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Abstract
Interdisciplinarity is strongly promoted in science policy across the world. It is seen
as a necessary condition for providing practical solutions to many pressing complex
problems for which no single disciplinary approach is adequate alone. In this article
we model multi- and interdisciplinary research as an instance of collective problem
solving. Our goal is to provide a basic representation of this type of problem solving
and chart the epistemic benefits and costs of researchers engaging in different forms
of cognitive coordination. Our findings suggest that typical forms of interdisciplinary
collaboration are unlikely to find optimal solutions to complex problems within short
time frames and can lead tomethodological conservatism. This provides some grounds
for both reflecting on current science policy and envisioning more effective scientific
practices with respect to interdisciplinary problem solving.

Keywords Division of cognitive labor · Interdisciplinarity · Collective problem
solving · Modularity

1 Introduction

Interdisciplinarity in its many forms is strongly promoted in science policy across the
world. It is seen as a necessary condition for providing practical solutions to pressing
complex problems for which no disciplinary approach alone holds all the required
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answers (Klein, 1990). At present interdisciplinarity is widely incentivized through
funding instruments which typically take the form of 3–6 year research projects. These
instruments are both provided by funding agencies and increasingly used to structure
internal university funding (Lindvig & Hillersdal, 2019; Salmela et al., 2021). In
this article we formally model this type of interdisciplinary problem solving as a
division-of-labor problem.Our goal is to provide a basic representationof the epistemic
dynamics of this type of problem solving, and to explore the relative benefits and costs
of employing different cooperative or integrative strategies.

Our motivation for turning to modeling in these cases is to gain insight into how
the cognitive structure of interdisciplinary problems—which require more than one
type of cognitive expertise to adequately resolve them—might govern the approaches
and solutions researchers choose (and ought) to take up, given the potential costs of
engaging in collaboration. The costs here include the time and missed opportunities
for producing solid disciplinary results. As other authors have noted, the outcomes of
interdisciplinary projects often fail to be as integrated as an optimal solution might
seem to require (Bruce et al., 2004;MacLeod&Nagatsu, 2016;Mennes, 2018; Salmela
et al., 2021) and interdisciplinary research is often perceived as being shallower than
allegedly more rigorous disciplinary research (Adams et al., 2007; Larivière & Gin-
gras, 2010; Leahey et al., 2017). While many aspects of interdisciplinarity have been
extensively discussed, to our knowledge, no one has tried to investigate the general
structure of interdisciplinary problems based on the basic forms and patterns those
problems can take irrespective of the subject matter or fields involved. Analyzing this
structure (and its variations) promises us potential insight into the costs and benefits
of different cognitive problem-solving strategies across a range of cases, and thus the
costs and benefits of interdisciplinary problem-solving strategies overall.

Beyond these general observations, theorizing about the potential benefits and costs
of interdisciplinarity on a purely conceptual level alone is not an appropriate method
for examining the trade-offs and the conditions under which the costs of interdis-
ciplinarity may outweigh the benefits (Reijula & Kuorikoski, 2019). Empirical case
studies and quantitative analyses of research activities are essential for estimating the
effectiveness of solution-oriented, short-to-medium-term interdisciplinary collabora-
tions, but such empirical work ought to be informed by analytical theorizing about
the possible mechanisms responsible for the observed results. Yet, purely verbal the-
orizing is notoriously unreliable when it comes to the possible outcomes of multiple
interacting mechanisms and feedback processes. The formal models discussed in this
article aim to contribute to such analytical foundations for theorizing about the social
production of knowledge.

Many of the existing models in the social epistemology of science portray sci-
ence as competitive problem solving: all agents compete at solving the same problem
(usually defined by single-dimensional epistemic utility). Such models can capture
some benefits of epistemic diversity, but are ill-equipped to explore what we call col-
laborative division of cognitive labor (D’Agostino, 2009). Collaborative division of
cognitive labor requires cognitive coordination that goes beyond the question of how
to allocate resources between a set of competing research hypotheses. In the inter-
disciplinary interactions studied in this article, groups of researchers come together
to solve a complex problem beyond their individual competences. This (temporary)
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collective must identify and assign its members with appropriate tasks. Such task par-
titioning and differentiation of epistemic roles presupposes that the research problem
addressed by the community is at least partly decomposable (von Hippel, 1990). By
decomposability we mean that the original problem must be divisible to subtasks so
that the epistemic contribution of each subtask is at least partly invariant with respect
to changes in the states of the other subtasks (Wimsatt, 2007, Ch. 9).

The general idea that search and discovery proceeds by dividing problems into
partially independently solvable subtasks has a long pedigree in philosophy and the
cognitive sciences.Most notably, Simon (1962) emphasized the importance of approx-
imations to near-decomposability in understanding complex systems. In philosophy,
this general idea has been pursued by Wimsatt (2007), who stresses the value of
reductionist heuristics—working hypotheses that the whole is merely the sum of its
parts—as tractable guides to learning about the organization and interaction of the
parts. Drawing on Simon and Wimsatt, Bechtel and Richardson (2010) suggested
decomposition and localization as key heuristics in the search for mechanistic expla-
nations in the cognitive neurosciences.1 Although our approach in this article is largely
compatible with these accounts, our notion of decomposition does not refer to the
causal-mechanical structure of systems, the relationship between a material system
and its parts. Instead, we focus on ways in which an epistemic task can sometimes be
decomposed into subtasks like a question can be unpacked into a set of more detailed
questions.

