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Abstract
The received view says that possibility is the dual of necessity: a proposition is (meta-
physically, logically, epistemically etc.) possible iff it is not the case that its negation
is (metaphysically, logically, epistemically etc., respectively) necessary. This reading
is usually taken for granted by modal logicians and indeed seems plausible when
dealing with logical or metaphysical possibility. But what about epistemic possibil-
ity? We argue that the dual definition of epistemic possibility in terms of epistemic
necessity generates tension when reasoning about non-idealized agents and is a prob-
lem of concern for most hyperintensional epistemic logics that alleviate the problem
of logical omniscience. The tension is particularly evident when knowledge is taken
as a primitive to define other epistemic concepts, such as justification and belief, as
done in the knowledge-first tradition. We propose a non-dual interpretation of epis-
temic possibility, employing a hyperintensionality filter similar to the one that makes
the corresponding epistemic necessity operator hyperintensional. We employ the pro-
posed semantics to model Stalnaker’s belief as epistemic possibility of knowledge
and provide a sound and complete axiomatization for a hyperintensional version of
his bimodal logic of knowledge and belief.
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1 Epistemic possibility and hyperintensional logics

Possibility is usually considered to be the dual of necessity: a proposition ϕ is (meta-
physically, logically, epistemically etc.) possible iff not-ϕ is not (metaphysically,
logically, epistemically etc.) necessary.1 One can reason analogously about knowledge
(Hintikka, 1962), as knowledge is often taken as epistemic necessity and epistemic
possibility is defined as its dual. This yields the definition of epistemic possibility as
the dual of knowledge, that will be the target of our criticism in this paper:

EP:=DK: A proposition ϕ is an epistemic possibility for an agent S iff S does
not know not-ϕ.

As Egan andWeatherson (2011b, p. 1) point out, EP:=DK is a “very simple analysis of
epistemic possibility” but it is also “problematic for a few reasons”.2 Epistemologists
have widely scrutinized this definition of epistemic possibility and have come up with
more articulated definitions in order to overcome its problems (see, e.g., (Carey, 2020;
DeRose, 1991; Hacking, 1967, 1975; Huemer, 2007; Teller, 1972), among others).
Nonetheless, given its simplicity, EP:=DK is usually taken for granted in the field of
epistemic logic.3

Following Hintikka (1962), standard epistemic logic formalizes knowledge inten-
sionally as a normal modal operator interpreted on relational possible worlds models.
That is, knowledge is modelled as truth in a set of possible worlds determined by an
accessibility relation R:

Kϕ is true in world w iff ϕ is true in all words w′ such that Rww′. (H)

As is well known, the notion of knowledge this approach implements is too strong,
leading to the problem of logical omniscience.4 It is therefore usually taken to model
what an ideal agentwith unlimited cognitive, computational, and conceptual capacities
knows or to model derivative epistemic notions, such as logical commitment given
what one knows or what one ought to know given what one knows. Possible-worlds
models for ideal epistemic agents (or a relevant derivative attitude) which interpret the
epistemicmodality in question as truth in a specific set of possible worlds can also take
different forms, such as Scott–Montague style neighbourhood models (Chellas, 1980;
Montague, 1970; Pacuit, 2017; Scott, 1970),5 topological models (McKinsey, 1941;

1 Taking possibility as primitive, one can proceed the other way around and define necessity as the dual of
possibility.
2 For an overview of the problems with EP:=DK, see, e.g., (Carey, 2023). For a more in-depth discussion
about epistemic modals, see, e.g., (Egan & Weatherson, 2011a).
3 For instance, in the Handbook of Epistemic Logic we read “¬Ka¬p [...] says ‘agent a considers p
possible’ ” (van Ditmarsch et al., 2015b, p. 3). Or also: “[n]ote that Maϕ, which say ‘agent a does not know
not-ϕ’, can also be read ‘agent a considers ϕ possible’ ” (van Ditmarsch et al., 2015b, p. 8).
4 See e.g., (Fagin et al. 1995; Égré 2020; Stalnaker 1991, 1999) for detailed presentations of the problem of
logical omniscience and (Solaki, 2021, Chapter 2) for a recent critical discussion on the place of epistemic
logic in the rationality debate. Also, see (Hendricks &Roy, 2010, Chapter 25) for an interviewwith Timothy
Williamson on the role of epistemic logic in epistemology.
5 Scott–Montague neighbourhood semantics invalidates most closure principles that lead to the problem of
logical omniscience.However, agentsmodelled in this framework cannot distinguish logically or necessarily
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McKinsey & Tarski, 1944; Baltag et al., 2019), plausibility models (for belief) (Baltag
& Smets, 2008; Grove, 1988; van Benthem, 2007, 2011), and subset space models
(Bjorndahl & Özgün, 2020; Bjorndahl, 2018; Moss & Parikh, 1992; Özgün, 2017; van
Ditmarsch et al., 2019). Abstracting away from their detailed features and conceptual
underpinnings, all these models interpret epistemic necessity in a structurally similar
manner, which can be schematically represented as follows:

KNOW(ϕ) = 1 iffMOD(ϕ) = 1 (Know)

where MOD stands for a model-theoretic condition formalized as truth in a set of
possible worlds, and KNOW andMOD are total functions defined from the object lan-
guage of the underlying logic to the set {0, 1}. (Mapping to 1 means that the condition
is satisfied and mapping to 0 means that it is not.)

EP:=DK might not be problematic per se when applied to Know, that is, when
epistemic possibility is given by:

POSS(ϕ) = 1 iffMOD(¬ϕ) = 0 (Possibility-I)

Crucially, however, it generates tension between the epistemic necessity and pos-
sibility operators of several influential hyperintensional epistemic logics that have
been developed to reason about non-idealized agents. Among such approaches and of
particular importance for us in this paper, are the logics that attack certain forms of log-
ical omniscience by imposing additional constraints on the possible worlds semantics
for knowledge. These additional constraints intend to represent an agent’s cognitive,
computational, or conceptual limitations that are constitutive of their epistemic reach.
Examples of such approaches are topic-sensitive epistemic logics (Berto, 2019, 2022;
Berto & Hawke, 2021; Hawke et al., 2019; Özgün & Berto, 2021), awareness logics
(Fagin & Halpern, 1988; Fagin et al., 1995; Fernández-Fernández, 2021; Grossi &
Velázquez-Quesada, 2015), and logics based on impossible worlds semantics (Berto
& Jago, 2019;Hintikka, 1975; Jago, 2014; Rantala, 1982; Solaki, 2021), among others.

Again, abstracting away from their individual characteristics, all these approaches
interpret knowledge in a structurally analogous way, namely as a conjunction of
two conditions. The first is the model-theoretic condition—the same encountered in
Know—and the second is the hyperintensionality condition that restricts the epis-
temic reach of the agent, shrinking the set of propositions they can know due to their
epistemic limitations, be they cognitive, conceptual, or computational. This condition
deserves the label hyperintensional as it helps to distinguish propositions with the
same intension (i.e. the logically or necessarily equivalent propositions). According
to this general structure, an agent knows ϕ iff both the model-theoretic and hyperin-

Footnote 5 continued
equivalent contents, i.e., are not sensitive to hyperintensional distinctions. Whenever ϕ and ψ are logically
or necessarily equivalent (meaning that they correspond to the same set of possible worlds), knowledge
of one entails the knowledge of the other. The issue, therefore, persists, albeit in a weaker manner, for
knowledge formalized as a neighbourhood modality interpreted solely based on possible worlds semantics.

123



44 Page 4 of 29 Synthese (2023) 202 :44

tensionality conditions are satisfied, schematically written as:

KNOW(ϕ) = 1 iffMOD(ϕ) = 1 andHYPE(ϕ) = 1 (Hyper-Know)

whereKNOW andMOD are as before, andHYPE stands for the hyperintensionality con-
dition and is a total function defined from the object language of the underlying logic
to the set {0, 1}. In the aforementioned approaches,MOD can be the reader’s favourite
possible worlds semantics and HYPE denotes ‘grasping ϕ’s topic’ in topic-sensitive
logics, ‘being aware of ϕ’ in awareness logics, and ‘truth of ϕ in all epistemically
accessible impossible worlds’ in impossible worlds semantics.6

When EP:=DK is applied to this schema, not satisfying the hyperintensionality
condition for ¬ϕ, i.e., HYPE(¬ϕ) = 0, becomes a sufficient condition for an agent to
consider ϕ epistemically possible. Put differently, we run into the problem of trivial
epistemic possibility, concisely described by Huemer in his criticism of EP:=DK:

TEP: [I]f a person does not actually believe¬p, perhaps due to his having failed
to consider it or lacking the concepts required to entertain it, then p is thereby
guaranteed to be epistemically possible (Huemer, 2007, p. 125).

As illustrated by the following two examples put forward by Huemer (2007) and
Carey (2023), respectively, this leads to intuitively incorrect ascriptions of epistemic
possibility. These examples, in turn, also motivate our fix to the problem.

Rigel 7 is the seventh planet in the Rigel star system. Sam, however, knows
nothing of Rigel and consequently has no thoughts about Rigel or any of its
planets. Sam looks at his couch in normal conditions and sees nothing on it.
Mary (who happens to know of Rigel 7) says: ‘For all Sam knows, Rigel 7 might
be on the couch.’ (Huemer, 2007, p. 122)

As Huemer argues, EP:=DK mishandles the above case: as Sam has no concept of
Rigel 7, he does not know that Rigel 7 is not on the couch. However, EP:=DK entails
that it is epistemically possible for Sam that Rigel 7 is on the couch, leading to an
intuitively wrong epistemic possibility assertion by Mary. The following example by
Carey (2023) provides further support against EP:=DK:

Suppose, for example, that Holmes knows that Adler has stolen his pipe. Holmes
is perfectly capable of deducing from this that someone stole his pipe, but he
has not bothered to do so (our emphasis). So, Holmes has not formed the belief
that someone stole his pipe. As a result, he does not know that someone stole the
pipe. According to [EP:=DK], then, it is still epistemically possible for Holmes
that no one stole the pipe (that is, that it is not the case that someone stole the
pipe), even though it is not epistemically possible for Holmes that Adler did not
steal the pipe. (Carey, 2023, Sect. 3.a)

While the condition for acquiring knowledge is made stronger with a deduction con-
straint (to know that someone stole his pipe Holmes needs to explicitly deduce this

6 For a detailed presentation of these logics, we refer to the sources given above. In Sect. 3.2 we employ
a version of topic-sensitive semantics to model Stalnaker’s belief as epistemic possibility of knowledge.
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from the fact that Adler stole his pipe), EP:=DK leaves too much open as epistemic
possibility (e.g., that no one stole the pipe), which leads to an intuitive tension between
what one explicitly knows and what is epistemically possible for them.7

Huemer’s and Carey’s examples are excellent candidates to be modelled in a topic-
sensitive and in an awareness framework, respectively. In fact, topic-sensitive logics
have been often used to model mastery of concepts or lack thereof and awareness
logics to model resource-bounded agents, by distinguishing between their explicit
knowledge and what they can come to know by competent deduction, i.e. their implicit
knowledge.8 Some versions of awareness logics (such as the ones where awareness is
propositionally generated (Halpern, 2001)) and, to the best of our knowledge, all topic-
sensitive logics satisfy the property HYPE(¬ϕ) = HYPE(ϕ).9 Under this condition,
EP:=DK and Hyper-Know yield:

POSS(ϕ) = 1 iffMOD(¬ϕ) = 0 orHYPE(ϕ) = 0 (Possibility-II)

and HYPE(ϕ) = 0 becomes a sufficient condition for an agent to consider ϕ epistem-
ically possible.

