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Abstract
An account ofmathematical understanding should account for the differences between
theorems whose proofs are “easy” to discover, and those whose proofs are difficult to
discover. ThoughHilbert seems to have created proof theory with the idea that it would
address this kind of “discovermental complexity”, much more attention has been paid
to the lengths of proofs, a measure of the difficulty of verifying of a given formal
object that it is a proof of a given formula in a given formal system. In this paper we
will shift attention back to discovermental complexity, by addressing a “topological”
measure of proof complexity recently highlighted by Alessandra Carbone (2009).
Though we will contend that Carbone’s measure fails as a measure of discovermental
complexity, it forefronts numerous important formal and epistemological issues that
we will discuss, including the structure of proofs and the question of whether impure
proofs are systematically simpler than pure proofs.

Keywords Proof purity · Proof complexity · Topology · Proof discovery

1 Introduction

It is a truism that every mathematician wants simple proofs. One need only attend to
the recent controversies over the abc conjecture and its alleged proof by Mochizuki to

In memory of Mic Detlefsen

The authors would like to thank Ryota Akiyoshi, John Baldwin, Anna Bellomo, Adrien Champougny,
Walter Dean, Serena Delli, Mic Detlefsen, Jeremy Heis, Brendon Larvor, Koji Mineshima, Mitsu Okada,
Tabea Rohr, Jeffrey Schatz, Sean Walsh, Kai Wehmeier, Richard Zach, and two anonymous referees for
their helpful comments on drafts of this paper. They would also like to thank the audiences at Keio
University, the Logic Colloquium 2017, the Midwest PhilMath workshop 2020, and the Applied Proof
Theory conference at the University of Melbourne in 2020 for their questions.

B Will Stafford
stafford.w.b.e@gmail.com

1 Université de Lorraine and Archives Poincaré, Nancy, France

2 Department of Mathematics, University of Bristol, Bristol, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-023-04184-5&domain=pdf
http://orcid.org/0000-0002-8022-8915


38 Page 2 of 29 Synthese (2023) 202 :38

grasp the troubles incurred by complex proofs.1 Mathematicians have always sought
not only to prove new theorems but also to do so in simple ways.

A celebrated instance of this is Descartes’ analytic geometry. Descartes canonised
a procedure for solving geometrical problems as follows: first express the problem
by algebraic equations, then solve these equations by algebraic manipulations, and
finish by translating these algebraic solutions back into geometrical terms. He lauded
this method for making it “easy” [aisé] to find constructions, though he noted that
sometimes themethod requires “dexterity” [adresse] in order to find “short and simple”
[courtes et simples] constructions.2

Note that Descartes distinguishes here between two types of simplicity: the simplic-
ity of the construction itself, and the simplicity of discovering a construction to solve
a problem. This distinction, between the simplicity of a proof itself, and the simplicity
of discovering a proof of a theorem, has been stressed by Michael Detlefsen, who
writes:

There are, of course, various complexity metrics that have found their way into
the proof-theoretic literature, and the recent literature in theoretical computer
science has produced even more. Yet all of these complexity metrics seem to
be designed to measure a general type of complexity that might be called ‘ver-
ificational complexity’; that is, the type of complexity that is encountered in
determining of a given syntactical entity whether or not it is a proof in a given
system of proofs. (Cf. Detlefsen, 1990, p. 376f24; also Detlefsen, 1996, p. 87)

Such complexity is the subject of a great deal of work today in automated proof
verification and the adjoint area of automated software verification. The comparison
of the length of proofs, valuable as it is, requires that we have proofs to compare in the
first place. As Michael Potter has put it, “it is not much help that a short proof exists
if we cannot find it” (cf. Potter, 2004, p. 236).

Detlefsen contrasts verificational complexity measures with what he here calls
“inventional complexity” measures: “the type of complexity that is encountered in
coming up with a proof in the first place”. We will, as Detlefsen himself did in other
places, call such measures discovermental complexity measures.3 It is unsurprising
that mathematicians have long reflected upon this type of complexity. As we men-
tioned above, Descartes viewed his analytic geometry as an advance over classical
synthetic geometry in virtue of its superior discovermental power. Leibniz too viewed
his differential and integral calculus as easing the search for new theorems, writing
that “what is better andmore useful in my new calculus is that it yields truths bymeans
of a kind of analysis, and without any effort of the imagination, which often works
as by chance, and it gives us the same advantages over Archimedes, which Viète and

1 The importance of this issue can be seen by its appearance is the popular (and semi popular) press; for
example https://www.nature.com/articles/d41586-020-00998-2.
2 Cf. Descartes (1637, p. 351), though statements of this sort are found throughout La géométrie. For more
on the simplicity of the Cartesian method in geometry, cf. Arana (2016, Sect. 2), and Maronne (2010).
3 This term first appears in print in Detlefsen and Arana (2011). But Detlefsen gave a talk entitled “Dis-
covermental Complexity & the Evaluation of Hilbert’s Program” at the University of Nancy in 2008.
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Descartes gave us over Apollonius”.4 In his Encyclopédie entry on the application of
algebra to geometry, d’Alembert too lauded the gain in discovermental power afforded
by analysis in geometry, remarking that its methods enable us to “arrive nearly auto-
matically at results giving the theorem or the problem that we sought, which otherwise
we would not have gotten or would only have gotten with much effort.”5

It would be easy to multiply such comments from mathematicians throughout its
history. Yet these comments do not include any systematic reflection on the notion of
proof complexity itself, neither of the verificational nor of the discovermental type.
Descartes, Leibniz and d’Alembert made their remarks drawing on their impressions
as practitioners of geometry, rather than on a systematic investigation of the nature of
proof itself. Such a program only becomes thinkable with the advent of Hilbert’s proof
theory. Indeed, Detlefsen has suggested that Hilbert had envisioned proof theory as an
investigation of both verificational and discovermental complexity, drawing attention
to the following passage:

For this formula game is carried out according to certain definite rules, in which
the technique of our thinking is expressed. These rules form a closed system
that can be discovered and definitively stated. The fundamental idea of my proof
theory is none other than to describe the activity of our understanding, to make a
protocol of the rules according to which our thinking actually proceeds. Think-
ing, it so happens, parallels speaking and writing: we form statements and place
them one behind another. If any totality of observations and phenomena deserves
to be made the object of a serious and thorough investigation, it is this one. (Cf.
Hilbert, 1927, p. 475)

In this passage, Hilbert suggests a focused descriptive study of the laws of thought,
where “thought” includes the ways in which we “form statements and place them one
behind another”.Hilbert seems to have thought that our reasoningoccurs in a sequential
way, and that an isomorphic “protocol of the rules” of this sequential reasoning ought
to be a central goal of proof theory. As Detlefsen reads Hilbert, proof theory should
reflect the ways in which we in practice form chains of mathematical reasoning. That
is, it should study the ways in which we discover proofs.

Proof theory has not fully followed through on Hilbert’s suggestion, Detlefsen
laments. Rather little progress has been made on identifying formal measures of dis-
covermental complexity, which could yield a precise analysis of what propositions
and what proofs are more difficult to discover than others. We thus turn our attention
in this paper to a candidate for such a measure, the genus measure of proof complexity
developed by Carbone (2009), building on the unpublished Ph.D. thesis of Statman
(1974). The genus of a graph is the least genus of the surfaces the graph can be drawn

4 Letter to Huygens, 21 September 1691. “Il est vray, Mons. comme vous jugés fort bien, que, ce qu’il
y a de meilleur et de plus commode dans mon nouveau calcul c’est qu’il offre des verités par une espece
d’analyse, et sans aucun effort d’imagination, qui souvent ne reussit que par hazard, et il nous donne sur
Archimede tous les avantages que Viete et Des Cartes nous avoient donnés sur Apollonius.” Cf. Huygens,
1888-1950, Volume X, p. 157.
5 Cf. Diderot and d’Alembert (1751, vol. 1, p. 551). The original reads, “arrive presque machinalement à
un résultat qui donne le théorème ou le problème que l’on cherchoit, & auquel sans cela l’on ne seroit point
parvenu, ou l’on ne seroit arrivé qu’avec beaucoup de peine.”
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on without any lines crossing, and the genus of a surface is the maximum number of
cuts that can be made to it before the surface becomes disconnected. Both Statman and
Carbone show how to extract graphs from proofs by representing their logical struc-
ture, and measure the complexity of a proof by the genus of the graph so extracted
from it.