We need a model template that allows us to study task partitioning and can be used
to weigh the epistemic benefits and costs under different forms of cognitive coordina-
tion. Such a template should allow us to capture at least the following key elements: (1)
recursive division of a problem into sub-problems or subtasks, (2) allocation of sub-
problems to different problem solvers, and (3) different strategies for combining the
solutions of sub-problems. At the same time, for the sake of transparency and avoiding
unnecessary artifacts, the model should be as simple as possible. The function of the
model is to help keep the logic of our argument straight, provide definitions for pre-
viously intuitively understood concepts and ideas, and make explicit our previously
implicit assumptions—not to create realistic and detailed in silica scientific commu-
nities with which to experiment in the hope of entirely new empirically interpretable
“results” (Kuorikoski & Reijula, 2019).

In the following section we introduce an approach to modeling that meets these
needs, originally developed in economics by Luigi Marengo and coauthors (Marengo
& Dosi, 2005; Marengo et al., 2000) and by Scott Page and coauthors (Hong & Page,
2001; Page, 1994, 1996). We establish distinctions between different levels of com-
plexity and different forms of cognitive coordination. We illustrate the scenarios with
examples from real-world interdisciplinary research. In Sect. 4, we employ simula-
tion methods to derive qualitative results on the effectiveness of different forms of
collaboration for problems exhibiting different levels of complexity. In light of our
findings, in the final sections, we discuss the epistemic implications of these results.
Our main aims are twofold: first, to lay out the model template and demonstrate its

1 For related approaches to scientific discovery in the philosophy of science, see Nickles (1980) and Darden
(1997). And for parallel discussions in organization science, see, for example, references inMarengo (2015),
Leahey et al. (2017) and in engineering, Sobieszczanski-Sobieski et al. (2015).
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potential for modeling collaborative problem solving, and, second, to show how the
model can explain the perceived shortcomings of interdisciplinary research as con-
sequences of rational responses to the prevailing institutional incentives for multi-
and interdisciplinary collaboration. The ambition of this article is thus to provide a
proof-of-concept model and use it to make explicit an empirical worry about transient
interdisciplinary projects. Inspired by the model, we suggest new hypotheses about
possible modifications to these incentives and to problem-solving strategies that might
improve interdisciplinary research.

2 Amodel of collaborative division of cognitive labor

To clarify the distinction between cognitive diversity and division of labor (see Sect. 1),
we approach the scientific research process as follows. We can think of complex
problems as multidimensional tasks consisting of several interdependent components
(Newell & Simon, 1972). For instance, the task of designing a guitar amplifier consists
of the subtasks of designing the amplifying circuit, the speaker, and the enclosure.
Each of these subtasks can further be divided into simpler subtasks, often allocated to
experts in different fields. Likewise, a game of chess can be divided up into a sequence
of moves, but the usefulness of a move depends on the other moves in the game. The
game is difficult because such dependencies are difficult to grasp. A key aspect of the
difficulty of a problem is thus the extent to which solving a particular subtask depends
on the state of the other subtasks (Marengo & Dosi, 2005).

The analysis of problem solving as search applies to the scientific research process.
Scientists generally look for formulations of problems, experimental designs, pat-
terns in data, mechanisms behind the data, and implications of their theories (Simon,
1989). All such activities can be viewed as problem-solving tasks consisting of various
interdependent sub-problems. Here the components of the problem include choices
concerning the background theories to rely on, which instrumentation and methods
to use, answers to particular empirical questions, and so on. When combined, the
solutions to the sub-problems constitute an answer to the original problem. Just as
in chess and the engineering tasks referred to above, the epistemic value of such an
answer is not a simple aggregate of the values of its components, instead, there are
often important interdependencies between the solutions offered to sub-problems.

The first aspect of our model is a computational representation of a scientific
research problem. As a starting point, note that a problem can consist of several
parts, and it can have better and worse solutions (cf. Nickles, 1981). Arguably we can
use a binary string of length N as a simple representation of a problem consisting of
multiple parts. We define each locus in the string as an atomic component problem,
and the possible groupings of individual bits as alternative ways in which the complex
problem can be subdivided into a set of sub-problems. Whereas N could be seen to
stand for problem size, we define the complexity of the problem as the number and
strength of interdependencies between the solutions to these component problems, as
they contribute to the epistemic value of the overall solution.

These ideas can be made more precise by introducing some notation. The problem
comprises of a sequence of components, S = {s1, s2, ..., sN }, where si ∈ {0, 1}. The

123



Synthese (2023) 201 :214 Page 5 of 20 214

index set I = {1, . . . , N } consists of the indices of the individual loci. A configuration,
or a possible solution to the problem, is a string xi = s1, s2, . . . , sN . The set of possible
configurations we denote by X = {x1, . . . , x2N }.

The configurations can be ordered according to their epistemic value. We write
xi � x j whenever xi is (weakly) epistemically preferred to x j . Given this notation, a
problem is defined by the pair (X ,�) (Marengo&Dosi, 2005). In essence, the problem
is this ordered set of solutions, or at least, is fully determined by it (cf. Nickles, 1981).

