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Abstract

Philosophers of science have argued that epistemic diversity is an asset for the pro-
duction of scientific knowledge, guarding against the effects of biases, among other
advantages. The growing privatization of scientific research, on the contrary, has raised
important concerns for philosophers of science, especially with respect to the growing
sources of biases in research that it seems to promote. Recently, Holman and Bruner
(2017) have shown, using a modified version of Zollman (2010) social network model,
that an industrial selection bias can emerge in a scientific community, without corrupt-
ing any individual scientist, if the community is epistemically diverse. In this paper,
we examine the strength of industrial selection using a reinforcement learning model,
which simulates the process of industrial decision-making when allocating funding to
scientific projects. Contrary to Holman and Bruner’s model, in which the probability
of success of the agents when performing an action is given a priori, in our model the
industry learns about the success rate of individual scientists and updates the proba-
bility of success on each round. The results of our simulations show that even without
previous knowledge of the probability of success of an individual scientist, the indus-
try is still able to disrupt scientific consensus. In fact, the more epistemically diverse
the scientific community, the easier it is for the industry to move scientific consensus
to the opposite conclusion. Interestingly, our model also shows that having a random
funding agent seems to effectively counteract industrial selection bias. Accordingly,
we consider the random allocation of funding for research projects as a strategy to
counteract industrial selection bias, avoiding commercial exploitation of epistemically
diverse communities.
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1 Introduction

Philosophers of science have argued that diversity brings not only political benefits to
scientific communities, but also epistemic benefits. One important reason for this, the
argument goes, is that having a diversity of methodological and theoretical approaches,
as well as diverse background assumptions, allows the scientific community to filter
different biases which might remain hidden in a homogenous group. In this sense, this
epistemic diversity contributes to increasing the objectivity of the scientific knowl-
edge produced by the community as a whole (Intemann, 2009). Furthermore, this
epistemic diversity is taken to arise, at least partially, from demographic diversity,
i.e., diversity in terms of the social background-race, gender, wealth, politics, culture,
religion, etc.-of members of the community. In this sense, having a more demograph-
ically diverse scientific community is (frequently) expected to produce epistemically
diverse approaches to problem-solving (Peters, 2021, p. 33). Longino, among other,
has defended this view, claiming that a community with effective criticism, and in
particular, one with tempered equality of intellectual authority, in which members of
diverse social locations are included, is necessary for identifying idiosyncratic biases
and producing scientific knowledge:

...the greater the number of different points of view included in a given commu-
nity, the more likely it is that its scientific practice will be objective, that is, that
it will result in descriptions and explanations of natural processes that are more
reliable in the sense of less characterized by idiosyncratic subjective preferences
of community members than would otherwise be the case. (Longino, 1990, p.
80)

Accordingly, scientific institutions should welcome members of diverse demographic
backgrounds not only because the inclusion of historically marginalized individuals
from science is the right thing to do morally or politically, but also because demograph-
ically diverse groups are expected to increase the epistemic diversity in the scientific
community and thus produce better science.

Thus, philosophers of science have argued that epistemic diversity is an epistemic
asset for science (see also, Harding, 1986; Haraway, 1989; Solomon, 2001; Rolin,
2002), guarding against the effects of biases, among other advantages. The growing
privatization of scientific research, on the contrary, has raised important concerns for
philosophers of science, especially with respect to the growing sources of biases in
research that it seems to promote. Financial conflicts of interest in particular seem to
introduce biases in the research process, leading to biased results. As the latest meta-
analyses have systematically showed, industry-sponsored studies are significantly
more likely to obtain results favoring sponsors than independently-funded research
(Bekelman et al., 2003; Lexchin et al., 2003; Sismondo, 2008; Lundh et al., 2017).
Surprisingly, the same meta-analyses have also shown that industry-sponsored studies
have lower risk of bias (e.g. from blinding), and their methodological quality is at least
as good as, sometimes even better than, the quality of independent studies.

This seemingly contradictory result, tells us, among other things, that the biasing
mechanism of industrial funding is not related to scientific misconduct, i.e., industry
sponsored research is not obtaining favorable results due to plagiarism, fabrication
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or falsification of data. On the contrary, according to the latest meta-analyses, when
evaluating industry sponsored research through the available controls for research
quality, industry sponsored research turns out to be good quality research. We know
then that financial conflicts of interest do not lead systematically to scientific fraud, but
how exactly biased results enter into scientific practices is still a puzzle. Therefore, a
more detailed understanding of biasing mechanisms is needed. Recently, Holman and
Bruner (2017) have shown, using a modified version of a social network model devel-
oped by Zollman (2010), that industry funding can bias a scientific community without
corrupting any individual scientist, especially when the community is epistemically
diverse. They call this type of bias, “industrial selection bias” (Holman & Bruner,
2017, p. 1008). Their result illuminates an important mechanism through which bias
can be introduced in the scientific process, despite (and also taking advantage of) the
community’s epistemic diversity. In this way, Holman and Bruner argue against, or at
least show a limitation of, the previously presented view that diversity contributes to
expunging biases from scientific communities.