Possibly more strikingly, according to Possibility-II, whenever the hyperinten-
sionality constraint fails for a blatant contradiction such as ϕ ∧ ¬ϕ, i.e., whenever
HYPE(ϕ ∧¬ϕ) = 0, the agent considers ϕ ∧¬ϕ epistemically possible. We think that
this is a crucial instance where the epistemic possibility operator becomes too weak,
making too many propositions epistemically possible for the agent in question.

To summarize, the main reason for the tension seems to be that as Hyper-Know
makes the notion of epistemic necessity stronger, compared to the one given by Know,
applying EP:=DK to Hyper-Know renders the corresponding possibility operator too
weak. To put it differently, while the hyperintensionality constraints imposed on the
epistemic necessity operatormodel an agentwhoknows less, respecting their epistemic
limitations,manymore propositions become epistemically possible for the same agent.

To address this type of problem, we propose to conceive epistemic possibility as
subject to the same hyperintensionality restrictions as its necessity counterpart (Sect.
2). We then argue (in Sect. 3) that the issue described above becomes particularly
pressing when knowledge is taken as a primitive that can be used to define other
epistemic concepts, as done in the knowledge-first tradition (Williamson, 2000). An
eminent example is Stalnakerian belief defined as epistemic possibility of knowledge
(Stalnaker, 2006). A more recent example is Rosenkranz’s notion of propositional

7 Admittedly, one can tell a story to defend EP:=DK in a hyperintensional context. There is a sense in
which a proposition ϕ can be considered to be epistemically possible for an agent S, even when ϕ is not
within S’s epistemic reach. S cannot exclude that ϕ is the case and, in this sense, ϕ would remain as an
epistemic possibility for them. Anyhow, the examples we provided show that such a purely negative notion
of epistemic possibility is at least deficient. Additional reasons for endorsing a positive notion will be
provided in the next section.
8 Awareness logics have not been developed with one particular sense of awareness in mind (Fagin &
Halpern, 1988), making the approach extremely flexible. For an extensive list of the different readings
adopted in the literature see (Romanovskiy, 2022, footnote 17) and (Elliott, 2023, p. 3).
9 Some awareness logics assume the weaker property of subformula closure (Fagin &Halpern, 1988, p. 54)
and, in particular, of closure under negation (if HYPE(¬ϕ) = 1, then HYPE(ϕ) = 1). The latter is sufficient
for our argument to go through.
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justification as the epistemic possibility of being in a position to know.10 Finally, we
apply our proposal to extant proposals in knowledge-first epistemology and devise
a sound and complete axiomatization for a hyperintensional version of Stalnakerian
logic of knowledge and belief (Sect. 3.2). To ease readability, proofs are collected in
appendices.

2 A non-dual definition of epistemic possibility

Before we present our fix to the problem, a few explanatory notes on the notion of
epistemic possibility we are after—the notion of positive epistemic possibility—seem
to be warranted. EP:=DK provides a negative definition of epistemic possibility: the
epistemic possibility of ϕ is equated with not knowing its negation. Nonetheless, there
is also a positive sense of epistemic possibility of ϕ for which the agent needs to bear
some relation to ϕ, where the kind of relation in question may vary depending on one’s
epistemological stance. The proposition must be in some way accessible to the agent.

One may understand the standard relational possible worlds semantics as implicitly
endorsing this positive conception of epistemic possibility. Due to the classical inter-
pretation of negation and the duality between the existential and universal quantifiers,
applying EP:=DK to the Hintikkian clause H, we obtain that:

〈K 〉ϕ is true in w iff ϕ is true in a world w′ such that Rww′

That is, ϕ is an epistemic possibility for S in w iff for S there is at least one world
w′ accessible from w such that ϕ is true in w′. In other words, a ϕ-world must be
S-accessible. The dual of knowledge loses its positive flavour in a hyperintensional
context though. Even if a ϕ-world is S-accessible, if ϕ is out of S’s epistemic reach,
then S cannot stand in any relation with ϕ, since the boundaries of S’s epistemic reach
are determined by their cognitive, computational, or conceptual limitations. A finer-
grained distinction between a positive and a negative reading of epistemic possibility
is required, and the literature provides ample evidence for that.

Chalmers (2002, pp. 149–150) proposes a similar distinction between negative
and positive conceivability. A proposition ϕ is negatively conceivable when ϕ “is
not ruled out a priori” and is positively conceivable when “one can form some sort
of positive conception of a situation in which [ϕ] is the case”. Moreover, a positive
reading of epistemic possibility is particularly needed when dealing with assertions
involving epistemic modals. Von Fintel and Gillies (2008, p. 83) say that a “might-
claim is (pragmatically) more than just a profession of ignorance”. In other words,

10 Both authors endorse a form of EP:=DK. Stalnaker (2006, p. 179) uses “M as the epistemic possibility
operator, ¬K¬” and for Rosenkranz (2021, p. 198) the “complex operator �¬K¬� encodes a type of
epistemic possibility” (our emphasis). Notice that Kϕ in Stalnaker’s equation is read as ‘the agent knows
that ϕ’ and in Rosenkranz’s equation as ‘the agent is in a position to know that ϕ’. The difference between
the two readings is not important at this moment; what is important is that both operators are considered as
epistemic necessity operators and that both authors take the dual of K , namely¬K¬, as a form of epistemic
possibility. Since they consider the two readings interchangeable, both authors go back and forth between
a merely negative reading of ¬K¬ in terms of ignorance and a more positive one in terms of epistemic
possibility, which we denote by 〈K 〉.
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asserting the epistemic possibility of ϕ is more than admitting not to know not-ϕ,
which corresponds to the negative definition of epistemic possibility. There is also a
positive side: “the speaker is highlighting that possibility as one that should not be
ignored”, and “there is often a reliance on positive evidence that makes that possibility
seem to be a serious possibility” (our emphasis).

But the relevance of a positive reading of epistemic possibility is not limited to
pragmatics: it is also at play when we take epistemic possibility as a propositional
attitude, i.e. a mental state held toward a proposition. This kind of epistemic possi-
bility (albeit with respect to belief, not knowledge) seems to be what Yalcin (2011, p.
306) investigates as corresponding to “believing that something might be so, or that
something is possibly so”. In his formal modelling of believing what an epistemic
modal claim says, he differentiates between “a proposition’s merely being compati-
ble with a state of mind and its being epistemically possible [...] in the thicker sense
connoted by epistemic possibility modals” (Yalcin, 2011, p. 314), and defends that
in order for a proposition ϕ to be epistemically possible for an agent S, ϕ must be
compatible with S’s state of mind (which corresponds to the negative definition of
epistemic possibility provided by EP:=DK) and moreover needs to be an answer to a
question to which S is sensitive or to be about a subject matter S is sensitive to (where
the latter constraint gives the positive reading, playing the role of a hyperintensionality
condition).11 12

In the next subsection, we treat the notion of positive epistemic possibility from
a technical perspective within a hyperintensional framework, solving the problem of
TEP.

2.1 Epistemic possibility revisited

We propose a positive definition of epistemic possibility that is able to escape TEP:

11 A few clarificatory notes seem appropriate. First, one may worry that Yalcin is talking about a higher-
order state of mind, in particular a state of belief about one’s state of knowledge. We refer to Yalcin (2011,
Sect. 4) for his response to this worry and defence of his first-order view of ‘being in a state of mind that
accepts/believes what an epistemic modal claim says’. What is crucial for us is that Yalcin distinguishes
‘merely being compatible with a state of mind’ from ‘being epistemically possible’, and models the latter
as a first-order attitude and as question sensitive. Second, Yalcin’s question-sensitive semantics for belief
(Yalcin, 2011, 2018) is akin to the topic-sensitive semantics for belief (Özgün & Berto, 2021), such that
the latter can be seen as a generalization of the former. Topic-sensitive logics formalize subject matters
(i.e. topics, or questions in the Lewisian sense (Lewis, 1988)) via an algebra of topics and can discern
logically and necessarily equivalent contents. Yalcin’s formalism, on the other hand, following (Lewis,
1988), models questions as partitions of the epistemic space. Question sensitivity modelled this way—
solely based on possible worlds—cannot discern logically or necessarily equivalent contents, thus, the
corresponding notion of belief is still closed under replacement of logical equivalents (see rule 2 toward
the end of Sect. 3.2)
12 For a critique of Yalcin’s proposal see (Przyjemski, 2017). Przyjemski agrees with the fact that a positive
characterization of epistemic possibility—that she calls strong epistemic possibility— is needed but she
believes that Yalcinmischaracterizes it. According to Przyjemski, a proposition isweakly epistemic possible
when it is compatible with a relevant body of evidence, while it is strongly epistemically possible if it
is supported by positive (non-overridden) evidence. This requirement is similar to the one imposed by
Von Fintel and Gillies (2008). Nonetheless, while for them the association between positive evidence and
epistemic possibility is pragmatic, Przyjemski (2017, p. 188) suggests that this connection is semantically
and truth-conditionally significant.
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PEP: A proposition ϕ is an epistemic possibility for an agent S iff not-ϕ is not
knowable in principle for S and ϕ is within S’s epistemic reach.

