic path lengths, Watts and Strogatz called these
networks small-world networks.

How does this shed light on the dynamics of infectious disease? In terms of their
interactions, both social and spatial, human populations are highly clustered. Theo-
retically, high clustering could be expected to prevent a disease from reaching a large
proportion of the total population quickly. However, Watts and Strogatz noticed that
diseases can spread very quickly in a human population network because its character-
istic path length is low. Since it only takes a small number of long-range connections to
turn a highly clustered network with high path length into a small-world network with
low path length, very small perturbations to the contact structure have an enormous
impact on the dynamics of a disease. Indeed, Watts and Strogatz observed that a tiny
change in the number of long-range disease transmission events makes diseases with
low critical infectiousness rates capable of generating massive epidemics.

This example illustrates how topological properties can be used to explain the
dynamics of a system. But what exactly are topological explanations? Topological
explanation, according to Kostic (2020), describes how the mathematical properties
of connectivity patterns in complex networks determine the dynamics of the systems
exhibiting those patterns. Ross (2021) defines topological explanations as “any expla-
nation inwhich topology does the explanatorywork” (Ross, 2021, p. 9815). She argues
that topological explanations are typically characterized as having three features (see
Ross, 2021, pp. 9804–9807): First, topological explanations appeal to the topology
of the system (the relative position, organization, and structure of connections among
entities in some domain) (Ross, 2021, p. 9815), which captures a higher-level structure
that abstracts away from various lower-level details. To say that the topology captures
a “higher-level” structure means that this structure can be instantiated or realized by
a variety of different physical or microstructural details. For example, many different
systems can be described as small-world networks, such as websites, electric power
grids, and airport networks. Second, the topology of the system is usually taken to
capture a structure that is non-causal in the sense that it lacks (temporal) informa-
tion that causal structures necessarily contain (ibid.). Small-worldness, to continue
the example, lacks not only information about the causal process of how, for example,
diseases spread, but it also lacks information about the nature of the things that make
up the system’s structure (i.e., the individuals and their causal interactions). A third

123



Synthese (2023) 202 :14 Page 5 of 21 14

feature of topological explanation concerns the dependency relations that specify how
the explanandum is dependent on the explanans (Ross, 2021, p. 9806). Whereas, in
causal explanation, the dependency relation is typically identified and verified empir-
ically, in the case of topological explanation the dependency relation is provided by
mathematical derivation (Ross, 2021, pp. 9815–9816). Thus, as Ross points out, once
we understand the topology of, for example, a society, we can apply mathematical
understanding to answer the question why diseases spread and turn into epidemics the
way they do.

Ross stresses that, although most topological explanations exemplify these three
features, there are topological explanations that diverge from this standard pic-
ture—which she calls “causal–topological explanations.” These explanations are
based on network models in which the edges either directly represent causal rela-
tionships between these entities or at least contain causal information (Ross, 2021,
pp. 9808–9810). In these explanations, the dependency relation between the explanans
and the explanandum “involves a significant amount of empirical information” (ibid.),
and, therefore, cannot be mathematically derived from the explanans (Ross, 2021,
p. 9817).

In what follows, we will present an example of such a causal topological expla-
nation that further illustrates Ross’s ideas and that will serve as the test case for our
mechanistic analysis in Sect. 5.

2.3 An explanation of Alzheimer’s disease

Our example is an explanation of cognitive decline in patients with Alzheimer’s
Disease (AD). In addition to protein misfolding, AD is characterized by several
neurophysiological changes including slowing of the alpha rhythm and subopti-
mal connectivity and network organization.2 In particular, patients with AD show
dysfunction of regions in the brain that are normally densely connected. These
regions—so-called “hubs”—are thought to be responsible for the overall function-
ing of the entire brain. Whether a node is a hub depends on its centrality, i.e., its
number of connections relative to the number of connections of the other nodes in
the network.3 Centrality is a gradual topological property rather than a binary one:
there are no strict cut-offs for hubs versus non-hubs. Computational modeling has
shown that intervening into central nodes (either by removing or altering them) has a
bigger effect on overall network integrity than intervening into more peripheral nodes
(Alstott et al., 2009; Honey & Sporns, 2008). This suggests that the extent to which

2 The cause of ADwas hypothesized to be a combination of the misfolding of proteins tau and amyloid beta
proteins within the brain that develops with a typical spreading pattern. However, the timescale over which
cognitive decline develops and the level of impairment to be expected at any givenmoment is heterogeneous.
In other words, some AD patients have cognitive deficits at a certain time point during the course of their
disease, and others at the same time point do not. This heterogeneity cannot be explained by protein-level
pathophysiology.
3 Several graph metrics can be used to measure centrality. The centrality mentioned is degree centrality,
which quantifies the total number of connections of a node relative to the total number of connections of
other the nodes in the network. Other centralities include eigenvector centrality, which not only takes the
number of connections that a node itself has into account, but also incorporates the number of connections
of its neighbors.
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node dysfunction happens in central regions may be relevant to the level of cognitive
decline in AD.

