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Abstract
Definite descriptions arewidely discussed in linguistics and formal semantics, but their
formal treatment in logic is surprisingly modest. In this article we present a sound,
complete, and cut-free tableau calculusTCRλ for the logicLRλ being a formalisation of
a Russell-style theory of definite descriptions with the iota-operator used to construct
definite descriptions, the lambda-operator forming predicate-abstracts, and definite
descriptions as genuine terms with a restricted right of residence. We show that in this
setting we are able to overcome problems typical of Russell’s original theory, such
as scoping difficulties or undesired inconsistencies. We prove the Craig interpolation
property for the proposed theory, which, through the Beth definability property, allows
us to check whether an individual constant from a signature has a definite description-
counterpart under a given theory.

Keywords Definite descriptions · Lambda-abstraction · Analytic tableaux ·
Completeness · Craig interpolation

1 Introduction

In natural languages naming expressions are used not only, and even not always, to
refer to objects. They are also important information-conveying ingredients of every
discourse.Oneof themost important class of such expressions aredefinite descriptions,
expressions of the form ‘the so and so’, such as ‘the author of «OnDenoting»’. Definite
descriptions are ubiquitous not only in natural languages but also in mathematics and
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science (‘The sum of 7 and 5’). In artificial languages it is the iota-operator, ι, due to
Peano, that is usually applied to formalise definite descriptions: ‘the F’ is represented
formally as ιxF .

The investigation of definite descriptions since Russell’s paper “On Denot-
ing” (1905) occupies a central place in logical, semantical, and linguistic research
and many deep and detailed studies have been carried out ever since. The second half
of the 20th century saw the development of new approaches to this phenomenon based
on non-classical logics, in particular free logic in which, contrary to Frege’s and Rus-
sell’s assumptions, characteristic for classical logic, it is not assumed that every term
refers. Such solutions found a place in the application to intensional logics where the
distinctions between terms which denote existent or non-existent objects, in a rigid or
non-rigid way, or simply are non-denoting, are crucial. Yet despite the long history of
research into definite descriptions and a variety of solutions to the problems they pose,
we can hardly say that any theory of definite descriptions is obvious or commonly
accepted. In some approaches definite descriptions are not even treated as naming
expressions, but rather as binary quantifiers (Neale, 1990; Kürbis, 2019a, 2021a) or
predicative expressions (Graff, 2001).

In modern approaches, the category of singular terms is usually limited to proper
names and functional expressions formed from the former. As a consequence, proof-
theoretic tools are badly prepared to deal with reasoning tasks in natural languages,
where subsentential parts, including several complex naming expressions, play a priv-
ileged role. The inclusion of a wider category of terms was characteristic for the
earlier stage of the development of mathematical logic in the works of Frege (1893),
Hilbert andBernays (1968), Bernays (1958), Carnap (1947), Quine (1982), andRosser
(1978). Later, the restriction to functional terms became a norm, especially in auto-
mated deduction. In particular, definite descriptions, despite their importance in logic
and formal semantics, are largely ignored. Possibly, the fact that modern treatments of
theories are limited to functional terms is related to the fact that several non-equivalent
theories of definite descriptions are on the market and it is not always evident which
of them is fit for purpose.

Since the role of definite descriptions in the field of proof theory and automated
deduction has so far been underestimated, it is important to stress some advantages
that using them may bring. First of all, definite descriptions are more expressive than
functional terms: f n(t1, . . . , tn) can be represented as ιxFn(t1, . . . , tn, x). Getting rid
of functional terms by means of definite description is also in the spirit of Russell,
who, for philosophical reasons, did not introduce the former to his logic. On the other
hand, not every (proper) description can be expressed using functional terms. Consider
descriptions like ‘thewinner of the ultimate fight’, ‘the bearwe have seen recently’. It is
not at all clear which parts of these expressions could be treated as functors and which
as arguments. Moreover, in the case of using definite descriptions instead of functional
terms we do not need extra bridge principles showing how the information encoded
by the latter is represented by predicates (e.g., f (x) = y ↔ F(x, y)). In languages
with functional terms such bridge principles are usually necessary as enthymematic
premises in an analysis of obviously valid arguments. If we use definite descriptions,
such bridge principles become superfluous. Moreover, the presence of functions in
formal languages often easily leads to generating infinite Herbrand domains even
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when finite domains are allowed. Let us illustrate this with a simple example. From
∀x(a = f (x)) we infer a = f (a), a = f ( f (a)), a = f ( f ( f (a))), . . . On the other
hand, from the corresponding ∀x(a = ιyF(x, y)) we can obtain a single-element
model satisfying a = a, F(a, a), e.g., by means of tableau rules proposed by Indrze-
jczak and Zawidzki (2021). Additionally, definite descriptions can be used to provide
smooth definitions of new terms, and even new operators, in formal languages. For
example, one may define the abstraction operator in set theory in an elegant way (Ten-
nant, 2004). Finally, it is also noteworthy that definite descriptions have recently found
applications in other areas such as verification of hybrid systems (Bohrer et al., 2019),
formal ontology (Oppenheimer & Zalta, 2011; Blumson, 2020), or knowledge repre-
sentation (Artale et al., 2021).

These virtues of definite descriptions have not hitherto been thoroughly examined
mainly because of a lack of good formal systems expressing their theories. An enor-
mous number of books and papers have been devoted to offering solutions to logical
and linguistic problems connected with definite descriptions, but the number of for-
mal systems and their studies is relatively modest. Moreover, most approaches to the
formalisation of theories of definite descriptions follow the axiomatic approach. Only
comparatively few natural deduction (ND), tableau systems, or sequent calculi (SC)
have been formulated. One may mention here ND systems of: Kalish and Montague
(1957), Kalish et al. (1980), Stenlund (1973, 1975), Tennant (1978, 2004), Garson
(2006), Carlström (2005), Francez andWięckowski (2014), andKürbis (2019a, b). But
only a few of them (namely Tennant’s and Kürbis’ works) deal with definite descrip-
tions by means of rules which allow for finer proof analysis and provide normalisation
proofs. SC systems were proposed by Czermak (1974), Gratzl (2015), Orlandelli
(2021), Kürbis (2021a, b, c), and Indrzejczak (2018, 2019, 2020a, b, 2021b). There
are also a few tableau calculi, due to Bencivenga et al. (1986), Gumb (2001), Bostock
(1997), Fitting and Mendelsohn (1998), and Indrzejczak and Zawidzki (2021). How-
ever, with the exception of the last one, these systems introduce definite descriptions
by means of rather complex rules, which makes them quite difficult to maneuver.

Given the importance of definite descriptions in formal semantics and of deductive
systems such as natural deduction and sequent or tableau calculi in formal logic, it is
rather surprising that so little attention has been paid to what each can contribute to
the other. In this paper we focus on the problem of decent formalisation of Russell’s
approach to definite descriptions which initiated the whole line of research in formal
logic. However, the semantics and syntactical formalisation we offer departs from
the original one, which helps us avoid some recognised drawbacks of the latter while
saving its essential features, and enables its application to automated deduction.

In Sect. 2 we briefly characterise the Russellian approach to definite descriptions,
then, in Sect. 3, we explain in what way the introduction of predicate-abstracts can help
in avoiding some of the known pitfalls of Russell’s original account. Section4 intro-
duces the syntax and semantics of the considered logic, whereas in Sect. 5 we present
a suitable cut-free tableau calculus. Soundness and completeness of the calculus is
proved in Sect. 6. Section7 contains a proof of the interpolation theorem and shows
how, through the Beth definability property, it can be checked whether an individual
constant from a given signature can be replaced by an appropriate definite description
under a considered theory. The paper is briefly concluded in Sect. 8.
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2 The Russellian approach to definite descriptions

Almost 120 years have passed since Bertrand Russell published his groundbreaking
article “On denoting” (1905). It deals with many semantical questions of a general
character, but it became famous mainly for the considerations on the problem of defi-
nite descriptions. Russell’s work stands, with the works of Frege, at the beginning of
the development ofmodernmathematical logic, and his theory of definite descriptions,
presented first in the cited paper and elaborated in “Principia Mathematica” (White-
head & Russell, 1910) and in Russell’s later work (1920), plays a central role in
the foundations of logic and formal semantics. Although Russell’s theory of definite
descriptions was not the first one (pride of place for the first formalisation of definite
descriptions in logic belongs to Frege (1893, § 11, § 18)), it gave an enormous impact
on all further studies in this area. Despite of its weak and controversial points, widely
criticised (see, e.g., Strawson (1950), Donnellan (1966), Kripke (1977)), Russell’s
theory has become a standard point of reference of almost all works devoted to the
analysis of definite descriptions, even those which are very critical towards its applica-
bility to definite descriptions in natural language (see, e.g., Ludlow (2021)).Moreover,
it is still widely accepted by formal logicians as a proper way of handling descriptions;
the scores of textbooks that use it as their official theory of definite descriptions count
as witnesses for this claim. Russell’s theory has also strong affinities to logics closely
connected with applications in constructive mathematics and computer science like
the logic of the existence predicate by Scott (1979) or the logic of partial terms by
Beeson (1985), also called the basic system of definedness logics. The latter is treated
as a wider family of systems specialised to deal with partial untyped combinatorics
and lambda calculi (Feferman, 1995).

Russell was prompted by reflections on improper definite descriptions: what do
sentences like ‘The present King of France is bald’ mean? His approach to definite
descriptions (shortly RDD) was developed in opposition to Meinong’s and Frege’s
views. Both Frege and Russell assumed that terms must denote but reacted in different
ways to the failure of denotation (the phenomenon of improper descriptions). Frege
considered four different attempts, analysed by Pelletier and Linsky (2009), and in
general he urged that all definite descriptions must have designates, even if they are
to be arbitrary. On the other hand, Russell refused definite descriptions the status of
terms and left variables as the only terms of the formal language of mathematics. In
contrast to Frege’s view, he treated descriptions as a kind of incomplete signs and
showed how to get rid of them by means of contextual definitions of the form:

ψ(ιxϕ(x)) := ∃x(∀y(ϕ(y) ↔ y = x) ∧ ψ(x)). (R)

A characteristic feature of Russell’s approach is that no meaning is assigned to the
expression ‘the F’ standing alone, but only in the context of complete sentences in
which it occurs. ‘The F is G’ means ‘There is exactly one F and it is G’. Thus the
complex term ‘The F’ disappears upon logical analysis. Other distinctive properties
of RDD, which mainly follow from Russell’s policy of omitting singular terms from
the primitive expressions of a formal language altogether, are:

(1) a fixed truth-value (falsity) of all atomic formulas with non-denoting terms;
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(2) quantification rules of universal instantiation and existential generalisation
restricted to variables;

(3) identity with reflexivity restricted to variables.