In this paper we will evaluate the genus measure of proof complexity as a measure
of discovermental complexity, rather than of verificational complexity. A proof whose
interferential structure is “convoluted” is intuitively harder to discover than one whose
inferential structure is linear. Whether a proof is convoluted in this way seems to be
related to its genus, for higher genus means ineliminable crossings among the edges
of the graph representing its inferential structure. Intuitively, then, genus complexity
is a good candidate for a measure of discovermental complexity because it captures
the idea that a “convoluted” proof is hard to discover. And if the context of discovery
proves to be too opaque for formalmeasurements, convolutedness might still represent
an interesting measure of difficulty of understanding as distinct from difficulty of
verification. Just as size is not the only roadblock to discovery, it is also not necessarily
the best measure of understandability.

Though neither Statman nor Carbone mention discovermental complexity in their
works, each formulates their motivations for their work on genus in ways that can
be read as bearing on discovermental complexity. Statman claims that the genus of
a proof is a measure of the global structural complexity of a proof, as opposed to
the local structural complexity of a proof as determined by the logical complexity of
its formulas. Representing the inferential structure of a proof as a configuration of
formulas linked by edges, that is, by a graph, he sets out to study “the global structure
of these configurations i.e., how the individual inferences fit together” (Statman, 1974,
p. vi). He writes that “if this [global structural complexity] is not at a manageable level
a proof will not even begin to be understood” (Statman, 1974, p. v). If a measure of
global structural complexity is a good measure of discovermental complexity, then he
will have produced a measure of discovermental complexity.

Carbone opens her 2009 article with the mission statement, “We shall not ask
why we prove a statement, nor how to show a statement, but how difficult it is to
prove it” (p. 139). The term “difficult” here is ambiguous; it can be read as applying
to the verification of the proof’s validity, as in verificational complexity, or to its
discoverability. Since our project is not an exegesis of Carbone’s work, but more
generally on measuring the discovermental complexity of proof, we note simply that
Carbone’s aims are consistent with studying genus as a candidate for such a measure.

Our plan for the paper is as follows. In Sect. 2 we will develop Carbone and
Statman’s genus measures of proof complexity. In Sect. 3 we will argue that Carbone’s
measure fails as a measure of discovermental complexity, showing that in a certain
way Statman’s measure is more successful. In Sect. 4 we will address the related claim
by Carbone and others that “impure”methods lower discovermental complexity, when
the latter is measured by genus. Finally, in Sect. 5 we will address a general concern
about the relevance of formal considerations to the study of proofs as carried out by
mathematicians in practice.
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2 Introducing genus as ameasure of discovermental complexity

In this section,wewill first explain the proof formalisms used byCarbone and Statman.
Next, we will explain the graph theory on which Carbone and Statman’s complexity
measures are based. Finally, we will turn to their main result.

2.1 Carbone’s formalism

Carboneworks in a sequent calculus for propositional logic. Lines in a sequent calculus
proof, called sequents, are written A1, . . . , An ⇒ B1, . . . , Bm where A1, . . . , An is
called the antecedent and B1, . . . , Bm is called the succedent. The sequent can be
interpreted as A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm . So on the assumption of A1 to An it
follows that one of B1 to Bm holds.

Carbone’s sequent calculus has one axiom A ⇒ A. The remaining rules are sepa-
rated into two categories. Logical rules introduce logical connectives: ¬,∧,∨. If they
do this on the left of the sequent, they are left introduction rules and if they do this on
the right, they are right introduction rules. The logical rules in Carbone’s system are
as follows:

Carbone’s system does not contain →.
The second type of rules are structural rules. Logical rules provide ways to infer

information from the premises. Structural rules, however, can be thought of as restruc-
turing the current information. Carbone’s system has contraction rules, which reduce
two occurrences of the same formula in either the antecedent or the succedent to one
formula occurrence, and cut.

The cut rule is:

Here A is called the cut formula, because it appears in both premises but is ‘cut’ from
the conclusion. Reasoning with cut can be compared to reasoning with lemmas in
informal proofs. With cut we break up a proof of the conclusion by first providing a
proof of A (the lemma) and then showing that the conclusion follows from this lemma
A.

It is worth pointing out that logical rules can have features that parallel the structural
rules. Carbone’s system only has the structural rules of contraction and cut. But that
does not mean her system is weaker than systems with additional structural rules.6

6 E.g. weakening rules allow the addition of an arbitrary formula to either the antecedent or the succedent.
Merger rules take multiple sequents as premises and return a sequent with an antecedent composed of all
the premises’ antecedents and a succedent composed of all the premises’ succedents.
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Anythingwewant to dowith the structural rules can be donewith features of the logical
rules that parallel the structural rules. For example, the left ∧ rule above implicitly
involves weakening as we are allowed to include the formula B in A ∧ B despite it
not occurring in the antecedent of the premise. When we look at Statman’s natural
deduction calculus there will be no explicit structural rules, but logical rules will still
have features that parallel the structural rules.

2.2 Statman’s formalism

Statman uses a natural deduction system rather than a sequent calculus. Unlike the
sequent calculus, a line in the natural deduction calculus is just a formula. However,
as well as axioms and rules, we can have assumptions. An assumption is a formula we
can introduce at the beginning of a proof without applying any rules.While the sequent
calculus has left and right introduction rules but no way to remove (or eliminate) a
logical connective, the natural deduction calculus has rules for eliminating connectives
and rules for introducing them. As the antecedent of a sequent can be though of as the
assumptions fromwhich the succedent is proven, left introduction rules can be thought
of as parallel to elimination rules. In natural deduction we break down assumptions
and then build up the conclusion, while in the sequent calculus both the conclusion
and the assumptions are built up from atomic formulas.

Statman’s system consists of the following rules:

Note that ¬ is not in Statman’s system.
Assumptions can come in two varieties: open assumptions which indicate exactly

what needs to be assumed for the conclusion to follow, and closed or discharged
assumptions which are assumptions that have had → introduction or ∨ elimination
applied to them. In the schematic proof rules above, these are the formulas that have [
and ] around them, e.g. [F]. When we have a proof in a natural deduction system that
ends with A and has open assumptions B1, . . . , Bn , we can write B1, . . . , Bn � A to
represent this. What this tells us is that A follows on the assumption of B1, . . . , Bn .
Note that when an assumption is discharged it no longer needs to be assumed for the
conclusion to follow.

As mentioned earlier, there are no structural rules in this system. However, there
are features that parallel the structural rules. When we discharge assumptions by an
application of → introduction or ∨ elimination, we are allowed to discharge multiple
occurrences of the same formula. We are also allowed to apply the rules when we
have no assumption to discharge or to not discharge assumptions we could have. This

123



Synthese (2023) 202 :38 Page 7 of 29 38

Fig. 1 A Logical flow graph for an axiom. B Flow graph for R¬. C Flow graph for cut

freedom of discharging assumptions gives us features that parallel the structural rules
which work similarly to contraction in the case of multiple discharges and weakening
when nothing is discharged.

