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Abstract
Wilhelm (Forthcom Synth 199:6357–6369, 2021) has recently defended a criterion
for comparing structure of mathematical objects, which he calls Subgroup. He argues
that Subgroup is better than SYM∗, another widely adopted criterion. We argue that
this is mistaken; Subgroup is strictly worse than SYM∗. We then formulate a new
criterion that improves on both SYM∗ and Subgroup, answering Wilhelm’s criticisms
of SYM∗ along the way. We conclude by arguing that no criterion that looks only to
the automorphisms of mathematical objects to compare their structure can be fully
satisfactory.

Keywords Structure · Symmetry · Equivalence

1 Introduction

There is a long tradition in the philosophy of physics of arguments that one theory,
or formulation of a theory, is superior to another, empirically equivalent theory, on
grounds of structural parsimony.The idea is that if two theories have the same empirical
content, but one theory’smodels have less structure than the other theory’smodels, one
should infer that the first theory attributes less structure to the world—and therefore
should be preferred. Over the past decade, much effort has been devoted to making
the comparisons of “amount of structure” involved in such arguments precise.
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The most common type of criterion is based on the idea that one can compare
amounts of structure by looking to the symmetries, or automorphisms, of the mathe-
matical objects in question. If a mathematical object has more automorphisms, then it
intuitively should have less structure that these automorphisms are required to preserve.
The amount of structure that a mathematical object has is, in some sense, inversely
proportional to the size of the object’s automorphism group. Earman (1989, p. 36)
puts this basic idea as follows: “As the [...] structure becomes richer, the symmetries
become narrower.”

To have a precise criterion, one needs to clarify the sense in which one object may
have ‘fewer’ automorphisms than another. Swanson and Halvorson (2012) and Barrett
(2015a), Barrett (2015b) have proposed the following.

SYM∗. A mathematical object Xhas at least as much structure as a mathematical
object Y if (and only if) Aut(X) ⊆ Aut(Y ).

The condition Aut(X) ⊆ Aut(Y ), i.e. that the automorphism group of X Aut(X)

is a subset of that the automorphism group of Y Aut(Y ), is one way to make precise
the idea that Aut(X) is ‘not larger than’ Aut(Y ).1 SYM∗ makes intuitive verdicts in
many easy cases of structural comparison. Moreover, while it is not always explicitly
mentioned, SYM∗ is the standard criterion in the literature.

Wilhelm (2021) has recently argued that a different criterion, which he calls Sub-
group, is superior to SYM∗.2 Subgroup, too, has been used in the literature. For
instance, Subgroup arises as an application of a category-theoretic criterion of struc-
ture comparison used by Weatherall (2016a, b), Rosenstock (2019), and Bradley and
Weatherall (2020), among others, based on the property-structure-stuff framework of
Baez et al. (2006), to the case of categories consisting of single objects and their auto-
morphisms. Likewise, Barrett (2015a, p. 823) considers—and rejects—a very similar
condition, which he calls SYM∗∗.3 But Wilhelm presents the only sustained defense
of Subgroup in the literature, and so we focus on his treatment.

We have a few aims in this paper, all of which dovetail off of Wilhelm’s discussion.
First, we want to show that while SYM∗ does have shortcomings, Subgroup is worse.
Aswewill show, SYM∗ is weak because it cannot rule on pairs of objectswith different
underlying sets; Subgroup is weak(er) because it gets clear cases wrong. Second,
we will explain why SYM∗ succeeds in the cases to which it applies: it captures an
important sense of structural comparison, which we call the “implicit definability
conception” (IDC). Subgroup does not have any relationship to the IDC.

Nonetheless,Wilhelm’s arguments are suggestive. Drawing onWilhelm’s intuition,
we propose another criterion that improves on both Subgroup andSYM∗. This criterion
is, in a sense we make precise, the best one can do using only automorphisms. Even
so, we will argue, it is not good enough. We will next argue that no criterion for
comparing amounts of structure that looks solely to automorphisms can be adequate.

1 We here follow the statement of SYM∗ given in Wilhelm (2021). Barrett (2015a, b) states SYM∗ using
the relation “more structure than”, rather than Wilhelm’s “at least as much structure as”.
2 Wilhelm introduces two criteria, Subgroup and Subgroup2, where Subgroup2 is strictly more liberal. We
focus on Subgroup in what follows because our intent is to argue that Subgroup is already too liberal. We
return to Subgroup2 in the conclusion.
3 See note 5.
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In brief, automorphisms alone do not encode all of the relevant facts about the structure
of a mathematical object. We conclude with a brief discussion of how to think about
comparisons of structure in light of the foregoing.