In this paper, we examine the strength of this industrial selection bias using a rein-
forcement learning model, which simulates the process of industrial decision-making
when allocating funding to scientific projects. Contrary to Holman and Bruner’s model,
where the probability of success of the agents when performing an action is given a
priori, in our model the industry learns about the success rate of individual scientists
and updates the probability of success on each round. The results of our simulations
show that even without previous knowledge of the probability of success of an individ-
ual scientist, the industry is still able to disrupt scientific consensus, i.e., the scientific
community’s convergence to the same belief. In fact, and also consistent with Hol-
man and Bruner’s results, the more epistemically diverse the scientific community,
the easier it is for the industry to move scientific consensus to the opposite conclu-
sion. Interestingly, our model also shows that having a random funding agent seems
to effectively counteract industrial selection bias. Thus, we consider the random allo-
cation of funding for research projects as a strategy to counteract industrial selection
bias, avoiding commercial exploitation of epistemically diverse communities.

The paper is divided as follows. The second section explains the problem of indus-
trial bias that has appeared with the increasing privatization of clinical research. The
third section presents Holman and Bruner’s model of industrial selection bias, in which
they explore a possible mechanism behind industrial bias. In the fourth section, we
analyze some limitations of Holman and Bruner’s model, which allow us to introduce
our own reinforcement learning model of industrial selection in section five. In section
six we explain and discuss the results of our simulations.

2 Industrial bias in clinical research

While the latest meta-analyses show that the private funding of clinical research in
fact biases research results, the mechanisms through which this industrial bias oper-
ates are less clear. Biased methodological decisions that might go unnoticed through
standard bias checks, include: (i) decisions regarding experimental design, such as
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selection of inappropriate comparators or inappropriate doses of comparators (Djul-
begovic et al., 2003), selection of poor surrogate outcomes (Bekelman et al., 2003),
inadequate double-blinding (Lundh et al., 2017), and larger study sizes (Booth et al.,
2008), (ii) decisions regarding the interpretation and presentation of results, such as
over-interpreting results and use of spin in conclusions (Boutron et al., 2010), and (iii)
decisions regarding publications, such as multiple publications of the same results, not
publishing negative results (Schott et al., 2010), and ghostwriting tactics (Sismondo,
2008); all of which have focused on individual decision-making. Accordingly, the main
explanation for industrial bias in clinical research has focused on different method-
ological decisions made by individual scientists. Less has been said regarding strategic
decisions that industrial sponsors can make to shape research results in the aggregate.

Recently, Holman and Bruner (2017) have shown that an industrial selection bias
canemerge in a scientific community without corrupting any individual scientist. Using
a version of Zollman’s social network model of scientific communication (2010), they
argue that industry favorable outcomes, such as the ones detected in meta-analyses,
can be produced, without corrupting any scientist in particular, if three conditions
are present: (1) The community is epistemically diverse, (2) there is a merit-based
structure, and (3) industry can distribute resources selectively. Accordingly, for the
industry to influence scientific results and consensus, it does not need to influence
directly the methodological decisions of any individual scientist, but just select and
fund those scientists who already have industry-friendly views.

The phenomenon of industrial selection bias is extremely worrisome, given that it
seems to extirpate any responsibility from scientific agents and relocates the moral
responsibility in industrial decision making. Thus, it is important to understand the
scope of and the mechanisms operating behind such phenomenon. In other words, if
industrial selection bias can account for the industry bias that meta-analyses detect,
even partially, this finding can have important repercussions for our understanding of
privately funded research as well as for how to address industry bias.

Moreover, given that we cannot measure industry bias directly, (for example by
asking pharmaceutical companies for their strategies to produce favorable research),
and that the available evidence either is just unable to detect biasing mechanisms
(RCTs) or is too specific to make reliable generalizations (case-by-case analyses), we
consider that simulations, such as Holman and Bruner’s, are an important tool here
[despite their shortcomings (Martini & Fernandez Pinto, 2016)], precisely because
empirical research has important limitations for uncovering these mechanisms. The
models also help us to explore the impact of possible countering measures before
implementing them, and although they cannot predict in detail what will happen in
real case scenarios, they can give us good reasons to choose the implementation of
some counteracting measures over others.