There is a lot to unpack here.We use ‘knowable in principle’ and ‘within S’s epistemic
reach’ as technical expressions. A proposition ϕ is knowable in principle for an agent
S iff S would know it if no cognitive, computational, or conceptual limitations stood
in S’s way of getting to know ϕ (i.e. if the hyperintensionality condition was satisfied).
In other words, ϕ is knowable in principle for agent S iff S has sufficient information
or evidence to rule out all the non-ϕ worlds, but they may fail to know ϕ because
of some other epistemic limitation. Technically, this corresponds to satisfying the
model-theoretic condition we spelt out in Sect. 1.

The concept of epistemic reach has already been introduced in Sect. 1. We do it
here in more detail for the sake of clarity. A proposition ϕ is within S’s epistemic reach
iff S would know ϕ if they had sufficient information to rule out non-ϕ worlds (i.e. if
the model-theoretic condition was satisfied). In other words, ϕ is within S’s epistemic
reach iff no cognitive, computational, or conceptual limitations stand in one’s way of
getting to know ϕ. Technically, this means that the hyperintensionality condition is
satisfied for S with respect toϕ. In a topic-sensitive framework, this clause corresponds
to having grasped the topic of ϕ. In an awareness logic, it means being aware of ϕ.
Accordingly, we formalize positive epistemic possibility as follows:

POSS(ϕ) = 1 iffMOD(¬ϕ) = 0 andHYPE(ϕ) = 1 (Hyper-Possibility)

Hyper-Possibility escapes the problem of TEP since failing to know ¬ϕ because
of the failure of a hyperintensionality condition, such as having failed to consider
it or lacking the concepts required to entertain it, is no longer a sufficient condition
for ϕ to be considered an epistemic possibility. This is in line with the analysis of
the problematic examples presented in Sect. 1. According to Hyper-Possibility, since
Holmes did not bother performing the trivial deduction to conclude that somebody
stole the pipe, and Samhas no concept ofRigel 7 (i.e. the hyperintensionality constraint
is satisfied in neither case), it is not an epistemic possibility for Holmes that nobody
stole the pipe and it is not an epistemic possibility for Sam that Rigel 7 is on the couch.
Moreover, since positive epistemic possibility (henceforth denoted by 〈K 〉) is defined
as a strengthening of negative epistemic possibility (henceforth denoted by ¬K¬) by
imposing a hyperintensionality constraint, unsurprisingly, the former always implies
the latter, that is 〈K 〉ϕ → ¬K¬ϕ holds, but not the other way around.13

Losing the duality between epistemic necessity and possibility allows us to differ-
entiate among a wider plurality of epistemic states. What can be seen as a malus in
terms of technical simplicity, we take to be a bonus in terms of explanatory power.
This applies, for example, to the concept of epistemic impossibility.

13 From this point forward, we reserve the notation 〈K 〉 exclusively for the positive notion of epistemic
possibility defined in Hyper-Possibility. When we talk about the negative reading of epistemic possibility,
as the dual of epistemic necessity, we use ¬K¬.
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2.2 Epistemic impossibility

In normal modal logic, the epistemic impossibility of ϕ can be defined either as the
negation of the epistemic possibility of ϕ or equivalently as the knowledge of the
negation of ϕ:

EI:=NEP: A proposition ϕ is an epistemic impossibility for an agent S iff ϕ is
not an epistemic possibility for S.

EI:=KN: A proposition ϕ is an epistemic impossibility for an agent S iff not-ϕ
is known by S.

The two definitions above diverge though, when we refer to the hyperintensional
versions of epistemic possibility and knowledge as defined in Hyper-Possibility and
Hyper-Know respectively.

It is not difficult to observe that, when applied to Hyper-Possibility, EI:=NEP gen-
erates the following schematic semantic clause for epistemic impossibility:

POSS(ϕ) = 0 iffMOD(¬ϕ) = 1 orHYPE(ϕ) = 0

which yields the principle of trivial epistemic impossibility, analogous to TEP: every
proposition which is not in an agent’s epistemic reach is epistemically impossible.
Nonetheless, we may not want to say that for Sam it is epistemically impossible that
Rigel 7 is on the couch and that for Holmes it is epistemically impossible that nobody
stole the pipe. In fact, there is a stronger sense of epistemic impossibilitywhich requires
the agent to be able to dismiss or rule out the truth of a certain proposition in order
for that proposition to be considered epistemically impossible.14 In order to rule out
a proposition, the agent must stand in some relation with it. Nonetheless, no such
relationship can be in place if the proposition is out of the agent’s epistemic reach.
The kind of epistemic impossibility that requires the agent to rule out the proposition
in question is exactly the one described by EI:=KN. By knowing not-ϕ, the agent
is able to properly rule out ϕ. Consider the following semantic clause for epistemic
impossibility generated by EI:=KN:

KNOW(¬ϕ) = 1 iffMOD(¬ϕ) = 1 andHYPE(¬ϕ) = 1

Given EI:=KN, in order for a proposition ϕ to be an epistemic impossibility for an
agent S, not-ϕ must be within S’s epistemic reach: trivial epistemic impossibility is
avoided.

We have shown how our approach avoids some intuitively incorrect ascriptions of
epistemic possibility and impossibility, and makes it possible to distinguish among

14 For instance Huemer (2007, 129) says that p is epistemically impossible for an agent S only if “S has
a justification for ¬p adequate for dismissing p”. Also Chalmers (2011, p. 61) underlines the connection
between epistemic impossibility and the concept of ruling out: “when a subject believes that p, we might
say that some scenarios (in particular, scenarios in which ¬p) are ruled out as doxastically impossible [...]
When a belief qualifies as knowledge, the scenarios ruled out as doxastically impossible are also ruled out
as epistemically impossible” (our emphasis).
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epistemic states that are indistinguishable in epistemic systems based on normalmodal
logics. Let us see now how the new approach can be fruitfully applied in the context
of knowledge-first epistemology.

3 Epistemic possibility for knowledge-firsters

In contrast to a long tradition in epistemology—which defines knowledge in terms
of other epistemic concepts, e.g., in terms of justified true belief or strengthening
of justified true belief 15—Williamson (2000) proposed a knowledge-first epistemol-
ogy, which takes knowledge as a non-decomposable epistemic state and defines other
epistemic states in terms of knowledge. This has started a new line of research in
epistemology (McGlynn, 2014). The Stalnakerian conception of belief, which is of
particular interest in this work, can be seen as following this line.

Stalnaker (2006) puts forward a bimodal logic for knowledge and belief, focusing
on the relationship between these two notions. The notion of belief he considers is a
specific kind, that of so-called ‘full belief’, which corresponds to “subjective certainty
[for which] believing implies believing that one knows”: Bϕ → BKϕ (Stalnaker,
2006, p. 179).16 Given further assumptions he makes (see Table 1 for Stalnaker’s
system), the following equivalence holds:17

Bϕ ↔ ¬K¬Kϕ.

Therefore, according to Stalnaker’s system, one believes ϕ iff one doesn’t know that
one doesn’t know ϕ. This “permits a more economical formulation of the combined
belief-knowledge logic in which the belief operator is defined in terms of the knowl-
edge operator” (Stalnaker, 2006, p. 179). As recently noticed by Stalnaker (2019, p.
3) himself, this reduction is “appropriate to the ‘knowledge first’ ideology”, that he
admits endorsing.18

Stalnaker adopts a particular kind knowledge-first approach that is gaining grow-
ing attention in the recent literature. The core idea consists in defining other epistemic

15 Gettier (1963) notoriously criticizes what is usually taken to be the traditional theory of knowledge,
the theory that knowledge is justified true belief (JTB). Gettier’s counterexamples against the JTB analysis
of knowledge started a new quest among epistemologists to find the correct definition of knowledge in
terms of more primitive concepts. See (Rott, 2004) for some of these proposals. Zagzebski (1994) showed
how Gettier’s argument can be generalized to any reductive explanation of knowledge though. See (Dutant,
2015) for a critique of the claim that the JTB account of knowledge actually was the traditional theory of
knowledge.
16 Stalnaker (2006) calls this principle ‘strong belief’ but we follow (Baltag et al., 2019) and adopt the term
‘full belief’ instead.More recently, Stalnaker (2019, Introduction) has also been using the latter terminology.
In the following, whenever we talk about belief, we mean Stalnakerian full belief. In particular, whenever
we say that an agent believes a proposition ϕ, we mean that they fully believe ϕ.
17 For a derivation of the equivalence from Stalnaker’s original axioms, see (Özgün, 2013, p. 28).
18 Stalnaker (2019, p. 2) describes his attitude toward knowledge-first epistemology as follows: “[l]ooking
back from the later perspective of Timothy Williamson’s general picture of epistemology, I came to appre-
ciate that my account of intentionality is really a version of his ‘knowledge first’ view: belief is what would
be knowledge if the relevant normal conditions in fact obtained, or put in the other way around, knowledge
is full belief when it is non-defective”.
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concepts as¬K¬K . Carter andGoldstein (2021, p. 2510) call such an identity ‘Reduc-
tion’ and Littlejohn and Dutant (2020, 1607) call it ‘Ignorance is strength’. Stalnaker
(2006)—following Lenzen (1978) and followed by Halpern et al. (2009)—defines
belief as ¬K¬K . More recently (Rosenkranz, 2018, 2021) has defined propositional
justification as ¬K¬K (where K stands for being in position to know).19 In the fol-
lowing we will refer to Stalnakerian belief, but our aim is more general: our approach
will be beneficial for any knowledge-firster who endorses such a reduction and wants
to work within a hyperintensional framework.20 We must stress at this point that we
are not criticizing Stalnaker’s original proposal. Stalnaker models idealized, logically
omniscient agents (Stalnaker, 2006, 179). For these special agents, the dual defini-
tion is not problematic since the hyperintensionality constraint is not in place.21 We
are enlarging the set of agents, allowing us to consider also subjects with epistemic
limitations.