Several theoretical frameworks have been proposed to specify howdiseases likeAD
may unfold across the network, and how specific network topological changes may
explain cognitive decline. A very promising framework is the “cascading network fail-
ure” hypothesis (Stam, 2014), which postulates that more central regions of the brain
are particularly vulnerable to neurodegeneration and other brain pathology due to their
high premorbid metabolic cost and their role as a relay station within the entire brain
network. The idea is that, initially, local brain dysfunction (caused, for instance, by
the cellular death associated with adjacent misfolding proteins being present) does not
propagate through the network due to the integrative and adaptive role of more central
regions. These central regions/hubs are accustomed to varying demands, as they con-
nect to a variety of other brain regions and thus receive dynamic input anyways. This
phase may clinically be characterized by minimal or mild cognitive impairment, since
only local brain dysfunction occurs in the network. However, as central regions get
more and more burdened by increasing cellular pathology, “hub overload” is thought
to occur. That is, local increases in activity and connectivity anywhere in the network
result in a larger burden on those most connected regions in the network, because
the increase in information processing load rapidly spreads throughout the network
via these well-connected integrators. This phase of overload is hypothesized to mark
the point where Alzheimer’s dementia is diagnosed (Jones et al., 2016). Of particular
interest is that this overload happens in a phase-transitional manner, instead of being
a slow or gradual process (Watts, 2002). This is exactly what we see in AD patients.
What is more, such abrupt transitions are seemingly more abundant in multilayer net-
works than in single-layer networks according to mathematical studies (Baxter et al.,
2012; Boccaletti et al., 2014).

A recent study byYu et al. (2017) demonstrated how amultilayer network approach
can be used to explain AD symptoms. They implemented multilayer network mod-
els based on often-investigated frequency bands in magnetoencephalography (MEG),
ranging from slow delta (0.5–4 Hz) to fast gamma (50–80 Hz) brain oscillations, and
subsequently performed single-layer and multilayer network analyses. For their def-
inition of nodes, Yu et al. used a widely accepted atlas with a parcellation of brain
regions spanning the entire gray matter and subcortex of the brain, consisting of 90
nodes. Using this atlas ensured that the same anatomical brain regions were used
as nodes across all subjects and layers. The different layers of the multilayer model
corresponded to the five frequency bands (delta, theta, lower and upper alpha, beta).
The intralayer connections between these nodes were defined by phase-based syn-
chronization (with weights ranging between 0 and 1, where “0” corresponds to “no
synchronization” and “1” to “full/complete/perfect synchronization”) between oscil-
lations measured in the frequency bands. For these intralayer connections, it was
assumed that synchronized oscillatory behavior at the level of brain regions reflects
(propensity for) functional communication between them (Yu et al., 2017, p. 1469). To
construct multilayer network models for each subject (AD patient and control), inter-
layer connections were created between the same nodes/brain regions across layers
(resulting in an interconnected multiplex, as explained in the previous section) with a
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weight of 1, so no oscillatory or synchronization information was used to weight these
connections.4 See Fig. 1 for a (highly simplified) illustration of the resulting models.

The comparison between patients and controls was based on assessing centrality
in these individual multilayer network models, by calculating multilayer centrality.
Instead of taking only the number of connections within a layer (frequency band) into
account, multilayer centrality also attends to the aggregated connectivity of a node
across all layers (see Fig. 1). Finally, a disruption score was calculated by subtracting
the average multilayer centrality of the healthy controls for each specific region from
this individual’s multilayer centrality value of that region. This value thus indicates
the network disruption value, i.e., how disrupted the level of centrality of each region
is in each subject’s brain network in comparison to the default healthy situation. Using
this approach, Yu et al. found that

1. Network disruption values were higher in AD patients than in healthy controls.
This difference was particularly significant when considering multilayer disrup-
tion, as opposed to single-layer disruptionvalues.Moreover, therewas a correlation
between a region’s centrality in healthy controls, and the degree of hub disrup-
tion in AD patients, such that the regions that are normally most central in the
healthy multilayer network were more disrupted in patients with AD. Again, this
correlation was particularly significant when using multilayer disruption values,
as opposed to single-layer disruption values;

2. Multilayer centrality was correlated with cognitive function in AD patients, such
that lowermultilayer centrality values of regions that usually have higher centrality
(i.e., a selection of regions based on the healthy controls) go hand-in-hand with
poorer cognitive scores from patients.

These results underline the value of themultilayer network approach in investigating
how cognition breaks down inAD.Although correlational at this point, the study offers
a valuable description of the complete neurophysiological network model in AD and
may explain why results from previous single-layer network studies were inconsistent.
Moreover, there is a vast literature on the impact of damage on multilayer networks:
this largely mathematical literature offers analytical evidence towards explaining the
behavior of (subparts of) the system once damage occurs in particular regions. The
study by Yu et al. should therefore be complemented with a modeling study making
use of such analytical insights in combination with a longitudinal empirical study of
the progress of AD in order to assess whether theory on failures in multilayer networks
indeed explain AD progression of cognitive deficits in AD.