Now, as the number of components N increases, the number of configurations grows
exponentially (2N ). This means that even for problems consisting of a moderately
small number of component parts, an exhaustive search of the problem space is not
feasible, and agents equipped with bounded cognitive resources must devise strategies
for managing problem complexity.

In order to focus on complexity management strategies, the agents’ representation
of the problem must be distinguished from the problem itself. For now, let us assume
a simple encoding where each configuration in X has a unique representation in the
agents’ shared language L = {l1, . . . , l2N }, where each string li corresponds to the
configuration xi ; and the subjective valuation functionV (shared by all agents) respects
the objective ordering �.

A well-known strategy for managing complexity is heuristic search. Heuristic
search often functions iteratively by modifying the existing solution li according to a
rule in order to produce a new solution candidate l j . In other words, a heuristic is a
mappingφ : L → L . The decision rule embodied in the heuristicswe study follows the
hill-climbing logic: If the epistemic value of the candidate solution is strictly higher
than that of the current solution, V (l j ) > V (li ), it is adopted as the new solution.
Otherwise the candidate is discarded.

As an example of heuristic search in a multidimensional binary space, consider
the model introduced by Hong and Page (2001) that implements diversity in problem-
solving heuristics as (group) agents possessing different flipset heuristics. A flipset can
be thought of as a bit mask, where the bits set to ‘1’ flip the state of the corresponding
bit in the target string. For example, the flipset ‘001’ applied to the target string ‘101’
flips the rightmost bit, resulting in the string ‘100’. In Hong and Page’s model, each
agent has a small set of such heuristics. A set of heuristics gives rise to a set of
states Nli = {l j , . . . , lk} which can be reached from li by a single application of
one of the agent’s heuristics. We call Nli the neighborhood of li . Consequently, each
distinct set of flipset heuristics results in a characteristic set of possible paths that the
agent can follow in the search space. The motivating intuition underlying the well-
known diversity-beats-ability theorem (Hong & Page, 2004) is that, under appropriate
conditions, the diversity provided by the larger set of heuristics possessed by a random
group of problem-solvers is epistemically more beneficial than a less diverse set of
individually high-performing expert heuristics.2

Notice, however, that such heuristic diversity does not yet amount to division of
labor as described in Sect. 1. In the scenario outlined above, themembers of a problem-
solving group all address the same full problem (of length N ), albeit with a diverse set
of heuristics. In the context of scientific problemsolving, thiswouldmean, implausibly,

2 See Reijula and Kuorikoski (2021, 2022) for a critical examination of Hong and Page’s results.
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that each scientist addresses the full complex problem on their own, but with different
epistemic resources. In order to remedy this shortcoming and to implement genuine
division of labor in the model, some more terminology is needed.

Let us call a non-empty subset of the index set, b ⊆ I , a block, and its cardinality
|b| the size of the block. A partition P can be defined as a set of blocks that together
cover the all the components of the problem: P = {b1, . . . , bk} such that

⋃
bi = I .

Division of cognitive labor can now be portrayed as different blocks being allocated
to different agents, or more realistically, to different monodisciplinary research teams.
In the following, we view a scientific discipline as a group of agents characterized
by a set of shared heuristics that manipulate a given block. This corresponds to the
common idea that single disciplinary perspectives can only address limited aspects of
complex scientific problems. For example, a possible division of labor between two
disciplines could involve the first addressing the first k bits of a problem of size N ,
and the second addressing the remaining N − k bits.3 To represent this, it is useful
to define a block configuration bk(xi ) as the substring of xi of length |bk | containing
the components of the string that belong to the block bk . By b−k(xi ) we denote the
remaining bits in xi , and consequently, xi can be written as a concatenation of the two
substrings:

xi = bk(xi )|b−k(xi )

Following Marengo and Dosi (2005), we define the size of a partition |P| as the
size of its largest block.

3 Forms of cognitive coordination for different types of problems

The agents addressing a problem are not necessarily—or even usually—aware of its
true block structure, i.e., the way and extent to which it can be effectively decomposed
into independent subtasks. We call the subjective representations of blocks covers
(Page, 1994). An exhaustive set of covers (corresponding to the notion of partition)
we call a decomposition, D. Manipulating the problem decomposition provides a
powerful collective strategy for addressing complex problems.

Remark 1 For a decomposed problem, the size of the problem space to be covered is
not 2N , but instead, in the order of 2|D|

In the limit, a problem decomposition of size one, D = {{1}, {2}, . . . , {N }}. which
divides the complex problem into a union of sub-problems of minimal complexity,
can be solved in linear time (in O(N ) steps). The maximally decomposed problem is
tackled one bit at a time, with the hope that the contribution of the atomic solutions to
the overall problem are independent, and that the epistemic value of the overall solution
is an aggregate of its component solutions. As the decomposition size increases, the
heuristics become more holistic.

3 An alternative approach would be to constrain the language Li of agents belonging to discipline i so that
only those bits of X that are indexed by the block bi would be represented in Li .
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The decomposition heuristic, however, offers no free lunches, as simplifying the
search may reduce the quality of solutions discovered. The following examples illus-
trate situations where problems of different complexity constrain the adequacy of
disciplinary division of cognitive labor.