Another point of difference between the two approaches is that Carbone offers a
multi-conclusion proof system for classical logic while Statman offers a proof system
for minimal logic. However, Carbone’s formal results on graphs can be transferred to
a single-conclusion restriction of her sequent calculus. This would be done by using
the left and right negation rules to “store” multiple conclusions in their negated form.
This would result in an intuitionistic system.

2.3 From proofs to graphs

Carbone and Statman apply graph theory to proofs for their proof complexity mea-
sures. Beginning with a proof, each has a means of extracting a graph from the proof.
The complexity of a proof can then be measured by the complexity of the resulting
graph. Just as each has their own proof formalism, each has their own means of graph
extraction. We discuss each in turn.

Carbone uses the “logical flow graph” of a proof, a means of extracting a graph
from a proof that was introduced in Buss (1991) in the course of proving that it is
undecidable whether a formula has a proof of k or fewer lines. If we look at the rules
of the sequent calculus we see tokens of the same type of formula occurring in the
premises and the conclusion. A logical flow graph is a graph that connects the atomic
formulas in these tokens together. For an example of a rule, see Fig. 1b; for an example
of a logical flow graph, see Fig. 2. (Logical flow graphs are orientated which is why
those depicted have arrows on their edges, but this plays no role in our discussion and
so we ignore it.) There are two special rules for drawing logical flow graphs shown in
Fig. 1a and c.

SinceStatman’s proof system is different fromCarbone’s, he uses a differentmethod
of extracting a graph from a proof. His “derivation graphs” are composed of connec-
tions between complex formulas, unlike logical flow graphs which only connect the
atomic formulas. Statman’s graphs are generated by first taking the tree obviously
generated by the proof and then adding lines between closed assumptions and the
formula that discharges them as seen in Fig. 4. These proofs are illustrated by Figs. 3
and 5, with the rules listed in the table below.
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Fig. 2 An instance of a logical flow graph, from Carbone (2009)

Fig. 3 An example of a natural
deduction proof of genus 0

Fig. 4 Natural deduction graphs

2.4 From graphs to proof complexity

Now that the measures have been described, we can outline Carbone’s formal result on
cut-free proof complexity. An important piece of context here is Statman’s result that
in the propositional sequent calculus, the length of cut-free proofs may be significantly
larger than that of proofs with cut. More precisely, he showed that there are sequents
whose cut-free proofs are exponentially longer than their proofs with cut.7 Carbone
observes that while proofs with cuts may be shorter than cut-free proofs, proofs with
cuts seem, a priori, difficult to discover, because preciselywhich cut formulas (lemmas)
should be used is typically not obvious. Nevertheless, she points out, in practice we use
cuts anyway. The “topological genus” of the logical flow graph of a proof, therefore

7 Cf. Statman (1978), and Buss (1988, pp. 2-1 to 2-5) for an excellent presentation of these results.
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Fig. 5 An example of a natural deduction proof of genus 1

offers another measure of complexity with which to consider this problem. Similarly,
Statman focuses on the topological genus of the derivation graph of a proof. We thus
turn next to the crucial notion of the genus of a graph.

2.5 Measuring graph complexity by genus

In order to describe the topological genus of a graph, or for short its genus, we begin
with the notion of a “crossing”. The graph depicted in the left of Fig. 6 has an edge
crossing, while the graph on the right does not. But these two graphs are isomorphic:
there is a one-to-one correspondence between the points of these two graphs which
preserves adjacency of points by edges. Thus, graphs with crossings are sometimes
isomorphic to graphs without crossings, and we say that such graphs can be drawn
without crossings (even if a representation of that graph has a crossing). We will talk
abstractly about a graph G as a collection of points and a relation that says which
edges connect which points. This abstract description of a graph relates to the more
familiar drawing of a graph by being what isomorphic drawings of a graph have in
common. We call a drawing of a graph an embedding of the underlying graph on the
surface.
A graph is planar if it can be drawn in the plane in such a way that no edges cross.
The graphs in Fig. 6 are planar graphs. Not all graphs are planar, however. Consider
for example the bipartite graph called K3,3, shown in Fig. 7, which has two pairs of
three vertices such that each vertex in the first pair is connected to each vertex in the
second pair. As shown in Fig. 7, we can try to “unravel” the crossings in the original
representation of K3,3 on the left, but no matter what we do we seem to be stuck
with a crossing. In fact it can be proved that one crossing is necessary, using Euler’s
polyhedron formula. This formula says that for a planar graph, V − E + F = 2, where
V denotes the number of vertices in the graph, E the number of edges, and F the
number of “faces”, that is, regions bounded by edges (cf. Harary, 1969, pp. 103–104).
For K3,3 to be planar, it would need a representation with 3 faces. But K3,3 always
has at least 4 faces and so does not satisfy Euler’s polyhedron formula.
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Fig. 6 Planar graphs

Fig. 7 A non-planar graph, K3,3

Fig. 8 K3,3 on a torus

However, K3,3 can be drawn on a torus without edge crossings, as depicted in Fig.
8. What surface a graph can be drawn on yields a way of measuring the complexity of
the graph. The topological genus of a graph is, roughly, the least number of handles
that need to be added to a sphere in order to permit that graph to be drawn on that
surface without any edges of the graph crossing each other (cf. Harary, 1969, pp. 102,
116). Planar graphs thus have genus 0, while K3,3 has genus 1 (since the torus can be
thought of as a sphere with one handle added).

Of importance for Carbone’s work is the complete graph Kn of n vertices, in
which every pair of vertices is connected by an edge. One such example, K5, the
complete graph of 5 vertices, is depicted in Fig. 9. In general, Kn has

(n
2

) = n(n−1)
2

edges. Fortunately, unlike genus in general, there is an easy way to calculate the genus
of complete graphs. It was shown by Ringel and Youngs that the genus of Kn is
� (n−3)(n−4)

12 �, so that the values of Kn for n = 5 to 14 are 1, 1, 1, 2, 3, 4, 5, 6, 8, 10
(cf. Harary, 1969, p. 118).
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Fig. 9 The complete graph K5

2.6 Carbone’s main result

We can now present Carbone’s main result, which is also proven in Statman (1974).
(Carbone’s proof is purely graph theoretic.) She shows that for any topological genus
n, there is a cut-free proof with that genus. She shows this by constructing, for each
n ≥ 3, cut-free proofs intowhose logical flowgraphs she has “embedded” the complete
graph K2n of 2n vertices. The proof is constructed via an “acyclic optical graph” is
depicted in Fig. 10. Carbone has shown that for any such graph there is a formal proof
in the sequent calculus plus a rule for function composition8 whose logical flow graph
has the same topological structure as the acyclic optical graph. A further condition can
be placed on the graph to make sure the resulting proof is cut-free (Carbone, 2009,
p. 144).

3 Evaluating genus as ameasure of discovermental complexity

The goal of this section is to assess whether discovermental complexity can be mea-
sured by the genus of proof graphs. We will carry this out in three steps. Firstly, we
will show that genus is a measure of the structural complexity of graphs. Secondly, we
will argue that the genus of a logical flow graph is not a measure of the structural com-

8 The rule for function composition is as follows:

This rule can be removed by iterating the following construction till there are n occurrences of A in each
cedent and then applying contraction on the right.
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Fig. 10 A piece of a proof with non-planar genus

plexity of a proof but that the genus of Statman’s derivation graphs may be. Finally,
we will consider whether a measure of structural complexity is a good measure of
discovermental complexity.

3.1 Genus as ameasure of the structural complexity of graphs

Carbone suggests that genus measures a graph’s combinatorial complexity (Carbone,
2009, p. 139). Statman similarly argues that genus is a measure of the structural
complexity of surfaces and analogously of proof graphs (Statman, 1974, p. vi). We
can however give more concrete reasons for accepting this view.