This example illustrates the potential power of topological explanation in clinical
neuroscience. Yu et al. explain cognitive decline in AD (the explanandum) in terms
of a decreasing multilayer centrality for brain regions in AD patients that were most
central in healthy subjects (the explanans). According to Ross (2021), this is a topolog-
ical explanation as the explanans refers to a topological property of the brains of AD

4 Although it is technically possible to incorporate cross-frequency synchronization instead (see Tewarie
et al. (2016)), this is computationally expensive, and it remains unclear what the biological meaning of this
type of synchronization between frequency bands is.
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Fig. 1 An illustration of the multilayer networks (interconnected multiplexes) created by Yu and colleagues
for each subject. Layers represent different frequency bands. The nodes (circles) represent the 90 brain
parcels/regions that Yu et al. focused on. Straight lines between nodes at the same layer represent statistical
correlation between the activity patterns of the connected regions. Dotted lines indicate interlayer connec-
tions that were created between the same nodes across layers with a weight of 1. Intralayer hubs (dotted
circles) are those nodes that are most highly connected within one layer compared to the other nodes at this
layer. Multilayer hubs (see bottom of Fig. 1) are those nodes that are most highly connected compared to
the other nodes taking all layers into account. As multilayer centrality is a gradual property, nodes 1 to 7
can be ranked according to their multilayer centrality
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patients, decrease of multilayer centrality. Multilayer centrality is a topological prop-
erty, i.e., a network property that is characterized mathematically and that is multiply
realizable.

3 Mechanistic explanation

As mentioned in the introduction, some authors have argued that topological expla-
nations are distinct from mechanistic explanations insofar as their explanatory power
is solely based on their topological properties rather than mechanistic details (Hune-
man, 2010; Kostić, 2018; Rathkopf, 2018). Zednik (2019), however, has pointed out
that the assumption that there is a strict distinction between topological and mecha-
nistic explanations is misleading, and that some topological explanations can in fact
be understood as mechanistic explanations. Before we are in the position to assess
whether and how topological explanations such as the AD study do indeed qualify
as mechanistic explanations, we first need to spell out the mechanistic explanatory
approach in more detail.

To mechanistically explain a phenomenon, roughly means to describe the mecha-
nism that is responsible for the phenomenon. This is the core claim of the so-called new
mechanistic account. The details of this account concern the analysis of the different
components of the core claim. They vary from author to author and are still a matter
of lively discussion. Thus, what we present here is, to some degree, an opinionated
summary of the existing literature. The key questions are:

(i) What is a mechanism?
(ii) What is a phenomenon?
(iii) What is meant by “responsible”?

With regard to the first question, a more-or-less standard characterization has
emerged in the mechanistic literature: Mechanisms are entities and activities in a
specific organization (Craver, 2007b; Glennan, 2017; Illari &Williamson, 2012). The
entities and activities are those that are commonly accepted by contemporary biology,
chemistry, andphysics, such as ions, cells,molecules, organs, andorganisms, diffusion,
movement, attraction, repulsion, collision, binding, and transmission. The organiza-
tion concerns the spatial organization of entities (Craver, 2007b, pp. 137–138): entities
have a certain size, they are located at specific locations, they have a certain orienta-
tion, are in contact with other entities, and are connected to others. It also concerns
the temporal organization of the activities (Craver, 2007b, p. 138): activities occur
in a certain order, they have a certain duration and rate. Finally, the organizational
aspect concerns the active organization of the entities and activities (Craver, 2007b,
pp. 136–137): entities act in certain ways and not in others, they causally interact with
certain entities but not with others, they act in cooperation or in competition, and they
do so in specific ways.

Whether a given entity or activity is a component of a mechanism depends on
whether the entity or activity is relevant for the phenomenon for which the mechanism
is supposed to be responsible. The phenomenon is usually taken to be a property or
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behavior of a system (Craver, 2007b; Krickel, 2018a). Examples are the firing of a
neuron, the stretching of a muscle, the navigating of a rat.

The responsibility relation between a mechanism and a phenomenon is causation
(you can plug in your favorite account of causation) or constitution, where the former
is taken to involve wholly distinct relata, while the latter holds between wholes and
their parts. What exactly mechanistic constitution is, is still a matter of debate. The
most prominent account is Craver’s mutual manipulability account (MM) (Craver,
2007a, 2007b):

MM: X’s ϕ-ing (a mechanism’s component) is constitutively relevant for S’s
ψ-ing (a phenomenon) if and only if5:

a. X’s ϕ-ing is a spatiotemporal part of S’s ψ-ing, and
b. one can change S’s ψ-ing by changing X’s ϕ-ing, and one can change X’s

ϕ-ing by changing S’s ψ-ing.