2 SYM∗, subgroup, and their problems

Wilhelm’s main concern with SYM∗ is a problem we will call sensitivity.4 In brief,
SYM∗ is too sensitive to the underlying sets of the objects being compared. To make
this point, Wilhelm uses the example of two isomorphic groups that have different
underlying sets. SYM∗ says that these two groups have ‘incomparable’ amounts of
structure, in the sense that neither has more nor less structure than the other. This is
because no automorphism of the first group is also an automorphism of the second
group. The two groups are isomorphic, however, and therefore should have the same
structure. (Wilhelm, 2021, p. 6361) remarks that “structural comparisons should imply
that if two mathematical objects are isomorphic, then those objects have the same
amount of structure. SYM∗ violates this condition. And that is a reason to reject it.”

We agree with Wilhelm in this case. One can also find similar examples where one
object should havemore structure than another, such as a topological space (A, τ ) and
a set B, where A does not equal B. Intuitively, one might think that a set with topology
should have more structure than a bare set, even if the sets are not the same. But again,
SYM∗ does not rule on such cases. Examples like these show that there is a sense in
which SYM∗ is too strict a criterion for comparing amounts of structure. There are
pairs of objects X and Y such we want to say that X has at least as much structure as
Y , but SYM∗ does not make this verdict.

It is to address sensitivity that Wilhelm proposes Subgroup.

Subgroup. A mathematical object X has at least as much structure as a mathematical
object Y if (and only if) Aut(X)is isomorphic to a subgroup of Aut(Y ).5

Despite the names, the important difference between Subgroup and SYM∗ is not
that Subgroup concerns the subgroup relation, whereas SYM∗ concerns the subset
relation. If Aut(X) and Aut(Y ) are both automorphism groups, and Aut(X) is a subset
of Aut(Y ), then Aut(X) is also a subgroup of Aut(Y ), since the two groups are groups
of automorphisms on the same underling domain, and thereby have the same iden-
tity element and multiplication rule (composition). The key difference is that SYM∗
compares group structure relative to a preferred embedding of Aut(X) into Aut(Y )

(the identity map) determined by the fact that both are automorphisms on the same
set. Subgroup, meanwhile, allows one to compare objects relative to any injective

4 This problem is gestured at in the discussion of a criterion called SYM∗∗ by Barrett (2015a), and it is
mentioned explicitly by Barrett (2015b, p. 3). It is also discussed by Barrett (2021).
5 Subgroup differs from SYM∗∗, introduced and rejected by Barrett (2015a), in that SYM∗∗ says “more”
where Subgroup says “at least as much”.Wilhelm’s modification avoids the problem that some objects have
more structure than themselves.
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group homomorphism between their automorphism groups. No particular relation-
ship between X and and Y is required or respected. Thus we see a sense in which
Subgroup is strictly ‘more liberal’ than SYM∗.6

Subgroup does address sensitivity. For instance, in Wilhelm’s example of two iso-
morphic groups with different underlying sets, it is trivial to verify that they have the
same amount of structure according to Subgroup. Likewise, if a topological space
(A, τ ) is compared to a set B with the same cardinality as A, then Subgroup again
makes the correct verdict: (A, τ ) has at least as much structure as B.

Wilhelm offers a few other reasons to prefer Subgroup to SYM∗. One is that auto-
morphism groups are groups, not sets, so the ‘subset relation’ that SYM∗ employs is
the wrong relation. Second, Wilhelm argues that Subgroup is a “strict generalization
of SYM∗” (p. 6365) and that this gives us reason to prefer it. Wilhelm explains why
this is supposed to be a mark in favor of Subgroup as follows:

Subgroup expands the range of objects whose structures can be compared. So
it supports more of the structural comparisons that mathematicians, physicists,
and philosophers make. This, in fact, is the main reason why I prefer Subgroup
[...] to SYM∗. (p. 6365)

Finally, Wilhelm claims that it makes intuitive verdicts. It makes many of the same
verdicts that SYM∗ did. It also deals well with cases like the isomorphic group case
we have mentioned.

As we have seen, Wilhelm’s claim that Subgroup is superior because it explicitly
involves the group structure of automorphism groups is a red herring. Both criteria
involve group structure; they differ in what embeddings they allow. Moreover, while
it is true that Subgroup is a “strict generalization” of SYM∗, we contend that that by
itself is not a reason to accept Subgroup. A satisfactory generalization of SYM∗ needs
to make sensible verdicts in the cases where it differs from SYM∗. But Subgroup does
not do this. Consider, for example, the following verdicts that Subgroup makes.