In fact the most important point is (1), as (2) and (3) are its consequences. According
to (2), when the universal quantifier is eliminated, we cannot unrestrictedly substi-
tute the quantified variable with an arbitrary term satisfying the conditions of proper
substitution. For instance, for a non-denoting term we can deduce a formula which is
false because of (1). Therefore the rule of universal elimination (or existential gen-
eralisation) must be restricted to terms known in advance to be denoting, that is, to
variables as instantiated terms. Similarly in (3): if t is non-denoting, then even t = t
is false according to (1). Therefore, reflexivity must be restricted to variables as well.
Summing up: these three desiderata constitute a logic which is currently identified as
a kind of negative free logic rather than classical logic.

Nevertheless, Russell’s account has also serious formal drawbacks. As it stands,
(R) must be restricted to atomic ψ or it is necessary to add means for marking scope
distinctions. For example, let ψ be ¬G, then the result is ambiguous between the
internal and external negation of ψ(ιxϕ(x)), that is, between ‘It is not the case that
the F is G’ and ‘The F is not G’. If we still admit complex ψ in (R), the situation is
even worse. If we use a valid ψ and an inconsistent ϕ, we run into a contradiction. For
example:

[
A(ιy(B(y) ∧ ¬B(y))) → A(ιy(B(y) ∧ ¬B(y)))

]

↔ ∃x[∀y((B(y) ∧ ¬B(y)) ↔ y = x) ∧ (A(y) → A(y))
]

leads to B(a) ∧ ¬B(a) (modulo constant renaming).
To avoid the problems, Whitehead and Russell introduced a rather clumsy method

for drawing scope distinctions that is far from ideal, which is demonstrated by the fact
that almost no one uses it. Instead, a restricted binary quantifier is used to overcome
scope difficulties (Bostock, 1997; Kürbis, 2019a, 2021a). One is even tempted to
conjecture that a reason for the lack of proof-theoretic investigations into definite
descriptions is a perceived tension between the need for drawing scope distinctions in
the symbolism and the difficulties encountered in doing so.1

Even without scoping problems, the Russellian policy of reducing the category of
terms only to variables seems to be inadequate, or at least problematic and artificial,
with respect to processing reasoning tasks in natural languages. In fact, there is a
tension between the theoretical treatment of definite descriptions by Russell and their
practical applications. Whitehead and Russell (1910) formulate several theorems with
definite descriptions occurring as terms. Also Kalish et al. (1980), as well as Pelletier
and Linsky (2009) provide lists of theorems and rules correct in RDD and containing
occurrences of definite descriptions. This shows that it is possible to save some features
of the original Russellian approach to definite descriptions, yet to treat them as genuine
terms. Henceforth, by RDD we mean a theory where all the abovementioned features
of the Russellian approach are saved except that definite descriptions are treated as

1 For some examples of how Russell’s scope distinctions can be put into practice, and what difficulties this
may cause, see Gratzl (2015).
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terms. In this case (R) is replaced with an object-language biconditional which can
serve as a characteristic axiom of a logic. Such a logic is essentially equivalent to
Feferman’s definedness logic, but expressed in a language in which the definedness
predicate is eliminated. This equivalence was proved by Indrzejczak (2021a). In such
a form RDD was formalised as ND by Kalish et al. (1980) and recently by Francez
and Więckowski (2014). However, all these formalisations involve complex rules or
axioms. Recently Indrzejczak (2021b) provided an analytic and cut-free SC equivalent
to RDD as formalised by Kalish et al. (1980). In all these systems (R) is restricted to
atomic predicates and special rules are required to evaluate all formulas with improper
definite descriptions as false. The necessity of such a restriction of (R) can be seen
as another pitfall of RDD, in particular in the context of natural language and its
formalisations. Bostock rightly noticed that the qualification of some predicates as
atomic is to someextent arbitrary, though reflected in signatures of non-logical symbols
for a given logic. Can we offer any improvement to the state of the art? Below we
introduce a variant of RDD based on the use of predicate abstracts, which avoids the
discussed shortcomings while saving all plausible features of the Russellian approach.

3 Enter lambda

To sum up: despite of the linguistic and philosophical problems with the Russellian
approach to definite descriptions, which have enormous literature devoted to it, we
have also some significant formal problems described above. It seems thatwe can avoid
the latter problems if we enrich the language with the lambda-operator and restrict
the range of what can be predicated of definite descriptions to predicate abstracts of
the form λxϕ, where ϕ is any formula. Thus, λxϕ is a unary predicate and (λxϕ)(t),
where t is a term, is a formula called a lambda-atom. Accordingly, atomic formulas in
the strict sense are built from predicate symbols and individual variables or constants
only; definite descriptions can only be attached as arguments to lambda-atoms.

Predicate abstracts built by means of the lambda-operator were first proposed in the
context of studies onmodal predicate logic byStalnaker andThomason (1968) and then
the idea was further developed by Bressan (1972) and Fitting (1975). Independently,
this techniquewas usedbyScales (1969) in his formulation of attributional logic,where
Aristotle’s distinction between the negation of a sentence and of a predicate is formally
expressible. In fact, Scales seems to be the first one to apply predicate abstraction
to formalise a theory of definite descriptions which utilises Russell’s principle (R)
without restricting it to atomic predicates. However, in other respects his system is
considerably far fromRDD, being a kind of negative logic with some extra constraints.
Predicate abstracts were also successfully applied by Fitting and Mendelsohn (1998)
to obtain a theory of definite descriptions in a modal setting. Such an approach, with
slight modifications, was further developed by Indrzejczak (2020a) to obtain a cut-free
SC for hybrid modal logic.

In the area of modal logic this tool is mainly used for taking control over scoping
difficulties concerning modal operators but also complex terms like definite descrip-
tions. From the standpoint of proof theory it has additional advantages. In general,
introducing complex terms leads to serious problems revolved around unrestricted
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instantiation of such terms for variables. Unrestricted instantiation in quantifier rules
usually destroys the subformula property and interferes with a cut-elimination proof.
Applying predicate abstracts opens a way to avoid such problems by drawing a dis-
tinction between direct predication restricted to variables and indirect predication via
the lambda-operators. Since definite descriptions may appear only as arguments of
predicate abstracts, respective rules for quantifiers may be restricted to individual
variables or constants as the only allowed instantiated terms without losing generality
or introducing some additional instantiation rules (see Indrzejczak (2020b)).

Since definite descriptions are used only as arguments of predicate abstracts, the
modified version of (R) is (Rλ):

(λxψ)(ιyϕ) → ∃x(∀y(ϕ ↔ y = x) ∧ ψ), (Rλ)

where ϕ does not contain free occurrences of x . In this way we avoid problems with
scope and inconsistency described above. Not only atomic predicates but also arbitrary
formulas may be used to constitute lambda atoms and definite descriptions. Moreover,
no additional denotation principles for atomic formulas are needed. Indeed, for vari-
ables they hold by the fact that all variables denote, and for definite descriptions they
follow from (Rλ). This is important if someone agrees, e.g., with the abovementioned
criticism of Bostock about the status of atomic predicates.

To sum up: we define the logic LRλ as pure FOLI (first-order logic with iden-
tity) with added (Rλ) and β-conversion for the lambda-operator. More concretely, its
axiomatisation is the standard axiomatisation of pure FOLI augmented with (Rλ) and
(λxψ)(b) ↔ ψ[x/b], where b is a free variable (parameter), substituted for x in ψ .
In general, we will consider it as defined for an arbitrary signature (the set of predi-
cates and individual constants, but with no function symbols). Notice, however, that if
any individual constants are present, then the rules for quantifier elimination and the
principle of β-conversion apply to both variables and individual constants.

LRλ saves the essential features of the Russellian approach. Moreover, it avoids
several problems like arbitrary restriction of (R) to atomic predicates symbols, scop-
ing difficulties, or running into contradictions. However, in the semantics it retains
the eliminativist Russellian flavour in the sense that definite descriptions are not char-
acterised in the model by an interpretation function like in other approaches. Instead
they are handled only by a specific clause for lambda-atoms in the definition of the
forcing relation. Such a solution considerably simplifies a formulation of the semantics
and completeness proof, since we avoid simultaneous induction on the complexity of
terms and formulas.

4 Preliminaries

4.1 Syntax

We consider sentences, that is, formulas with no free variables, built in the standard
first-order language L with identity treated as a logical constant. The vocabulary of L
consists of:
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• a countably infinite set of bound individual variables VAR = {x, y, z . . .},
• a countably infinite set of parametric (free) individual variables PAR =

{a, b, c, . . .},
• the contradiction symbol ⊥,
• a set of propositional connectives: ¬, ∧,
• the universal quantifier ∀,
• the definite description operator ι,
• the abstraction operator λ,
• the identity relation =,
• left and right parentheses: (, ).

A signature � for the language L is a triple (PRED,CONS, ar), where PRED is a (pos-
sibly empty) set of predicates, CONS is a (possibly empty) set of individual constants,
and ar : PRED −→ N+ is a function assigning a (positive) arity to each predicate.

Given a signature� = (PRED,CONS, ar), a set of terms TERM and a set of formulas
FOR over � are defined simultaneously by the following context-free grammars:

TERM : :=x | a | c | ιxϕ,

FOR : :=⊥ | P(s1, . . . , sn) | s1 = s2 | ¬ϕ | ϕ ∧ ψ | ∀xϕ | (λxψ)(t),

where x ∈ VAR, a ∈ PAR, c ∈ CONS, ϕ,ψ ∈ FOR, s1, . . . , sn ∈ VAR ∪ PAR ∪ CONS,
t ∈ TERM such that x does not occur in t , and P ∈ PREDwith ar(P) = n. Henceforth,
we will refer to the set VAR ∪ PAR ∪ CONS as TERM−. An expression ϕ[s] indicates
that s occurs (freely if it is a variable) in ϕ. A formula ϕ[s1/s2] is the result of a
uniform substitution of s1 with s2 in ϕ, whereas ϕ[s1//s2] is a result of replacing some
occurrences of s1 in ϕ with s2. Note that this notation is restricted to s1, s2 ∈ TERM−
so we can make substitutions and replacements only using variables, parameters, or
individual constants, but not definite descriptions. In practice, when constructing a
tableau proof, variables are substituted only with parameters or constants, however in
the formulation of the semantics and inmetalogical proofs it may happen that variables
are substituted for variables. In such cases it is assumed that the substituted variable
is free after the substitution.