3 Industrial selection bias using social networks
Based on a previous computer simulation model of the structure of communication in

scientific communities based on social networks (Zollman, 2010), Holman and Bruner
(2017) have developed a similar model to simulate industrial selection bias. They aim to
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show that industrial selection can be the primary operating mechanism through which
the industry influences the results of scientific research, without compromising the
integrity of any individual scientist. In other words, scientists may not be intentionally
producing industry-friendly science.

Zollman’s model is based in turn on an economic model (Bala & Goyal, 1998) on
bandit problems and social networks. Individual agents have to decide between two
actions (A and B), each with certain probability of success (p4 and pp). Individuals
perform the action they consider more likely to be successful, and then they update
their beliefs according both to the results of their action and the results of the actions
of other agents in their social network. Altering the structure of the agent’s social
network, i.e., the number of agents she has contact with, allows to model different
patterns of information sharing in a scientific community. In this way, Zollman aims
to show which is the optimal way of sharing information within scientific communities
(networks), and in particular how much sharing is optimal.

Holman and Bruner (2017) use Zollman’s social network model to explore a differ-
ent problem, i.e., the effects of industry funding on scientific research. They motivate
their model through the example of industrial funding of antiarrhythmic drugs research.
Given that arrhythmias frequently lead to heart attacks, it was (wrongly) thought by
some researchers that suppressing arrhythmias would help prevent heart attacks, while
other researchers remained skeptical of this causal hypothesis (Holman & Bruner,
2017, p. 1010). While none of these researchers conducted ethically questionable
research, it was easy for the industry, as Holman and Bruner explain, to decide to fund
those researchers who were more likely to develop marketable medication. When
results on the dangers of antiarrhythmic drugs surfaced, it was already late for thou-
sands of patients whose lives were lost after pharmaceutical companies made such
medication available (for more details, see Holman & Bruner, 2017, pp. 1010—1012).1

In order to simulate the industry’s selection of friendly research, Holman and Bruner
introduce three changes to the original model. First, in the new model not all researchers
are equally productive, second, researchers have different probability of success when
performing the same action, and third, the model incorporates an entry/exit dynamic,
which simulates scientists entering and leaving their academic communities (2017, p.
1013).

Let us turn our attention to the second feature of the model. Given that different
scientists might be using different methodologies to test a hypothesis, e.g., when testing
hypothesis A, their probability of confirming A might differ when performing the same
action to test A. The success rate, where success is understood as confirming A, of an

1 Another infamous example how the industry might support favorable research without corrupting indi-
vidual scientist is the tobacco industry’s financial support of research on the genetic causes of cancer
(Proctor, 2011) More generally, methodological biases can indeed be independent from researchers’ skills
and integrity. For example, research on a catalysis reaction, “a protocol for Suzuki—Miyaura type cross-
coupling reactions in the presence of an iron salt,” was later retracted due to other research groups’ inability
to replicate the findings. As in many other cases of research on catalysts, in turned out that the original
results were due to the quality of the reagent used. This particular reagent had minuscule traces of metal
impurities which were initially undetected by the researchers, but which turned out to be crucial for the
resulting chemical reaction (Thomé et al., 2012). As this case reveals, the researchers were introducing a
methodological bias in their study (stemming from their chemical supplier), which was in no way due to
unethical conduct or lack of skill on their part.
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individual 7, when performing an experiment to test hypothesis A ( pg) is determined
by a draw from a normal distribution centered at p with variance 2. Accordingly,
pi‘ accounts for a methodological bias that the individual scientist i introduces when
researching.

This methodological bias is an important feature of the model, given that it is here
where we can find the epistemic diversity of the community. Different individual
scientists or research groups will have different ways of conducting research. This
might be due to their particular background assumptions, education, methodological
strengths, available equipment, and so forth. In this sense, the higher the variance
on the distribution of the probability of success, the more epistemically diverse the
community is.> Notice also that the probability of success reflects whether the method-
ological approach is truth-conducive, but scientists cannot know this a priori. They
simply conduct their research as they consider best, and some of them, as it turns
out, are making more successful decisions in this respect than others. In this sense,
scientists might be conducting research using a mistaken methodological approach,
without being corrupt.