• The group Z5 (automorphism group Z4) vs any set with cardinality 2. Since the
automorphism group of the latter can be properly embedded in the automorphism
group of the former, according to Subgroup the set has at least as much structure
as the group. This is a puzzling verdict, since one obtains a group from a set by
adding structure to the set. Note that it also follows from Subgroup that a set of
higher cardinality always has less structure than a set of lower cardinality, despite
the fact that they are both totally unstructured sets.

• The vector space R2 vs the group Z (automorphism group Z2). Z has at least as
much structure asR2 according toSubgroup, another unintuitive verdict, especially
since the vector space has underlying group structure and additional vector space
structure on top of that.

• The vector space R vs the vector space R2. R has at least as much structure as R2

according to Subgroup, even though R
2 contains many subspaces isomorphic to

R and further structure relating those subspaces.

6 Note that there are examples where SYM∗ and Subgroup agree that X has at least as much structure as
Y , but Subgroup also rules that Y has more structure than X and SYM∗ does not.
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We need not multiply examples; the ones given should suffice to make one nervous
about Subgroup. In what follows, we will diagnose what is going wrong with that
criterion.

3 The implicit definability conception

We begin by discussing why SYM∗ works in the cases where it makes judgments.
This argument has been offered before: see Barrett (2021) and the references therein.
The basic idea is that there is a sense in which X has at least as much structure as
Y according to SYM∗ just in case X actually has all of the structures that Y has.
We can make this idea precise by considering some simple facts about definability in
first-order logic and model theory.7

A signature � is a set of predicate symbols. (Our results generalize to the case of
function and constant symbols as well.) The �-terms, �-formulas, and �-sentences
are recursively defined in the standardway.A 6-structure X is a nonempty set inwhich
the symbols of � have been interpreted. One recursively defines when a sequence of
elements a1, . . . , an ∈ X satisfy a �-formula φ(x1, . . . , xn) in a �-structure X ,
written X � φ[a1, . . . , an]. We will use the notation φX to denote the set of tuples
from the �-structure X that satisfy a �-formula φ. A 6-sentence is a �-formula with
no free variables. An automorphism of a�-structure X is a bijection from X to itself
that preserves the extensions of all of the predicates in �.

The basic set-up that wewill employ in order to discuss definability is the following:

• Let �1 and �2 be signatures. The elements of �1 and �2 represent the ‘basic
structures’ on the two objects that we will consider. These can be thought of as
the structures that are explicitly appealed to in the notation we use to describe the
objects.

• Let X be a �1-structure and Y a �2-structure. We will think of X and Y as the
two objects whose structures will we be comparing. We temporarily assume that
X and Y have the same underlying set.

We need to make precise what it means for X to define all of the basic structures
of Y . So let p ∈ �2 be one of the basic structures on Y . There are two particularly
natural ways to make precise what it means for X to define p. We say that X explicitly
defines pY if there is a�1-formulaφ such thatφX = pY . Andwe say that X implicitly
defines some subset I ⊂ X × . . . × X (like the structure pY ) if h[I ] = I for every
automorphism h of X . We will focus on implicit definition.8

Here is the intuition behind these two notions of definability. If X explicitly defines
the structure pY , then pY can be ‘constructed from’ the basic structures in �1. On
the other hand, suppose that X implicitly defines pY . When this is the case, one often
says that the structure pY is ‘invariant under’ or ‘preserved by’ the symmetries of
X . It is common to infer from this that X comes equipped with the structure pY .9

7 See Hodges (2008) for further details.
8 There are several varieties of implicit definability in the literature. The condition we consider here is one
of the weaker ones. See Winnie (1986), Barrett (2018), and references therein for further details.
9 See Dasgupta (2016) or Barrett (2018) and the references therein for elaboration.
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The relation between these two varieties of definability is already well known. If X
explicitly defines pY , then X implicitly defines pY . But the converse does not hold.10

We have the following simple result.

Proposition 1 The following are equivalent:

1. X implicitly defines pY for every symbol p ∈ �2.
2. Aut(X) ⊂ Aut(Y ), i.e. X has at least as much structure as Y according to SYM∗.
Proof Immediate from definitions. ��

There is a natural desideratum about how structural comparisons should work. One
wants to say that an object X has at least as much structure as Y if (and only if) X
implicitly defines all of the structures of Y . Call this idea the Implicit Definability
Conception (IDC). We take this to be a natural (weak) understanding of what it means
to compare amounts of structure. It is also the only conception of structural comparison
that has been explicitly articulated and defended (e.g. in Barrett 2018, 2021). Prop. 1
establishes that X has at least as much structure as Y according to SYM∗ when X
implicitly defines all the structures of Y , and thus shows that SYM∗ implements the
IDC.