3.1 Very simple and very complex problems

We have thus far only discussed ways of dividing a task into individual subtasks.
Whether the problem can be solved in such a piecemeal manner, i.e., whether the
problem itself really is effectively decomposable, is a separate issue. Let us consider a
problem of length N = 4. For the sake of simplicity—andwithout loss of generality—
we can assume that problem-solving begins from the epistemically least valuable
solution state xmin = ’0000’, and the correct, epistemically optimal state is xmax =
’1111’.4

Now, consider a problem of minimal complexity where the solution of an atomic
sub-problem contributes to the total epistemic payoff does not vary with respect to
changes in the solutions of the other sub-problems. If the problem is in this way fully
modular, application of a flipset switching any single bit from ’0’ to ’1’ will give
an agent an unambiguous signal that the overall solution has been improved. Such a
signal can be encoded, for example, in a value function defined simply as the number
of ‘1’s in the offered total solution. More generally, we can now see that it is the value
function that defines the complexity of the problem and that the simplest problem type
here corresponds to a monotonous and additive value function.

In contrast, a maximally complex problem is one where everything depends on
everything else, and information obtained from trying alternative solutions to a partic-
ular sub-problem does not contain any signal as to whether the search as a whole has
moved towards the globally optimal solution. Such a property of the problem mani-
fests as ruggedness of the search landscape (Kauffman, 1993). A fully non-modular
problem can be defined by a value function obtained by randomly shuffling the payoff
values of all configurations apart from xmin and xmax . In such extreme cases, only
flipset heuristics that address the whole N-length string at once can be guaranteed to
reach the optimal solution. Consequently, if reaching the optimal solution is the aim,
no division of labor is possible.

Obviously neither of these extremes is of much interest for exploring the logic of
the division of cognitive labor and neither, as such, corresponds to any real cases of
collaborative research in science. In the simplest possible case, the task can be divided
into its atomic subtasks and solved accordingly. In the most complex case, the only
viable research strategy is fully holistic guesswork, blind trial and error with respect to
the whole problem, again without any possibility of systematic gains from coordinated
division of labor. Arguably, it is thus partly modular problems, intermediate levels of
problem complexity, which constitute the set of cases appropriate for examining the
benefits and costs of division of labor.

4 This assumption is unproblematic, because the agents in the model are blind to us associating state ‘1’
with correctness.
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Table 1 Block-modular value function

String Block A "ValueA" Block B "ValueB" Total value

0000 00 0 00 0 0

0101 01 0 01 1 1

1010 10 0 10 0 0

1111 11 2 11 2 4

. . .a

aSee Supporting Information for the full specification of the value function

3.2 Block-modular problems

Consider a simple model problem of length N = 4. Again ’0000’ and ’1111’ stand for
the beginning state and the globally optimal solution. One way to implement a partly
modular problem is the following. The full string is first divided to two blocks. In our
example, block A consist of bits 1 and 2, and block B of the remaining bits 3 and 4.
Then we define a value function which is random inside the blocks, but additive with
respect to the contributions of the independent blocks: the “value”5 of the first two
bits and the “value” of the third and fourth bit. Such a problem can now effectively
be decomposed into two subtasks, which can be solved independently of one another.
See Table 1for an example of a block-modular value function.

We can see that this problem is not fullymodular, because blockA cannot be further
subdivided into independently solvable atomic subtasks (it cannot be solved simply
by flipping one bit at a time). More generally, the formal property characterizing such
block-modular value functions is that given the block structure, the state of bits not in
the block k, i.e., the block configuration xi (b−k), does not influence the order (�) of
the values of the states that different states of block xi (bk) map onto.

In the context of multi-, inter- and transdisciplinarity, a block-modular research
problem is one which can be solved by a multidisciplinary project, in which the
disciplinary sub-projects proceed independently of each other, and their final solutions
are simply combined into the full solution.6 In this sense, the only kind of cognitive
coordination that the problem requires is the division of labor reflecting the true block
structure (the 2|2-block structure in our example). Once the correct decomposition is
established, no further coordination between disciplines is required.

Such friendly cases of partially modular problems can occur when independent
approaches collectively add to the strength of the solution, but neither approach relies
on information from the other to develop the best solution for their task. For example,
projects combining economic and ecologicalmodels for sustainable resource use (such

5 The scare quotes are there to remind us that the values of the sub-problems do not have any existence
independent from the value function defined over the whole string xi , and that they are only shorthand for
highlighting how the total value function is defined.
6 Multidisciplinary projects are typically distinguished from interdisciplinary ones whereby for the former
problems are divided into distinct disciplinary tasks and the level of interaction or information exchanged
between tasks is minimal (Mennes, 2020) Here we give a formal account of how a problem optimally suited
for a multidisciplinary approach would be structured.
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as forests or fisheries) can sometimes proceed by independentmodeling of the resource
(its growth rates) and the market for the resource. An optimal harvesting strategy or
intensity can be found by sampling the ecological model over different harvesting
intensities, and measuring the output until an economic optimum is reached. But
finding the best economic and ecological models for the particular resource can be
carried out largely independently once a set of economically relevant variables are
agreed upon for the ecological model to track (e.g., measures of weight or quality of
resource).