The industry establishes an apparent efficacy threshold 7', according to its desired
outcomes, and decides to fund an individual scientists i, if her methodological bias
( pi‘) is above T, or in other words, if the scientist’s methodology is more likely to
obtain the desired industry-friendly outcomes. Agents who receive industry funding,
increase their productivity by F'. In this way, researchers who endorse a methodology
that produces industry-friendly results receive industry funding and increase their
productivity. On the contrary, researchers who do not endorse methodologies that
lead to industry-friendly results, do not receive funding from the industry, and their
productivity does not increase.

After running simulations with epistemic communities of 20 agents, Holman and
Bruner find that industry funding quickly moves the community away from consensus
towards the truth (or in Holman and Bruner’s terms, consensus towards “the superior
act”), e.g., the successful treatment, even with low values of F and T (see Fig. 1).

They conclude that, when there is enough methodological diversity, the industry
can effectively manipulate the community away from the successful action through
industrial selection. Furthermore, they also show that funding from an independent
agency, such as the NSF, based on a meritocratic policy not only fails to counteract
industrial selection bias, but actually makes it stronger. Given that industry funded

2 Notice that Zollman (2010) interprets diversity differently. First, he calls it “cognitive diversity” instead
of “epistemic diversity,” although we think these terms are interchangeable in this context. Second, and
more substantially, Zollman distinguishes between two ways of introducing diversity in his network model:
“by limiting information or by endowing the scientists with extreme beliefs” (p. 17), and he concludes that
if both of them are present, cognitive diversity remains indefinitely as a feature of the networks, so that they
fail to converge to the truth. In this sense, he claims that diversity per se is not a desirable feature of scientific
communities, but transient diversity is. Zollman’s interesting analysis of the role of diversity in scientific
communities is in fact different from ours. In particular, we follow Holman and Bruner, in whose model
diversity is featured through increasing variance. Whether this understanding of diversity is interpreted in
terms of background assumptions, methodologies, or other features, is something completely open. We
have decided to interpret it as methodological diversity, following Holman and Bruner, whose model is our
main interest, but we could have introduced another interpretation. The important thing here is that they
are numerically the same thing. We thank one anonymous reviewer for highlighting the importance of this
point to us.
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Fig. 1 Proportion of individuals performing the superior act as a function of the variance of the normal
distribution that initially sets the methodological biases of agents in the community. Simulations are of
20-person epistemic communities, p4 = 0.5, pp = 045, T = 0.03, F = 0 (top), F = 20 (middle),
F = 100 (bottom) (Holman & Bruner, 2017, p. 1014)

scientists are more productive, an independent agency looking at productivity to allo-
cate funds meritocratically, will end up favoring researchers who have already been
selected by the industry due to their methodological bias.?

4 The limits of the model

In Holman and Bruner’s model, the industry is given in advance the probability of
success of each individual scientist when performing an action ( pi‘), and then makes
funding decisions according to this probability and the industry threshold 7. We con-
sider this to be an important weakness in the initial assumptions of the model. To begin,
it is impossible for any agent to acquire this kind of information in real life.* Not even
an individual scientist knows her probability of success when starting an experiment,
and the probability of success of one experiment is independent from the success of
previous experiments, so it cannot be inferred from previous information. Even if one
tries to infer the success rate from previous results, such statistical inference would
render variable results with certain probable error (just like loaded dice). In fact, if

3 Holman and Bruner also run simulations for an independent agent who follows a “selective policy,”
according to which industry-funded projects are not taken into account when evaluating the productivity of
anindividual scientist. Following this selective policy does help to counter the industry’s biasing mechanism.
However, Holman and Bruner do not explain how the independent agent is capable of identifying which
research has industry funding in order to exclude it. In their model, this information is just given to the
independent agent in advance. But in a world in which the majority of scientific research is both funded
and performed in the private sector (NSB, 2020) and in which disclosures of financial conflicts of interests
are seriously flawed (de Melo-Martin & Intemann, 2009), one should wonder how an independent funding
agent can accurately collect such information.

4 Unless of course we are considering cases of fraud in which experiments are manipulated to render certain
results. However, as we explained in the introduction, we are not interested here in such cases.
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one admits there are previous results, then there is already a consensus forming within
the scientific community. In this sense, discussions within the scientific community
are already in progress at any point in which the industry decides to fund a particular
scientist. However, the model does not capture this fact, it just assigns different prob-
abilities of success to different scientists as if discussions on a research topic were
at a starting point. Assuming that the industry knows the probability of success of
individual scientists seems thus an ungranted idealization of the model.

Second, it seems plausible to think that the idealization is driving the industrial
selection bias that results from Holman and Bruner’s simulations. If the industry has
a priori knowledge of the success rates of individual scientists, of course it can easily
fund scientists to move the community away from the superior action, for it already
knows in advance how successful each of its industry-sponsored scientists will be.
However, this is not what actually happens with research funding schemes, where
neither sponsors nor scientists really know how successful a particular experiment
will be.