The analogue of Prop. 1 does not hold for Subgroup. Subgroup does not bear the
same relationship to definability that SYM∗ does.

Example 1 Let �1 = ∅ and �2 = {p} be signatures, with p a unary predicate symbol.
Consider the �1-structure A whose underlying set is the natural numbers N, and the
�2-structure B whose underlying set is N with pB = {0}. SYM∗ says A has less
structure than B. All the automorphisms of B are automorphisms of A but not vice
versa. Subgroup says that they have the same amount of structure. Clearly Aut(B) is
isomorphic to a subgroup of Aut(A). But conversely, the fact that A is isomorphic to
the set B− pB implies that Aut(A) is isomorphic toAut(B), since every automorphism
of B is determined by its action on B − pB .

In this example, A and B have the same amount of structure according to Subgroup,
but A does not implicitly define all of the structure of B. Indeed, we generate B by
adding structure to A. It is hard to imagine a coherent understanding of structure
according to which B does not have more structure than A. At the very least Subgroup
does not implement the IDC.

The example also shows that the automorphism group of an object (up to isomor-
phism) does not fully encode how much structure an object has. This means that a
satisfactory criterion for comparing amounts of structure will need to appeal to more
than merely an object’s automorphism group up to isomorphism. In the next section,
we consider what else one might need.

4 A different generalization of SYM∗

As we have observed, the principal difference between SYM∗ and Subgroup is that
SYM∗ compares the automorphism groups of X and Y only relative to a particular

10 The converse would hold if we restricted attention to complete theories or if we strengthened our
definition of implicit definability.
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embedding, generated by a specific relationship between X and Y : namely, the iden-
tity map on their respective domains. If that map generates a group homomorphism,
then Aut(X) will be a subgroup of Aut(Y ). But it is only the group homomorphism
(possibly) generated by this particular relationship between X and Y that matters.

These remarks suggest a different way to generalize SYM∗ to solve sensitivity. The
proposal makes use of the following Proposition. In what follows, for any �-structure
Z , dom(Z) will refer to the domain of Z , i.e., its underlying point set. As before, let
X be a �1-structure and Y a �2-structure.

Proposition 2 Suppose f : dom(Y ) → dom(X) is injective. Then the following are
equivalent:

1. there is a group homomorphism F : Aut(X) → Aut(Y ) that commutes with f , in
the sense that s ◦ f = f ◦ Fs for every automorphism s of X.

2. X implicitly defines f [I ] for every subset I that Y implicitly defines.

Moreover, if an F as described in 1. exists, it is unique.

Note that condition 1 does not quite imply that F is injective, and so F does not
establish that Aut(X) is isomorphic to a subgroup of Aut(Y ). But it does imply the
following, which is ‘close’ to F being injective (and becomes ‘closer’ the ‘closer’ to
surjective f is): If Fs = Fs′ for automorphisms s and s′ of X , then s| f [Y ] = s′| f [Y ].
This follows immediately from the fact that f is injective. For suppose that f (x) ∈
f [Y ]. We know that

s ◦ f (x) = f ◦ Fs(x) = f ◦ Fs′(x) = s′ ◦ f (x)

The first and third equalities follow from condition 1, while the second follows from
our assumption that Fs = Fs′. Since f (x)was an arbitrary element of f [Y ], we have
that s and s′ are equal when restricted to f [Y ].
Proof The proof that 1 implies 2 is exactly as in the proof of Proposition 4, which we
will provide later. So we will show here that 2 implies 1. Suppose 2. If s ∈ Aut(X), we
define Fs = f −1 ◦ s ◦ f . First note that Fs is indeed a function from Y to itself, since
2 implies that s[ f [Y ]] = f [Y ]. We show that Fs is an automorphism of Y . Since
f −1, s, and f are all injective, Fs is injective. And since Fs( f −1 ◦ s−1 ◦ f (y)) = y
for every y ∈ Y , Fs is surjective.