First, note genus’ connection to more standard complexity measures such as size,
which in analogy to length as a measure of proof complexity, might be thought of as a
simple measure of graph complexity. As genus increases, so will the minimum size of
graphs. This follows from the Euler characteristic of an embedded graph G, which is
χ(G) = V − E + F , where V is the number of vertices, E the number of edges, and
F the number of faces of the embedding. It follows that the genus g = 2−(V −E+F)

2
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(Wilson, 2013, p. 39). Note that there is a relationship between the maximum number
of faces and the number of vertices and edges. For example, with four vertices and six
edges the most faces one can have is four. And as we only let one edge hold between
any two vertices, the number of vertices constrains the number of edges. It follows
that given any number V there is a maximum possible E and F and so a maximum
possible genus. Thus a high genus requires a large graph, and so given any reasonable
method of producing proof graphs, a large proof.

However, genus is a more subtle measure of graph complexity than size alone. A
high genus requires a large graph, but a large graph does not ensure a high genus. Every
tree graph is planar, so there are arbitrarily large graphs of genus 0. This demonstrates
that genus excludes some very large graphs with simple structures. And when one
looks at graphs of higher genus, there appear to be complex relations (edges) between
the points. High genus graphs have edges connected to points in such a way that the
only way to prevent crossing is to add holes for the edges to pass through. As such, a
higher genus seems to capture greater interrelatedness among the points. This seems
to correctly capture an important facet of structural complexity.

Statman calls genus a measure of global structural complexity. This is appropriate
because the genus of a graph cannot be calculated from the genus of its parts. Genus
is a property of the structure as a whole. The genus of a graph G = G1 ∪ G2 in which
G1 and G2 share 3 vertices may be arbitrarily larger than the addition of the genus of
G1 and G2 (Archdeacon, 1986). This tells us that if genus is a measure of complexity
it has properties that interestingly distinguish it from measures of length. Because we
will discuss structural proof rules later, we will use Statman’s term of global structure
to refer to the overall structure of the graph or proof.

So genus appears to be a good choice formeasuring the global structural complexity
of graphs. But, for genus to measure the global structure of the proof, the proof graphs
must encode the global structure of the proof. This is not the case for logical flow
graphs, as we will now show.

3.2 Genus as ameasure of the structural complexity of proofs

3.2.1 Logical flow graphs

Buss’s logical flow graphs aim to “develop a theory of how the influence of a formula
spreads through a proof” (1991, p. 85).While formal proofs are static syntactic objects,
they represent the dynamic and temporal process of reasoning. In the natural deduction
calculuswe can think of each inference rule as one step thatmight be taken in reasoning
to the conclusion. However, things are more complicated in the sequent calculus. If the
proof of the sequent � ⇒ � is to represent our reasoning, it must represent reasoning
that starts with � as assumptions and reasons to something in � as the conclusion.
A logical flow graph can be thought of as tracing the role played by a single atomic
formula in the reasoning represented by a proof in the sequent calculus. Carbone
largely agrees with Buss’s assessment of logical flow graphs.9

9 See Carbone and Semmes (2000, p. 484), Carbone (2005, p. 3), Carbone and Semmes (1997, p. 153),
Carbone (1997, 1999, 2000, 2001, 2002).
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Fig. 11 Flow graph for contraction

As we discussed in the previous section, logical flow graphs have many useful
applications. But we will now argue that measuring the global complexity of proofs
is not one of them. The following argument relies on two claims. First, Carbone’s
method of producing proofs of higher genus relies only on structural rules.10 Second,
graphs encoding only the structural rules do not capture the global structure of the
proof.

3.2.2 Logical flow graphs ignore the structure of the logical rules

The following observation is at the crux of our argument. All graphs with a genus
greater than 0 must have points with three or more edges attached. If this is not the
case then the graph is either a line or a cycle, both of which have genus 0. As one can
see by inspection of the definition of the logical flow graph, only contraction (Fig. 11)
produces a point with 3 edges attached. It follows that all logical flow graphs of proofs
that do not contain contraction will have genus 0 as they will be lines or cycles.

By the above observation, it follows that if genus is ameasure of the global structural
complexity of a proof, then the logical rules on their own cannot produce proofs with
anything but the simplest global structure. But for the sake of argument let us allow
that contraction is necessary for complex proofs. It will now be argued that the logical
connectives still contribute nothing to the complexity of the graph because they can
be replaced by structural rules.

Consider left and right ¬. These are both one premise rules. Given a proof D and
a graph G, if we apply one of these rules to the conclusion ofD to get a new proofD′
and graph G ′, then G ′ is structurally identical to G. So the application of these rules
does not affect the genus. For left ∧ and right ∨, we introduce a new formula. Say we
add a formula with m atomic formulas; then our graph G ′ will look just like the case
of ¬ but with m unconnected points. This is the same effect that weakening has on a
proof.

The rules of left ∨ and right ∧ laid out in Sect. 2 might look like counterexamples
to our point. These are both two-premise rules and as such produce a combined graph
composed of the graphs associated with the derivations of the premises. Consider
right ∧, let G1 be the graph associated with the derivation of �1 ⇒ A,�1 and G2
be the graph associated with �2 ⇒ B,�2. Then the graph associated with �1, �2 ⇒
A ∧ B,�1,�2 will be G1 ∪ G2 where G1 and G2 share no vertices. What impact can

10 Recall, that structural rules are rules that restructure the information in a sequent and are distinct from
questions of the global structure of the proof.
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this have on the genus? None at all, the genus of G1 ∪ G2 will just be the addition
of the genus of G1 and G2 (Battle et al., 1962). However, the application of the rule
does allow contraction to be applied later to formula occurrences which could not
happen before, if one occurrence is in �1/�1 and another in �2/�2. So derivatively
an application of right ∧ introduction or left ∨ introduction might contribute to the
genus of the proof. It was discussed in Sect. 2 that as well as the divide between
logical and structural rules, we could identify the features of logical rules that parallel
the structural rules. This is relevant here because it allows us to identify the features
of right∧ introduction and left∨ introduction that parallel the structural rules. We see
that Carbone’s rendering of these rules parallels the structural rules in that they merge
the antecedents and the succedents. This is the same effect that the rule of merger has.
Any impact on the genus brought about by these rules is a result of the contingent fact
that they also merge the antecedents and the succedents.

What the above considerations point to is that logical flow graphs capture the
features of rules that parallel the structural rules without capturing the structure of
the logical rules. Do not be confused by the expression ‘features that parallel the
structural rules’. Recall that what this implies is that these rules are concerned not with
building up formulas from subformulas as the logical rules are but rather with where
the formulas are in the sequent. We are investigating whether the global structure of a
proof is captured. And the global structure is not confined to the features that parallel
the structural rules. This is because the application of a rule like right∧ has a structural
effect on the proof. It binds together two proofs, one for each of the conjuncts. Yet
this structure is entirely missing from logical flow graphs.

3.2.3 Possible replies

In proving her results Carbone adds one rule to L K which does affect genus and isn’t
a structural rule. Does adding this rule mitigate the argument of the last subsection?
The rule in question is function composition:

This rule also allows for the generation of nodes of degree at least three and so can affect
the genus of a proof. Note that now only structural rules and function composition
affect genus. If the complaintwas thatmany complex proofs do not include contraction,
there will be many that also do not include function composition. What is more, the
use of function composition is merely a convenience, as we can replace instances of
function composition with proofs containing only rules in L K (see footnote 8). As
such, function composition is not a vital feature of this complexity measure.