Finally, we also use the following standard abbreviations:

s1 
= s2 := ¬(s1 = s2) � := ¬⊥
∃xϕ := ¬∀x¬ϕ ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

ϕ → ψ := ¬ϕ ∨ ψ ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ),

where s1, s2 ∈ TERM−.
Note that the absence of function symbols in considered signatures for L is due to

the fact, already mentioned, that they can be simulated by using the operator ι.

4.2 Semantics

Given a signature� = (PRED,CONS, ar), amodel over � is a structureM = (D, I),
where D 
= ∅ is called a domain and I is an interpretation. For each predicate
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P ∈ PRED, I(P) ⊆ Dn , where n is the arity of P . For each constant c ∈ CONS,
I(c) ∈ D. An assignment v is defined as a function mapping variables and parameters
to elements of the domain. An x-variant v′ of v agrees with v on all arguments, save,
possibly, x . We will write vxo to denote the x-variant of v with vxo (x) = o.

Given a signature � = (PRED,CONS, ar), sets TERM and FOR over �, a model
M = (D, I) over �, and an assignment v, let Iv(s) be v(s) if s ∈ VAR ∪ PAR, or
I(s) if s ∈ CONS. Then the notion of satisfaction of a formula ϕ in M under v, in
symbols M, v |� ϕ, is defined inductively as follows:

M, v 
|� ⊥
M, v |� P(s1, ..., sn) iff 〈Iv(s1), . . . , Iv(sn)〉 ∈ I(P)

M, v |� s1 = s2 iff Iv(s1) = Iv(s2)

M, v |� (λxψ)(s) iff M, vxo |� ψ and o = Iv(s)

M, v |� (λxψ)(ιyϕ) iff there exists o ∈ D such that M, vxo |� ϕ[y/x],
M, vxo |� ψ , and for any y-variant v′ of vxo , if
M, v′ |� ϕ, then v′(y) = o

M, v |� ¬ϕ iff M, v 
|� ϕ,

M, v |� ϕ ∧ ψ iff M, v |� ϕ and M, v |� ψ ,

M, v |� ∀xϕ iff M, vxo |� ϕ, for all o ∈ D,

where P ∈ PRED with ar(P) = n, s, s1, . . . , sn ∈ TERM−, x, y ∈ VAR, and ϕ,ψ ∈
FOR, and x is not free in ϕ in condition for (λxψ)(ιyϕ).

A formula ϕ over a signature � is called satisfiable if there exists a modelM over
� and a valuation v such thatM, v |� ϕ. ϕ is valid, in symbols |� ϕ, if, for all models
M and valuations v, M, v |� ϕ. In the remainder of the paper, instead of writing
M, v |� ϕ1, . . . ,M, v |� ϕn , we will write M, v |� ϕ1, . . . , ϕn . Semantically we
identify LRλ as the set of all valid formulas.

Example 1 Consider the following sentence: ‘The oldest daughter of Anne got married
to some businessman and is the richest woman in the family (of Anne)’. Let d1 abbre-
viate the first and d2 the second description, which after unpacking are: ιx(D(x, a) ∧
∀y(D(y, a) ∧ y 
= x → O(x, y))) and ιx∀y(F(y, a) ∧ W (y) ∧ y 
= x → R(x, y)).
Then the sentence in question is formalised as (λz(∃y(B(y) ∧ M(z, y)) ∧ (λu(z =
u))(d2)))(d1). It can be shown that it implies, e.g., ‘Some daughter of Anne got mar-
ried to a businessman’. Let us notice that the formalisation of the above sentence in
Russell’s original theory leads to a much more convoluted formula.

Although definite descriptions are only allowed in the scope of λ-expressions, this
does not preclude the possibility of them interacting with other referring expressions
such as individual constants in a single formula.

Example 2 Consider the following sentence: ‘Scott is the author of «Waverley».’ It
states identity of a proper name (individual constant) and a definite description. The
logic LRλ provides us with a means to formally capture this sentence. The definite
description involved can be written as ιyA(y, w), where w is the individual constant
representing “Waverley” and A represents the relation of authorship. Then the dis-
cussed identity is expressed by the following formula: (λxs = x)(ιyA(y, w)), where
s represents Scott.
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The syntax and semantics of LRλ make it possible to distinguish between different
usages of negation, namely internal and external, without resorting to any external
tools for scope demarcation, which was not possible in Russell’s original setting.

Example 3 Consider the sentences: ‘It is not the case that the least integer is even’ and
‘The least integer is not even’. Let the set of all integers be the domain of our interest.
Then the definite description ‘the least integer’ can be formalised as ιy(∀z(z 
= y →
z > y)). The first of the discussed sentences can bewritten as¬(λxD(x, 2))(ιy∀z(z 
=
y → z > y)), where D is the relation of divisibility.According to the relevant semantic
condition it is false that there exists a unique object o simultaneously satisfying D(o, 2)
and ∀z(z 
= o → z > o). In other words, for each object o in the domain, either it is the
case that¬D(o, 2), or ∃z(z 
= o∧z < o), or there exists o′ 
= o in the domain such that
∀z(z 
= o′ → z > o′). On the other hand, the latter of the considered sentences can be
formalised as (λx¬D(x, 2))(ιy∀z(z 
= y → z > y)). By the semantics of LRλ , this
formula being true implies that there exists a unique object o in the domain satisfying
¬D(o, 2) and ∀z(z 
= o → z > o). An obvious consequence of the difference
between the semantics of internally and externally used negation is that the equivalence
¬(λxD(x, 2))(ιy∀z(z 
= y → z > y)) ↔ (λx¬D(x, 2))(ιy∀z(z 
= y → z > y)) is
not a theorem of LRλ .

5 Calculus

In this section we focus on the construction of a tableau calculus for the logic of
Russellian descriptions LRλ , henceforth abbreviated as TCRλ .

A tableau T generated by a calculus TCRλ is a derivation tree whose nodes are
assigned formulas in the language of deduction. A branch of T is a simple path from
the root to a leaf of T . For simplicity, we will identify each branch B with the set of
formulas assigned to nodes on B.

A general form of rules is as follows: �
	1|...|	n

, where � is the set of premises
and each 	i , for i ∈ {1, . . . , n}, is a set of conclusions. If a rule has more than
one set of conclusions, it is called a branching rule. Otherwise it is non-branching.
Thus, if a rule �

	1|...|	n
is applied to � occurring on B, B splits into n branches:

B ∪ {	1}, . . . ,B ∪ {	n}. A rule (R) with � as the set of its premises is applicable to
� occurring on a branch B if it has not yet been applied to � on B. A set � is called
(R)-expanded on B if (R) has already been applied to� on B. We say that (R) is sound
if, whenever � is satisfiable, then � ∪ 	i is satisfiable, for some i ∈ {1, . . . , n}. (R)
is invertible if it is sound and, for each i ∈ {1, . . . , n}, if 	i is satisfiable, then �∪	i

is satisfiable. A term t is called fresh on a branch B if it has not yet occurred on B.
We call a branch B closed if the inconsistency symbol ⊥ occurs on B. If B is not
closed, it is open. A branch is fully expanded if it is closed or no rules are applicable
to (sets of) formulas occurring on B. Note that due to the fact that new parameters can
be introduced to a branch by, e.g., (¬∀) or (ι1), fully expanded branches do not need
to be finite. A tableau T is called closed if all of its branches are closed. Otherwise
T is called open. Finally, T is fully expanded if all its branches are fully expanded.
A tableau proof of a formula ϕ is a closed tableau with ¬ϕ at its root. A formula ϕ
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is tableau-valid (with respect to the calculus TCRλ ) if there exists a tableau proof of
ϕ. It is known that a tableau calculus is confluent, that is, every partial tableau proof
of a formula ϕ can be expanded into a full proof (Hähnle & Beckert, 1999), if all
rules are invertible. In the case ofTCRλ all rules are trivially invertible, as all formulas
introduced to a branch at some point remain available for further rule applications. This
makes TCRλ a confluent tableau calculus, yet the order of rule application imposed by
a decision procedure based on TCRλ may affect its efficiency. We will not be pursuing
this problem any further, as it is beyond the scope of this paper.

In Fig. 1 we present the rules constituting TCRλ . We transfer the notation from
the previous section with the caveat that a denotes a parameter that is fresh on the
branch,whereasb, b1, b2 denote parameters or constants that have alreadybeenpresent
on the branch. Finally, b1 ≈ b2 stands for either b1 = b2 or b2 = b1. While the
closure, propositional, quantifier rules, Leibniz’s rule and the non-empty domain rule
are standard and need no further explanation, a commentary on the specific rules for
the ι and λ operators is in order.

(ι1) handles the scenario where a definite description occurs in the scope of a λ-
expression. Then (ι1) stipulates that both the formulas hold of the same fresh parameter.
If, moreover, a formula constituting a definite description occurs independently on the
branch, then (ι2) guarantees that all the parameters it holds of are identical. If a definite
description ιyϕ in the scope of a λ-expression λxψ occurs in the negated form, then
for any parameter b present on the branch, either ϕ does not hold of b, or ψ does not
hold of b, or we can introduce a fresh parameter a distinct from b such that ϕ holds of
a. Finally, (λ) and (¬λ) are tableau-counterparts of standard β-reduction known from
λ-calculus. Their application is restricted to parameters and individual constants. Note
that the rules (∀) and (¬ι) both have an enthymematic meta-premise ‘a parameter b is
present on the branch’, whichmanifests itself in the presence of b in the conclusions of
both of them. Consequently, like any other rule, (∀) and (¬ι) can be applied only once
to a given combination of its premise and a parameter present on the branch. Observe
that if there are no parameters on a branch, then neither (∀) nor (¬ι) can be applied. In
such a case, if no other rules are applicable, we apply the rule (NE), which corresponds
to the fact that we only consider non-empty domains. By that means we introduce to
the branch a fresh parameter which can then fire the aforementioned rules. What is
also worth noting is that whenever an application of a rule results with a formula ϕ

where a term b2 was substituted for a term b1, or b2 replaced b1, there is no risk that
b2 will be bound in ϕ thanks to the fact that VAR and PAR (as well as VAR and CONS)
are disjoint sets.