Let p ∈ �2 be a predicate symbol. We show that Fs[pY ] = pY . Let
(Fs(y1), . . . , Fs(yn)) ∈ Fs[pY ]. This means that (y1, . . . , yn) ∈ pY , and hence
(s ◦ f (y1), . . . , s ◦ f (yn)) ∈ s ◦ f [pY ]. Now since Y implicitly defines pY , 2 implies
that X implicitly defines f [pY ]. So it must be that s ◦ f [pY ] = f [pY ], and therefore
(s ◦ f (y1), . . . , s ◦ f (yn)) ∈ f [pY ]. Since s ◦ f = f ◦ Fs, ( f ◦ Fs(y1), . . . , f ◦
Fs(yn)) ∈ f [pY ]. This immediately implies that (Fs(y1), . . . , Fs(yn)) ∈ pY , so
Fs[pY ] is a subset of pY . Now let (y1, . . . , yn) ∈ pY , and let y′

1, . . . , y
′
n be elements

of Y such that Fs(y′
i ) = yi for each i . This in conjunction with the definition of Fs

then imply that

(s ◦ f (y′
1), . . . , s ◦ f (y′

n)) = ( f ◦ Fs(y′
1), . . . , f ◦ Fs(y′

n)) ∈ f [pY ]
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As before we know that s[ f [pY ]] = f [pY ], so ( f (y′
1), . . . , f (y′

n)) ∈ f [pY ]. Hence
(y′

1, . . . , y
′
n) ∈ pY , and therefore (y1, . . . , yn) ∈ Fs[pY ]. Altogether, this means that

Fs[pY ] = pY , and hence Fs is an automorphism of Y . One easily confirms that
F(s ◦ s′) = f −1 ◦ s ◦ s′ ◦ f = Fs ◦ Fs′, so F preserves composition and is therefore
a homomorphism F : Aut(X) → Aut(Y ). By construction it commutes with f.

We now show uniqueness of F . Suppose that F �= F ′ are both homomorphisms
Aut(X) → Aut(Y ) that commute with f . So there must be s ∈ Aut(X) and y ∈ Y
such that Fs(y) �= F ′s(y). Since f is injective, f ◦ Fs(y) �= f ◦ F ′s(y). Since both
F and F ′ commute with f , this means that s ◦ f (y) �= s ◦ f (y), a contradiction, and
hence F = F ′. ��

This proposition suggests a different criterion for comparing structure.

SYM+. A mathematical object X has at least as much structure as a mathematical
object Y , relative to an injective function f : Y → X , if (and only if) there exists a
group homomorphism F : Aut(X) → Aut(Y ) that commutes with f .

SYM+, like Subgroup, is a strict generalization of SYM∗. SYM∗ is just the special
case of SYM+ where f is the identity on Y . SYM+ is also compatible with the IDC,
as Prop. 2 shows. And SYM+ also solves sensitivity, since we can compare structures
with different domains using SYM+. But according to SYM+, this can happen only
relative to a particular injective map.

It isworth taking amoment to see howSYM+ handles example 1. For the object A to
have at least asmuch structure as B, it would have to be the case that there is an injective
function f : dom(B) → dom(A) and a group homomorphism F : Aut(X) → Aut(Y )

that commuteswith f . Themost natural f to choose to compare A and B is the identity.
In this case, A does not implicitly define the subset f [{0}] = {0} since every element
of A is mapped to some other element of A by some automorphism. But B does
implicitly define {0}, since it is just pY , so Proposition 2 implies that there is no group
homomorphism F : Aut(X) → Aut(Y ) that commutes with the identity map. (Note
that this argument actually goes through no matter what map f we pick.) This means
that according to SYM+, A does not have at least as much at least as much structure
as B relative to the identity map. And on the other hand, it is easy to see that B has at
least as much structure as A relative to the identity map dom(A) → dom(B), since B
implicitly defines every subset that A does.

In many cases, the map f is fixed by context. For instance, isomorphic groups have
the same amount of structure, according to SYM+, relative to any map f that realizes
their isomorphism. A topological space (A, τ ) has at least as much structure as a set
B of the same cardinality, according to SYM+, relative to any bijection between A
and B. Still, one might worry that structural comparisons should not require a map
between the objects. How much structure something has does not depend on maps
to other things; thus, comparing the structure of two different things have should not
depend on maps either. But this intuition fails for criteria that compare automorphism
groups.

The reason is that an automorphism group is not just a group. It is a particular kind
of group representation: specifically, a representation of a group as the automorphisms
on a given object. The injective map f is important because it allows us to compare
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Aut(X) and Aut(Y ) as automorphism groups. Results like Props. 1 and 2 show that to
capture information about implicit definability using automorphism groups, one must
keep track of how the abstract group structure is represented as maps on the domain
of the object. In order to compare what structures are implicitly definable for different
objects using their automorphism groups, one needs to know not only how the groups
are related, but how their representations as automorphism groups are related.

Another worry about SYM+ is that, since it considers only injectivemaps f , it will
never rule that an object X has at least as much structure as an object Y if Y has greater
cardinality than X . This is because if Y has more elements than X , there will be no
injective maps from Y to X . This may seem puzzling, but we set this it aside until the
end of the next section.