Not all proof systems have structural rules. There is a system equivalent to L K
which does not have any structural rules (Troelstra&Schwichtenberg, 2000, Sect. 3.5).
If we were to move to such a system would we avoid the issue raised here? If we look
at the rules in the modified system, we see they all have context sharing. Take the
example of right ∧-introduction:
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Recall that the principle formula in the lower sequent of an inference is the formula
where a connective was introduced. Here we see something quite like contraction
happening to the non-principal formulas and again contributing nothing to the genus
by the principal formula. Still, it might seem like the situation here is better, as the
inference rules for some of the logical connectives allow the forming of nodes of degree
three. But it is noticeable that this is due to every formula other than the ones we want
to affect the complexity, namely, the principal formulas. As such it seems correct to
say that, in this system, inference rules have features that parallel the structural and
non-structural rules, and it remains the case that the features that parallel the structural
rules are those alone that contribute to the genus.

To sum up, the source of the above criticism is the fact that the logical flow graphs
ignore the structure introduced by the logical connectives. This is not a criticism of
logical flow graphs: as we saw their purpose is to track the movement of a single
formula through a proof. The problem is that logical flow graphs simply forget the
logical inference rules, and so do not capture the global structure of proofs. To put it
another way, genus should measure the structure of the proof, but logical flow graphs
do not capture this structure satisfactorily.

3.2.4 Global structural complexity of proofs and derivation graphs

Recall that Statman takes the genus of a proof graph to be a measure of the global
structural complexity of the associated proof. He maintains that lowering the global
structural complexity of a proof is of practical importance, because ‘if this [global
structural complexity] is not at a manageable level a proof will not even begin to be
understood’ (Statman, 1974, p. v). But if a measure of global structural complexity is
a good measure of discovermental complexity and Statman is correct that his proof
graphs capture the global structure of proofs, then he will have produced a measure
of discovermental complexity.

Statman’s argument that he has captured the global structure of proofs is that deriva-
tion graphs account for all the relationships between any twoparts of the proof. Statman
(1974, p. 2) argues that by representing proofs as trees, Gentzen did not represent all
relations between formulas in the proof. He claims that the relationship between an
assumption and the conclusion of the inference that discharges it is missing. Should
we think of the discharge of assumptions as part of the global structure of the proof?
Two features of the discharge of assumptions suggest it is a structural property of
proofs. Firstly, assumption discharge is restricted by the tree structure of the proof.
For example, an assumption cannot be discharged by the application of a rule on
another branch. Secondly, without this the tree does not tell us which assumptions are
open or closed, which we need to know to know what the proof is a proof of.

By adding the relationship between an assumption and where it is cancelled, Stat-
man additionally claims that all structural relations between formulas in the proof
have been accounted for. This claim is supported by an examination of how schematic
proof rules are displayed. When we specify proof rules, we need only specify dis-
charged formulas, premises, and conclusions and the deduction graph connects all
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these formulas.11 As such in the natural deduction system, it seems correct that the
two relationships that hold between inferences in a proof are premise-to-conclusion
and assumption-to-discharge. As a result of this, it can be concluded that Statman’s
graphs show a representation of the global structure of a proof.

Further, Statman’s graphs avoid the difficulty that logical flow graphs have. The
genus of the graph is affected by the logical rules. This point is slightly more com-
plicated than simply pointing out that it is not only structural rules that lead to proofs
of higher genera, because the natural deduction system that Statman is using does not
have structural rules distinct from the logical rules. Rather, in natural deduction, the
structural rules are hidden in the inference rules. For example, if we have an inference
such as:

where both hypotheses are cancelled by implication introduction, then the equivalent
proof in the sequent calculus would be as follows:

But nowwe see that a structural rule is needed to combine the two separate assump-
tions of A in the sequent calculus. And this is a hidden feature of the natural deduction
proof that parallels the structural rules.12 So, both Statman’s method and Carbone’s
have features that parallel the structural rules and these features impact genus. But the
logical structure of the proof has an impact on the genus in Statman’s method because
we include the proof tree, which tracks how the premises are combined to get the
conclusion. This is illustrated in Figs. 3 and 5 where the difference in genus between
the two graphs would not occur if we were tracking the atomic formulas rather than
the formulas themselves. It is crucial for the increased genus in the second proof that
formulas are introduced and then eliminated, thereby increasing the connectivity of
the graph. In contrast, logical flow graphs do not track how premises are combined,
because they only track atomic formulas. The combining of two formulas into a larger
one does not affect logical flow graphs. A further difference between the derivation
graphs and logical flow graphs is that contraction is not required to generate derivation
graphs of genus greater than 0, as it can be shown (as in Fig. 12) that there are proofs
of genus greater than 0 which do not use contraction (discharging multiple assump-
tions at once). If the above argument is accepted, then we have shown that genus is a

11 One might wonder if the inclusion of quantifiers and the restrictions on variable occurrences might make
that case more complicated.
12 This is a common observation. Troelstra and Schwichtenberg (2000, p. 68) note that natural deduction
is closed under contraction and weakening. Von Plato (2011, p. 46) tells us that the discharge of multiple
assumptions is parallel to contraction and vacuous discharge is parallel toweakening. Restall (2014, p. 1157)
states that Gentzen’s natural deduction system has contraction unless the discharge of multiple premises is
not permitted.
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Fig. 12 A proof without contraction and its graph which embeds K3,3

measure of the global structural complexity of graphs and that Statman’s derivation
graphs represent the global structure of proofs.

3.3 Global structural complexity of proofs as discovermental complexity

The last point to be discussed is why a measure of global structural complexity would
be a measure of discovermental complexity. Both Carbone and Statman agree that a
high global structural complexitymeans that the proof hasmany highly interconnected
ideas of which the discoverer or readermust keep track. This seems correct. The higher
genus represents a structure that not only requires more resources due to being larger
or having more connections, but also a structure that cannot be “lain flat” and surveyed
as such, without attending to a more tightly interwoven network of edges. The prover
must keep this inferential network straight, without confusing what inference leads
to what inferred formula. As the genus increases, this becomes harder. It becomes
harder to represent all the pieces of the proof together, and this should correspond to
an increased difficulty in assembling all the pieces of the proof together.

Interestingly, both Carbone (2009, p. 139) and Statman (1974, p. v) have concerns
about the complexity of proofs with cut and the inclusion of lemmas. We will focus
on derivation graphs here, but our discussion should hold for any measure which is
closely tied to the global structure of the proof. While it will be discussed in much
more detail in Sect. 4, note that an open assumption is a formula one assumes for the
purposes of proof. If one were to then prove this assumption, it now behaves like a
lemma. Because of the relevance of this point to the discussion on purity it is worth
pausing to consider how genus behaves on proofs with open and closed assumptions.

Consider the following three proofs:
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If the genus of a proof likeD is g and it has
∑

i≤n mi assumptions consisting of mi

copies of each ϕi , then the genus of the proof resulting in case 2 will be at least g and
not more than g + ∑

i≤n mi gi where gi is the genus of the proof of each ϕi (Decker
et al., 1981). Whereas, the genus of the third case will be at least g and not more than
g + ∑

i≤n mi .
The moral of this is that with the exception of planar graphs, the upper-bound on

genus for proofs with lemmas (case 2) is greater than that for proofs with assumptions
discharged (case 3). This suggests that the measure could reveal interesting relation-
ships between conditional proof and lemmas.

However, it remains a concern that only proofs which include discharged assump-
tions can have genus greater than zero. This is because proofs with no assumptions
discharged are trees and all trees have genus zero (Chen, 2013, p. 746). It may be that
there is a story to tell here about proofs without discharge of assumptions being trees
and so structurally far simpler than some proofs in which assumptions are discharged.
However, one might worry that assumptions can be quite complicated and the proofs
that follow from them may not be easy to find. Similarly, it is not clear why upon
discharging assumptions the complexity would suddenly jump up in some cases.