However, we should not expect neat modularity to be the default case when dealing
with natural phenomena (cf. Kuorikoski & Pöyhönen, 2013). In engineering, modular-
ity is typically an outcome of successful standardization (e.g., standardized electrical
components or cargo containers). That is, modularity often requires work (Baldwin
& Clark, 2000). Nature, in contrast, does not act like an engineer but instead like a
backwoods mechanic making the best use of the components available. The resulting
designs are often non-modular.

Moreover, task modularity alone is not enough. It also needs to be correctly per-
ceived and taken into account in the division of cognitive labor. In terms of our model,
the decomposition shouldmatch the partition. Yet this is often not how decompositions
are determined; strong assumptions of modularity are commonly made and built into
disciplinary organization and specializations. For example in Strasser et al. (2014) cal-
culating the effect of climate change on ski tourism is broken up into the sub-problems
of formulating a relevant climate change model based on climate science, a hydrolog-
ical snow precipitation model, and two economic models, one of the effect of snow
availability on demand and the other of the spatio-economic structure of the industry,
to understand the overall effects on ski tourism of precipitation changes. Dividing
climate science from snow precipitation tracks different specializations within envi-
ronmental science, and both models are constructed largely independently (or simply
taken off the shelf) and then put in communication with one another. The economics
models are assumed to be capable of optimal construction independently of the natu-
ral science models. In general much interdisciplinary modeling in the environmental
sciences assumes that environmental problems can be divided into disciplinary sub-
problems, based on the perceived modularity governing the systems those disciplines
track.

However, when tackling many complex real-world problems, a reasonable overlap
between problemmodularity and the decomposition imposed by disciplinary divisions
cannot always be expected, and sticking to themmight result in sub-optimal outcomes.
For example, a resource management problem might be far more socially and politi-
cally entangled between different stakeholders, so decomposing it into economics and
ecology components alone may not be sufficient to reach a good solution.

3.3 Nearly modular problems

Further complications arise when there are back and forth dependencies between sub-
tasks. For example, the solution to sub-problem A can be found based on a solution of
sub-problem B, but that solution in turn provides information which could potentially

123



214 Page 10 of 20 Synthese (2023) 201 :214

Table 2 Nearly modular value
function

Line number String Block A Block B Total value

1 0000 00 00 0

2 1000 10 00 1

3 1100 11 00 0

4 1010 10 10 2

5 1011 10 11 0

6 1110 11 10 3

7 1111 11 11 4

change the best solution to sub-problem B, and so forth. In a collaboration between
engineers and business scientists on an optimal design for a particular technology, the
business scientistsmay be chargedwith investigating the usability andmarketability of
potential designs in order to assess which one works best. Engineers need the usability
information to set constraints on their design space. But, to carry out their analysis,
the business scientists need to know the design criteria engineers are working with.
A usability analysis might provoke reflection on the basic design assumptions, and
require engineers to shift or expand their design space to include different features.
This would then require a new usability investigation based on different variables, and
so on. As such, finding an optimal design may require an iterative form of problem-
solving, in which the moves of each group depend on the criteria the other group is
operating with. The problems each group faces can nonetheless be said to be modular
to the degree that they can be independently solved given at least temporary criteria
being set by their collaborators.

As a simple illustration, let us define the value function as follows (again with lines
omitted for the sake of brevity):

Table 2presents a nearly modular problem that is similar to the one in Table 1,
except an additional interdependence has been introduced between the two subtasks:
team A (Block A) cannot move forward from their local optimum (line 2) until team B
(Block B) has taken its first step towards the solution (line 4), and furthermore, team
B cannot reach the global optimum before team A has fully completed its search task.
This value function thus represents a problem which requires an additional element of
cognitive coordination: the task can only be solved by the correct sequencing of indi-
vidual projects. This could be taken as an example of the simplest possible case which
requires true interdisciplinary interaction, in contrast to mere multidisciplinarity. We
call different ways of organizing such cognitive coordination coordination schemes.

As the examples illustrate, we are still interested in the most minimal setups that
allow collective search to reach the global optimal solution. This can be understood as
follows: each discipline with its set of block-specific heuristics generates a neighbor-
hood around each solution candidate li . The coordination scheme determines the order
in which the heuristics from different disciplines are applied (e.g., a “round robin” in
which one discipline searches for its local optimum first, then the second and so on;
alternating moves between teams on each turn). Coordination schemes also determine
how often the epistemic value of novel candidate solutions is evaluated.
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Heuristics, together with a coordination scheme, result in a set of possible paths
from group starting positions to the global optimum. Such paths define the reachabil-
ity of the optimum in these different scenarios. Because epistemic efficiency grows as
the size of the decomposition D decreases (Remark 1), we are interested in the prop-
erties of successful combinations of (i) coordination schemes and (ii) minimum-size
decompositions for a given problem structure.