Wehave emphasized howSYM+ relates to SYM∗. But it is also related to Subgroup.
Consider the following proposition.

Proposition 3 Let f : dom(Y ) → dom(X) be a bijection. Then the following are
equivalent:

1. there is an injective group homomorphism F : Aut(X) → Aut(Y ) that commutes
with f , in the sense that f ◦ s = Fs ◦ f for every automorphism s of X.

2. X implicitly defines f [I ] for every subset I that Y implicitly defines.

Moreover, if an F as described in 1 exists, it is unique.

Proof This follows immediately from Proposition 2 and the remark following it. ��
Prop. 3 tells us that SYM+ looks like Subgroup in the special case where X and Y

have equinumerous domains. Relative to a bijection f : Y → X , SYM+ says X has
at least as much structure as Y only if Aut(X) is isomorphic to a subgroup of Aut(Y ).
Thus, Subgroup provides a necessary condition. But it is not sufficient. The subgroup
of Aut(Y )must be the image of a homomorphism fromAut(X) that commutes with f .
Some bijection must be specified. Different choices of bijection may produce different
verdicts.

5 Triviality

We have now seen that SYM+ is an automorphism-based criterion of structural com-
parison that is compatible with the ICD and solves sensitivity. But even so, SYM+ is
not fully adequate. The reason stems from another problem, which we will triviality.
Triviality is a problem for all automorphism criteria of structure comparison.11 Wil-
helm mentions this problem but does not fully appreciate it (p. 6365). Here we present
a new example and some new arguments that clarify why triviality matters.

In brief, the problem is that all criteria that look (only) to automorphism groups
make implausible verdicts about objects that have trivial automorphism groups, i.e.,
whose only automorphism is the identity map. Examples of such objects are: any

11 Triviality has been discussed by Barrett (2021); see alsoWeatherall (2021), who raises a related triviality
concern for category theoretic approaches.
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Fig. 1 The ‘giraffe’ spacetime
(M, gab) with vectors ta and xa

at p

set with one element; any vector space with a fixed basis; the group Z2; any prime
field; and so on. Such objects form a diverse collection; automorphism-based criteria
struggle with that diversity.

Consider SYM+.12 According to this criterion, given any two objects X and Y , if
X has trivial automorphism group and cardinality as least as great as Y , then X has at
least as much structure as Y . This is true no matter what structure X and Y actually
carry. The problem is arguably even worse for Subgroup. According to Subgroup,
given any mathematical structure Y , every object with trivial automorphism group has
at least as much structure as Y .

Wilhelm is aware of triviality. But he argues that it “has some independent
motivation”:

For suppose X is a spacetime with a trivial automorphism group. Then only
the identity transformation preserves all of the structure of X . Only the identity
transformation leaves X invariant. In other words, the spatiotemporal structure
of X is so rich and complicated that every other transformation fails to preserve
it. Therefore, X ’s structure is ‘maxed out’. X is as structured as can be. (Wilhelm,
2021, p. 6365)

Something similar can be said for SYM+. According to SYM+, if an object has trivial
automorphism group, no other object can have more structure, relative to any injective
map f . SYM+, too, says such objects are “maxed out”.

This is the wrong verdict. Consider the following example.

Example 2 It is well known that there exist spacetimes with trivial isometry groups.
David Malament has sketched an elegant way to construct an example: start with
Minkowski spacetime and then excise a compact region “shaped like a giraffe” from
the manifold. Here, we present a precise variation of this idea. We restrict attention
to the giraffe region itself, take its interior, and consider it as a spacetime in its own
right. The resulting example is flat and, if the (radically idealized!) giraffe region is
suitably chosen, it has an underlying manifold diffeomorphic to R

n .

Let (R2, gab) be two-dimensional Minkowski spacetime where gab = ∇at∇bt −
∇ax∇bx . Let M1 = {(t, x) ∈ R

2 : 0 < t < 2, 0 < x < 3}. Let M2 = {(t, x) ∈ M1 :
1 < t < 2, 1 < x < 3}. Let M = M1 − M2 and consider the spacetime (M, gab).
We see that since M is a non-empty open star domain in R

2, it is diffeomorphic to
R
2. Let p = (1/2, 1/2) and consider the vectors ta = (∂/∂t)a and xa = (∂/∂x)a at

p (see Fig. 1). In order to preserve the lengths of maximal geodesics through p, one
can verify that any isometry ϕ : M → M is such that ϕ(p) = p, ϕ∗(ta) = ta , and

12 Barrett (2021) offers an example to make the same point in connection with SYM∗.
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ϕ∗(xa) = xa . From this it follows that ϕ is the identity map given that isometries are
rigid to first order at a given point Geroch (1969).