One option is simply to admit that the complexity of the proof tree should impact
proof complexity.13 Examples of such a measure include: number of branches, height,
and width. The measure of complexity could then be the genus of the proof graph
plus the complexity measure on the proof tree. As measures on trees are likely to be
measures of size such an addition would suit those who think that size is not merely
necessary for higher complexity but also sufficient.14

Onemight further worry that global structural simplicity does not contribute to ease
of discovery but rather to how easy a proof is to understand.15 As was emphasised in
the introduction, mathematicians prize proofs that are (pretheoretically) simple and
it is not uncommon that a reproof of a theorem is considered the simpler proof. For
example, it is Henkin’s construction, rather than Gödel’s original proof, that is usually
used in the teaching of the completeness of predicate logic because of the perceived
pedagogical value of the simplicity of the construction. But for this intuition to be
made into an objection to our view, we would need to be able to distinguish not
just discovermental complexity from verificational complexity but a third measure
of understanding distinct from the two. However, as discussed above measures of
simplicity of understanding are standardly measures of how difficult a proof is to
verify correct.

4 Genus and purity

In the introduction to Carbone (2009), Carbone observes that the traditional measure
of proof complexity, length of proof, does not account adequately for the differences

13 We would like to thank an anonymous reviewer both for pushing us to say more on this point and for
making this suggestion.
14 Though there are reasons to think size is not sufficient. For example, it is plausible that the obvious proof
of

∧
n pn has complexity 0 for all n despite the linear growth of proof size.

15 We want to thank an anonymous reviewer for pressing this point and the reply.
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between cut-free proofs and proofs with cuts. She notes that cut-free proofs are usually
longer than proofswith cuts, but geometrically simpler.We have seen how she purports
to measure the geometric simplicity of a proof, via the topological genus of the proof’s
logical flow graph. We have compared this geometric measure with Statman’s, which
measures the genus of a different combinatorial structure within proofs. Both Carbone
and Statman obtain results comparing the geometric simplicity of cut-free proofs and
of proofs with cuts. In particular, they show that for any topological genus n, there is
a cut-free proof with that genus.

Since Gentzen we have recognized that cuts are comparable to lemmas in informal
proof. Just as a lemma may draw on resources that are not used elsewhere in the
proof, in a cut inference the cut formula occurs in the upper sequent but not in the
lower sequent and hence is not a subformula of the conclusion. To infer � ⇒ � (say,
concerning circles and lines), a cut may invoke formulas in � and � as well as other
formulas (say, concerning right angles, also) that are not subformulas of � ⇒ �. By
contrast, in a cut-free proof every formula is a subformula of the conclusion. This
points to Gentzen’s observation that all of the formulas occurring in cut-free proofs
are subformulas of the conclusion. Gentzen described the import of this “subformula
property” as follows:

The final result is, as it were, gradually built up from its constituent elements.
The proof represented by the derivation is not roundabout in that it contains only
concepts which recur in the final result.. . . No concepts enter into the proof other
than those contained in its final result, and their use was therefore essential to
the achievement of that result.16

Similarly, Takeuti observed that the subformula property shows that “any theorem in
the predicate calculus can be proved without detours, so to speak.”17

In saying that cut-free proofs are “not roundabout” and avoid “detours”, Gentzen
and Takeuti suggest viewing cut-free proofs as “pure proofs”, that is, proofs realizing
the ideal of purity of methods so important to the inventor of proof theory, David
Hilbert. Roughly speaking, a proof is pure if it draws only on what is “close” or
“intrinsic” to what is being proved. As Hilbert put it, the aim of the search for purity
is “to prove theorems if possible using means that are suggested by the content of
the theorem” (cf. Hilbert, 2004, pp. 315–316), rather than means that are extraneous,
distant, remote, alien, or foreign to it. Purity as an ideal of proof goes back to Aristotle
and remains today important to many mathematicians, even if impurity also is held as
an ideal of proof by many mathematicians as well. A fuller analysis of purity and its
epistemic value can be found in Detlefsen and Arana (2011); in this paper it suffices
to recall the importance of purity and impurity in mathematical practice, as we focus
on showing how Statman and Carbone’s work bears on purity.

In short, Statman and Carbone’s work bears on the question of whether impure
proofs, understood as proofs with cuts, are simpler than pure proofs, understood as
cut-free proofs. In Sect. 2 of Arana (2017), this question was discussed in a historical
context. It was observed that Newton, for instance, judged the use of algebra in proving

16 This combines two passages from Gentzen (1934-1935, pp. 88, 69).
17 Cf. Takeuti (1987, pp. 21–22, and again on p. 29).
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geometric theorems to be an impurity.18 In analysis as well, a distinction was drawn
between pure and impure proofs of propositions of real analysis on the basis of their
use of complex numbers. Famously, Jacques Hadamard remarked that “the shortest
and best way between two truths of the real domain often passes through the imaginary
one” (cf. Hadamard, 1945, p. 123).

This way of thinking remains widespread today among mathematicians. A notable
recent advocate of this view is Carlo Cellucci, who has claimed that “the use of
‘impure’ methods leads to a marked improvement in efficiency” (cf. Cellucci, 1985,
p. 173). Using the parallel between cuts and lemmas remarked upon above, he notes
that lemmas are always redundant in practice, since every use of a lemma in a proof can
be replaced with a proof of that lemma. Nevertheless, he remarks, “in mathematical
practice we feel better off if we manage with such redundancies than without them”
(Ibid., p. 174). To explain this, he suggests that “this circumstance may be accounted
for by the fact that redundancies generally lead to a significant gain in efficiency.”
The thought seems to be that by proving a lemma just once in the course of proving
a theorem, we can draw on that lemma repeatedly, and as a result we can compress
the proof relative to a cut-free proof of that theorem. Cellucci recalls Statman’s result
that in propositional sequent calculus the length of cut-free proofs may be significantly
larger than that of proofs without cut.More precisely, asmentioned in the introduction,
Statman showed that there are sequents whose cut-free proofs are exponentially longer
than their proofs with cut.19 Cellucci takes Statman’s result to support his contention
that impure proofs yield a gain in simplicity.

In reply to Cellucci, we firstly recall the findings of Arana (2017). That work
investigated conservative extensions of PRAby elements that yield, it is argued, impure
proofs for theorems of PRA. These theories, �1

2-axiomatizable extensions of RCA0,
add sets and principles governing sets to the purely arithmetical theory of PRA: RCA0,
WKL0 and WKL+

0 , familiar from reverse mathematics (cf. Simpson, 2009). Proofs
in these theories of purely arithmetic theories, making use of sets, are thus arguably
impure. The article in question then compared the simplicity of proofs of theorems of
PRA,measured by proof length,with proofs of those same theorems in the set-theoretic
extensions. No general pattern of simplicity in moving from pure to impure proof was
found; on the contrary, the addition of set-theoretic resources in the theories RCA0,
WKL0 andWKL+

0 yield only polynomial speed-up over PRA. Following the tradition
in computational complexity theory (cf. Dean, 2016), super-exponential speed-ups are
considered to be significant gains in simplicity, while polynomial speed-ups are not.