In general, for every problem, there exists a decomposition fromwhich the optimum
can always be reached, the degenerate decomposition D = {1, 2, 3, . . . , N }. If every-
thing really depends on everything else, no finer decomposition, or any set of smart
heuristics for that matter, can guarantee optimal search outcomes. As we pointed out,
however, such problems lie beyond the reach of interdisciplinary modes of cognitive
collaboration, requiring perhaps a form of transdisciplinarity in the sense of Nico-
lescu (2002), which is built around the radical reorganization or even dismantling of
the disciplinary structure of scientific problem solving.7

4 Efficiency of division of cognitive labor

In this section, we continue our inquiry into the connections between levels of problem
complexity and forms of cognitive coordination. In particular, whether a set of research
heuristics can eventually reach the epistemic maximum is often not the only, or even
the most relevant question. It is also important to determine how long it takes to reach
the solution. To explore such questions of efficiency, and to shed light on comparative
questions of epistemic performance, we now move from the relative informal model-
based reasoning employed above to computational simulations.8

As the first step, we set some benchmarks relating to the performance of the
extremely reductionist and holistic heuristics in solving problems of varying degrees
of difficulty and complexity. Figures1and 2illustrate the trade-off between the exhaus-
tiveness of search and the time required. First, Fig. 1 compares the time performance of
fully modular (reductionist) decomposition (decomposition size 1), and non-modular
(holistic) search (decomposition size = problem size) in fully modular problems of
different sizes N . Although exhaustive search is always guaranteed to reach the global
optimum, even in moderately small-N problems it uses significantly more time than
the modular strategy.9 To complement Fig. 1, Fig. 2 illustrates the necessity of engag-
ing in exhaustive search, when the problem manifests no potential for a modular
decomposition. Although in small problems N ∈ (1, 5) even the modular strategy

7 Note however that Nicolescu’s use of transdisciplinarity is not typical today. The concept usually refers to
research which integrates the values and participation of extra-academic stakeholders. In both cases, how-
ever, scholars advocate against traditional disciplinary approaches and disciplinary structures (cf. Bernstein,
2015).
8 The source code used to generate the findings in this section can be viewed at https://osf.io/hw7zj/.
9 For the sake of simplicity, following Marengo and Dosi (2005) we assume that a discipline possesses
the full set of flipset heuristics in its domain. In other words, in each round a discipline applies a random
modification to the bits within its domain. Furthermore, we assume a mode of coordination where blocks
are modified sequentially, each cover being applied to the position reached by the previous one. See SI for
a robustness check of this assumption.
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Fig. 1 Fully modular (|D| = 1), and non-modular decomposition (|D| = N ) applied to a fully modular
problem. For all figures, 50 repetitions of the simulation were run over 50 different problem landscapes

Fig. 2 Probability of reaching global maximum for modular and non-modular decompositions in a non-
modular task

sometimesmanages to avoid localmaxima, in problem spaces of higher dimensionality
it generally fails to reach the optimal solution.10

But as already stated, these extreme cases are of little interest in investigating the
efficiency of division of cognitive labor and forms of interdisciplinarity. Let us again
start with the simplest case of a non-trivial nearly modular problem. Figure3presents

10 The reason why the performance of the non-modular search tapers off on problem sizes N > 9 is that the
simulation is terminated after 1000 time steps. This reflects the temporal inefficiency of the non-modular
search pictured in Fig. 1.
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Fig. 3 Temporal evolution of epistemic value reached in a block-modular task

the evolution of epistemic value over time in a N = 12 task consisting of two blocks
of size 6.11 As the figure indicates, the fully modular (reductionist) strategy initially
outperforms the other two strategies, but its performance quickly plateaus on a local
maximum. The exhaustive search (full-size decomposition) does eventually reach the
global optimum, but does so significantly more slowly than a search employing the
6|6 decomposition.

The initial success of maximally reductionist heuristics is noteworthy. In their evo-
lutionary simulations,Marengo andDosi (2005) showed that under similar conditions,
highly modular heuristics may outperform even the heuristics employing the optimal
decomposition (cover set structure matching the objective block structure). This can
happen because highly decomposed search heuristics enable agents to quickly reach
sufficiently high, but ultimately sub-optimal and local, gains, leaving the slower agents
(including those who are, in a sense, right) in their wake and ultimately exiting the
population.

Figure 4illustrates a further result that complements observationsmade byMarengo
and Dosi (2005). They showed that an optimal trade-off between search accuracy and
speed is obtained by a decomposition matching the block structure of the task. In the
figure, the horizontal axis represents different two-part decomposition, where the cut
between the two covers is placed at a value plotted on the horizontal axis. Value 6,
standing for the 6|6 decomposition where the first cover consists of bits 0-5 and the
second of 6-11, and therefore maps onto the true block structure of the problem, leads
predictably to optimal results.

Perhaps more interestingly, Fig. 4 also conveys the epistemic predicament of uncer-
tainmodularity. In real-life instances of complex problem solving, an important aspect
of the task is to discover the appropriate problem decomposition. Although the 6|6
cover set outperforms the other decomposition strategies, the comparative signal is
ratherweak: given their tolerable epistemic performance, research projects employing,
for example, a 5|7 cover set would hardly realize that their strategy was sub-optimal—
at least initially. Furthermore, the extreme heuristics forgoing all attempts at carving
the problem at suitable joints are not in fact the worst performing ones, as this honor

11 In this 6|6 block task, bits 0–5 constitute the first block, and 6–11 the second one.
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Fig. 4 6|6 block modular task. Expected epistemic value for different two-cover decompositions

Table 3 Summary of problem types, forms of cognitive coordination, and forms of cross-disciplinary
organization

Fully modular Block-
modular

Nearly
modular

Unknown
modular

Non-
modular

N inde-
pendent
covers,
|D| = 1

Two inde-
pendent
covers,
k|N − k

Two
covers
and turn
taking

Decomposition
search
(see
Sect. 4)

Full
cover,
|D| =
N

Multidisciplinary Multidisciplinary Interdisciplinary Interdisciplinary Transdisciplinary

is left for heuristics which do attempt to decompose, but get the decomposition badly
wrong (i.e., the 1|11 cover set). This is yet another reminder of the importance of the
right conceptualization of the problem.