There is an on-going debate on how to spell out the details of this account (Krickel,
2018b; Romero, 2015; Kästner, 2017; Baumgartner & Gebharter, 2016; Baumgartner
& Casini, 2017; Baumgartner et al., 2020; Harinen, 2018; Prychitko, 2021; Craver
et al., 2021). We do not want to go into the details of this discussion here. What is
important for our purpose is that mechanistic constitution minimally implies that the
mechanism is local to the phenomenon (Illari &Williamson, 2011): the mechanism’s
components are spatiotemporal parts of the phenomenon, and there is some kind
of mutual dependence between the mechanism’s components and the phenomenon.
This mutual dependence is usually established with help of top-down and bottom-
up interventions. The bottom-up intervention is an intervention into a component
with respect to the phenomenon; the top-down intervention is an intervention into
the phenomenon with respect to a component. Interventions into phenomena, thereby,
are usually conceived of as interventions into inputs of mechanisms (Baetu, 2012;
Harinen, 2018; Craver et al., 2021).

Given these three notions, there are twodifferent general conceptions ofmechanistic
explanation: the ontic and the epistemic conception.6 According to some defenders
of the new mechanistic approach, explanation is primarily an ontic matter: it is the
mechanism itself that does the explaining. Another view is that explanation is an
epistemic matter in the sense that explanations are representations or descriptions of
things in theworld, i.e., themechanisms and the phenomenon. In this view, not just any
representation or description of the mechanism (i.e., of the mechanistic components
that are constitutively relevant for the phenomenon) is taken to be explanatory. Rather,
further pragmatic factors, such as interests and goals, constrain which descriptions of
mechanisms are explanatory for a given phenomenon and which are not.

The ontic account is often identified with the characterization given above: a
mechanism (a mind-independent thing in the world) explains a phenomenon (a mind-
independent thing in the world) because the former causes or constitutes the latter (a

5 It is unclear whether the conditions are only sufficient conditions or also necessary conditions (see, e.g.,
Craver et al., 2021, n. 7).
6 Note that the ontic and the epistemic view are compatible with one another: “to explain” is simply
ambiguous in at least these two senses (Craver, 2014).
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mind-independent relation). The epistemic account (or its different versions) relies
on the same characterization of mechanism, phenomenon, and constitution/causation.
However, it denies that this is sufficient for genuine scientific explanation. To explain
a phenomenon, one has to find the right sort of description of the relevant mechanism.
How this is to be spelled out in detail is a matter of dispute; we will come back to it
in Sect. 5.

4 Topological explanations as mechanistic explanations: a critical
assessment of Zednik’s account

Zednik (2019) argues that topological explanations are mechanistic explanations if
they are mechanism sketches that highlight organizational properties of mechanisms.
Zednik’s argument is a reply to Craver’s criticism of a certain type of topological
explanation, i.e., explanations based on functional network models (Craver, 2016).
According to Craver, such explanations are non-mechanistic and non-explanatory
because they do not pick out working parts and fail to describe real causal connections.
For example, a functional networkmodel of neuroscientific phenomenameasuredwith
functional magnetic resonance imaging (fMRI) is based on more-or-less arbitrary par-
cellations of the brain and relies on statistical information about the interdependencies
among the regions’ activationpatterns rather than causal information.However, Zednik
argues that this is compatible with topological explanations beingmechanism sketches
(Zednik, 2019, p. 15). Zednik’s main point is that the limitations put forward by
Craver are due to practical constraints rather than explanation-inherent. Furthermore,
while statistical information does not yet prove the existence of causal connections,
it can convey information about the causal organization of the underlying mechanism
(Zednik, 2019, pp. 15–16). Similarly, while not mapping exactly on working parts,
pragmatic parcellations do approximate working parts (Zednik, 2019, pp. 16–18).

As already mentioned above, Zednik’s account formulates two conditions for when
a topological explanation is a mechanistic explanation: first, the topological expla-
nation is a mechanism sketch that, second, refers to organizational properties of the
mechanism. We will critically discuss both of these conditions, beginning with the
second one.

As mentioned in the previous section and as highlighted by Zednik, organization
is a crucial aspect of mechanisms as the same entities and activities might bring about
completely different phenomena if they are organized differently. Zednik observes
that despite the centrality of organization in the notion of a mechanism, the issue of
organization has not been the focus of the new mechanistic thinking. Most impor-
tantly, Craver’s original mutual manipulability account of constitutive relevance (see
Sect. 4) only applies to components/acting entities (X’s ϕ-ings) and does not mention
organizational properties. To solve this problem, Zednik extends Craver’s account:

MM-O:A topological feature is an organizational property of a mechanism [for
S’s ψ-ing] if one can change the behavior of the mechanism as a whole [i.e., S’s
ψ-ing] by intervening to change that topological feature, and one can change the
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topological feature by intervening to change the behavior of the mechanism as
a whole [i.e., S’s ψ-ing]. (Zednik, 2019, p. 22)

As MM is an account of mechanistic constitution, MM-O, if successful, shows that
topological properties can be constitutively relevant for a system’s behavior (S’sψ-ing)
by being organizational properties of the mechanism for S’sψ-ing. Thus, according to
Zednik, topological properties are potential organizational properties of mechanism-
s—and they are actual organizational properties of mechanisms if they satisfy MM-O,
i.e., if changing the phenomenon (S’s ψ-ing) will change the topological property and
changing the topological property will change the phenomenon.