Let us now return to the problem. When we derive the semantic clause for Stal-
nakerian belief from the identity Bϕ ↔ ¬K¬Kϕ and Hyper-Know, we obtain the
following:

BELStal(ϕ) = 1 iffMOD(¬Kϕ) = 0 orHYPE(¬Kϕ) = 0 (Hyper-Bel)

where BELStal denotes Stalnakerian full belief. Unsurprisingly, Hyper-Bel suffers from
the problems of EP:=DK presented in previous sections and, in particular, TEP strikes
back in stronger form: if ¬Kϕ is not within the agent’s epistemic reach, they believe
ϕ.

The problem becomes worse if the following simple closure condition on HYPE
holds:

if HYPE(Kϕ) = 1, then HYPE(ϕ) = 1 (K -Closure)

With K -Closure in place, Hyper-Bel yields that one believes every sentence that is
not within one’s epistemic reach.22 If one is not inclined to accept K -Closure, but still
inclined to accept closure under negation for HYPE, the following is still in place: if
Kϕ is not within one’s epistemic reach, then one believes ϕ.23 In any case, the result
is highly problematic.

Stalnakerian full belief is an interesting target for our proposal not only because
of the problems just mentioned but also because it can be defined as the epistemic
possibility of knowledge: Bϕ ↔ 〈K 〉Kϕ. Within his intensional framework, Stalnaker

19 For a recent discussion about Rosenkranz’s proposal see Dutant (2022), Rosenkranz (2022a, 2022b,
2023), Rossi (2022), Smith (2022), Waxman (2022a, 2022b), Zhan (2022).
20 Also Williamson (2013) and Dutant (2023) are listed as endorsers of Reduction (Carter & Goldstein,
2021, p. 2510) and Ignorance is Strength (Littlejohn & Dutant, 2020, p. 1607), respectively.
21 The sameholds forRosenkranzwhodealswith “suitably improved versions of ourselveswhose epistemic
powers finitely extend our own, who can grasp every thought expressible in the language, and who have
other epistemic virtues such as freedom from irrationality, bias, and compulsion, freedom from attention
deficiencies, and freedom from other ills that affect the epistemic lives of ordinary subjects” (Rosenkranz,
2021, p. 108).
22 This is noted also by Silva (2023, Sect. 5) with respect to Rosenkranz’s proposal.
23 As noted in Sect. 1, many versions of awareness logics and all topic-sensitive logics satisfy K -Closure
and closure under negation for HYPE.
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endorses Bϕ ↔ 〈K 〉Kϕ as well since it is equivalent to Bϕ ↔ ¬K¬Kϕ, given
EP:=DK.24 Since our proposal abandons EP:=DK, ¬K¬Kϕ does not coincide with
〈K 〉Kϕ. Let us consider the schematic semantic clause for the latter definition of belief
we obtain via Hyper-Possibility:

BELStal(ϕ) = 1 (i.e., POSS(Kϕ) = 1) iffMOD(¬Kϕ) = 0 andHYPE(Kϕ) = 1
(Hyper-Bel*)

Now, to believe ϕ, Kϕ must be within one’s epistemic reach. One might prefer to
relax the hyperintensionality condition and simply impose HYPE(ϕ) = 1, rather than
HYPE(Kϕ) = 1. In fact, believing ϕ seems to require having the proposition ϕ—rather
than the more complex proposition Kϕ—within one’s epistemic reach. When dealing
with full belief, however, also the more strict requirement makes sense. In fact, full
belief is subjective certainty: when one believes ϕ, one believes to know ϕ. Therefore,
whenever one believes ϕ, not only ϕ must be within one’s epistemic reach, but also
Kϕ must be.

Having seen how our approach can help obtain hyperintensional semantics for a
modality defined in terms of ¬K¬K when K itself is interpreted by the schema
Hyper-Know, in the next section we explore the sound and complete logic of the
hyperintensional version of Stalnaker’s system. We do so by interpreting belief as in
Hyper-Bel* and using topic-sensitive semantics.25

3.1 Stalnaker’s system

We first introduce Stalnaker’s original logic of knowledge and belief. Stalnaker works
with the bimodal language LK B recursively generated by the following grammar:

ϕ := pi |¬ϕ|(ϕ ∧ ϕ) | Kϕ | Bϕ

where pi ∈ Prop, a countable set of propositional variables. We often use p, q, r , . . .

for propositional variables and employ the usual abbreviations for propositional
connectives ∨,→,↔ as ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ , and
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). We will follow the usual rules for the elimi-
nation of the parentheses. Finally, we read Kϕ as “the agent knows that ϕ” and Bϕ as
“the agent believes that ϕ”.

24 As anticipated, Rosenkranz analogously endorses a version of EP:=DK for which not being in a position
to know not-ϕ is a form of epistemic possibility of ϕ.
25 We prefer to work with topic-sensitive logics rather than, e.g., awareness logics as a matter of choice at
least for the purposes of this paper. Similar results can be obtained by employing an appropriate version
of an awareness logic (i.e., the version so-called ‘propositionally determined awareness’ (Halpern, 2001,
p. 327)). It is not surprising that awareness logics can mimic topic-sensitive logics since the former, in its
most general form, can make as many hyperintensional distinctions as allowed by the syntax of the object
language. This approach has been heavily criticized for mixing syntax and semantics, and imposing ad
hoc conditions on the awareness sets to model agents with limited reasoning capacities (Konolige, 1986).
Although this discussion is outside the scope of this paper, we find the topic-sensitive approach more
semantics-based in nature as it represents topics and mereological relations of contents via non-linguistic
entities and in terms of algebraic structures. See, e.g., Özgün and Berto (2021) for more on this.
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Table 1 Stalnaker’s axoims Stal

Stalnaker’s axioms

(KK) K (ϕ → ψ) → (Kϕ → Kψ) Knowledge is additive

(TK) Kϕ → ϕ Knowledge implies truth

(4K) Kϕ → K Kϕ Positive introspection for K

(DB) Bϕ → ¬B¬ϕ Consistency of belief

(sPI) Bϕ → K Bϕ (Strong) positive introspection of B

(sNI) ¬Bϕ → K¬Bϕ (Strong) negative introspection of B

(KB) Kϕ → Bϕ Knowledge implies Belief

(FB) Bϕ → BKϕ Full Belief

Inference rules

(MP) from ϕ and ϕ → ψ , infer ψ Modus Ponens

(NecK) from ϕ, infer Kϕ Necessitation

Stalnaker interprets this language on Kripke models in which the accessibility
relation is a directed preorder.26 We call Stalnaker’s epistemic-doxastic system, given
in Table 1, Stal.
The first three axioms in Table 1 are the axioms of the modal system S4 for knowledge.
DB guarantees consistency of belief: one cannot believe a proposition and its negation
at the same time. sPI and sNI describe strong belief as fully introspective. KB is a
standard bridge principle governing the relation between knowledge and belief. FB is
the core axiom that defines belief as subjective certainty (the other direction of the
axiom is derivable in Stal). Deriving Bϕ ↔ ¬K¬Kϕ from these axioms makes belief
reducible to knowledge and allows us to translate every formula inLK B into a provably
equivalent one in LK , by replacing B with ¬K¬K . Stalnaker also shows that even if
the system S4K is assumed for knowledge, the stronger system S4.2K can be derived
from Stal. In fact replacing B with¬K¬K inDB , axiom .2K (¬K¬Kϕ → K¬K¬ϕ)
is obtained. Moreover, Stal also yields the unimodal system KD45B as the logic of
belief.27 The plausibility of each principle in Stalnaker’s system may be debatable;
their defence is out of the scope of this paper. However, the resulting normal modal
logics for knowledge (S4.2K ) and belief (KD45B) have been studied by several authors
as logics for idealized, logically omniscient reasoners, e.g., Lenzen (1978) defends
S4.2K as a logic of knowledge, and van Ditmarsch et al. (2007), Baltag et al. (2008),
Baltag and Smets (2008) take KD45B as the logic of belief.28

26 A binary relation R ⊆ W × W is a directed preorder if it is (1) reflexive: ∀w(Rww), (2) transitive:
∀w, v, u (if Rwv and Rvu, then Rwu), and (3) directed: ∀w, v, u (if Rwv and Rwu, then ∃z such that Rvz
and Ruz).
27 For an extension of the system which is able to deal with belief revision, we refer to (Baltag et al.,
2019). For a topological reformulation of the system, we refer to (Bjorndahl & Özgün, 2020). For the
axiomatizations of normal modal logics mentioned here, see, e.g., (Blackburn et al., 2001; van Benthem et
al., 2015a).
28 See Rendsvig and Symons (2021) for an overview of normal modal logics employed as epistemic
systems.
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In the next section, we propose a sound and complete axiomatization for a hyper-
intensional version of Stalnaker’s logic.

3.2 Stalnaker’s system revised: a hyperintensional version

In this section, we propose our revised, hyperintensional semantics for Stalnaker’s
system. To do so, we choose to work with topic-sensitive semantics. The logic so
defined, labelled HyperStal, is hyperintensional and embraces our concept of positive
epistemic possibility.

Weworkwith the languageLK B〈K 〉�, recursively defined as follows as an extension
of LK B :

ϕ := pi |¬ϕ|(ϕ ∧ ϕ) | Kϕ | 〈K 〉ϕ | Bϕ | �ϕ

Kϕ and Bϕ are read as before. We read 〈K 〉ϕ as ‘the agent considers ϕ epistemically
possible’. � is a normal epistemic modality, standing for analyticity or an a priori
modality.29 The epistemic possibility operator 〈K 〉ϕ is a primitive component of the
language and, in particular, not defined as ¬K¬ϕ. Going further, the following nota-
tion will be useful: for any ϕ ∈ LK B〈K 〉�, V ar(ϕ) denotes the set of propositional
variables occurring in ϕ. We will use ‘ϕ’ to denote the tautology

∧
p∈V ar(ϕ)(p ∨¬p),

following a similar idea in Giordani (2019).
Next, we briefly introduce a simple topic-sensitive logic (following the presentation

in (Özgün & Berto, 2021)).30

Definition 1 (Topic model) A topic model is a tuple T = (T ,⊕, t,K) where

• T is a non-empty set of possible topics;
• ⊕: T × T �→ T is an idempotent, commutative, associative topic-fusion operator;
• K ∈ T is a designated topic representing the totality of topics grasped by the agent;
and

• t : Prop �→ T is a topic function assigning a topic to each element in Prop.