Compared to, for example, many engineering tasks, assessing the adequacy of
decomposition schemes is particularly difficult inmany instances of scientific problem
solving. Consider two different ways of task partitioning in aircraft design: In the first,
one team designs the body and other team, the engine. In the other, team A designs
the front half of the aircraft body and the engine, and the team B the back half of each
(von Hippel, 1990). The latter decomposition strategy is manifestly absurd. However,
as we see in the following section, analogous situations are far more difficult to detect
in interdisciplinary scientific research.

5 Implications for interdisciplinary practice

Wecan now summarize ourmodel-based reasoning relating different levels of problem
complexity to different ways of organizing the collaborative division of cognitive
labor. The first line of Table 3 summarizes the levels of problem complexity discussed
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above. For simplicity, apart from the fully modular case, only two-block structures
are discussed. The second line presents the minimal level of cognitive coordination
that guarantees reaching optimal solutions in the problems of that column. The third
line associates such forms of cognitive coordination with familiar labels of cross-
disciplinary collaboration.

Table 3 does not aim to be exhaustive, but it illustrates some of the dependen-
cies between problem structure and the required form of cognitive coordination made
explicit within our template. As pointed out in Remark 1, search time increases expo-
nentially as a function of decomposition size (moving from left to right in the table).
This raises the question of whether there are forms of cognitive coordination that can
be used to address complex problems without increasing decomposition size. This
appears possible with two aspects of coordination discussed within the context of the
current model.

A first option is to alter the evaluation of epistemic payoffs. Getting stuck on
local maxima can be avoided by evaluating candidate solutions only after several
heuristics from different disciplinary perspectives have been applied to the current
solution candidate. As can be seen from the model, however, such a strategy does
not produce time benefits. For example, if epistemic value is not evaluated after each
round but only every second round after the application of covers of size n and m, the
search space to be traversed is of the size 2m ∗ 2n . In terms of expected search time,
this is equivalent to searching a solution space of dimensionality m + n.

That said, this strategy may still have useful practical consequences. Whereas dis-
ciplinary perspectives on a problem (i.e., covers) are determined by the disciplinary
matrix (e.g., instrumentation, accepted background theories, training) and can be hard
to change, the degree and timing of the points at which teams come together and col-
lectively evaluate their progress may be more amenable to change. Consider different
engineers collaborating on a technological design for a complex device to perform spe-
cific functions. Rather than simply producing their sub-systems and then integrating
them at the end, our modeling suggests there can be a benefit to putting prototypical
systems together at earlier stage and using the output of that testing to modify indi-
vidual strategies. This might apply, for instance, when there is anticipated feedback
between the systems so that simply producing the optimal sub-systems independently
is not likely to produce an optimal overall result. Now what applies to technological
design could also apply in more scientific contexts to model or experiment design.

These results, while theoretical, can be used to reflect on aspects of current inter-
disciplinary practice and science policy. Our simple modeling framework provides
potential insight into how the cognitive structure of interdisciplinary problem-solving
might influence the strategies researchers pursue and the results they obtain. It is
clear from the above results that there is a general trade-off between highly modular
searches and more exhaustive holistic searches: highly modular searches are faster but
tend to get stuck on local optima whereas fully exhaustive searches are bound to hit the
global optimum butmay take astronomically long to get there. As such the competitive
advantage of highly reductionist over more holistic search is the larger the shorter the
time span and the stronger the selection pressure acting on agents (Marengo & Dosi,
2005). These results suggest that part of what might make interdisciplinary results lack
depth, when they do, can be attributed to researchers’ preference (in the context of
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typical problem-driven, fixed-term funding instruments) to treat complex problems as
modular and apply familiar disciplinary techniques (heuristics). The resulting search
behavior is time effective and may yield promising initial results, but is likely to have
sub-optimal long-term outcomes.

On these grounds, the current funding model of bringing together researchers
from different disciplines to work on specific problems under considerable time
pressure may set up the conditions for interdisciplinary failure. Given the extreme
competitiveness of academic systems, short-term project funding heavily incentivizes
the search for quicker solutions, thus potentially crowding out of the population of
interdisciplinary scholars willing to work slowly towards a better global solution.

Neither our model nor the one presented in Marengo and Dosi (2005) incorporate
an explicit decision model: the models do not assume that actors make future-oriented
decisions about what kind of heuristics best guarantee their long-term survival in the
epistemic game. Real-life researchers invested in interdisciplinary projects, however,
undoubtedly do so. If the researchers know that higher epistemic payoffs are more
risky and lie in the future—quite likely beyond the project funding period—the sen-
sible thing to do is to play it safe. The relative short-term success of using tried and
tested disciplinary heuristics thus also resonates with the widely shared belief (which
is notoriously difficult to test empirically), that in contrast to the official gospel of
interdisciplinarity, short-term interdisciplinary projects actually favor methodological
conservatism over slower and more uncertain methodological innovation and integra-
tion of knowledge. In sum, typical funding structures may well put off those more
willing to pursue deeper solutions in favor of individuals who aim to collect quick
results and build up their own credentials.