Secondly, Cellucci’s comment on the efficiency of impure methods refers to veri-
ficational rather than discovermental complexity. Statman’s result in Statman (1978)
concerns proof length, which we argued earlier measures the complexity of verifying

18 “Equations are Expressions of Arithmetical Computation, and properly have no Place in Geometry,
except as far as Quantities truly Geometrical (that is, Lines, Surfaces, Solids, and Propositions) may be said
to be some equal to others. Multiplications, Divisions, and such sort of Computations, are newly received
into Geometry, and that unwarily, and contrary to the first Design of this Science.…Therefore these two
Sciences ought not to be confounded. The Antients did so industriously distinguish them from one another,
that they never introduced Arithmetical Terms into Geometry. And the moderns, by confounding both, have
lost the Simplicity in which all the Elegancy of Geometry consists.” Cf. Newton, 1720, pp. 119–120.
19 Cf. Statman (1978), and Buss (1988, pp. 2-1 – 2-5), for an excellent presentation of these results.
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that a proposition is a theorem, rather than the complexity of discovering a proof of
that theorem. As we observed earlier, though, advocates of impurity on simplicity
grounds seem to be thinking as much of its superior discovermental simplicity as its
verificational simplicity. Consider again the passage quoted earlier from d’Alembert,
in fuller context:

We can say of the ancient geometrical works, that almost none of them have
the ease that algebra gives in reducing their demonstrations to a few lines of
calculation.…[I]f anyone would have solely the method of the ancients, it does
not appear that, even with the greatest genius, one could make in geometry such
great discoveries, or at least in as great a number, as one can with the help of
analysis. (Cf. Diderot & d’Alembert, 1751, vol. 1, p. 551)

Analytic methods provide for a significant shortening of proof, d’Alembert thought,
and as a result they dramatically improve our ability to discover new results compared
with purely synthetic methods. That is, he seems to have thought that the discovermen-
tal complexity of theorems of geometry is lower when permitting analytic methods
than when permitting only synthetic methods, so that impurity renders proofs simpler
to find.

LikeCellucci, Carbonewants to explainwhy in practicemathematicians use impure
methods (as indicated by cuts/lemmas). Unlike Cellucci, she is particularly interested
in “how difficult it is to prove” a given proposition (cf. Carbone, 2009, p. 139). She
contends that while impure proofs (proofs with cuts) may be generally shorter than
pure proofs (cut-free proofs), proofs with cuts seem to be more difficult to discover,
because precisely which cut formulas (lemmas) are good candidates to be used is
typically not obvious. By contrast, in searching for a cut-free proof one may consider
only subformulas of the conclusion. This would suggest that the gain in simplicity
affordedby the relative shorteningof length of proof via impurity is counterbalancedby
the relative gain in difficulty of discovering impure proofs. Carbone echoes Cellucci in
noting that in practice we search for impure proofs anyway. She seizes upon Statman’s
genus measure of proof complexity, rather than proof length, in order to explain this
preference, which may seem irrational when measuring proof complexity by length.

Carbone thus poses again the question of whether impure proofs are simpler than
pure proofs, this time measuring simplicity by proof genus. Her Theorem 3 (cf. Car-
bone, 2009, p. 145) seems to be her response. As we discussed above, she shows that
for any genus n, there is a cut-free proof with that genus. In the terms of this section,
there are pure (cut-free) proofs of arbitrarily high genus. By contrast, it is presently
unknown whether this is true for impure proofs (that’s to say, for proofs with cut).
Thus her main result shows an asymmetry between purity and impurity. Discovering a
cut-free proof, i.e. pure proof, may require us to find a proof of high genus complexity.
But finding a proof with cuts, i.e. an impure proof, may not require us to find such a
complex proof. In this precise sense, it is more difficult to find a pure proof than an
impure proof. The complexity of a proof may be measured by the genus of its logical
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flow graph, and Carbone’s Theorem 3 provides evidence that pure proofs are generally
more complex, in this sense, than impure proofs.20

This evidence should be taken with caution, however. We have already objected
to the claim that discovermental complexity can be measured by Carbone’s genus
measure. We did so on the grounds that logical flow graphs are inappropriate for
measuring discovermental complexity. These objections also carry weight against
the application of Theorem 3 to the discovermental complexity of pure and impure
proof.21 Here we will add two further objections toward this applicability. Firstly, as
noted above there is at present no analogue of Theorem 3 for proofs with cut. It may be
that one can embed graphs of arbitrarily high genus inside proofs with cut as well. If so,
then the alleged gain in simplicity in moving from purity to impurity would vaporize.
Secondly, the best way to answer whether impure proofs are generally simpler than
pure proofs would be to compare the complexity of pure and impure proofs of a single
proposition. That’s to say, one should ask for a given proposition ϕ whether cut-free
proofs of ϕ are systematically less genus complex than proofs with cut of ϕ. Theorem
3 does not answer this question. It says that for a given genus n, there is a cut-free
proof with that genus. It does not say that for a given genus n and a given proposition
ϕ, there is a cut-free proof of ϕ with genus n. That’s because Carbone takes proofs as
combinatorial objects in their own right, and does not distinguish any particular node
of that object as a conclusion. Thus Theorem 3 gives no information on how proofs
of a single given proposition vary.

We turn briefly to Statman’s measure of genus complexity, which also yields a
theorem like Carbone’s Theorem 3 (namely, Proposition 3 of Chapter 1, Sect. 4,
Statman, 1974, p. 27). While there may be reasons to think that Statman’s genus
measure is better suited formeasuring discovermental complexity, the other objections
just assayed apply to Statman’s measure as well.

We thus conclude that there is not sufficient evidence for the claim of a general
pattern of genus simplicity of impure over pure proof. This coincides with the conclu-
sion for simplicity measured by proof length. The claim that impurity affords gains in
discovermental simplicity over purity, though observed by many mathematicians over
centuries, is not supported by the proof-theoretic methods currently available. It awaits
further refinement of complexity measures, for both verificational and discovermental
complexity.

5 Conclusion

Finally, wewould like to consider an objection that can be raised at any attempt to draw
conclusions about mathematical practice using proof theory. Briefly, the objection
goes, the proof formalisations that are the concern of proof theory are of distant
relevance, at best, to what mathematicians actually do when they give proofs. On the

20 In so doing, she gives evidence in favor of Thesis 2 from Arana (2017): “Impure proofs are generally
simpler to discover than pure proofs of the same statement.”
21 It should be noted that any proof without cut can be trivially extended to a proof with cut. If the final
sequent of a proof is ϕ, � � �, this can be done by adding a cut on ϕ � ϕ to the last line. The question
here concerns proofs with non-trivial uses of cut.
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contrary, this line goes, what mathematicians write should give the “inner logic” of the
proof, but not all its details. The latter are important for the validity of the proof, but
not for what Michael Harris calls “the purpose of a proof”, which is “to illuminate a
concept rather thanmerely confirm a theorem” (Gowers, 2008, p. 978). A consequence
of this objection is that the formal measures of discovermental complexity studied in
this paper are also only of distant relevance, at best, to proof discovery in actual
mathematics.

The point is sometimes made even more strongly. John Baldwin calls Tait’s maxim
the observation that “the notion of formal proof was invented to study the existence
of proofs, not methods of proof” (Baldwin, 2018, p. 281). He adds John Burgess’
observation that “For formal provability to be a good model of informal provability it
is not necessary that formal proof should be a goodmodel of informal proof” (Burgess,
2010). Yehuda Rav claims along similar lines that

The study of proofs…and the proof-theoretical study of derivations and related
problems belong respectively to different methodologies. We render therefore
unto proof theory the things which are proof theory’s, and let philosophy of
mathematics deal with the nature and function of conceptual proofs as they
occur in actual mathematical practice. (Cf. Rav, 1999, p. 12.)