Definition 2 (Topic-sensitive model) A topic-sensitive model is a tuple M =
(W , R, V , T ) where W is a non-empty set of possible worlds, R ⊆ W × W is a
binary accessibility relation between worlds, V : Prop �→ P(W ) is a standardly
defined valuation function that assigns to each propositional variable in Prop a set of
possible worlds and T is a topic model as given in Definition 1.

The function t extends to the whole language LK B〈K 〉� by taking the topic of ϕ as the
fusion of the topics of the elements in V ar(ϕ): t(ϕ) = ⊕{t(p) : p ∈ V ar(ϕ)}. This
29 This operator will be helpful in obtaining technical results.
30 With the following minor differences: Özgün and Berto (2021) focus on belief and have� as a primitive
component of their object language. Taking � as a primitive component of the object language is crucial
for their treatment of binary conditional belief modality and it does not bear on any conceptual points we
want to make in this work. We therefore employ a modal language in which � is defined standardly as a
propositional tautology. Moreover, Özgün and Berto (2021) interpret belief on the so-called topic-sensitive
plausibilitymodels, whereas weworkwith standard relational models enrichedwith a topicality component.
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entails topic-transparency of operators, that is, t(ϕ) = t(Kϕ) = t(Bϕ) = t(〈K 〉ϕ) =
t(�ϕ) = t(¬ϕ) and t(ϕ ∧ ψ) = t(ϕ) ⊕ t(ψ).31 Topic parthood � is defined in a
standard way: ∀a, b ∈ T : a � b iff a ⊕ b = b. It follows that (T ,⊕) is a join
semilattice and (T ,�) is a partially ordered set.

Definition 3 (Semantics for LK B〈K 〉�) Given a topic-sensitive model M = (W , R,

V , T ) and a possible world w ∈ W , the semantics for LK B〈K 〉� is given recursively
as follows:

M, w � p iff w ∈ V (p)

M, w � ¬ϕ iff not M, w � ϕ

M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ

M, w � Kϕ iff (for all v ∈ W , Rwu implies M, u � ϕ) and t(ϕ) � K
M, w � Bϕ iff (there is v ∈ W , Rwv and M, v � Kϕ) and t(ϕ) � K
M, w � 〈K 〉ϕ iff (there is ∈ W , Rwv and M, v � ϕ) and t(ϕ) � K
M, w � �ϕ iff for all v ∈ W (M, v � ϕ)

While � is interpreted as the global modality, the semantic clauses for K , B and
〈K 〉 are respectively obtained by the schemas Hyper-Know, Hyper-Bel*, and Hyper-
-Possibility, as motivated earlier. When it is not the case that M, w � ϕ, we simply
writeM, w � ϕ.

We call a formula ϕ valid in a topic-sensitive model M = (W , R, V , T ), denoted
by M � ϕ, if M, w � ϕ for all w ∈ W . We call a formula ϕ valid in a class of
topic-sensitive models C if M � ϕ for all M ∈ C. Soundness and completeness are
defined standardly (see, e.g., (Blackburn et al., 2001, Chapter 4.1)).

It is easy to see that, as in (Özgün & Berto, 2021), we have

M, w � Bϕ iff t(ϕ) � K.

Similarly for Kϕ and 〈K 〉ϕ. Therefore, Bϕ, as well as Kϕ and 〈K 〉ϕ, express that
‘the agent has grasped the topic of ϕ’. This reading will be helpful in interpreting the
axioms of HyperStal.

Theorem 1 HyperStal is sound and complete wrt the class of reflexive, transitive, and
directed topic-sensitive models.

Proof See Appendix C. ��
Axioms and rules for � require no comments: this is the logic of the global modal-
ity. Group (I) explains the behaviour of our hyperintensional knowledge and belief

31 While topic transparency of propositional connectives is widely accepted (Fine, 1986, 2016; Yablo,
2014), topic transparency of epistemic operators is admittedly less appealing (see (Ferguson 2023) for a
topic-intransparent treatment of intensional conditional operators and the forthcoming sequel for a topic-
intransparent treatment of unary modal operators). Özgün and Berto (2021, p. 770) propose the following
interpretation of the topic assignment function to justify the topic transparency of epistemic operators, while
admitting that the topics of ϕ and Kϕ are not the same: t(ϕ) represents the ontic topic of ϕ. Once the agent
has grasped the topic of ϕ, no further topic is needed in order to reason about Kϕ since no further ontic
topic is involved (similarly for the other connectives). In this work, we follow suit and leave the discussion
of topic-transparency of modal operators for future work.
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Table 2 Axiomatization of HyperStal

(CPL) All classical propositional tautologies and MP

(S5�) S5 axioms and rules for �
(I) Axioms for �, with � ∈ {K , B}:

(C�) �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ)

(Ax1�) �ϕ → �ϕ

(Ax2�) (�(ϕ → ψ) ∧ �ϕ ∧ �ψ) → �ψ

(Ax3�) �ϕ → ��ϕ

(II) Axioms for B:

(DB ) Bϕ → ¬B¬ϕ

(III) Axioms for K :

(TK ) Kϕ → ϕ

(4K ) Kϕ → K Kϕ

(IV) Axioms connecting K and 〈K 〉:
(Equ〈K 〉K ) 〈K 〉ϕ ↔ (¬K¬ϕ ∧ Kϕ) (Positive Epis. Poss.)

(V) Axioms connecting K and B:

(sPI) Bϕ → K Bϕ

(HsNI) (¬Bϕ ∧ Kϕ) → K¬Bϕ (Hyperintensional sNI)

(KB) Kϕ → Bϕ

(FB) Bϕ → BKϕ

operators. C� says that both knowledge and belief are fully conjunctive. Ax1� states
that the agent cannot know/believe a proposition without grasping its topic. Ax2�

is a restricted closure principle: the agent knows/believes a priori consequences of
what they know/believe as long as they grasp the topics of these consequences. This
axiomobviously states an idealization of the agent’s bounded deductive/computational
powers and, in turn, points to a limitation of topic-sensitive logics in dealing with com-
putational sources of logical omniscience. As also stated in (Özgün & Berto, 2021),
further tools— such as the ones employed in (Smets & Solaki, 2018; Solaki, 2021)—
are needed to tackle this sources of logical omniscience.32 Ax3� just says that topics
are world independent. Groups II and III are as in Stalnaker’s original system. Axiom
Equ〈K 〉K defines the intended notion of hyperintensional epistemic possibility as a
positive notion, it is the syntactic counterpart of Hyper-Possibility. Axioms in Group
V are the same as the characteristic axioms in Stalnaker’s original system, with one
caveat on the Strong Negative Introspection principle: the agent has strong introspec-
tive access to only those propositions whose topics they grasp. Indeed, sNI is not a
validity in the topic-sensitive semantics (see below): if the agent does not believe ϕ

because they have not grasped the topic of ϕ, they do not know that they do not believe
it. Group V shows that we stay close to Stalnaker’s original system as much as pos-
sible, eliminating only the typical principles that work for highly idealized, logically
omniscient agents (more on this at the end of the section). In fact, as shown in Theorem
2, we can derive the following two important theorems that are also part of Stalnaker’s

32 We thank one anonymous reviewer for urging us to emphasize this point.
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original system: the identity of belief as epistemic possibility of knowledge, that is,
Bϕ ↔ 〈K 〉Kϕ, and axiom .2K for knowledge, 〈K 〉Kϕ → K 〈K 〉ϕ.
Theorem 2 The following are provable in HyperStal:

1 Bϕ ↔ 〈K 〉Kϕ (Positive Stalnakerian Belief)
2 〈K 〉Kϕ → K 〈K 〉ϕ (Positive .2K )

Proof See Appendix B. ��
Unsurprisingly, the ‘negative’ counterpart of these two principles, viz. Bϕ ↔
¬K¬Kϕ and ¬K¬Kϕ → K¬K¬ϕ, are not valid, due to the topicality compo-
nent in the semantics. The former invalidity is especially welcome if we consider the
definition of belief as epistemic possibility of knowledge. As we have argued, believ-
ing a proposition requires grasping its topic. While belief as 〈K 〉Kϕ requires grasping
the topic of ϕ, belief as ¬K¬Kϕ does not.

The following principles, which are part of Stalnaker’s original system Stal are
invalidated in (reflexive, transitive, and directed) topic-sensitive models due to topi-
cality (see Appendix D for counterexamples):

1 from � ϕ infer � �ϕ, where � ∈ {K , B, 〈K 〉} (Necessitation rule)
2 from � ϕ ↔ ψ infer � �ϕ ↔ �ψ , where � ∈ {K , B, 〈K 〉} (Closure under logical
equivalents)

3 from � ϕ → ψ infer � �ϕ → �ψ , where � ∈ {K , B, 〈K 〉} (Closure under logical
entailment)

4 � ¬Bϕ → K¬Bϕ (Strong negative introspection of B)
5 � Bϕ ↔ ¬K¬Kϕ (Negative Stalnakerian belief)

We have already commented on the invalidity of the last two principles, so
we focus on the first three. Given the Necessitation rule, every theorem is
known/believed/epistemically possible. Closure under logical equivalents guaran-
tees that an agent knows/believes/considers epistemically possible every proposition
that is logically equivalent to what they know/believe/consider epistemically possi-
ble. Finally, by Closure under logical entailment, an agent knows/believes/considers
epistemically possible every proposition that is a logical consequence of what they
know/believe/consider epistemically possible. These inference rules are part of every
normal modal logic. They are usually taken to be highly problematic for any epis-
temic logic that aims to alleviate the problem of logical omniscience though. While
the failure of these principles is standard for necessity-like operators in topic-sensitive
frameworks (see e.g. (Özgün & Berto, 2021)), their failure with respect to possibility-
like operators is new in these frameworks.33 The epistemic possibility operator is now
subject to the same hypertintensionality restrictions as its necessity counterpart.

4 Concluding remarks

We argued that the reading of epistemic possibility as the dual of epistemic neces-
sity generates intuitively problematic examples when reasoning about non-idealized

33 The failure of closure under logical entailment for epistemic possibility is also supported by Huemer
(2007, pp. 135–136): the rule is also violated by his definition of epistemic possibility.
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agents. The notion of epistemic possibility, therefore, requires a more careful formal
treatment within hyperintensional epistemic logics that aims to alleviate the problem
of logical omniscience. We moreover showed that some of these problems strike back
in a stronger form in frameworks that have knowledge as a primitive and define other
epistemic concepts, such as justification and belief, in terms of ‘epistemic possibility’
of knowledge. To solve these problems, we proposed a non-dual interpretation of epis-
temic possibility, employing a hyperintensionality filter similar to the one that makes
the corresponding epistemic necessity operator hyperintensional. As an application,
we focused on Stalnaker’s combined logic of knowledge and belief, inwhich belief can
be defined as the epistemic possibility of knowledge. We proposed an axiomatization
of a hyperintensional version of the logic and proved its soundness and completeness
with respect to a special class of topic-senitive models.