Example 4 For the sake of example, let us consider a TCRλ -proof of (Rλ), where
ψ = P(x) and ϕ = Q(y):

(λx P(x))(ιyQ(y)) ∧ ∀x¬(∀y[(¬(Q(y) ∧ y 
= x) ∧ ¬(y = x ∧ ¬Q(y))] ∧ P(x))
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Fig. 1 Rules of the tableau calculus TCRλ

This is a pre-processed form involving only those operators which occur in TCRλ ; the
original implication is (λx P(x))(ιyQ(y)) → ∃x(∀y(Q(y) ↔ y = x) ∧ P(x)).
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(λx P(x))(ιyQ(y)) ∧ ∀x¬(∀y[(¬(Q(y) ∧ y 
= x) ∧ ¬(y = x ∧ ¬Q(y))] ∧ P(x))

(λx P(x))(ιyQ(y))
∀x¬(∀y[¬(Q(y) ∧ y 
= x) ∧ ¬(y = x ∧ ¬Q(y))] ∧ P(x))

P(a)

Q(a)

¬(∀y[¬(Q(y) ∧ y 
= a) ∧ ¬(y = a ∧ ¬Q(y))] ∧ P(a))

¬∀y[¬(Q(y) ∧ y 
= a)∧
¬(y = a ∧ ¬Q(y))]

¬P(a)

⊥
¬[¬(Q(b) ∧ b 
= a) ∧ ¬(b = a ∧ ¬Q(b))]

Q(b)
b 
= a

b = a
¬Q(b)

b = a ¬Q(a)

⊥ ⊥

(∧)

(ι1)

(∀)

(¬∧)

(⊥1)

(¬∀)

(¬∧)

(¬¬)

(∧)

(ι2)

(⊥1)

(L)

(⊥1)

Note also that the presence of the λ-operator in the calculus prevents us from
stumbling upon contradictions like in the example from p. 6.

Example 5 Consider the following formulas: ψ(x) := A(x) → A(x) and ϕ(y) :=
B(y) ∧ ¬B(y). After suitably rewriting ψ(x), we can show within TCRλ that the
formula (λxψ(x))(ιyϕ(y)) is not a LRλ tautology, even if we assume that the domain
of individual objects is non-empty, that is, there occurs a parameter on the branch (say
b):
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¬(λx¬(A(x) ∧ ¬A(x)))(ιy(B(y) ∧ ¬B(y)))

¬¬(A(b) ∧ ¬A(b)) ¬(B(b) ∧ ¬B(b))
B(a) ∧
¬B(a)

a 
= b

A(b) ∧ ¬A(b)

A(b)
¬A(b)

⊥

¬B(b) ¬¬B(b)

B(b)

B(a)

¬B(a)

⊥

open

open

(¬ι)

(¬¬)

(∧)

(⊥1)

(¬∧)
(∧)

(⊥1)
(¬¬)

Consequently, the right-hand side of (Rλ) cannot be derived, which means that we
will not get a contradiction of the form B(c) ∧ ¬B(c).

Let us now consider the following pair of formulas: χ(x) := S(x, x), θ(y) :=
∀z(S(y, z) ↔ ¬S(z, z)), where S(x, y) stands for ‘x shaves y’. If any of the formulas
(λxχ(x))(ιyθ(y)) or (λx¬χ(x))(ιyθ(y)) turned out true, this would lead to a form
of Russell’s paradox. By means of TCRλ , however, after rewriting (λxχ(x))(ιyθ(y))
in the language of LRλ it is possible to prove that both of them are contradictory,
and hence, false. Thus, the equivalence (λxχ(x))(ιyθ(y)) ↔ (λx¬χ(x))(ιyθ(y)) is
indeed a theorem of LRλ , but, by the argument discussed in Example 3, LRλ does
not make true the equivalence (λxχ(x))(ιyθ(y)) ↔ ¬((λxχ(x))(ιyθ(y))), which
helps us avoid the paradox. In the trees below we unpack the definition: ϕ ↔ ψ :=
¬(ϕ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬ϕ).
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(λxS(x, x))(ιy∀z(S(y, z) ↔ ¬S(z, z)))

S(a, a)

∀z(S(a, z) ↔ ¬S(z, z))

S(a, a) ↔ ¬S(a, a)

¬(S(a, a) ∧ ¬¬S(a, a))

¬(¬S(a, a) ∧ ¬S(a, a))

¬S(a, a) ¬¬¬S(a, a)

⊥ ¬S(a, a)

⊥

(ι1)

(∀)

(∧)

(¬∧)

(⊥1) (¬¬)

(⊥1)

(λx¬S(x, x))(ιy∀z(S(y, z) ↔ ¬S(z, z)))

¬S(a, a)

∀z(S(a, z) ↔ ¬S(z, z))

S(a, a) ↔ ¬S(a, a)

¬(S(a, a) ∧ ¬¬S(a, a))

¬(¬S(a, a) ∧ ¬S(a, a))

¬¬S(a, a) ¬¬S(a, a)

⊥ ⊥

(ι1)

(∀)

(∧)

(¬∧)

(⊥1) (⊥1)

Example 6 Consider the definite description from Example 2, namely ‘the author of
“Waverley”’. Notice thatTCRλ does not prove the sentence ‘The author of “Waverley”
is the author of ” Waverley”’, represented in LRλ as (λxx = x)(ιyA(y, w)). Indeed,
a derivation tree for ¬(λxx = x)(ιyA(y, w)) looks as follows:

¬(λxx = x)(ιyA(y, w))

a = a

a 
= a ¬A(a, w)
A(b, w)

b 
= a

⊥

(NE)

(¬ι)

(⊥2)

The formula (λxx = x)(ιyA(y, w)) is not provable in TCRλ , as we do not know
whether ιyA(y, w) is a proper definite description. This is consistent with Russell’s
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assumptions. Notice, however, that over all theories where ιyA(y, w) is proper, that
is, theories which entail ∃!x A(x, w), (λxx = x)(ιyA(y, w)) is provable in TCRλ .

Now, consider two sentences: ‘Scott is the author of “Waverley”’ and ‘Scott
is the author of “Ivanhoe”’, represented as (λxs = x)(ιyA(y, w)) and (λxs =
x)(ιyA(y, i)), respectively. In TCRλ we can show that the sentence ‘The author of
“Waverley” is the author of “Ivanhoe”’, formalised as (λx(λyx = y)(ιzA(z, w)))

(ιuA(u, i)), is derivable from the above sentences. Indeed:

(λxs = x)(ιyA(y, w))

(λxs = x)(ιyA(y, i))
¬(λx(λyx = y)(ιzA(z, w)))(ιuA(u, i))

s = a
A(a, w)

s = b
A(b, i)

a = b

¬(λyb = y)(ιzA(z, w)) ¬A(b, i)
A(c, i)
c 
= b

⊥ c = b

⊥

b 
= a ¬A(a, w)
A(d, w)

d 
= a

a 
= b ⊥ d = a

⊥ ⊥

2 × (ι1)

(L)

(¬ι)

(⊥1) (ι2)

(⊥1)

(¬ι)

2 × (L)

(⊥1)

(⊥1) (ι2)

(⊥1)

More generally speaking, using TCRλ we can show, in a similar way, that from any
two of the above-mentioned sentences the remaining one is derivable.

6 Soundness and Completeness

In this section we will rely on two well-known lemmas which we recall without proofs
(see, e.g., Ebbinghaus, Flum, and Thomas ( 1994, Sections III.4 and III.8)).
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Lemma 1 (Coincidence Lemma) Let ϕ ∈ FOR, let M = (D, I) be a model, and let
v1, v2 be assignments. If v1(s) = v2(s) for each free variable or parameter s occurring
in ϕ, then M, v1 |� ϕ if and only ifM, v2 |� ϕ.

Lemma 2 (Substitution Lemma) Let ϕ ∈ FOR, s ∈ TERM−, and letM = (D, I) be a
model. Then M, v |� ϕ[x/s] if and only if M, vxIv(s) |� ϕ.

6.1 Soundness

We start the section with a lemma that relies on the notion of sound rule introduced
in the preceding section.

Lemma 3 All rules of TCRλ are sound.

Proof Since the closure, propositional, and quantifier rules, as well as Leibniz’s and
the non-empty domain rule are standard, we restrict ourselves to proving soundness
of ι-rules and λ-rules. In what follows, we assume that b, b1, b2 are parameters, as a
proof for them being constants is analogous.

(ι1) Assume that (λxψ)(ιyϕ) is satisfiable. It means that there exists a model M =
(D, I) and an assignment v such thatM, v |� (λxψ)(ιyϕ). Hence, by the respective
satisfaction condition, there exists an object o ∈ D such thatM, vxo |� ϕ[y/x], ψ and
for all y-variants v′ of vxo , if M, v′ |� ϕ, then v′(y) = o. Without loss of generality
let’s assume that a is a fresh parameter such that v(a) = o. By the Substitution
Lemma, we get that M, v |� ϕ[y/(x/a)], ψ[x/a], where ϕ[y/(x/a)] is the result
of substituting y with a which replaced x . The substitution of y with x follows from
the semantic condition for lambda-atoms involving definite descriptions, wheres the
substitution of x with a follows from the Substitution Lemma. Consequently,M, v |�
ϕ[y/a], ψ[x/a], as desired.
(ι2) Assume that (λxψ)(ιyϕ), ϕ[y/b1], and ϕ[y/b2] are jointly satisfiable. It means
that there exists a model M = (D, I) and an assignment v such that M, v |�
(λxψ)(ιyϕ), ϕ[y/b1], ϕ[y/b2]. Hence, by the respective satisfaction condition, there
exists an object o ∈ D such that M, vxo |� ϕ[y/x], ψ and, for any y-variant v′ of vxo ,
if M, v′ |� ϕ, then v′(y) = o. Let v(b1) = o′ and v(b2) = o′′. By the Substitution
Lemma, M, v

y
o′ |� ϕ and M, v

y
o′′ |� ϕ. Since x does not occur freely in ϕ, by the

Coincidence Lemma we get M, (vxo )
y
o′ |� ϕ and M, (vxo )

y
o′′ |� ϕ. Since both (vxo )

y
o′

and (vxo )
y
o′′ are y-variants of vxo , we obtain (vxo )

y
o′(y) = o and (vxo )

y
o′′(y) = o, and

so, o = o′ = o′′. As o = v(b1) = v(b2), the respective satisfaction condition yields
M, v |� b1 = b2, as expected.