The drive to modularize problems at the outset is not purely the result of scien-
tific expedience, but is built into the typical work-package structure characteristic of
large-scale projects. Such structures require that researchers divide work into modular
problems with individually evaluated milestones. This kind of stricture for cognitive
coordination restricts the possibility of holistic search at the outset, institutionalizing
reductionist local search as the governing paradigm.

The obvious suggestion for achieving deeper results is to bemore flexible regarding
the time constraints. Six-year projects may not be long enough. Researchers may not
be willing to invest enough time and resources into developing new search strategies
when the end of the project is in sight, and the expertise they anticipate to need in
the post-project future follows established disciplinary traditions. A better situation
may be one where a researcher is recruited into a permanent position at a research
institution on a specific topic, or generally, when individuals rather than projects are
funded (Ioannidis, 2011): If a researcher knows that the integrative work they do can
be considered as a rational investment in their future work, introducing changes in
search strategies, and ultimately disciplinary decompositions, becomes more feasible.

Our model also tentatively suggests a strategy for improving the chances of even
fixed-term interdisciplinary projects providing good, if not optimal, solutions to com-
plex problems. As mentioned above, evaluating the epistemic value of a solution
candidate only after the multiple sub-projects have applied their individual heuristics
(covers) is formally equivalent to increasing the decomposition size. Thus an interdis-
ciplinary consortium can effectively increase its neighborhood of search by refraining

123



Synthese (2023) 201 :214 Page 17 of 20 214

from proceeding at the outset simply by deferring to individual research, and instead,
organizing collaborative activities so that deliverables are produced and evaluated
only after collaborative research activities, where insights from several perspectives
are combined. Needless to say, this comes at the price of accepting a significantly
slower pace of progress—at least initially. The forced introduction of predetermined
milestones into multidisciplinary research projects institutionalizes quick epistemic
evaluation over more holistic search. In this regard, one thing that funding commit-
tees interested in deepening interdisciplinary outcomes in a short-term project might
require from applicants is evidence ofmore nuanced strategies for building joint search
spaces collaboratively explored by the different teams in the project.

The final question to consider is whether the epistemic maximum is always even
the right goal. Quicker, less optimal solutions may actually be desirable in contexts of
urgency. This applies to many areas where interdisciplinary research is often desired,
for example sustainability science. A satisficing-based approach, relying on reduction-
ist heuristics without context-sensitivity, may often be what the practical context calls
for (cf. Wimsatt, 2007). The same point holds for the most complex class of problems,
for which no successful decomposition is possible (what Wimsatt calls causal thick-
ets) or for wicked problems in which the preferences and values of stakeholder are
in conflict, context-dependent, and may shift in response to different solutions (Rittel
& Webber, 1973). In our template, this would mean that the value function would be
undefined and the problemwould therefore lack a clear structure for researchers to for-
mulate. The ambition and promise of transdisciplinarity has been to address real-world
problems of such a complexity, for which science should strive towards a wholesale
rejection and transcendence of traditional disciplinary boundaries (Bernstein, 2015).
Yet after all these years, this promise seems as elusive as ever. Even disregarding the
institutional and cognitive challenges that an exceedingly holistic approach to sci-
ence entails, the glacial speed of exhaustive search processes inevitably raises the
question whether the rational thing to do, instead, is to utilize existing disciplinary
decompositions and make do with the sub-optimal but reachable epistemic goals.

6 Conclusions

In this article, we have conceptualized multi- and interdisciplinary research as modes
of collective problem solving that rely on different forms of cognitive coordination.We
presented a model template for formally reasoning about the relationship between lev-
els of problem complexity and the appropriate form of coordination, or what we called
a coordination scheme. Coordination schemes, in turn, can be characterized in terms of
the heuristics, division of cognitive labor, and scheduling of joint epistemic work and
evaluation. By examining the relationships between different coordination schemes
and types of problems, we evaluated the adequacy of different organizational arrange-
ments for different problem-solving tasks. Heuristics and decompositions adaptive in
a mono- and multidisciplinary contexts no longer lead to optimal solutions in the more
complex solution spaces which cross-cut disciplinary perspectives.

Our second aim was to draw tentative conclusions concerning the epistemic effects
of current institutional forms of interdisciplinary research. We suggested that under
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prevailing institutional conditions, interdisciplinary projectsmay resort to sub-optimal,
overly reductionist strategies. Our modeling framework helps clarify the problem-
solving structures and the cognitive incentives with which researchers operate under
these institutional conditions, and thus helps us understand why they would resort
to seemingly sub-optimal strategies. In contrast to the accepted ideology of interdis-
ciplinarity, which emphasizes innovation, current institutional structures governing
interdisciplinary research tend to encourage conservative science. This is because the
relatively modular individual heuristics most likely selected (in short-to-medium time
frames) usually represent well established ideas and methodologies in the parent dis-
ciplines, and the sub-optimal solutions reached by such methods represent, at most,
mediocre science.
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