MM-O, however, is problematic.MM-O indeed onlymentions the second condition
of the originalmutualmanipulability account (see previous section).Ananalogue to the
first condition—“X’s ϕ-ing is a spatiotemporal part of S’s ψ-ing”—is not mentioned.
As a consequence, MM-O identifies topological features as properties of a mechanism
that are not necessarily properties of the relevantmechanism.To illustrate this, consider
the following example: assume that there are two neural networks A and B, each with a
certain topology. The networks are connected such that, depending on their oscillation
patterns, they can activate each other. Whenever network A activates network B, this
will change B’s topology and whenever B activates A, this will change A’s topology.
Now, assume we want to explain some behavior of A, say, the fact that it oscillates
with a certain frequency. Given the setup of the two networks, it will be true that there
is a way of changing B’s topology (changing it such that oscillations of a certain type
occur) by which the frequency of A’s oscillations will be changed; and there is a way
of changing A’s oscillation frequency (changing it such that A activates B) that will
change B’s topology. According to MM-O, this suffices to show that B’s topology is
constitutive for A’s oscillating with a certain frequency. However, while changing B’s
topologymay be a cause ofA’s oscillatingwith a certain frequency, it is not constitutive
for it, i.e., it is not part of the relevant mechanism. Only A’s topology is constitutively
relevant for A’s oscillating with a certain frequency. Thus, we need to make sure that
topological properties satisfy the first condition of the mutual manipulability account
as well.

As properties do not have any specific locations (unless you think of them as tropes),
it makes most sense to assume that the location of a property is the location of the
entities that instantiate the property (see Kohár, 2023). Based on these considerations,
MM-O should be revised as follows:

MM-O*: A topological property T is an organizational property of a mechanism
for S’s ψ-ing if the (acting) entities that instantiate T are spatiotemporal parts of
S’s ψ-ing, and one can change S’s ψ-ing by intervening to change T, and one
can change T by intervening to change S’s ψ-ing.

This revision of MM-O, however, is problematic as it is impossible for topological
properties to satisfy it. The reason will become clear from our consideration of the
second problem.

The second problem for Zednik’s idea that topological explanations are mechanis-
tic because they refer to organizational properties of mechanisms can be illustrated
with the help of the distinction between global and local organizational properties.
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Global organizational properties are properties of a system as a whole, whereas local
organizational properties are properties of particular parts of a system.7 As explained
in the previous section, the organizational properties that characterize amechanism are
properties of the entities and activities that make up the mechanisms. Thus, they are
local (not global) organizational properties in the sense just specified. Surely, many
mechanists implicitly or explicitly accept that mechanisms as wholes have global
organizational properties as well (e.g., mechanisms can be feedback loops). To date,
however, it remains unclear how these types of organizational properties relate and
how to integrate global organizational properties into the mechanistic account.

There are at least three interrelated challenges that show why this clarification is
urgent and non-trivial:

(a) The divide between global properties and local properties matches that between
the explanans and explanandum. According to the mechanistic account, it is the
interactions between the mechanism’s components and their local properties that
do the explaining and it is the properties and behaviors of the mechanisms as a
whole that is to be explained (Craver, 2007a, 2007b; Craver et al., 2021; Kaiser &
Krickel, 2017).8 Therefore, prima facie, global organizational properties cannot
be part of the explanans but only of the explanandumof amechanistic explanation.

(b) Local organizational properties satisfy MM-O* and can therefore be parts of
mechanistic explanantia. MM-O*, thus, nicely captures the original idea of the
newmechanists. However, qua global properties, global organizational properties
cannot satisfy the first condition of the mutual manipulability account as they
are not properties of components of mechanisms but of mechanisms as wholes.
Thus, they cannot satisfy MM-O*. Dropping the first condition of the mutual
manipulability account is not a solution, as we show above.

(c) Global organizational properties are multiply realizable by and thus not reducible
to local organizational properties. This blocks an easy solution to problem (b) (see
below).

The challenges arising from the local/global distinction are general concerns for the
new mechanists. For Zednik’s account, the challenges are especially pressing as topo-
logical properties are, if at all, global properties of mechanisms. Thus, one needs to
show how topological properties can be parts of the explanans of a mechanistic expla-
nation even though they are global properties of mechanisms and not local properties
of the mechanism’s components.

7 Note that the term “local” here has a different meaning than how it is used in the Sect. 3. In Sect. 3, mech-
anisms and their components are said to be local to the phenomenon (following Illari &Williamson, 2011).
This expresses the idea that all the mechanism’s components are spatiotemporal parts of the phenomenon.
The contrast would be “outside”, or “external”, not “global.”.
8 The expression that in constitutive mechanistic explanations what is explained is the “mechanism as a
whole” is a common assumption in the mechanistic literature (Craver, 2007a, 2007b; Glennan, 2017; Craver
et al., 2021). Kaiser and Krickel (2017) and Krickel (2018a, 2018b) have argued that this assumption is
problematic. For reasons of space, we do not want to go into detail here. For argument (a) to work, we need
not commit to the idea that all explananda of mechanistic (constitutive) explanations concern properties or
behaviors of mechanisms as wholes. All we need is that if a property is a property of the mechanism as a
whole, it cannot be part of the mechanistic-constitutive explanation of a property or behavior of the same
mechanism. It can, however, be part of the explanandum.
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Zednik might reply that topological properties are nothing but local organizational
properties combined in the right way, i.e., that global organizational properties can
be reduced to local ones. For example, one might argue that the property of small-
worldness can be reduced to the relative spatial relations and causal connections
between specific entities. This, however, cannot be true. While all healthy brains share
topological features, theirmechanistic organization could be quite different—theymay
be composed of different numbers of neurons, their neurons may be spatially arranged
in different (relative) locations, they have different orientation, they have different
connection densities, and so on. In other words, global topological organizational
properties are multiply realizable by different combinations of local organizational
properties. Hence, the former cannot be reduced to the latter.