What if the industry is not given the success rate of individual scientists, but instead
has to make funding decisions and learn about individual scientists’ success as it goes?
What would be the optimal policy for the industry to allocate funding in this case?
And more importantly, would industrial selection bias emerge so easily if the industry
does not have a priori knowledge of the probability of success of individual scientists?
In order to answer these questions, we propose a new model of industrial selection
based on reinforcement learning.

5 Industrial selection in reinforcement learning

In order to simulate funding agents that do not have a priori knowledge of the prob-
ability of success of individual scientists, but instead learn about scientists’ success
rate from their decision-making process, we decided to complement Zollman’s social
network model with a reinforcement learning (RL) model. RL models are particularly
well-suited for our purposes because they help simulate goal-directed interactions of
an agent with the environment. They have been successfully used to model games
such as Go and Jeopardy, self-driving cars, drones, etc. The agent learns through a
trial and error search, making decisions and updating their expected rewards as they
go. All RL models have an exploration/exploitation trade-off, which means that they
have to balance how much terrain they explore and how much they exploit. The more
they explore, the less they exploit and vice versa. Sutton and Barto describe the main
rationale behind RL models as follows:

...the basic idea is simply to capture the most important aspects of the real
problem facing a learning agent interacting over time with its environment to
achieve a goal. Clearly, such an agent must be able to sense the state of the
environment to some extent and must be able to take actions that affect the state.
The agent also must have a goal or goals relating to the state of the environment.
The formulation is intended to include just these three aspects- sensation, action,
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and goal-in their simplest possible forms without trivializing any of them. (Sutton
& Barto, 2014, p. 4)

RL problems are formally described as Markov decision processes (MDPs), which
help model time-discrete stochastic processes where outcomes have certain probability
of success given an agent’s decision. An MDP =< S, A, P, R >, where S is a
set of states, A is a set of actions, P is a set of transition probabilities, and R is a
set of expected immediate rewards. Most solution methods for MDPs are based on
Bellman’s optimality equation. For the purposes of this simulation, we used a type of
RL model called a Q-learning model, i.e., a model-free learning technique used to find
the optimal action or selection policy using a Q-function (Heidrich-Meisnerr et al.,
2007). Also, Q-learning models are set to converge, which is an optimal feature given
the problem at hand. In Q-learning, P and R are unknown, MDP =< s,a,r,s’ >,
and the solution is found through the Q-learning algorithm:

0(s.a) < QGs.a) +a(r + max Q(s".a') — Q(s. o)

The goal of the model is to construct a table with reward values for all s and a
values, such that the action with the highest cumulative reward can be chosen at any
given time. We use a Q (s, a) to update all table values, as new information about the
s and a is gathered. In this case, s has values in the range [0,100) while a can either be
0 (not fund) or 1 (fund). The table contains rewards for all combinations of scientists
and actions. In other words, we want to know what is the best selection policy for a
funding agent to maximize its reward, without knowing in advance the probability of
success of independent scientists.’

Our aim is to model the behavior of funding agencies. Accordingly, we define two
types of agent: an industry agent that has a certain commercial bias, i.e., favors policies
that maximize their commercial profits, and a random agent with no bias, i.e., which
does not favor any particular policy, and thus does not “learn” how to maximize her
interests. Agents have to choose between two actions, i.e., to fund or not to fund a
particular scientist. Notice that the agents in our RL model are the funding agencies
and not the individual scientists, scientists could be better understood as pieces on
the board of a game, who are moved by agents in their decision-making process. If
scientists get funding, then they conduct research to confirm a hypothesis A, with
some probability of success pg. As Holman and Bruner (2017), we assume that A is
true, and —A is favorable to the industry.6

Now, our RL model works in tandem with a social network model. In particular,
we use the social network model for the updating of scientists’ beliefs according to