Onedoes notwant to say that the structure on this relativistic spacetime ismaxedout.
For instance, one could add an orientation field εab to this Minkowski giraffe space-
time. That should generate an object with more structure, since metric+orientation is
more structure than metric. But none of the criteria under consideration reflect that.
One might also compare this example to a similar construction where one begins
with a metric that admits fewer automorphisms. For instance, if Newtonian spacetime
has more structure than Minkowski spacetime, then a giraffe modeled on Newtonian
spacetime should have more structure than a Minkowski giraffe. None of the criteria
we have discussed capture this, either.

The example is particularly striking because, while it has a trivial automorphism
group, locally the structure on the Minkowski giraffe is hardly maxed out (cf. Man-
chak and Barrett 2022). Suitably small regions the Minkowski giraffe with an added
orientation will have more structure—according to SYM∗, Subgroup, and SYM+—
than the corresponding small regions of the Minkowski giraffe. The moral we wish to
draw is that no automorphism criterion will fully capture all of the structural compar-
isons one might wish to make. SYM+ is useful for some kinds of cases, but not for
others—much like SYM∗. On the other hand, one can capture a sense in which the
giraffe intuitions just described may be made precise in a way that is compatible with
the IDC.

Suppose again that X is a �1-structure and Y a �2-structure. If f : dom(X) →
dom(Y ) is an injective map, we let f [X ] be the �2-structure obtained from Y by
‘restricting’ Y to the image of f . Then we have the following.

Proposition 4 Let f : dom(X) → dom(Y ) be injective. Then the following are
equivalent:

1. there is a group homomorphism F : Aut(X) → Aut( f [X ]) that commutes with f ,
in the sense that f ◦ s = Fs ◦ f for every automorphism s of X.

2. X implicitly defines f −1[I ] for every subset I that f [X ] implicitly defines.
Moreover, if an F as described in 1 exists, it is unique.

In this case, when condition 1 holds, F is guaranteed to be injective, by a similar
argument as given after Proposition 2.

Proof The proof that 2 implies 1 is exactly as in the proof of Proposition 2. We
will show here that 1 implies 2. Assume 1. Suppose I is implicitly defined by
f [X ]. Let s be an automorphism of X . We show that s[ f −1[I ]] = f −1[I ]. Let
(y1, . . . , yn) ∈ I and consider (s ◦ f −1(y1), . . . , s ◦ f −1(yn)). We know that
s ◦ f −1(yi ) = f −1 ◦ Fs(yi ) for each i , since F commutes with f . Since f [X ] implic-
itly defines I , (Fs(y1), . . . , Fs(yn)) ∈ I , which implies that (s ◦ f −1(y1), . . . , s ◦
f −1(yn)) ∈ f −1[I ]. And therefore s[ f −1[I ]] is a subset of f −1[I ]. Now let
(x1, . . . , xn) ∈ f −1[I ], so ( f (x1), . . . , f (xn)) ∈ I . Since f [X ] implicitly defines
I and Fs−1 is an automorphism of f [X ], this implies that (Fs−1 ◦ f (x1), . . . Fs−1 ◦
f (xn)) ∈ I . Since F commutes with f , we know that Fs−1 ◦ f = f ◦ s−1, so
( f ◦ s−1, . . . f ◦ s−1(xn)) ∈ I . This means that (s−1(x1), . . . , s−1(xn)) ∈ f −1[I ]
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and hence (x1, . . . , xn) ∈ s[ f −1[I ]]. So s[ f −1[I ]] = f −1[I ]. One shows that F is
unique in precisely the same manner as in Proposition 2. ��

In order to understand how to use this result it is helpful to reconsider Example 1.
We can use Proposition 4 to capture the sense in which A has the same structure as a
part of B. Consider the map f : dom(A) → dom(B) defined by x �→ x +1. It is easy
to verify that the map F : Aut(A) → Aut( f [A]) generated by f is in fact a group
isomorphism. So Proposition 4 implies that A implicitly defines all of the structures
that f [A] does. (This is easy to verify by hand as well: the �2-structure f [A] has
underlying set N − {0} and p f [A] is the empty set. So trivially A implicitly defines
all of the structures that f [A] does.) Altogether this illustrates that A has the same
structure as the part of B corresponding to f [A].