(¬ι)dAssume that¬(λxψ)(ιyϕ) is satisfiable. Then there exists amodelM = (D, I)

and an assignment v such thatM, v |� ¬(λxψ)(ιyϕ). By the respective satisfiability
conditions it means that for all objects o ∈ B (at least) one of the following three
conditions holds: (1) M, vxo 
|� ψ ; (2) M, vxo 
|� ϕ[y/x]; (3) there exists a y-variant
v′ of vxo such that M, v′ |� ϕ and v′(y) 
= o. Let b be a parameter present on the
branch and v(b) = o′. If (1) holds for o′, i.e., M, vxo′ 
|� ψ , then, by the Substitution
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Lemma, M, v 
|� ψ[x/b], whence, by the respective satisfaction condition, we get
M, v |� ¬ψ[x/b]. Let (2) hold for o′, i.e., M, vxo′ 
|� ϕ[y/x]. By the Substitution
Lemma we get M, v 
|� ϕ[y/(x/b)], which is equivalent to M, v 
|� ϕ[y/b]. By the
satisfaction condition for negationwe obtainM, v |� ¬ϕ[y/b]. Assume that (3) holds
for o′, that is, there exists a y-variant v′ of vxo′ such that M, v′ |� ϕ and v′(y) 
= o′.
Let D � o′′ 
= o′ be such that M, (vxo′)

y
o′′ |� ϕ. Without loss of generality we may

assume that there exists a ∈ PAR such that a does not occur freely in ϕ and v(a) = o′′.
Since x does not occur freely in ϕ, we can apply the Substitution Lemma twice and
fromM, (vxo′)

y
o′′ |� ϕ obtain M, v |� ϕ[y/a], as desired.

(λ) Let b be a parameter present on the branch. Assume that (λxψ)(b) is satisfiable.
Then there exists a model M = (D, I) and an assignment v such that M, v |�
(λxψ)(b). By the respective satisfaction condition it means that v(b) = o, for some
o ∈ D, and M, vxo |� ψ . By the Substitution Lemma it holds that M, v |� ψ[x/b],
hence ψ[x/b] is satisfiable.

(¬λ) Let b be a parameter present on the branch. Assume that ¬(λxψ)(b) is
satisfiable. Then there exists a model M = (D, I) and an assignment v such
that M, v |� ¬(λxψ)(b). By the respective satisfaction condition it means that
M, v 
|� (λxψ)(b). Assume that v(b) = o for some o ∈ D. Then by the respec-
tive satisfaction condition M, vxo 
|� ϕ. By the Substitution Lemma we get that
M, v 
|� ψ[x/b]. Again, by the satisfaction condition for negation it follows that
M, v |� ¬ψ[x/b], hence ¬ψ[x/b] is satisfiable. ��

Now we are ready to prove the following theorem.

Theorem 4 (Soundness)] The tableau calculus TCRλ is sound.

Proof Let ϕ be a formula over a signature �. Let T be a TCRλ -proof of ϕ. Each
branch of T is closed. By Lemma 3 all the rules of TCRλ preserve satisfiability,
and so, going from the bottom to the top of T , we can “push” unsatisfiability of ⊥
upwards, eventually reaching the root. Since at the root we have ¬ϕ, we conclude that
it is unsatisfiable. By the well-known duality between satisfiability and validity we
obtain that ϕ is valid. ��

6.2 Completeness

Below we will show that TCRλ is complete, that is, for each formula ϕ, if |� ϕ, then
there exists a TCRλ-proof of ϕ. In order to do that, we will show the contrapositive,
i.e., that whenever TCRλ yields an open tableau T for a formula¬ϕ, with an open and
fully expanded branch B, then there exists a model MB = (DB, IB) and a valuation
vB, that can be constructed using the data from B, such thatMB, vB |� ¬ϕ. Thus, in
short, we will show that if there is no TCRλ-proof for ϕ, then 
|� ϕ. We will assume
that the rules are used fairly in the sense that whenever one of them can be applied,
it will eventually be applied. Moreover, let us observe that the symmetry rule s1=s2

s2=s1
is

derivable inTCRλ . Indeed, it suffices to apply (L) to s1 = s2 (which plays a double role
here: an identity formula and a formula within which we replace identical parameters)
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twice to obtain, subsequently, s1 = s1 and s2 = s1. Thus, in this section we will use
expressions of the forms s1 = s2 and s2 = s1 interchangeably whenever necessary.

Let ϕ be a formula over a signature � = (PAR,CONS, ar). Let T be an open
TCRλ -tableau for ϕ, where B is an open and fully expanded branch. Let CONS(B),
VAR(B), and PAR(B) be the sets of, respectively, all constants, all bound variables, and
all parameters occurring on B. We define a binary relation∼B on CONS(B)∪PAR(B).
Let s1, s2 ∈ CONS(B) ∪ PAR(B). Then:

s1 ∼B s2 iff s1 = s2 occurs on B or s1 is identical to s2.

Proposition 5 ∼B is an equivalence relation.

Proof Of course, ∼B is reflexive. Indeed, every s ∈ CONS(B) ∪ PAR(B) is identical
to itself, hence, by the definition of ∼B, s ∼B s. Symmetry of ∼B is a consequence
of B being fully expanded and the rule s1=s2

s2=s1
being derivable in TCRλ . Indeed, if

s1, s2 ∈ CONS(B) ∪ PAR(B) are distinct and s1 ∼B s2, it means that s1 = s2 was
on B. Hence s2 = s1 is also on B, and so, s2 ∼B s1. For transitivity assume that
s1, s2, s3 ∈ CONS(B) ∪ PAR(B), s1 ∼B s2, and s2 ∼B s3. If s1 is identical to s2 or s2
is identical to s3, we immediately obtain s1 ∼B s3. If s1, s2, s3 are pairwise distinct,
the identities s1 = s2 and s2 = s3 must have occurred on B. A single application of
(L) to both of them yields s1 = s3 and since B is fully expanded, s1 = s3 ∈ B. Hence,
s1 ∼B s3. ��

Obviously, thanks to the rule (L) and expandedness of B, ∼B is also a congruence,
that is, for any s1, s2 ∈ CONS(B)∪PAR(B) such that s1 ∼B s2, it holds that ϕ[s1] ∈ B
if and only if ϕ[s1/s2] ∈ B.

Definition 1 (Branch model and valuation) Let B be an open and fully expanded
branch of a TCRλ -tableau T with ϕ over a signature � = (PRED,CONS, ar) at the
root.

A branch model is a tupleMB = (DB, IB) such that:

• DB is a set of ∼B-equivalenve classes over CONS(B) ∪ PAR(B) (note that thanks
to the rule (NE), DB is non-empty, as required);

• For each c ∈ CONS(B), I(c) = [c]∼B ;• For each P ∈ PRED and n ∈ N+ such that ar(P) = n, IB(P) =
{〈IvB (s1), . . . , IvB (sn)〉 | P(s1, . . . , sn) ∈ B}.

A branch valuation is a function vB : PAR(B)∪VAR(B) −→ DB defined as follows:

vB(s) =
{

[s]∼B , if s ∈ PAR(B);
[s0]∼B , if s ∈ VAR(B),

where s0 is the parameter that occurred on B first.

Of course, all branch models and branch valuations are, respectively, models and
valuations in the sense of Sect. 4.2.

We are now ready to prove the key results of this section.
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Lemma 6 Let ϕ be a formula over a signature � = (PRED,CONS, ar), T be an open
TCRλ -tableau with ¬ϕ at the root, and B an open and fully expanded branch of T .
Then for each formula ψ:

If ψ ∈ B, then MB, vB |� ψ.

Proof The proof is by induction on complexity of ψ . Note that since B is open, ⊥
could not have occurred on B.

ψ = P(s1, . . . , sn) Assume that P(s1, . . . , sn) ∈ B. Then s1, . . . , sn ∈ CONS(B) ∪
PAR(B) and by the definition of MB and vB, IvB (si ) = [si ]∼B , 1 ≤ i ≤ n,
〈IvB (s1), . . . , IvB (sn)〉 ∈ IB(P), and so,MB, vB |� P(s1, . . . , sn).

ψ = s1 = s2 Assume that s1 = s2 ∈ B. It means that s1, s2 ∈ CONS(B)∪PAR(B). By
the definition of∼B, [s1]∼B = [s2]∼B , and so,IvB (s1) = IvB (s2). Thus,MB, vB |�
s1 = s2.

ψ = (λxχ)(s) Assume that (λxχ)(s) ∈ B. Since B is fully expanded, the rule (λ)

must have been applied to ψ , yielding χ [x/s] ∈ B. By the inductive hypothesis,
MB, vB |� χ [x/s]. By the Substitution Lemma, MB, (vB)x[s]∼B

|� χ , which,

together with the fact that IvB (s) = [s]∼B , gives MB, vB |� (λxχ)(s).
ψ = (λxχ)(ιyθ) Assume that (λxχ)(ιyθ) ∈ B. Due to expandedness of B, the
rule (ι1) must have been applied to ψ , yielding χ [x/a], θ [y/a] ∈ B. By the
inductive hypothesis, MB, vB |� χ [x/a], θ [y/a]. By the Substitution Lemma,
MB, (vB)x[a]∼B

|� χ, θ [y/a]. Now, let b be a parameter such that θ [y/b] ∈ B.
Then (ι2) was applied to θ [y/a] and θ [y/b] yielding a = b ∈ B. By the inductive
hypothesis MB, vB |� θ [y/b]. Since, by the construction of LRλ -atoms involving
definite descriptions, x does not occur in θ [y/b], by the Coincidence Lemma we
obtain MB, (vB)x[a]∼B

|� θ [y/b]. Further, by the Substitution Lemma, it follows

that MB, ((vB)x[a]∼B
)
y
[b]∼B

|� θ . Also by the inductive hypothesis vB(b) = vB(a).

Since b is arbitrary and ((vB)x[a]∼B
)
y
[b]∼B

is a y-variant of (vB)x[a]∼B
, we get

MB, vB |� (λxχ)(ιyθ).
ψ = χ ∧ θ Assume that χ ∧ θ ∈ B. Since B is fully expanded, (∧) must have been
applied to χ ∧ θ , and so χ, θ ∈ B. By the inductive hypothesis, MB, vB |� χ, θ ,
and so, by the satisfaction condition for ∧,MB, vB |� χ ∧ θ .