5 The code for our simulation model can be found at: https://github.com/danielfppps/
epistemic_diversity_RL.

6 In this sense, our model has the underlying assumption that scientists can be better or worse at capturing
what is true of the phenomena, and the probability of success is inclined towards what we set as true. We
understand this is a big assumption in our model, and it is important to notice that while our model does
try to represent more accurate conditions than Holman and Bruner’s model, at least in so far as the industry
does not know in advance the probability of success of each scientist, we are in no way close to representing
the complexity of real scientific practice. We can only reiterate that our simulations can uncover potential
mechanisms used by industrial agents to bias science in their favor.
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research results after each round.” In our RL model, the industry agent constructs a
table where it holds a reward value for funding or not funding each scientist. The
evaluation of each scientist is a “state” of the Q-learning model, a simulation with
100 scientists is in effect treated as a Q-learning problem with 100 states, where two
actions are possible per state. This table is updated using the Q-learning equation as
new information for that scientist’s experimental output is recorded after each round.
If a scientist conducts research that favors the industry’s desired conclusion, then the
industry agent becomes more likely to fund this scientist in the future. If it reaches an
unfavorable conclusion for the industry, then funding for this scientist is less likely. The
industry agent only updates its believes for scientists that it has funded. If a scientist
has not received funding, then the industry agent does not learn anything from it during
that round.

We give the following initial parameters to the model. We create 100 scientists,
each assigned a value pi‘ drawn randomly from a normal distribution with mean 0.55
and certain standard deviation, which accounts for the methodological bias driver.
We ran simulations for 400 cycles. As for the parameters of the agents, we give
them an o = 1.05 (forgetting factor), y = 0.5 (discount factor) with an exploration
probability of 0.5 (i.e., half the time the agents make a random choice). We chose these
parameters for the scientists to achieve the optimal policy in a reasonable number of
cycles. Although the alpha and gamma factor values do not seem to affect the model
beyond the time to converge, a more robust exploration of their effect is an interesting
topic for future work. Each agent is also able to fund as many scientist as they like for
every cycle of the game (economic power =number of scientists).

The apparently large value of the exploration probability is necessary for efficient
learning. This is because of the limits of statistical inference over small sample sizes.
If a scientist appears to be favorable to industry within the first few cycles and the
industry agent does not explore, it will effectively overcommit to this scientist, while
failing to commit to scientists that might be better long term choices. Thus, industry
agents need to allow some randomness in order to effectively exploit the scientific
community. An industry agent that does not allow for randomness and starts with no a
priori knowledge of scientists’ probabilities of success will fail to exploit the scientific
community.

Each scientist also starts the simulation with two parameters, a and b, both drawn
randomly from values between 0 and 1000. These represent their initial belief in either
hypothesis. These values are updated at the end of each round for all scientists, adding
1 to a for every scientist that performed research that concluded A and adding 1 to b
for every scientist that concluded —A. The belief for each and all scientists at the end
of each round is calculated using the mode of a beta distribution®:

p=100x (a+ An—1)/(a+ b +nt —2),

7 In this sense, the RL model can be understood as a complement or an addition to the social network
model.

8 The mean of a beta distribution can be abnormally skewed away from the mode due to the potentially
large contribution of outliers in this type of distribution. The mode gives us a view that is more focused on
the view of the majority, rather than the mean of all views. We therefore believe that the mode would be
more representative of what would establish the belief of a scientist.
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Fig.2 Flowchart representing the coding of the simulation

where An is the number of funded scientists that favored A that round and nt is the
total number of scientists that were funded in that cycle. If p > 50 then a scientist
will believe in A while if p <= 50 then the scientist will believe in —A. However,
the value of p% for each scientist, the methodological bias driver, remains unaffected
through the entire simulation. The entire simulation process is also described in Fig. 2

6 Simulation results and discussion

We ran simulations for an industry agent, for a random agent, and for a combination
of an industry agent and a random agent together. As becomes clear in Fig. 3, when
the industry agent is the only funding source, scientists rapidly move away from the
correct hypothesis A, and converge in the inferior, but industry-friendly outcome —A.
On the other hand, when the random agent is the only source of funding, scientists
are more successful at confirming the correct hypothesis, although the percentage of
scientists finding the correct result decreases as they become more methodologically
diverse (which is expected).

@ Springer



182 Page120f18 Synthese (2023) 201:182

140 .- l R I | HE - I U I Ll Ll 1.1 l Ll L1 1
E —e— Random Agent F
120 -e— Industry Agent -
4 | —— Industry Agent + Random Agent -
100 5 u
80 L
- '\ -
] \ r
60 1 r
- \\‘ =
2 r
40 —| \ -
20 =
0 oo r

L T T T T T T T T T T l T T T T I T T T T T

0 0.05 0.1 0.15 0.2

Standard Deviation

Fig.3 Percentage of scientists preferring the correct hypothesis A with industry funding, random funding,
and a combination of industry and random funding

When both industrial and random agents are funding research, we found that the
random agent delays industrial selection bias, so that scientists need to be more method-
ologically diverse in order for the industry to pull the consensus towards the incorrect
hypothesis —A. We can see industrial selection bias more clearly in Figs. 4, 5, and 6
, which show the percentage of agents preferring A given only random funding, both
random and industry funding, and only industry funding respectively, in 400 cycles.