We consider our approach to be an improvement on the dual approach to epistemic
possibility. In fact, one direction of EP:=DK is intact: if ϕ is an epistemic possibility
for S, then S does not know not-ϕ. The other direction does not hold anymore though.
Not knowing not-ϕ is not sufficient for ϕ to be an epistemic possibility. For ϕ to
be (positively) epistemically possible, ϕ should also be within the agent’s epistemic
reach.

Our proposal also has the formal advantage to be a slight variation of the dual
approach. If we restrict our attention to those propositions that are within the agent’s
epistemic reach, duality is restored. Thismakes the proposal easily applicable to extant
theories that already find a formalization inmodal logic and provide themwith a simple
way to go hyperintensional, as already shown here with Stalnakerian belief.

Another advantage of the account is that we can model a wider variety of epistemic
states that collapse into one another in the dual approach, as the knowledge of not-ϕ and
the absence of the epistemic possibility of ϕ. Moreover, it is a general account which
can be applied to a wide family of hyperintensional logics. In our examples,MODwas
the Kripkean truth condition for knowledge and HYPE was either topic-grasping or
awareness. But bothMOD and HYPE can stand for various other conditions.MOD can
represent any possible worlds modal clause (we mentioned a few in Sect. 1) and each
of these can be combined with a differentHYPE condition. One natural candidate could
be a complexity-filter on the kind of propositions the agent can process. (See, e.g.,
(Solaki, 2021) for an example of a complexity filter.) One can also impose an additional
introspection-filter: an agent may be able to reason about their own epistemic state
only up to a certain degree of introspection: an agent might know that Kϕ holds for
them, without knowing that K . . . Kϕ (with n-many K s) does, when n is sufficiently
high.
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Appendix A: Auxiliary results for completeness

Lemma 3 The following are provable in HyperStal:

1 �ϕ → �ψ if V ar(ψ) ⊆ V ar(ϕ) (where � ∈ {K , B})
2 from � ϕ → ψ infer � �ϕ → �ψ , if V ar(ψ) ⊆ V ar(ϕ) (where � ∈ {K , B})
3 from � ϕ ↔ ψ infer � �ϕ ↔ �ψ , if V ar(ψ) = V ar(ϕ) (where � ∈ {K , B})
4 �¬ϕ → ¬Kϕ

5 Kϕ → K (ϕ ∨ ¬ϕ)

6 (�ϕ ∧ Kϕ) → Kϕ

Proof

1. �ϕ → �ψ if V ar(ψ) ⊆ V ar(ϕ) (where � ∈ {K , B})
Follows easily from CPL and C�.

2. from � ϕ → ψ infer � �ϕ → �ψ , if V ar(ψ) ⊆ V ar(ϕ) (where � ∈ {K , B})
1. � ϕ → ψ assumption
2. � �(ϕ → ψ) Nec�
3. � �ϕ → �ψ Ax1�, Lemma 3.1
4. � �ϕ → (�(ϕ → ψ) ∧ �ϕ ∧ �ψ) 2, 3, CPL
5. � (�(ϕ → ψ) ∧ �ϕ ∧ �ψ) → �ψ Ax2�

6. � �ϕ → �ψ 3-5, CPL
3. from � ϕ ↔ ψ infer � �ϕ ↔ �ψ , if V ar(ψ) = V ar(ϕ). (where � ∈ {K , B})

Similar to the proof of Lemma 3.2.
4. Kϕ → 〈K 〉Kϕ

1. � Kϕ → (¬K¬Kϕ ∧ K Kϕ) TK ,Ax1K , Lemma 3.1
2. � (¬K¬Kϕ ∧ K Kϕ) ↔ 〈K 〉Kϕ Equ〈K 〉K
3. � Kϕ → 〈K 〉Kϕ CPL

5. �¬ϕ → ¬Kϕ

1. � Kϕ → ♦ϕ TK , T�
2. � ¬♦ϕ → ¬Kϕ CPL (contraposition)
3. � �¬ϕ → ¬Kϕ S5� (� ¬♦ϕ ↔ �¬ϕ), CPL

6. Kϕ → K (ϕ ∨ ¬ϕ)
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1. � Kϕ → (�(ϕ → (ϕ ∨ ¬ϕ)) ∧ Kϕ ∧
K (ϕ ∨ ¬ϕ))

CPL, S5�, Lemma 3.1

2. � (�(ϕ → (ϕ∨¬ϕ))∧Kϕ∧K (ϕ ∨ ¬ϕ)) →
K (ϕ ∨ ¬ϕ)

Ax2K

3. � Kϕ → K (ϕ ∨ ¬ϕ) CPL

7. (�ϕ ∧ Kϕ) → Kϕ

1. � (�ϕ∧Kϕ) → (�((ϕ∨¬ϕ) → ϕ)∧K (ϕ∨
¬ϕ) ∧ Kϕ)

CPL, S5�, Lemma 3.5

2. � (�((ϕ∨¬ϕ) → ϕ)∧ K (ϕ∨¬ϕ)∧ Kϕ) →
Kϕ

Ax2K

3. � (�ϕ ∧ Kϕ) → Kϕ CPL

��

Appendix B: Proof of Theorem 2

1. Bϕ ↔ 〈K 〉Kϕ

(⇒)

1. � K¬Kϕ → B¬Kϕ KB
2. � B¬Kϕ → ¬BKϕ DB , Lemma 3.3, CPL
3. � ¬BKϕ → ¬Bϕ FB
4. � Bϕ → ¬K¬Kϕ 1-3, CPL
5. � Bϕ → Kϕ sPI, Lemma 3.1
6. � Bϕ → (¬K¬Kϕ ∧ K ϕ̄) 4, 5, CPL
7. � (¬K¬Kϕ ∧ Kϕ) ↔ 〈K 〉Kϕ Equ〈K 〉K
8. � Bϕ → 〈K 〉Kϕ 6, 7, CPL

(⇐)

1. � ¬K¬Bϕ → (Bϕ ∨ ¬Kϕ) contraposition of HsNI
2. � ¬Bϕ → ¬Kϕ contraposition of KB
3. � K¬Bϕ → K¬Kϕ 2, Lemma 3.2
4. � ¬K¬Kϕ → (Bϕ ∨ ¬K ϕ̄) 1-3, CPL
5. � 〈K 〉Kϕ → ¬K¬Kϕ Equ〈K 〉K
6. � 〈K 〉Kϕ → (Bϕ ∨ ¬K ϕ̄) 4, 5, CPL
7. � 〈K 〉Kϕ ∧ Kϕ ↔ 〈K 〉Kϕ Equ〈K 〉K
8. � 〈K 〉Kϕ ∧ Kϕ → (Bϕ ∨ ¬Kϕ) 6, 7, CPL
9. � 〈K 〉Kϕ → Bϕ 8, CPL

2. 〈K 〉Kϕ → K 〈K 〉ϕ
1. � 〈K 〉Kϕ → ¬〈K 〉K¬ϕ DB , Theorem 2.1
2. � ¬〈K 〉K¬ϕ ↔ ¬(¬K¬K¬ϕ ∧ K K¬ϕ) Equ〈K 〉K
3. � ¬(¬K¬K¬ϕ ∧ K K¬ϕ) → (K¬K¬ϕ ∧

Kϕ)

Ax1K , Lemma 3.1

4. � (K¬K¬ϕ ∧ Kϕ) → (K¬K¬ϕ ∧ K Kϕ) 4K

5. � (K¬K¬ϕ ∧ K Kϕ) → K (¬K¬ϕ ∧ Kϕ) CK

6. � K (¬K¬ϕ ∧ Kϕ) → K 〈K 〉ϕ Equ〈K 〉K , Lemma 3.2
7. � 〈K 〉Kϕ → K 〈K 〉ϕ 1-6, CPL
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Appendix C: Proof of Theorem 1: Soundness and Completeness of
HyperStal

The soundness proof is a matter of standard validity check so we skip the proof. In
the remaining of this section, we prove the completeness of HyperStal. Our complete-
ness proof is similar to the one presented in (Berto & Özgün, 2023). However, their
completeness result is with respect to topic-sensitive subset spaces and we adapt it for
reflexive, transitive, and directed relational models.

For any set of formulas � ⊆ LK B〈K 〉� and any ϕ ∈ LK B〈K 〉�, we write � � ϕ if
there exists a finitely many formulas ϕ1, . . . , ϕn ∈ � such that � (ϕ1 ∧ · · · ∧ϕn) � ϕ.
We say that� is consistent if� � ⊥, and inconsistent otherwise.When� is a singleton
set of the form {ϕ}, we say ϕ is consistent if {ϕ} � ⊥, and ϕ is inconsistent otherwise.
A sentence ϕ is consistent with � if � ∪{ϕ} is consistent (or, equivalently, if � � ¬ϕ).
Finally, a set of formulas � is a maximally consistent set (or, in short, mcs) if it is
consistent and any set of formulas properly containing � is inconsistent (Blackburn
et al., 2001).

Lemma 4 For every mcs � of HyperStal and ϕ,ψ ∈ LK B〈K 〉�, the following hold:

1 � � ϕ iff ϕ ∈ �,
2 if ϕ ∈ � and ϕ → ψ ∈ �, then ψ ∈ �,
3 if � ϕ then ϕ ∈ �,
4 ϕ ∈ � and ψ ∈ � iff ϕ ∧ ψ ∈ �,
5 ϕ ∈ � iff ¬ϕ /∈ �.

Proof Standard. ��
In the following, we will use Lemma 4 in a standard way and often omit mention

of it.

Lemma 5 (Lindenbaum’s Lemma) Every consistent set of HyperStal can be extended
to a maximally consistent one.