ψ = ∀xχ Assume that ∀xχ ∈ B and that b ∈ CONS(B) ∪ PAR(B). By expandedness
ofB, (∀)must have been applied to ∀xχ and b yielding ϕ[x/b] ∈ B. By the inductive
hypothesis we obtain MB, vB |� ϕ[x/b], whence, by the Substitution Lemma, we
getMB, (vB)x[b]∼B

|� ϕ. Since b was arbitrary and DB is defined over the set of all

constants and parameters on B, we arrive at MB, vB |� ∀xχ .
ψ = ¬⊥ Assume that ¬⊥ ∈ B. Since MB is a well-defined LRλ model and vB is a
well-defined LRλ valuation, we have MB, vB 
|� ⊥. By the satisfaction condition
for ¬ we obtain MB, vB |� ¬⊥.

ψ = ¬P(s1, . . . , sn) Assume that ¬P(s1, . . . , sn) ∈ B. Then s1, . . . , sn ∈
CONS(B)∪PAR(B) and since B is open, P(s1, . . . , sn) /∈ B. Then, by the definition
of MB and vB, it holds that IvB (si ) = [si ]∼B , 1 ≤ i ≤ n, 〈IvB (s1), . . . , IvB (sn)〉
/∈ IB(P). Thus, MB, vB 
|� P(s1, . . . , sn), and so, MB, vB |� ¬P(s1, . . . , sn).
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ψ = s1 
= s2 Assume that s1 
= s2 ∈ B. It means that s1, s2 ∈ CONS(B) ∪ PAR(B).
By openness of B, s1 = s2 /∈ B, and by the definition of ∼B, [s1]∼B 
= [s2]∼B .
Therefore, IvB (s1) 
= IvB (s2), and so,MB, vB 
|� s1 = s2 andMB, vB |� s1 
= s2.

ψ = ¬(λxχ)(s) Assume that ¬(λxχ)(s) ∈ B. Since B is fully expanded, the
rule (¬λ) was applied to ψ , giving ¬χ [x/s] ∈ B. By the inductive hypothesis,
MB, vB |� ¬χ [x/s]. By the Substitution Lemma, MB, (vB)x[s]∼B

|� ¬χ , and

so, MB, (vB)x[s]∼B

|� χ . Since IvB (s) = [s]∼B , the satisfaction condition for λ-

expressions (without ι-expressions) yields MB, vB |� ¬(λxχ)(s).
ψ = ¬(λxχ)(ιyθ) Assume that ¬(λxχ)(ιyθ) ∈ B and that b is a parameter present
on B. Since B is fully expanded, the rule (¬ι) was applied to ψ , making, for any b
on the branch, one of the following three hold: (1) ¬χ [x/b] ∈ B, (2) ¬θ [y/b] ∈ B,
(3) there is a fresh a such that θ [y/a], a 
= b ∈ B. Assume (1) is the case. By the
inductive hypothesis we get MB, vB |� ¬χ [x/b]. By the Substitution Lemma we
obtainMB, (vB)x[b]∼B

|� ¬χ , and so,MB, (vB)x[b]∼B

|� χ . If (2) holds, then by, the

inductive hypothesis, MB, vB |� ¬θ [y/b]. By the Substitution Lemma we obtain
MB, (vB)

y
[b]∼B

|� ¬θ , and so,MB, (vB)x[b]∼B

|� θ [y/x]. Finally, let (3) hold. Then,

by the inductive hypothesis, MB, vB |� θ [y/a], a 
= b, whence [a]∼B 
= [b]∼B .
Since x does not occur freely in θ [y/a], it holds that MB, (vB)x[b]∼B

|� θ [y/a]
By the Substitution Lemma we obtain MB, ((vB)x[b]∼B

)
y
[a]∼B

|� θ . As previously

noted, [a]∼B 
= [b]∼B , which means, by the respective satisfaction condition,
that taking these three possibilities together, we obtain MB, ((vB)x[b]∼B

)
y
[a]∼B


|�
(λxχ)(ιyθ) and MB, ((vB)x[b]∼B

)
y
[a]∼B

|� ¬(λxχ)(ιyθ). Neither x nor y occurs

freely in ¬(λxχ)(ιyθ), so after applying the Substitution Lemma twice we obtain
MB, vB |� ¬(λxχ)(ιyθ).

ψ = ¬¬χ Assume that ¬¬χ ∈ B. Since B is fully expanded, (¬¬) was applied
to ¬¬χ , which resulted in χ ∈ B. By the inductive hypothesis, MB, vB |� χ .
Applying the satisfaction condition for ¬ twice, we obtain MB, vB |� ¬¬χ .

ψ = ¬(χ ∧ θ) Assume that ¬(χ ∧ θ) ∈ B. By expandedness of B we know that
(¬∧) was applied to ¬(χ ∧ θ), which resulted in ¬χ ∈ B or ¬θ ∈ B. Assume the
former. By the inductive hypothesis,MB, vB |� ¬χ , and therefore,MB, vB 
|� χ .
By the satisfaction condition for ∧ it follows thatMB, vB 
|� χ ∧ θ . Consequently,
MB, vB |� ¬(χ ∧ θ). The reasoning for the latter case is analogous.

ψ = ¬∀xχ Assume that ¬∀xχ ∈ B. Since B is fully expanded, (¬∀) was applied
to ¬∀xχ resulting in ¬ϕ[x/a] ∈ B for some then fresh parameter a ∈ PAR(B). By
the inductive hypothesis we obtain MB, vB |� ¬ϕ[x/a] and MB, vB 
|� ϕ[x/a],
whence, by the Substitution Lemma,we getMB, (vB)x[a]∼B


|� ϕ. By the satisfaction

condition for ∀ we obtain MB, vB 
|� ∀xχ , and thus, MB, vB |� ¬∀xχ . ��
Finally, we are able to establish the completeness result.

Theorem 7 (Completeness) TCRλ is complete.

Proof We show that if a formula ϕ does not have a TCRλ -proof, then it is not valid.
Assume that ϕ does not have a TCRλ-proof. Then each fully expanded tableau T with
¬ϕ at the root has an open and fully expanded branch. Let B be such a branch. By
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Lemma 6 we know that MB, vB |� ¬ϕ. Since MB is a well-defined model and vB
is a well-defined valuation, we obtain MB, vB 
|� ϕ, hence ϕ is not valid. ��

7 Interpolation

In this section we will show that LRλ satisfies two important properties: the Craig
interpolation property and the Beth definability property.We say that a logic L satisfies
the Craig interpolation property if, for all L-formulas ϕ and ψ (over any signature),
if |� ϕ → ψ , then we can construct an interpolant formula, that is, a formula χ such
that |� ϕ → χ , |� χ → ψ and χ contains only predicates, constants and parameters
common to both ϕ and ψ . Let L be an extension of first-order logic with equality
and let Th be an L-theory over � = (PRED,CONS, ar). We say that a constant c is
implicitly definable with respect to Th if, for any two models M,M′ of Th such that
M |�\{c}= M′ |�\{c}, and any formula ψ over �, M |� ψ if and only if M′ |� ψ .
In other words, c is implicitly definable if whenever M and M′ are identical with
respect to all formulas over the reduced signature �′ = (PRED,CONST\{c}, ar), then
they are identical with respect to all formulas over the full signature �. A constant
c is said to be explicitly definable with respect to Th if there exists a formula ψ over
�′ = (PRED,CONS\{c}, ar) such that Th |� ∀x, y(x = c ↔ ψ(x, y)). Implicit and
explicit definability of predicates is defined analogously. L has the Beth definability
property if, for any signature � = (PRED,CONS, ar), any L-theory Th over �, and
any α ∈ PRED∪CONS implicit and explicit definability of α are equivalent. Since for
the purpose of this section we are interested in constants rather than predicates,2 we
provide a formalisation of the condition for implicit definability restricted to constants
(Hermes, 1973). Let L have the Beth definability property and let c be a constant like
characterised above. Then the following conditions are equivalent:

(i) Th ∪ Th′ |� c = c′
(ii) Th |� ∀x, y(x = c ↔ ψ(x, y)),

where Th’ is a theory resulting from replacing all occurrences of c in Th with c′ and ψ

is a formula over �′ = (PRED,CONS\{c}, ar) and y is a tuple of variables of arbitrary
length.

A nice feature of our calculusTCRλ is that it can be used to prove that the logicLRλ

enjoys the Craig interpolation property by actually showing, for a valid implication
ϕ → ψ , how to construct an interpolant. To this end we exploit a technique introduced
by Smullyan (1968) and further adjusted to the tableaux setting by Fitting (1996). To
take full advantage of this method we need to modify TCRλ so that all the rules, save
(⊥1), are single-premise rules. Consider the following two transformed rules:

(L’)
ϕ[b1]

b1 
= b2 | ϕ[b1//b2]
2 We focus our attention on constants, because the presence of definite descriptions inLRλ

makes it possible
to rewrite a theory Th where a constant c is explicitly definable into an equivalent theory Th′ in which c
is simply replaced with a suitable definite description (and ordinary predicates are replaced with suitable
lambda-atoms if necessary). Nevertheless, all results seamlessly transfer to the case of predicates.
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(ι′2)
(λxψ)(ιyϕ)

¬ϕ[y/b1] | ¬ϕ[y/b2] | b1 = b2

Let TC′
Rλ

be TCRλ with (L) and (ι2) replaced with (L’) and (ι′2), respectively. In what
follows we want to show that TCRλ and TC′

Rλ
coincide. To that end we will exploit

the cut rule:

(cut)
ϕ | ¬ϕ

and the following proposition.

Proposition 8 (cut) is admissible in TCRλ .

Proof We will show that whatever is provable in TCRλ with the added (cut)-rule, is
provable in soleTCRλ . It follows from completeness ofTCRλ and the fact that (cut) is
a sound rule. Assume that ϕ is not provable in TCRλ , although it has a proof in TCRλ

with (cut). Hence, by completeness of TCRλ , ¬ϕ is satisfiable. Since (cut) is sound,
then every application of it to an open branch in a tableau for ¬ϕ leads to a satisfiable
extension, contrary to our assumption. ��

Therefore we can apply (cut) safely in TCRλ to show derivability of other rules.

Lemma 9 TCRλ and TC′
Rλ

are equivalent.