In a similar vein to Holman and Bruner’s results, and contrary to our initial expec-
tations, our Q-learning model shows that even without previous knowledge of pi‘ the
industry is able to effectively disrupt scientific consensus. In fact, with high variance,
the industry can even move scientific consensus to the opposite conclusion, as Fig. 6
shows. This is also consistent with Holman and Bruner’s earlier model, where the
power of the industry to influence scientific consensus turned out to be dependent
on the methodological diversity of the community: “Accordingly, as methodological
diversity increases, the community is less likely to converge on the superior act” (Hol-
man & Bruner, 2017, p. 1015). This is an important and somewhat unexpected result,
given that methodological diversity has been strongly supported as a mechanism for
countering bias in science (see e.g., Longino, 2002; Solomon, 2001). Without reject-
ing the arguments in favor of increasing diversity in scientific research, we consider
that both models of industrial selection bias suggest that diversity can be co-opted in
favor of commercial interests and this is a problem that should not be overlooked. In
other words, we are not arguing that diversity isn’t good for scientific communities,
but rather that diversity can be co-opted as a strategy to favor partisan interests (see
also, Fernandez Pinto, 2018).

In their social network model, Holman and Bruner also examine the possibility of
countering industrial selection bias through the influence of independent sources of
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Random Agent Only (std=0.075)

0 S0 100 150 200 250 300 350 400
Number of cycles
Fig. 4 Percentage of scientists preferring A, when funded exclusively by a random agent. Each curve in

the image represents a 400 cycle simulation. In all simulations, all scientists believe in hypothesis A at the
end of the simulation

Random and Industry Agents (std=0.075)

Percentage of scientists preferring A (%)

50 100 150 200 250 300 350 400
Number of cycles
Fig. 5 Percentage of scientists preferring A, when funded by random and industry agents. Each curve in

the image represents a 400 cycle simulation. It takes longer on average for scientists to reach full consensus
on A, and in some simulations this does not happen at all
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Industry Agent Only (std=0.075)
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Fig.6 Percentage of scientists preferring A, when funded exclusively by an industry agent. Each curve in
the image represents a 400 cycle simulation. In many cases, the industry agent is able to completely prevent
consensus on A

funding, such as the National Science Foundation, which allocate funding on a merit-
based system. The initial rationale is that independent sources will favor scientific
research on a meritocratic system and not on future commercial gain, helping to
counteract industry bias. Holman and Bruner found, however, that independent funding
might actually compromise the community further, given that independent agencies
would end up “disproportionately funding individuals with industry-favorable biases”
(2017, p. 1017). The reason is that industry-friendly researchers would become in
general more productive because they have more research resources, obtaining higher
evaluations on a merit-based system. So, in general, independent funding agencies
working with a meritocratic system will not help counteract industrial selection bias.

In our simulation we did not contrast industry funding with a merit-based system,
but instead we implemented an agent who funds research projects randomly. As Fig. 3
shows, having a random funding agent seems to effectively counteract industrial selec-
tion. In particular, having a random allocation of funding seems to obstruct industrial
selection, so that more methodological diversity is needed for industry funding to move
consensus towards the opposite conclusion. Our results suggest then that a random
allocation of funding, even a partial one, might be a much better strategy to counteract
industrial selection bias than using independent funding agencies based on a merito-
cratic system. Although this suggestion might be controversial to some, it is coherent
with recent research results in social epistemology and the social economy of science,
showing the advantages of a random allocation of research funding, in particular as a
way of counteracting bias and discrimination in science (see e.g., Avin, 2018; Fang
& Casadevall, 2016; Gross & Bergstrom, 2019; Roumbanis, 2019). We consider our
simulation results one more piece of evidence in favor of such policies.
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In sum, the privatization of scientific research has introduced new challenges to the
epistemic goals of science. In particular, Holman and Bruner (2017) have identified
industrial selection as a mechanism through which the private industry can influence
scientific results without corrupting any individual scientists. They have also shown
that this mechanism is more successful, the more methodologically diverse the scien-
tific community is. In this sense, Holman and Bruner’s argument shows an important
limitation of the assumed benefits of methodological diversity in scientific commu-
nities that many philosophers of science have emphasized (see e.g., Haraway, 1989;
Harding, 1986; Longino, 1990; Rolin, 2002; Solomon, 2001). Given industrial selec-
tion, the benefits of diversity need to be qualified. In particular, the extent to which
diversity can be used to the advantage of private and commercial interests needs to be
better understood in order to counteract such a manipulation and misuse of diversity
efforts in science. In addition, Holman and Bruner (2017) also show that meritocratic
systems of resource allocation do not seem to counteract industrial selection, but
instead they even contribute to its success. Although we do not explore a meritocratic
system, our results show that perhaps a system of random resource allocation would
be worth exploring as a mechanism for countering industrial selection in science.