Another way to solve the problems arising from the globalness of topological
properties might be to refer to the first condition of Zednik’s account: topological
explanations provide mechanism sketches. Indeed, topological explanations are, while
explanatory, still incomplete. Once the sketchy, topological aspects of the explanation
are replaced by or reduced to local organizational properties, one has a completemech-
anistic explanation. In this picture, terms referring to topological properties would be
filler terms. An example of a filler term is the term “channel” in the explanation of
the action potential: “[a]t the time the idea of a channel was viewed with skepticism.
It was merely a filler-term for an activity or mechanism to be named later” (Craver,
2007b, p. 58). That is, filler terms are terms that are used “as place-holders for future
work” and, at some point, they have to be replaced “with some stock-in-trade prop-
erty, entity, activity, or mechanism” (ibid., 113). In that sense, topological terms would
have to be replaced by more detailed descriptions of the local organizational features
of mechanisms.

If topological terms were filler terms, this would imply that, for any true topological
explanation, there would be an explanation in purely local organizational terms, and
this explanation would be better because it includes the mechanistic detail in place
of the topological filler terms. However, this is not in line with what we see in actual
scientific explanatory practice. The explanation of AD does not mention any particular
connections between nodes. It mentions terms like “decrease of multilayer centrality”,
and it is not clear that this explanation would be improved by adding detail about spe-
cific connections. For example, if onewere to describe the exact number of nodes, their
relative positions, and connections for each multilayer network for each patient, this
would not add anything relevant for the explanation of cognitive decline in AD—what
is relevant is that all thesemultilayer networks show a decrease ofmultilayer centrality.
Of course, this is not to say that the explanation in terms of a decrease ofmultilayer cen-
trality is already complete—there may be further details that are explanatory relevant
for the given explanandum (for example, the exact degree of decrease of multilayer
centrality may be relevant and whether there are any differences in the degree among
AD patients). Nevertheless, treating “decrease of multilayer centrality” as a filler term
and replacing it by a description that lists all the mechanistic details would not be
any more informative or explanatory than the explanation that uses topological ter-
minology. Additionally, due to multiple realization, it would be unclear which local
organizational properties are to be filled in from the set of possible realizers. This
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shows that topological terms such as “decrease of multilayer centrality” are not just
filler terms.

Thus, the question remains as to how and when topological explanations can be
mechanistic explanations. To show that, one needs to show how global topological
properties can play a role in mechanistic explanations despite their globalness. Also,
one must make sense of the idea that topological terms are not just filler terms await-
ing replacement by local organizational terms but that topological explanations are
already complete. In the next section, we will present a recent account of mechanis-
tic completeness, based on which we will show that topological explanations can be
complete mechanistic explanations.

5 Filling the gaps: mechanistic completeness

5.1 Mechanistic completeness

One crucial issue for the newmechanistic account of scientific explanation is to specify
when amechanistic explanation is complete. Such a specification is necessary to avoid
the implausible consequence that, say, the explanation of spatial memory has to go
down to the most fundamental physical level. Furthermore, if one wants to save the
idea that mechanistic explanations are objective or ontic, this “bottoming-out” of
mechanistic explanation should not be simply a matter of taste or interest but should
be based on objective criteria. One recent account of mechanistic explanation has
been put forward by Kohár and Krickel (2021), who base their ideas on Craver and
Kaplan’s (2020) idea to evaluate mechanistic completeness relative to a contrastive
explanandum. Here, we want to use Kohár and Krickel’s account to show that some
topological explanations are indeed complete mechanistic explanations.

Mechanistic completeness, according to Craver and Kaplan (2020) has to be evalu-
ated relative to a contrastive explanandum. While this is a deviation from the original
account (see Sect. 3), this idea is not foreign to the new mechanistic thinking (Craver
& Kaplan, 2020; Woodward, 2011). One way to specify this idea is that the explanan-
dum takes the form of a contrastive question “Why is G the case rather than F?” (or:
“Why does variable X have value p rather than q?”) that picks out a specific feature of
the phenomenon (i.e., G). The explanans is a description of the differences between
the mechanism that causes or constitutes the actual phenomenon and the mechanism
that causes or constitutes the contrast phenomenon that would be/have F. Thus, the
explanans picks out only certain aspects of the actual mechanism.