Proof First we prove that (ι′2) is derivable in TCRλ :

(λxψ)(ιyϕ)

ϕ[y/b1] ¬ϕ[y/b1]

ϕ[y/b2] ¬ϕ[y/b2]

b1 = b2

(cut)

(cut)

(ι2)

Below we show that (ι2) is derivable in TC′
Rλ
:

ϕ[y/b1]
ϕ[y/b2]

(λxψ)(ιyϕ)

¬ϕ[y/b1] ¬ϕ[y/b2] b1 = b2

⊥ ⊥

(ι′2)

(⊥1) (⊥1)
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In a similar way we prove derivability of (L’) in TCRλ (again with (cut)) and
derivability of (L) in TC′

Rλ
(without (cut)). Hence the two calculi are equivalent, both

cut-free and analytic. ��
Thanks to Lemma 9 we can use TC′

Rλ
for proving the interpolation property for

LRλ .
Let us consider closed tableaux for valid implications in TC′

Rλ
. Each tableau can

be mechanically transformed into a biased tableau in the following way. Without loss
of generality we assume that at the root of a proof tree of a valid implication we have
a formula of the form ϕ ∧ ¬ψ . We delete the root, replace ϕ with L ϕ and ¬ψ with
R¬ψ , and continue the process of assigning prefixes L,R: for each application of a
rule we precede with L all conclusions of the premise prefixed with L and with R
all conclusions of the R-premise. This way all formulas, save ⊥ at the end of each
branch, are signed in a way that makes explicit their ancestry: they follow either from
the antecedent L ϕ or from the succedent R ψ of the original implication.

Theorem 10 (Craig interpolation) LRλ enjoys the Craig interpolation property.

Proof Let us recall that we are dealing with sentences only, so ϕ,ψ contain no free
variables. To simplify the presentation, wewill be using freely non-primitive constants
∨,→, ∃, assuming tacitly that in respective tableau proofs their definitions are used.
We build up an interpolant constructively, starting from each occurrence of ⊥ at the
end of a branch, and going up the tree. In general, at each stage we consider the last
applied rule and having already established interpolants for conclusions of the applied
rule we extract an interpolant for the premise with respect to all formulas which are
above on the branch. Thus, the general scheme is:

If χ1, ..., χk are interpolants for  ∪ {	1}, . . . ,  ∪ {	k}, then I(χ1, . . . , χk)

is an interpolant for  ∪ {ϕ}, where ϕ is the premise of the applied rule and
	1, . . . , 	k are all the (sets of) conclusions, and  is the set of all formulas on
the branch above the premise.

Clearly, the specific rules for calculating interpolants are in two versions for each rule:
theL-variantwithL, or theR-variantwithR assigned to the premise and conclusions (in
the case of (⊥1) there are four combinations). Let γ1, ..., γn be the set of all formulas
such that L γi ∈ , and let δ1, ..., δm be the set of all formulas such that R δi ∈ . For
each rule we are showing that for its L-variant:

If, for every i ≤ k, |� ψi ∧ γ1 ∧ . . . ∧ γn → χi and |� χi → ¬δ1 ∨ . . . ∨ ¬δm ,
then |� ϕ ∧ γ1 ∧ . . . ∧ γn → I (χ1, . . . , χk)

and for the R-variant:

If, for every i ≤ k, |� γ1 ∧ . . .∧ γn → χi and |� χi → ¬δ1 ∨ . . .∨¬δm ∨¬ψi ,
then |� I (χ1, . . . , χk) → ¬δ1 ∨ . . . ∨ ¬δm ∨ ¬ϕ

Below we state the principles for calculating interpolants for the specific rules of
TC′

Rλ
. For the remaining rules they can be found in Fitting’s work (1996).

(⊥L
2 ) ⊥ is an interpolant for  ∪ {L b 
= b}.
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(⊥R
2 ) � is an interpolant for  ∪ {R b 
= b}.

(L’L) If χ1 is an interpolant for  ∪ {L b1 
= b2} and χ2 is an interpolant
for  ∪ {L ϕ[b1//b2]}, then ∀x(χ1 ∨ χ2[b2/x]) is an interpolant for
 ∪ {L ϕ[b1]}.

(L’R) If χ1 is an interpolant for  ∪ {R b1 
= b2} and χ2 is an interpolant
for  ∪ {R ϕ[b1//b2]}, then ∃x(χ1 ∧ χ2[b2/x]) is an interpolant for
 ∪ {R ϕ[b1]}.

(λL) If χ is an interpolant for  ∪ {L ψ[x/b]}, then χ is an interpolant for
 ∪ {L (λxψ)(b)}.

(λR) If χ is an interpolant for  ∪ {R ψ[x/b]}, then χ is an interpolant for
 ∪ {R (λxψ)(b)}.

(¬λL) If χ is an interpolant for  ∪ {L ¬ψ[x/b]}, then χ is an interpolant for
 ∪ {L ¬((λxψ)(b))}.

(¬λR) If χ is an interpolant for  ∪ {R ¬ψ[x/b]}, then χ is an interpolant for
 ∪ {R ¬((λxψ)(b))}.

(ιL1 ) If χ is an interpolant for  ∪ {L ψ[x/a],L ϕ[x/a]}, then χ is an inter-
polant for  ∪ {L (λxψ)(ιyϕ)}.

(ιR1 ) If χ is an interpolant for  ∪ {R ψ[x/a],R ϕ[x/a]}, then χ is an inter-
polant for  ∪ {R (λxψ)(ιyϕ)}.

(ι′2
L
) If χ1 is an interpolant for  ∪ {L ¬ϕ[y/b1]}, χ2 is an interpolant for

 ∪ {L ¬ϕ[y/b2]} and χ3 is an interpolant for  ∪ {L b1 = b2}, then
∀x∀y(χ1∨χ2∨χ3[b1/x, b2/y]) is an interpolant for∪{L (λxψ)(ιyϕ)}.

(ι′2
R
) If χ1 is an interpolant for  ∪ {R ¬ϕ[y/b1]}, χ2 is an interpolant for

 ∪ {R ¬ϕ[y/b2]} and χ3 is an interpolant for  ∪ {R b1 = b2}, then
∃x∃y(χ1∧χ2∧χ3[b1/x, b2/y]) is an interpolant for∪{R (λxψ)(ιyϕ)}.

(¬ιL) If χ1 is an interpolant for  ∪ {L ¬ψ[y/b]}, χ2 is an interpolant for
 ∪ {L ¬ϕ[y/b]} and χ3 is an interpolant for  ∪ {L ϕ[y/a],L a 
= b},
then ∀x(χ1∨χ2∨χ3[b/x]) is an interpolant for∪{L¬((λxψ)(ιyϕ))}.

(¬ιR) If χ1 is an interpolant for  ∪ {R ¬ψ[y/b]}, χ2 is an interpolant for
 ∪ {R ¬ϕ[y/b]} and χ3 is an interpolant for  ∪ {R ϕ[y/a],R a 
= b},
then ∃x(χ1∧χ2∧χ3[b/x]) is an interpolant for ∪{R¬((λxψ)(ιyϕ))}

Let us check the hardest case of (ι′2). The remaining ones can be shown by using an
analogous argument. For the L-variant we assume that:

1 |� ¬ϕ[y/b1] ∧ γ1 ∧ . . . ∧ γn → χ1
2 |� χ1 → ¬δ1 ∨ ... ∨ ¬δm
3 |� ¬ϕ[y/b2] ∧ γ1 ∧ . . . ∧ γn → χ2
4 |� χ2 → ¬δ1 ∨ . . . ∨ ¬δm
5 |� b1 = b2 ∧ γ1 ∧ . . . ∧ γn → χ3
6 |� χ3 → ¬δ1 ∨ . . . ∨ ¬δm

On this basis we can show that ∀x∀y(χ1 ∨ χ2 ∨ χ3[b1/x, b2/y]) is the required
interpolant. Let us assume that one or both of b1, b2 occur in any of χ1, χ2, χ3,
but not in γ1, . . . , γn . It follows that they must also occur in ¬δ1 ∨ . . . ∨ ¬δm . If
the assumption is not satisfied, then the universal quantification of χ1 ∨ χ2 ∨ χ3
is either unnecessary (if they occur also in γ1, . . . , γn) or void (if they are not in
χ1, χ2, χ3), and hence, also unnecessary. From 2, 4, 6 it obviously follows that
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|� ∀x∀y(χ1 ∨ χ2 ∨ χ3[b1/x, b2/y]) → ¬δ1 ∨ . . . ∨ ¬δm . We show, using TCRλ ,
that from 1, 3, 5 it follows that |� (λxψ)(ιyϕ) ∧ γ1 ∧ . . . ∧ γn → ∀x∀y(χ1 ∨
χ2 ∨ χ3[b1/x, b2/y]). Assume, towards a contradiction, that this implication is not
valid, that is, by completeness of TCRλ , there is an open branch in the tableau
containing (λxψ)(ιyϕ), γ1, . . . , γn,¬∀x∀y(χ1 ∨ χ2 ∨ χ3[b1/x, b2/y]). Since b1,
b2 are not present on the branch, we can add ¬χ1,¬χ2,¬χ3 to the branch with
these parameters as fresh. Again, by completeness of TCRλ we know that each
of 1, 3, 5 has a proof, hence applying (cut) thrice with these implications and their
negations as cut formulas we obtain their occurrences on the open branch. By apply-
ing systematically branching rules to them we obtain ϕ[y/b1], ϕ[y/b2], b1 
= b2;
all other branches containing ¬γ1, . . . ,¬γn, χ1, χ2, χ3 must be closed. Eventually,
an application of (ι2) yields b1 = b2 on the branch, thus making it closed, so
|� (λxψ)(ιyϕ) ∧ γ1 ∧ . . . ∧ γn → ∀x∀y(χ1 ∨ χ2 ∨ χ3[b1/x, b2/y]), contrary to
our assumption. Since ∀x∀y(χ1 ∨ χ2 ∨ χ3[b1/x, b2/y]) contains only predicates and
parameters which are common to (λxψ)(ιyϕ) ∧ γ1 ∧ . . . ∧ γn and ¬δ1 ∨ . . . ∨ ¬δm ,
we are done.