Fenner Tanswell has pointed out that the existence ofmany formal proofs allegedly for-
malizing any given informal proof makes problematic the relation between formal and
informal proofs (cf. Tanswell, 2015). Lastly, Brendan Larvor has documented other
attempts in this direction (cf. Larvor, 2019, p. 2716n1,2), for instance by Bernd Buldt,
Benedikt Löwe and ThomasMüller, who write that “the completion of enthymematic,
semi-formal proofs to formal derivations almost never happens and hardly plays any
rôle in the justification that mathematicians give for their theorems”; on the con-
trary, they ask whether more informal notions of proof, like those given in blackboard
sketches, should “replace the unrealistic notion of formal derivation in our epistemol-
ogy of mathematics” (Buldt, Löwe, & Müller, 2008, p. 311). On these grounds, the
observation goes, one can conclude that the study of formal proofs (as opposed to
formal provability) is irrelevant to the study of proofs as made by mathematicians
in their ordinary work. If this is correct, the measures of proof complexity studied
in this paper would be irrelevant to actual mathematical proof, bearing only on the
simulacrum studied by proof theorists.

An instance of this alleged irrelevance concerns proof length. It is well known that
proof length depends on choices of means of expression. For instance, Mathias has
shown that the term expressing 1 in Bourbaki’s 1954 set theory has approximately 1012

characters; but in the fourth edition (using Kuratowski’s definition of ordered pairs
rather than taking them as primitive) it grows to 1054 characters (cf. Mathias, 2002,
also Potter, 2004, pp. 234–236). Simpson has stressed as well that the formalisations
of ordinary proofs in subsystems of second-order arithmetic, as studied in reverse
mathematics, are “sometimes much more complicated than the standard proof” (cf.
Simpson, 1988, p. 361). Avigad has concluded that while “length has something to do
with explaining how infinitary methods can make a proof simpler and more compre-
hensible”, the philosopher interested in the complexity of proof should focus instead
on “the perspicuity and naturality of the notions involved, and using the number of
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symbols in an uninterpreted derivation as the sole measure of complexity is unlikely
to provide useful insight” (cf. Avigad, 2003, p. 276n18).

The thrust of these lines of reasoning is to call into question the connection of the
formal results studied in this paper with the reductions of discovermental complexity
studied by Descartes, Leibniz and d’Alembert and discussed earlier. We could put the
point bluntly: no one has ever said, “proving things in primitive recursive arithmetic
is hard, but is made so much easier by working in I�1.” But the claims about discov-
ermental complexity from mathematical practice that we have seen do make claims
like this.

We take the point of this line of reasoning to be that the epistemic features of
proofs most important to mathematical practice are not captured by proof theory as it
has been done until today. Instead, the objection emphasizes, proof theory studies the
micro structure of proofs, at the level of individual inferences at logically fine levels of
granularity, even at the level of propositional logic as studied by Carbone and Statman.
The thrust of the line of argument considered so far in this section has been that this
level of granularity is irrelevant to the study of the complexity of proofs as actually
discovered and used by mathematicians.

In this section we want to defend the salience of the proof theory employed by
Carbone and Statman to actual mathematical practice. We will pursue two lines of
defense. The first will emphasize the importance of propositional logic for recent
advances in a core area of contemporarymathematics, arithmetic combinatorics, while
the secondwill argue for the continued need to attend to the complexity of “low-level”,
logical details that the objections above hold to be irrelevant to actual mathematical
practice.

Our first line of defense turns, then, to arithmetic combinatorics. This is an active
area of contemporary mathematics, indicated for instance by the FieldsMedals earned
by practitioners in the area (Roth, Bourgain, Gowers, Tao; cf. Arana, 2015, Sect. 1). An
example from arithmetic combinatorics is the Boolean Pythagorean Triples problem,
a problem for which Ronald Graham, in the style of Paul Erdős, offered a cash prize
in the 1980s to its eventual solver (cf. Lamb, 2016, p. 17). A Pythagorean triple is a
collection of three natural numbers a, b, c, such that a2 + b2 = c2. The question is
whether the natural numbers can always be partitioned into two parts such that one of
those parts contains a Pythagorean triple. For instance, we can partitions the natural
numbers into odd and even numbers. While the odd part contains no Pythagorean
triple, since an odd number squared is odd and the sum of two odd numbers is even,
the even part does, since, for example, 62 + 82 = 102 (cf. Heule & Kullmann, 2017,
p. 72). The problem can be thought of instead in terms of colorings: the problem asks
if each natural number can be colored one of two colors, say, red or blue, so that every
Pythagorean triple is multicolored (e.g. if 3 and 4 were red, 5 would have to be blue).
In this case neither partition would contain a Pythagorean triple.

MarijnHeule,OliverKullmannandVictorMarek answered theBooleanPythagorean
Triples problem by showing that for the set of natural numbers up to 7824, there exist
partitions into two parts avoiding Pythagorean triples, but for sets of natural num-
bers surpassing this threshold, at least one part of such partitions must contain a
Pythagorean triple (cf. Heule et al., 2016). They earned Graham’s prize money, more-
over, by a novel application of SAT solvers, software that implements an algorithm to
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determine whether a given formula in propositional logic is satisfiable. They did so
by expressing the Boolean Pythagorean Triples problem as a formula of propositional
logic, and then using a SAT solver to determine the threshold of 7825.

There is much that is philosophically tantalizing about this work: for instance, does
the massive search space traversed by the SAT solver and the according length of
the generated proof (taking 200 terabytes of storage) give reason to doubt what the
epistemic value of such a proof is for agents of cognitive type like us (cf. Detlefsen
& Luker, 1980; Heule & Kullmann, 2017, pp. 77–8)? Here we want only to under-
line that this work shows the relevance of propositional logic to core contemporary
mathematics, in that a long-standing open problem was solved by way of expressing
it in propositional logic. We can conclude that the sorts of propositional formulas to
which Carbone and Statman’s complexity measures apply can indeed have non-trivial
mathematical content themselves.

Our second line of defense against the irrelevance of the complexity of “low-level”,
logical details to actual mathematical practice, turns to the structure of proofs them-
selves. Proofs at any level of granularity have logical structure, even if (as for instance
Poincaré and Brouwer argue) the quality of their evidence cannot be reduced to logical
evidence, that is, the sort of evidence produced by attention to logical inference. Here

Fig. 13 Szemerédi’s proof-outline
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we may draw on what Van Bendegem calls a “proof-outline”: “A proof-outline is best
understood as a summary of a proof: it lists the essential steps without filling in the
details. It is perfectly comparable to the high-level structure of a computer program”
(cf. Bendegem, 1988, p. 252). Figure 13 depicts such an outline fromSzemerédi (1975,
p. 202), which Szemerédi calls a “flow chart” of his proof of his eponymous theorem,
by means of a planar graph.

Such outlines have logical structure, even if that structure “differs substantially from
a derivation” with all logical details presented, as Rav puts it (cf. Rav, 1999, p. 29). It
is that structure to which we can apply our graph-theoretic complexity measures.

Such structure is pervasive in informal proofs and there are standard phrases used
to signal the structure to the reader. When an author writes “the proof follows by
induction” or “…thus A or B. If A, then…If B, then…”, they are signaling informally
the inference rules to which they are appealing. These moves in informal proofs are
not analogous to the formal inference rules, but rather are examples of them, not in
the sequence calculus or in natural deduction, but in mathematical natural language.

It is unnecessary that this logical structure be fully analyzed; we are not taking the
view that proof theory only applies to fully-articulated proofs, nor even that such full
articulation is possible. It may be, as Rav says, that proofs are infinitary objects in
the sense that they can be analyzed further and further (cf. Rav, 1999, p. 15; see also
Kreisel, 1970, p. 511n22); but then the graphs of these further analyzed proofs will
only be yet more complex. But so long as a proof, or its outline, has logical structure,
our discovermental complexitymetrics can be applied to it. They are thus not irrelevant
to actual mathematical proving.
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