Kohár and Krickel (2021) develop an explicit account of mechanistic completeness
based on the ideas put forward by Craver and Kaplan (2020). They provide a detailed
analysis of how contrastive mechanistic explanation in the sense characterized above
proceeds. Their account can be illustrated with the help of the following example. If
you want to know why the action potential of a specific (type of) neuron always peaks
at a value of, say, 30mV rather than some higher value, youmust do the following (note
that this procedure is a regulative ideal—in practice, the procedure is much messier
and must involve inductive reasoning):
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1. Identify themechanism that constitutes the action potential of that (type of) neuron:
find all entities and activities and their organization that are constituents of thefiring
of that neuron.

2. Identify the mechanisms that constitute action potentials that peak above 30 mV.
3. Identify the mechanism in step 2 that is maximally similar to the mechanism in

(1).
4. List all the differences between the mechanism in (1) and the mechanism in (3)

that are shared by all mechanisms in (2) (see Kohár and Krickel (2021) for details).

The list resulting from step 4 will be the explanans, i.e., the answer to the question,
“Whydoes the action potential of this neuron always peak at 30mV rather than a higher
value?” In other words, it identifies the difference-maker(s) for peaking at 30 mV
versus peaking at a higher value. The addition “that are shared by all mechanisms in
(2)” in step 4 is important for the following reason: the contrast phenomenon can have
many different mechanisms. In the given example, the contrast phenomenon may be
due to mechanisms that produce peaks at 31 mV, 50 mV, 70 mV, 3967 mV, and so
on. In order to answer why the actual value is 30 mV rather than something bigger,
we are not interested in the differences between the actual mechanism and, say, the
mechanism that would be responsible for a peak at 35 mV. We are interested in the
general differences that all mechanisms for a peak exceeding 30 mV have in common
that the actual mechanism does not have. Whatever they have in common that the
actual mechanism does not have, these will be the difference-makers for “30 mV
rather than > 30 mV.” This procedure generalizes: in order to find the difference-
makers for P versus P*, we have to compare the mechanism M underlying P to the
maximally similar mechanism M* underlying P*. The difference-makers that explain
why P is the case rather than P* are the differences between M and M* that are shared
by all possible mechanisms underlying P*. The explanans for “Why P rather than P*?”
will have the form “Because F1–Fn rather than F–F”, where F1–Fn and F–F are the
difference-makers for P versus P*.

One consequence of this approach is that the adequacy of the explanans “Because
F1–Fn rather than F–F” is no longer evaluated purely in terms of its accurately describ-
ing reality (as it was in the ontic account). Rather, one additional requirement is that the
description of the features F1–Fn has to be specific enough to capture those aspects of
the actual mechanism that distinguishes it from all the mechanisms responsible for the
contrast phenomenon, and the description of the features F–F must be general enough
to capture the similarities between all the mechanisms responsible for the contrast
phenomenon.

For example, assume one wants to explain why, between two particular neuronal
populations, an action potential propagates rather than not. To answer this question,
one has to compare themechanism that actually underlies the propagation of the action
potential between the neuronal populations of interest to the most similar mechanism
that would have to occur if the action potential were not propagated. One has to find
a description that captures the differences between the actual populations where the
action potential is propagated and themost similar mechanismwhere the action poten-
tial is not propagated (which comes down to what is similar between all the possible
mechanisms, where the action potential is not propagated). Themechanismswill differ
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in various respects, such as number of neurons, connections between neurons, size of
cell bodies, length of axons, etc. These features will not be mentioned in the answer
to the contrastive question. Rather, the answer will contrast more abstract features.
Based on such a comparison of mechanisms, the hypothesis has been formulated that
the relevant feature that distinguishes between “action potential is propagated” and
“action potential is not propagated” is that the neurons in the populations are synchro-
nized, i.e., that the frequency of excitability of the receiving neurons match with the
frequency of activation of the sending neurons (Fries, 2015a, 2015b). The answer to the
question, “Why does the action potential propagate between these neurons rather than
not?” is answered mechanistically: “Because the neurons are synchronized rather than
not.” This mechanistic explanation is abstract insofar as it does not concern specific
structural features of the individual components and their connections.

Thus, Kohár and Krickel’s account of mechanistic completeness can account for
abstraction. That is, mechanistic explanation no longer has to be given in terms of a
biological/chemical/physical entity and activity vocabulary. The difference-makers to
be listed in step 4 may be abstract (“abstract” in the sense of “ignoring the specific
details of that particular mechanism”). The best way to describe them may not be in
terms of the vocabulary of (say) molecular biology but in terms of computational or
structural vocabulary.

5.2 How (some) topological explanations are mechanistic explanations

With help of the AD example presented in Sect. 2.3, we will now show how Kohár
and Krickel’s account of mechanistic completeness makes sense of the idea that some
topological explanations are complete mechanistic explanations.