Proposition 4 is helpful in a few ways. First, it captures a sense in which an object
X may have at least as much structure as ‘part’ of another object Y (In the proposition
the ‘part’ is represented by the structure f [X ].) In the giraffe example, suitably chosen
regions of two-dimensional Minkowski spacetime have at least as much structure as
(regions) of the Minkowski giraffe. This construction allows us to say how one can
‘add’ structure to theMinkowski giraffe even though its automorphism group is trivial.

Prop. 4 is also useful in that it clarifies how an object X may have more structure
than an object Y with greater cardinality, relative to some map f (now going from X
to Y ). The proposition shows that X may have more structure than the part of Y (given
by f [X ]) when X defines all of the structure that Y has on the image of X under f .

6 Conclusion

This paper has considered several automorphism-based criteria for comparing the
amount of structure of mathematical objects. They all faced difficulties. SYM∗ suffers
from sensitivity, whereas Subgroup makes non-sensical verdicts. We went on to intro-
duce a new criterion for structure comparison, SYM+, which extends SYM∗, solves
sensitivity, and conforms with the IDC. We also showed how SYM+ captures (some
of) the intuition behind Subgroup. Even so, we then argued that no automorphism-
based criterion is completely satisfactory, because all of them suffer from triviality.
Triviality is not new, but we introduced an example that we feel highlights the dif-
ficulty. The example shows that objects with trivial automorphism groups need not
have “maxed out” structure, since in many cases, one can add additional structure to
such objects.

We wish to conclude by tying up three loose ends. First, observe that we did not
propose a new criterion for structural comparison modeled on Prop. 4, as SYM+ was
modeled on Prop. 2. One could do so. But we would urge a different perspective.
Prop. 4 captures a fine-grained relationship whose interpretation depends on things
like the map f and the relationship between f [X ] and Y . It would not be the right
criterion in all cases. We think the right moral to draw from the arguments in the
foregoing is that (1) the IDC is the right way of thinking about structural comparisons;
but (2) there is not a single criterion that implements that conception in all cases.
Indeed, there is a sense in which the IDC itself already provides a fine criterion for
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comparing amounts of structure: X has at least as much structure as Y if (and only
if) X implicitly defines all of the structures of Y . As we have shown, this is the kind
of criterion that automorphism-based criteria are implementing when they work well;
this is what Props. 1 and 2 capture. Of course, this IDC criterion is itself not useful until
one makes precise exactly what kind of implicit definability is at play. That is where
the interesting further work on these questions will be. It will involve investigating
different varieties of implicit definability and proving more results like those above—
capturing howwe can tell when one object defines all of the structures of another—and
then applying these results in cases of interest. These kinds of considerations naturally
leads one to a kind of tool-box view of how to compare amounts of structure. Therewill
be a variety of precise criteria that implement the IDC in different ways, and context
and careful consideration of the questions at hand will guide which one should be used
to compare the structure of different objects.

Second, note that when we argued that the Minkowski giraffe spacetime was not
structurally maxed out, we were looking at other spacetimes— namely, small regions
of the Minkowski giraffe — and asking ‘how many’ structure-preserving maps there
are from these spacetimes into the Minkowski giraffe. When we add an orientation
field there are ‘fewer’ such structure-preserving maps. This suggests that instead of
just looking to automorphisms to tell how much structure an object X has, we should
take a more ‘holistic’ approach and look to the entire class of structure-preserving
maps between X and other objects of the ‘same kind’ as X . It is precisely this idea that
is implemented by the Baez et al. (2006) “property-structure-stuff” forgetful func-
tor approach. This approach, in general, has been adopted by several philosophers
to compare, for instance, different formulations of Newtonian gravitation and elec-
tromagnetism. It is important, however, to recall a remark from the Introduction:
Subgroup arises as the specialization of the property-structure-stuff approach to the
case where one is comparing individual objects. So our arguments against Subgroup
are also objections to this category-theoretic approach. We suggest that something is
therefore missing from the category theoretic approach, and that more work is needed
on that subject.

Our final remark concerns Subgroup2, the second criterion of structural comparison
proposed by Wilhelm. This criterion adds to Subgroup the possibility that one object
has at least as much structure as another if the former’s automorphism group can be
generated from that of the latter as the limit of a one-parameter family of represen-
tations. This proposal strikes us as an ad hoc attempt to save the idea that Galilean
spacetime has more structure thanMinkowski spacetime, since the Galilean group can
be generated as the limit of a one parameter family of representations of the Poincaré
group. But whatever its motivations might be, we observe that there is no relationship
between group contraction and the IDC. Thus, if group contraction is to be included
in a criterion of structure comparison, some other view of what the criteria intend to
capture must be articulated.
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