Before the concluding remarks, let us say a little more about the random allocation
of funding and what it entails. Of course, many have defended a meritocratic system
of resource allocation as the best way of counteracting biases and discrimination in
scientific research. Holman and Bruner’s results together with the results presented
in this paper show that this might not be the best way to proceed. The biases that
the private industry has been introducing in the development of scientific research in
past decades are much more subtle and difficult to identify than what a meritocratic
evaluations allows, as recent meta-analysis have clearly shown (see e.g., Lundh et al.,
2017). Accordingly, the random allocation of funding emerges as a strategy worth
exploring to help to counteract such biases. As Neurath reminds us, understanding the
limits of rational insight is key in the process of decision-making, for those who do
not recognize the limits of their own thinking and pretend they can always appeal to
reason for action, may fall into a sort of pseudorationalism:

Most of our contemporaries rely on their insight and want to leave the decision in
all things to it once and for all. Their starting-point is the view that given enough
thought one could at least determine which manner of action has the greater
probability of being successful, should certainty be impossible (...) The pseu-
dorationalists do true rationalism a disservice if they pretend to have adequate
insight exactly where strict rationalism excludes it on purely logical grounds.
(Neurath, 1913, pp. 7-8)

Precisely in cases in which rational insight cannot render the desired results, the
drawing of lots becomes the best available option: “If a man is no longer able to
decide on the basis of insight which of several actions to prefer, he can draw lots...”
(Neurath, 1913, p. 4). In a similar way, given the limits that we find in the rational
allocation of research funding due to industrial selection, perhaps we should consider
the drawing of lots, i.e., the random allocation of research funding, as a better option.

It is not our purpose here to defend a particular scheme for random allocation for
which there are already a number of initiatives in place (see e.g., Avin, 2018; Fang &
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Casadevall, 2016; Gross & Bergstrom, 2019; Roumbanis, 2019), but to suggest, fol-
lowing our simulation results, that it could be worth exploring as a funding strategy.
It is important to clarify, however, that most strategies to allocate research funding
randomly, include a two-stage process in which only the proposals that pass an initial
quality filter are then added to a lottery during a second stage. In this way, the lottery
system does not mean that any research proposal can get funding, but that the winners
are picked from a group whose good quality and feasibility has already been estab-
lished. As expected, strategies to fund research randomly have also faced important
critiques (see e.g., Bedessem, 2020).

A couple of caveats. First, notice that our suggestion of exploring random allocation
as a funding strategy for research takes as given the private and commercial framework
of scientific organization today. If commercial interests were not a part of scientific
research, perhaps a meritocratic system would work better. Second, we must emphasize
that while our modeling results point to a random allocation of funding as a promising,
or at least worth-exploring, alternative, further modeling, especially one that simulates
the problematic factors of random allocation is needed as well, before making any
commitments to this funding strategy.

7 Conclusions

The main purpose of this paper was to examine the strength of industrial selection
using a reinforcement learning model. While industrial selection has already been
examined by Holman and Bruner (2017), we consider their model to have an important
limitation in so far as the industry is given a priori the probability of success when
performing an action for each scientist, which constitutes much more information
than what is reasonable to expect in real life. Accordingly, in our model the industry
learns about the success rate of individual scientists and updates the probability of
success on each round. The results of our simulations show that even without previous
knowledge of the probability of success of an individual scientist, the industry is
still able to disrupt scientific consensus. In this sense, our model corroborates what
Holman and Bruner (2017) found in their simulation results. In a similar vein, we
found that the more epistemically diverse the scientific community, the easier it is for
the industry to move scientific consensus to the opposite conclusion. Interestingly,
our model also shows that having an agent who allocates funds randomly seems
to effectively counteract industrial selection bias. Thus, we suggest that the random
allocation of funding for research projects would be worth examining as a strategy to
counteract industrial selection bias, avoiding commercial exploitation of epistemically
diverse communities.

Finally, further exploration of the parameters of our Q-learning model is still
needed. As with any simulation model, we had to decide to stop the exploration at
some point and collect our findings, but we acknowledge that much more is yet to be
done.
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