Proof Standard. ��
Let X c be the set of all HyperStal-maximally consistent sets. For each � ∈ X c, we

define

• �[�] := {ϕ : �ϕ ∈ �}.
• �[K ] := {ϕ : Kψ ∧ �(ψ → ϕ) ∈ � for some ψ ∈ LK B〈K 〉�}.
• �[K ,�] := �[K ] ∪ �[�]
Moreover, we define ∼ on X c as

� ∼ � iff �[�] ⊆ �.

Since � is an S5 modality, it is easy to see that ∼ is an equivalence relation. For any
maximally HyperStal-consistent set �, we denote by �∼ the equivalence class of �

induced by ∼, i.e., �∼ = {� ∈ X c : � ∼ �}.
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Lemma 6 For any two maximally consistent sets � and � such that � ∼ �, �[�] =
�[�].
Proof Follows from the axioms and rules of S5�. ��
Definition 4 (Canonical Model for �0) Given a mcs �0 of HyperStal, the canonical
model for �0 is a tuple Mc = {W c, Rc, T c, V c}, where
• W c = {� ∈ X c : �0 ∼ �};
• Rc ⊆ W c × W c such that for all �,� ∈ W c:

�Rc� iff �[K ,�] ⊆ �

• T c is such that:

– T c={a, b} where a={p ∈ Prop : ¬K p̄ ∈ �0} and b={p ∈ Prop : K p̄ ∈ �0};
– ⊕c : T c × T c �→ T c such that a ⊕c a = a, b ⊕c b = b, a ⊕c b = b ⊕c a = a;
– Kc = b;
– tc : Prop �→ T c such that for every c ∈ T c and p ∈ Prop: tc(p) = c iff p ∈ c,

and tc extends to the whole language by tc(ϕ) =
c⊕{tc(p) : p ∈ V ar(ϕ)}.

The inclusion relation is defined as usual and it is such that b �c a, i.e. b is
strictly included in a;

• V c(p) = {� ∈ W c : p ∈ �}.
Lemma 7 Given a mcs �,

∧
i≤n ϕi ∈ �[K ,�] for all finite {ϕ1, . . . , ϕn} ⊆ �[K ,�].

Proof Let {ϕ1, . . . , ϕn} ⊆ �[K ,�], i.e., that {ϕ1, . . . , ϕn} ⊆ �[K ] ∪ �[�]. With-
out loss of generality, suppose that � ⊆ �[K ] and �′ ⊆ �[�] for some �,�′ ⊆
{ϕ1, . . . , ϕn} such that � ∪ �′ = {ϕ1, . . . , ϕn}. Since � is a normal modality, by fol-
lowing standard arguments, we know that

∧
�′ ∈ �[�]. The assumption � ⊆ �[K ]

means that, for each ϕi ∈ � there is a ψi ∈ LK B〈K 〉� such that Kψi ∧ �(ψi →
ϕi ) ∈ �. Let I� = {i ∈ N : ϕi ∈ �} (the set of indices of the elements in �). Thus,∧

i∈I� Kψi∧∧
i∈I� �(ψi → ϕi ) ∈ �. Then, byCK ,weobtain that K (

∧
i∈I� ψi ) ∈ �.

By S5�, we also have�(
∧

i∈I� ψi → ∧
i≤n ϕi ) ∈ �. Moreover, by CPL (the theorem

� ((ϕ → ψ) ∧ χ) → (ϕ → (ψ ∧ χ))), S5�, and
∧

�′ ∈ �[�], this implies that
�(

∧
i∈I� ψi → (

∧
i∈I� ϕi ∧ ∧

�′)) ∈ �, i.e., �(
∧

i∈I� ψi → ∧
1≤i≤n ϕi ) ∈ �.

Therefore,
∧

1≤i≤n ϕi ∈ �[K ], thus, ∧1≤i≤n ϕi ∈ �[K ,�]. ��
Lemma 8 For every mcs �, both �[�] and �[K ] are consistent. Moreover, �[K ,�]
is consistent.

Proof Consistency of �[�] follows via a standard argument since� is an S5 operator,
in particular, since ¬�⊥ is a theorem of HyperStal.

To show that �[K ] is consistent, assume, toward contradiction, that �[K ] is not
consistent, i.e.,�[K ] � ⊥. This means that there is a finite subset� = {ϕ1, . . . , ϕn} ⊆
�[K ] such that � ∧

� → ¬ϕ j for some j ≤ n. By Lemma 7, we have that
∧

� ∈
�[K ], thus, there is aψ ∈ LK B〈K 〉� such that Kψ ∈ � and�(ψ → ∧

�) ∈ �. Since
� ∧

� → ¬ϕ j , by S5�, we also have �(ψ → ¬ϕ j ) ∈ �. Hence, ¬ϕ j ∈ �[K ] too.
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As ϕ j ∈ �[K ], we also have a ψ ′ ∈ LK B〈K 〉� with Kψ ′ ∈ � and �(ψ ′ → ϕ j ) ∈ �.
From �(ψ → ¬ϕ j ) ∈ � and �(ψ ′ → ϕ j ) ∈ �, by S5�, we obtain that �(ψ →
¬ψ ′) ∈ �. As Kψ ′ ∈ �, byAx1K andLemma3.1, K¬ψ ′ ∈ �. Therefore, K¬ψ ′ ∈ �,
�(ψ → ¬ψ ′) ∈ �, Kψ ∈ �, by Ax2K , imply that K¬ψ ′ ∈ �, contradicting the
consistency of �: Kψ ′ ∈ � and K¬ψ ′ ∈ � imply, by TK , that ψ ′ ∈ � and ¬ψ ′ ∈ �.
Therefore, �[K ] is consistent.

Suppose now, toward contradiction, that �[K ,�] is inconsistent, i.e., that �[K ] ∪
�[�] is inconsistent. Since both �[�] and �[K ] are consistent, inconsistency of
�[K ,�] implies (by Lemma 7) that there is ψ ∈ �[K ] and ϕ ∈ �[�] such that
� (ϕ∧ψ) → ⊥, i.e.,� ϕ → ¬ψ , while bothϕ andψ are consistent. Then, by S5� and
since �ϕ ∈ �, we obtain that �¬ψ ∈ �. Moreover, ψ ∈ �[K ] implies that there is a
χ ∈ LK B〈K 〉� such that Kχ∧�(χ → ψ) ∈ �. This implies that�(¬ψ → ¬χ) ∈ �.
Then, by K� (distributivity of � over →), we have that �¬ψ → �¬χ ∈ �. Thus,
as �¬ψ ∈ �, we obtain that �¬χ ∈ �. Moreover, by Kχ ∈ �, Ax1K , and Lemma
3.1, we have K¬χ ∈ �. Then, as �¬χ ∧ K¬χ ∈ �, by Lemma 3.6, we have K¬χ ,
contradicting the consistency of �: Kχ ∈ � and K¬χ ∈ � imply, by TK , that χ ∈ �

and ¬χ ∈ �. Therefore, �[K ,�] is consistent. ��
For the Truth Lemma, we need the following auxiliary results.

Lemma 9 For any ϕ ∈ LK B〈K 〉� and for any � ∈ W c: Kϕ iff ∀p ∈ V ar(ϕ) : K p ∈
�.

Proof (⇒) Follows from Lemma 3.6.
(⇐) Let V ar(ϕ) = {p1, . . . , pn}. It follows ϕ = p1 ∧ . . . ∧ pn . If K p̄i ∈ � for
all pi ∈ {p1, . . . , pn}, then ∧

i≤n K p̄i ∈ � by Lemma 4.4 Then, by CK we obtain
K

∧
i≤n p̄i ∈ �, i.e. K ϕ̄. ��

Corollary 10 Given a canonical topic-sensitive model Mc = {W c, Rc, T c, V c}, for
any � ∈ W c, and ϕ ∈ LK B〈K 〉�, Kϕ ∈ � iff tc(ϕ) � Kc.

Proof

Kϕ ∈ � iff K p ∈ � for all p ∈ V ar(ϕ) (Lemma 9)

iff K p ∈ �0 for all p ∈ V ar(ϕ) (Ax3K and the definition of W c)

iff tc(p) = b for all x ∈ V ar(ϕ) (by the definitions of b and tc)

iff tc(ϕ) = b (by the definition of (T c,⊕c) and tc(ϕ))

iff tc(ϕ) � Kc (since b = Kc and b � a for all a ∈ T c)

��
Lemma 11 For every mcs � and ϕ ∈ LK B〈K 〉�, if �[K ,�] � ϕ and Kϕ ∈ �, then
Kϕ ∈ �.

Proof Suppose�[K ,�] � ϕ and Kϕ ∈ �. Then, by Lemma 7, there is aχ ∈ �[K ,�]
such that � χ → ϕ. This means that �(χ → ϕ) ∈ �. We then have two cases:
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• if χ ∈ �[K ], there is a ψ such that Kψ ∧ �(ψ → χ) ∈ �. Then, by S5� and the
fact that �(χ → ϕ) ∈ �, we obtain that �(ψ → ϕ) ∈ �. We also have Kϕ ∈ �

and Kψ ∈ �. Therefore, by Ax2K , we conclude that Kϕ ∈ �.
• if χ ∈ �[�], then �χ ∈ �. �(χ → ϕ) ∈ � implies, by K�, that �χ → �ϕ ∈ �.
Therefore,�ϕ ∈ �. Since Kϕ ∈ � aswell, by Lemma 3.6, we obtain that Kϕ ∈ �.

��
Lemma 12 Mc = {W c, Rc, T c, V c} is a reflexive, transitive, and directed topic-
sensitive model.

Proof We need to prove that (1) T c is topic model as described in Definition 1 and
(2) Rc is reflexive, transitive, and directed. For (1): it is easy to see that a and b are
disjoint sets, thus tc is well-defined. Moreover, ⊕c satisfies the desired properties by
definition. In the remainder of the proof, we focus on (2):

Rc is reflexive: let � ∈ W c and ϕ ∈ LK B〈K 〉� such that ϕ ∈ �[K ,�]. This means,
by the definition of �[K ,�], that ϕ ∈ �[K ] or ϕ ∈ �[�]. We then have two cases:

• If ϕ ∈ �[K ], there is ψ ∈ LK B〈K 〉� such that Kψ ∧ �(ψ → ϕ) ∈ �. Then, by
axiom TK and T�, we have that ψ ∈ � and ψ → ϕ ∈ �, respectively. Then, by
Lemma 4.2, we obtain that ϕ ∈ �.