For the R-variant we assume that:

1’. |� γ1 ∧ . . . ∧ γn → χ1;
2’. |� χ1 → ¬δ1 ∨ ... ∨ ¬δm ∨ ϕ[y/b1];
3’. |� γ1 ∧ . . . ∧ γn → χ2;
4’. |� χ2 → ¬δ1 ∨ ... ∨ ¬δm ∨ ϕ[y/b2];
5’. |� γ1 ∧ . . . ∧ γn → χ3;
6’. |� χ3 → ¬δ1 ∨ . . . ∨ ¬δm ∨ b1 
= b2;

On this basis we can show that ∃x∃y(χ1 ∧ χ2 ∧ χ3[b1/x, b2/y]) is the required
interpolant. Let us assume that one or both of b1, b2 occur in any of χ1, χ2, χ3, but
not in δ1, . . . , δm . It follows that they must also occur in γ1 ∧ . . . ∧ γn . If, on the other
hand, our assumption is false, then the existential quantification of χ1 ∧ χ2 ∧ χ3 is
either unnecessary (if one or both of b1, b2 occur also in δ1, . . . , δm) or void (if they
are not in χ1, χ2, χ3), and hence, also unnecessary. From 1’, 3’, 5’ it straightforwardly
follows that |� γ1 ∧ . . . ∧ γn → ∃x∃y(χ1 ∧ χ2 ∧ χ3[b1/x, b2/y]). We show, using
TCRλ , that 2’, 4’, 6’ imply |� ∃x∃y(χ1 ∧ χ2 ∧ χ3[b1/x, b2/y]) → ¬δ1 ∨ ... ∨
¬δm ∨ ¬(λxψ)(ιyϕ). For the sake of contradiction assume that the implication is
false. Hence, by completeness ofTCRλ , there is an open branch in a tableau containing
∃x∃y(χ1 ∧ χ2 ∧ χ3[b1/x, b2/y]), δ1, . . . , δm, (λxψ)(ιyϕ). Since b1, b2 are absent
from the branch, we can add χ1, χ2, χ3 to the branch with these parameters as fresh.
Again, from completeness of TCRλ we derive that each of 2’, 4’, 6’ has a proof,
hence by applying (cut) three times with these implications and their negations as
cut formulas we make them occur on an open branch. By systematic applications of
branching rules to them we obtain ϕ[y/b1], ϕ[y/b2], b1 
= b2 on an open branch.
All other branches containing¬χ1,¬χ2,¬χ3,¬δ1, . . . ,¬δm must be closed. Finally,
an application of (ι2) introduces b1 = b2 to the branch and closes it, therefore |�
∃x∃y(χ1 ∧ χ2 ∧ χ3[b1/x, b2/y]) → ¬δ1 ∨ . . . ∨ ¬δm ∨ ¬(λxψ)(ιyϕ), contradicting
the assumption. Since ∃x∃y(χ1 ∧ χ2 ∧ χ3[b1/x, b2/y]) contains only predicates and
parameters occurring both in γ1 ∧ . . . ∧ γn and ¬δ1 ∨ . . . ∨ ¬δm ∨ ¬(λxψ)(ιyϕ), it
concludes the proof. ��
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As a consequence of Theorem 10 we get:

Theorem 11 (Beth definability) LRλ enjoys the Beth definability property.

Implicit definability follows almost immediately from explicit definability. If we
assume (ii), then the equivalence form (i) can be obtained by the assumption that c
(and thus, c′) does not occur in the defining formula. For the converse implication we
employ the Craig interpolation property and the deduction theorem for L to show that
an interpolant obtained in a series of derivations can play the role of the formula on
the right-hand side of the equivalence in (ii). See Andrews (2002, Theorem 4200) for
details.

Knowing thatLRλ satisfies theBeth definability property results in a straightforward
method of determining, for any signature � = (PRED,CONS, ar), any theory Th
over � and any constant c ∈ CONS, whether c can be defined by a formula ψ over
�′ = (PRED,CONS \ {c}, ar) under Th. In other words, we can decide whether there
exists a formula that can form a definite description satisfied by the object that c
denotes. Indeed, it suffices to check for implicit definability of c, that is, check if a
tableau with the following formula at the root is closed:

∧
(Th ∪ Th′) ∧ c 
= c′,

where Th’ is defined like at the beginning of the section. Since, by Theorem 11, implicit
definability implies explicit definability, we can replace such a constant with definite
description ιxψ , where ψ is a definiens of c, whenever such a replacement results in
a syntactically correct expression.

Example 7 Consider a theory Th which provides characteristics of two individuals:
Charles and Dana. The one thing that Th stipulates is that only Charles and Dana are
politicians. Formally:

Th = {∀x(P(x) → (x = c ∨ x = d)), P(c), P(d)}.

Using TCRλ it is not difficult to check that d is implicitly definable in Th (in the
proof tree below we exploit the definitions: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)) and ϕ → ψ :=
¬(ϕ ∧ ¬ψ)):
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∀x(P(x) → (x = c ∨ x = d))

∀x(P(x) → (x = c ∨ x = d ′))
P(c)
P(d)

P(d ′)
d 
= d ′

P(d ′) → (d ′ = c ∨ d ′ = d)

P(d) → (d = c ∨ d = d ′)

¬P(d ′) d ′ = c ∨ d ′ = d

d ′ = c d ′ = d⊥

¬P(d) d = c ∨ d = d ′

d = c d = d ′

⊥

⊥

⊥

d = d ′

⊥

2 × (∀) : x/d, x/d ′

(¬∧)

(¬∧)

(¬∧)

(¬∧)

(⊥1)

(⊥1)

(⊥1)

(L)

(⊥1)

(⊥1)

One can easily verify that, since Th does not specify whether Charles and Dana are
the same person, d in Th is unambiguously characterised by the formula P(x)∧ (x 
=
c∨¬∃y(y 
= x∧P(y))) saying that either Dana is a politician distinct fromCharles or
the only politician that exists, thus it can be replacedwith ιx(P(x)∧(x 
= c∨¬∃y(y 
=
x ∧ P(y)))) in every syntactically permitted contex. In fact, the above tableau reveals
that even in the reduct of Th only consisting of ∀x(P(x) → (x = c ∨ x = d)) and
P(d), d is implicitly (and therefore, explicitly) definable, for P(c) does not take active
part in closing the tree. Indeed, in such a reduced theory d can be defined explicitly
by the same formula. If, on the other hand, we remove P(d) from Th and keep P(c)
instead, d will no longer be implicitly (and thus, explicitly) definable in such a reduct,
as we will no longer have a means to close the branches with ¬P(d) and ¬P(d ′).

8 Discussion and future work

TCRλ is an accessible, well-behaved tableau calculus which represents essential fea-
tures of the Russellian approach to definite descriptions and at the same time avoids
its shortcomings. Moreover, the proposed methodology is open for further extensions
to several other theories of definite descriptions. In particular, we can use it to for-
malise the approaches to definite descriptions developed in the area of free logics.
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Indrzejczak and Zawidzki (2021) proposed tableau systems for the minimal theory
of definite descriptions expressed in several variants of free logics. The language of
these systems is standard in the sense that predicate abstracts are not admitted and
definite descriptions are directly used as arguments of predicates on a par with vari-
ables and individual constants. Moreover, the characterisation of definite descriptions
is based on the weaker principle, often called Lambert’s axiom. Only in negative
free logic Lambert’s axiom can be proved equivalent to Russell’s axiom being the
basis of the approach presented in this paper. Rules for definite descriptions involve
equalities with definite descriptions as arguments and to obtain completeness we need
a restricted form of cut on equalities with definite descriptions already present on
the branch. Introducing the lambda-operator and restricting occurrences of definite
descriptions to arguments of lambda-atoms has a potential of simplifying the men-
tioned tableau systems for these theories. Roughly, it seems that to adjust TCRλ to
positive free logics we would only need to slightly modify the rules for quantifiers
and for lambda-atoms. If we want negative free logics to be covered by a transformed
version of TCRλ , we must additionally alter the rules for equality and add some extra
rules expressing special denotation principles. An advantage offerred by the setting
based on a modified version of TCRλ for free logics over previous tableau systems
by Indrzejczak and Zawidzki (2021) is that (the restricted form of) cut is no longer
required, which decreases the search space in a proof.

Another promising field of application of the presented setting ismodal logic, where
tableau systems with lambda- and iota-terms were already examined by Fitting and
Mendelsohn (1998) and then characterised by means of sequent calculi by Orlandelli
(2021) and Indrzejczak (2020a). The application of lambda-abstracts to the problem of
distinguishing between de dicto and de re reading of a modality is direct: �(λxϕ)(t)
and (λx�ϕ)(t). Fitting and Mendelsohn introduced labelled tableaux and applied
the lambda-operator, but did not characterise definite descriptions by means of well-
behaved rules. Both Orlandelli’s and Indrzejczak’s approaches rely on the same theory
of definite descriptions, again based on Lambert’s axiom, but, contrary to Fitting and
Mendelsohn, provide sequent calculi with well-defined rules. The difference between
them is that in the former external labels are used and rules for definite descriptions are
built on the basis of a special denotation predicate, whereas in the latter hybrid logic
and a special equality predicate are exploited to characterise definite descriptions. In
both cases cut elimination is proved and lambda-predicates are introduced mainly for
dealing with modal scoping difficulties. In the case of the system introduced in this
paper the role of the lambda-operator is rather to solve the known problems caused by
the Russellian approach to definite descriptions and to introduce tighter constraints on
treating descriptions as terms. In particular, in all mentioned alternative approaches
definite descriptions are semantically treated as terms,whereas in the present approach,
they are characterised sematically only as arguments of lambda atoms. This is what
makes metalogical proofs almost standard in contrast to proofs conducted within
approaches where definite descriptions are semantically characterised as independent
terms. Nevertheless, since the solutions proposed in this paper, with particular focus
on restricting the part of the syntax revolved around definite descriptions, were not
considered in the aforementioned works, it opens a path for cross-fertilisation of the
techniques developed in all presented approaches.
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Also, notice that to prove interpolation we had to refer to admissibility of cut on
the basis of completness of the cut-free version of the calculus. From the theoretical
standpoint it is desirable to have the cut elimination theorem proved constructively
for this calculus. This problem has recently been solved by Indrzejczak and Kürbis
(2022).

An interesting task for future research would be extending the present approach
to intuitionistic and, possibly, intermediate logics. Intuitionistic logic could be han-
dled by simply adding labels representing states in an S4 modal frame, and slightly
modifying the rules to account for this extra dimension. Feasibility of this enterprise
becomes evident when we use sequent calculus instead of tableaux. Since all rules
specific for definite descriptions have never more than one formula in the succedent
(in the tableau setting: negated formulas), we can simply add them to the standard
intuitionistic version of sequent calculus. Tackling some known intermediate logics
which have modal frames based on an order relation in a uniform fashion also seems
achievable.

Finally, from the practical standpoint the presented tableau system requires a proper
implementation for its efficiency to be firmly tested.
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