The central point of the account of mechanistic completeness is that constitutive
relevance is a necessary but insufficient condition for showing that some component is
explanatorily relevant. Not all constitutively relevant features of a mechanism are rel-
evant to the contrastive explanatory request. This is why Kohár and Krickel’s account
emphasizes that the explanandum (i) needs to take the form of a contrastive question
“Why P rather than P*”, and (ii) that the explanans is a description of the differences
between the mechanism that causes or constitutes the actual phenomenon P and the
mechanism that causes or constitutes the contrast phenomenon that would be/have P*.
Thus, the explanans only picks out specific aspects of the actual mechanism. In this
account, a mechanistic explanation mentions topological features and is couched in
topological terminology (such as “small-worldness” or “centrality”) if and only if, for
an explanatory request “Why P rather than P*?”, topological terminology provides the
best way of capturing the differences between the actual mechanism that brings about
P and the mechanisms that would bring about P* that are at the same time similarities
between the mechanisms that would bring about P*.

That (good) topological explanations can indeed provide the best way of capturing
the differences and similarities between the relevant mechanisms will now be illus-
trated by means of our core example. In line with Kohár and Krickel’s account, the
explanandum inYu et al.’s study is, “Why do someADpatients show cognitive deficits
and others do not?” The explanans is phrased in terms of topological properties of the
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brain networks of AD patients in comparison to the brain networks of healthy subjects
(which are based on multiplexes modeling the synchronized activity of brain regions
within different frequency bands). By first comparing the multiplexes of AD patients
with healthy controls in order to assess ‘multilayer network disruption’ and then cor-
relating the degree of multilayer network disruption with cognitive status within the
patients, it could be shown that it is especially those regions normally characterized
by high multilayer centrality that are dysfunctional in AD patients. Moreover, the dys-
function levels of multilayer centrality correlate with cognitive deficits in AD patients.

The answer to the explanandum question provided by Yu et al. is “Because, in AD
patients with cognitive deficits, interlayer hubs are damaged to a higher degree than
in AD patients without cognitive deficits rather than not.’ The explanation is topo-
logical because “multilayer centrality” is a topological term picking out topological
properties of a brain network (see Sect. 2). Multilayer centrality is multiple realizable
by different mechanisms. However, what all the specific mechanisms found in AD
patients with different degrees of cognitive deficits have in common is that the regions
that correspond to multilayer hub regions in healthy subjects are less connected to
other regions compared to the regions found in AD patients without cognitive deficits.

Furthermore, what all the mechanisms found in healthy subjects and AD patients
without cognitive deficits seem to have in common is that these specific regions are
highly interconnected. Thus, “multilayer centrality” does pick out the similarities
between the mechanisms found in AD patients with cognitive deficits which at the
same time are (i) the differences between themechanisms found inADpatients and the
mechanisms in AD patients without cognitive deficits, and (ii) the similarities between
themechanisms inADpatientswithout cognitive deficits and healthy subjects. In short:
the topological explanation of cognitive deficits in AD patients in terms of damage to
multilayer hub regions is a mechanistic explanation because “damage to multilayer
hub regions” maps onto the explanatorily relevant local organizational properties of
the brains of all AD patients with cognitive deficits by picking out the explanatorily
relevant similarities between the different brains.

Note that Yu et al. do not provide a standard topological explanation as the depen-
dency relation between the explanandum and the explanans in this example, which is
empirical rather than mathematical: network disruption (decrease of multilayer cen-
trality) is hypothesized to cause cognitive decline in AD. Even though the decrease
of multilayer centrality was calculated as a mathematical property of the network
topology, more empirical information is required to confirm that network disruptions
indeed cause the progression of cognitive deficits in patients with AD. Still, the exam-
ple shows—in line with Ross’ argument—that topological explanations can be causal
explanations.

6 Conclusion

The aim of this article was to clarify the conditions under which topological expla-
nations are complete mechanistic explanations by critically engaging with Zednik’s
account of topological explanations as mechanism sketches. As we have shown, the
most crucial problem for Zednik’s account is that it ignores the difference between
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global organizational properties and local organization properties and that the for-
mer are multiply realizable by the latter. As commonly understood and as captured
by the revised mutual manipulability account (MM-O*), mechanistic explanantia can
only refer to local organizational properties of mechanistic components. Based on a
recent account of mechanistic completeness proposed by Kohár and Krickel (2021),
we showed that topological properties can still be parts of mechanistic explanations.
We illustrated this by means of the multiplex explanation of cognitive deficits in AD
patients.

If successful, the account proposed in this article may be used to solve a general
issue surrounding the mechanistic account. The problems afflicting Zednik’s account
are general problems for the mechanistic account: one common assumption of the new
mechanists is that prima facie non-mechanistic explanationsmust satisfy themodel-to-
mechanism-mapping (3M) requirement (Kaplan, 2011), i.e., the variables mentioned
in an explanation must map onto working parts of a mechanism, and the dependencies
between them must map onto causal connections. This requirement creates a tension
with the abstractness of many apparently non-mechanistic explanations whose vari-
ables and connections are multiply realizable by different entities and activities and
mechanistic-organizational features. The account proposed here can be regarded as
the starting point for a general account of the mapping relation between mechanisms
and apparently non-mechanistic explanatory descriptions.
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Kostić, D. (2018). The topological realization. Synthese, 195(1), 79–98. https://doi.org/10.1007/s11229-
016-1248-0
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