• If ϕ ∈ �[�], we have that �ϕ ∈ �. Thus, by axiom T� and Lemma 4.2, we have
ϕ ∈ �.

As ϕ has been chosen arbitrarily, we have �[K ,�] ⊆ �, i.e., �Rc�.

Rc is transitive: let�,�, and	 ∈ W c such that�Rc� and�Rc	, i.e., that�[K ,�] ⊆
� and �[K ,�] ⊆ 	. Let ϕ ∈ �[K ,�], i.e., ϕ ∈ �[K ] or ϕ ∈ �[�]. We again have
two cases:

• If ϕ ∈ �[K ], there is ψ ∈ LK B〈K 〉� such that Kψ ∧ �(ψ → ϕ) ∈ �, i.e., that
Kψ ∈ � and�(ψ → ϕ) ∈ �. The former togetherwith4K , CPL, and S5� implies
that K Kψ ∧ �(Kψ → Kψ) ∈ �. Therefore, Kψ ∈ �[K ,�]. Thus, by the
assumption that �[K ,�] ⊆ �, we obtain that Kψ ∈ �. Moreover, �(ψ → ϕ) ∈
� and Lemma 6 imply that �(ψ → ϕ) ∈ �. Therefore, Kψ ∧ �(ψ → ϕ) ∈ �,
i.e., ϕ ∈ �[K ,�]. We then conclude, by our initial assumption �[K ,�] ⊆ 	,
that ϕ ∈ 	.

• Ifϕ ∈ �[�], then, by Lemma6,we haveϕ ∈ �[�]. Since�[�] ⊆ �[K ,�] ⊆ 	,
we conclude that ϕ ∈ 	.

As ϕ has been chosen arbitrarily, we have �[K ,�] ⊆ 	, i.e., �Rc	.

Rc is directed: let �1, �2, �3 ∈ W c such that �1Rc�2 and �1Rc�3, i.e., that
�1[K ,�] ⊆ �2 and �1[K ,�] ⊆ �3. To prove that Rc is directed, we show that
�2[K ,�]∪�3[K ,�] is consistent. Suppose otherwise, i.e., that�2[K ,�]∪�3[K ,�]
is inconsistent. Then, by Lemma 7, there is ϕ ∈ �2[K ,�] and ψ ∈ �3[K ,�] such
that � (ϕ ∧ ψ) → ⊥, i.e., � ψ → ¬ϕ, while both ϕ and ψ are consistent (since both
�2[K ,�] and �3[K ,�] are consistent, by Lemma 8). Notice that, by Lemma 6 and
the definition of W c, �2[�] = �3[�]. We then have three cases:

• if ϕ ∈ �2[K ] and ψ ∈ �3[K ], there exist χ, χ ′ ∈ LK B〈K 〉� such that (1) Kχ ∧
�(χ → ϕ) ∈ �2 and (2) Kχ ′ ∧ �(χ ′ → ψ) ∈ �3. The fact that � ψ → ¬ϕ
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implies, by S5�, that �(ψ → ¬ϕ) ∈ �3. Therefore, by �(χ ′ → ψ) ∈ �3,
�(ψ → ¬ϕ) ∈ �3, �(¬ϕ → ¬χ) ∈ �3 (by Lemma 6 and �(¬ϕ → ¬χ) ∈ �2),
and S5�, we obtain that �(χ ′ → ¬χ) ∈ �3. Moreover, since Kχ ∈ �2 and
�1[K ,�] ⊆ �2, we have that ¬K¬Kχ ∈ �1. Moreover, by Kχ ∈ �2, 4K ,
and Ax1K , we obtain K Kχ ∈ �1. Then, by Equ〈K〉K , we have 〈K 〉Kχ ∈ �1.
Thus, by Theorem 2.2, K 〈K 〉ψ ∈ �1. Since �1[K ,�] ⊆ �3, we obtain that
〈K 〉χ ∈ �3. Again by axiom Equ〈K〉K , we have ¬K¬χ ∈ �3. But we also have
that Kχ ∈ �3 (since 〈K 〉χ ∈ �3 andbyEqu〈K〉K), thus K¬χ ∈ �3 (byLemma3.1),
�(χ ′ → ¬χ) ∈ �3, and Kχ ′ ∈ �3. Thus, by Ax2K , K¬χ ∈ �3, contradicting
the consistency of �3.

• if ϕ ∈ �2[K ] and ψ ∈ �3[�], there exist χ ∈ LK B〈K 〉� such that Kχ ∧ �(χ →
ϕ) ∈ �2. Moreover, ψ ∈ �3[�] means, since �2[�] = �3[�], that �ψ ∈ �2.
Therefore, by S5�, we have �(χ → ψ) ∈ �2. Similar to the case above, we
obtain that �(χ → ¬ϕ) ∈ �2. Then, by S5�, �(χ → (ϕ ∧ ¬ϕ)) ∈ �2, i.e.,
�¬χ ∈ �2. Then, by Lemma 3.4, we have ¬Kχ , contradicting the consistency
of �2.

• if ϕ ∈ �2[�] and ψ ∈ �3[K ]: Similar to the above case.

We, therefore, obtain that �2[K ,�] ∪ �3[K ,�] is consistent, therefore, by Lemma 5
(Lindenbaum’sLemma), can be extended to amcs� such that�2[K ,�]∪�3[K ,�] ⊆
�, i.e., that �2Rc� and �3Rc�. Hence, Rc is directed. ��

Lemma 13 (Truth Lemma) Let �0 be a mcs ofHyperStal andMc = {W c, Rc, T c, V c}
the canonical model for �0. Then, for every ϕ ∈ LK B〈K 〉� and � ∈ W c, we have
Mc, � � ϕ iff ϕ ∈ �.

Proof By induction on the complexity of ϕ. In the proof we will exploit the proprieties
of mcs given in Lemma 4 in a standard way and omit to mention it. The cases for the
propositional variables, Booleans, and ϕ := �ψ are standard. We prove the cases for
ϕ := Kψ , ϕ := 〈K 〉ψ , and ϕ := Bψ .

Case ϕ := Kψ :
(⇒) Assume Mc, � � Kψ . This means, by the semantics of K , that for any �′ such
that�Rc�′,Mc, �′ � ψ and t(ψ) � Kc. The former, by IH, entails thatψ ∈ �′ for all
�′ with �Rc�′. Now consider the set �[K ,�] ∪ {¬ψ} and assume it is consistent for
the sake of contradiction. Then, by Lindenbaum’s Lemma (Lemma 5), there is a mcs
� such that �[K ,�] ∪ {¬ψ} ⊆ �. This implies, by the definition of Rc, that �Rc�

(since �[�] ⊆ �[K ,�], we have that � ∈ W c). Therefore, ¬ψ ∈ �, contradicting
our assumption that ψ ∈ �′ for all �′ with �Rc�′. The set �[K ,�] ∪ {¬ψ} is then
inconsistent, meaning that �[K ,�] � ψ . Moreover, t(ψ) � Kc, by Corollary 10,
implies that Kψ ∈ Kc. Then, by Lemma 11, we obtain that Kψ ∈ �.
(⇐) Assume Kψ ∈ �. By Ax1K , it follows Kψ ∈ �. By Corollary 10, we obtain
tc(ψ) � Kc. Now consider �′ ∈ W c such that �Rc�′. Since Kψ ∈ � and by S5�
we have �(ψ → ψ) ∈ �, it follows that ψ ∈ �′. Then, by IH, we haveMc, �′ � ψ .
Joining this result with tc(ψ) � Kc, we conclude M, � � Kψ .
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Case ϕ := 〈K 〉ψ :

Mc, � � 〈K 〉ψ iff (there is � ∈ W c, �Rc� and Mc,� � ψ) and tc(ψ) � Kc

(by the semantics)

iff (there is � ∈ W c, �Rc� and ψ ∈ �) and Kψ ∈ �

(IH and Corollary 10)

iff K¬ψ /∈ � and Kψ ∈ � (by the definition of Rc, Ax2K , Ax3K )

iff ¬K¬ψ ∈ � and Kψ ∈ � (Lemma 4.5)

iff (¬K¬ψ ∧ Kψ) ∈ � (Lemma 4.3)

iff 〈K 〉ψ ∈ � (Equ〈K 〉K )

Case ϕ := Bψ : Follows via similar steps as in the cases for ϕ := Kψ and ϕ :=
〈K 〉ψ , and Theorem 2.1. ��
Corollary 14 HyperStal is complete wrt the class of reflexive, transitive and directed
topic-sensitive models.

Proof Let ϕ ∈ LK B〈K 〉� such that � ϕ. This means that {¬ϕ} is consistent. Then by
Lindembaum’s Lemma (Lemma 5), there exists a mcs �0 such that ϕ /∈ �0. Therefore
by Truth Lemma (Lemma 13), we conclude that Mc, �0 � ϕ, where Mc is the
canonical model for �0. ��

Appendix D: Invalidities 1–5

For the sake of simplicity, in the following, we write w � ϕ forM, w � ϕ and w � ϕ

forM, w � ϕ.
Countermodel.LetM = (W , R, T ,⊕, t,K, V )be such thatW = {w}, R = {(w,w)},
T = {a, b}, b � a, t(p) = a, t(q) = b = K, V (p) = V (q) = {w}. It is easy to check
that R is reflexive, transitive and directed.
Since p ∨ ¬p is a propositional tautology, we have w � �(p ∨ ¬p). Nonetheless,
since K � t(p) = t(p ∨ ¬p) = a, it follows w � �(p ∨ ¬p) for � ∈ {K , B, 〈K 〉},
viz. the Necessitation rule (1) fail for all � ∈ {K , B, 〈K 〉}. Moreover, since (p ∨
¬p) ↔ (q ∨ ¬q) is a propositional tautology, and w � �(q ∨ ¬q), we also obtain
that Closure under logical equivalents and Closure under logical entailment (2-3) fail
for all � ∈ {K , B, 〈K 〉}. Moreover, it is easy to see that w � ¬B(p ∨ ¬p) and
w � K¬B(p ∨ ¬p) (since K � t(p) = t(B(p ∨ ¬p))), thus, sNI (4) fails. Similarly
w � ¬K¬K (p∨¬p) butw � B(p∨¬p), thus Negative Stalnekarian belief (5) fails.
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