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Abstract
I argue that mathematical representations can have heuristic power since their con-
struction can be ampliative. To this end, I examine how a representation (a) intro-
duces elements and properties into the represented object that it does not contain 
at the beginning of its construction, and (b) how it guides the manipulations of the 
represented object in ways that restructure its components by gradually adding new 
pieces of information to produce a hypothesis in order to solve a problem.

In addition, I defend an ‘inferential’ approach to the heuristic power of represen-
tations by arguing that these representations draw on ampliative inferences such as 
analogies and inductions. In effect, in order to construct a representation, we have to 
‘assimilate’ diverse things, and this requires identifying similarities between them. 
These similarities form the basis for ampliative inferences that gradually build hy-
potheses to solve a problem.

To support my thesis, I analyse two examples. The first one is intra-field (intra-
mathematical), that is, the construction of an algebraic representation of 3-mani-
folds; the second is inter-fields, that is, the construction of a topological representa-
tion of DNA supercoiling.
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1 Introduction

Mathematical representations and their role in scientific understanding have been 
increasingly investigated in the last few decades. These investigations examine sev-
eral kinds of representations, such as visualizations1, diagrams2, icons3, notations4, 
and modes of representation in general5. Moreover, these investigations shed light 
on crucial properties of mathematical representations such as their faithfulness and 
partiality6, the manipulations7 that they involve, and the kind of epistemic gain that 
they enable8.

This paper focuses on three crucial questions underlying these investigations. The 
first one is the heuristic power of representations. I show how the construction of 
a representation can be ampliative since a representation introduces elements and 
properties into the represented object that it does not contain at the beginning of 
this construction, enabling the production of hypotheses to solve a problem. I focus 
on the kind of epistemic gain that mathematical representations enable. Most of the 
literature cited here characterises this gain in ‘economic’ terms: using representations 
provides us with a more efficient way (e.g., a smaller number of actions) of acquir-
ing pieces of knowledge that could have been achieved less efficiently (e.g. a greater 
number of actions). In this paper I set out to show that we can characterize such an 
epistemic gain in terms of novelty9: there are cases where specific representations 
enable us to discover genuinely new pieces of knowledge that could have not been 
achieved without employing those specific representations. Two case studies are pro-
vided to support this claim (§2).

The second question is about the nature of the manipulations involved in a repre-
sentation. Here, I focus on a less explored subject. Most of the literature cited above 
focusses on the manipulations that are performed on the representation in order to 
achieve knowledge about the represented object. In this paper I set out to shed light 
on those manipulations of the represented object using the features of the adopted 
representation. Those manipulations enable us to attribute new elements and rela-
tions to the represented object and are essential to drawing up hypotheses to solve a 
problem.

Thirdly, I argue that this process is inferential in nature: those manipulations 
involve ampliative inferences that guide the tentative construction of a mathematical 
representation designed to solve a determined problem.

1  See Bueno (2016), Giaquinto, (2007, 2008), Bråting and Pejlare (2008).
2  See Carter (2012a, 2012b, 2013), Halimi (2012),De Toffoli-Giardino (2014), Priest, De Toffoli and 
Findlen (2018),Cellucci (2019).

3  See in particular Carter (2019).
4  See Grosholz (2007), Cellucci, (2020).
5  See in particular Grosholz (2007).
6  See e.g. Bueno (2016), Carter, (2018) and (2019).
7  See e.g. Carter (2018, 2019), Giardino, (2018), Ippoliti, (2016b).
8  See e.g. Carter (2018), Grosholz, (2007), Ippoliti, (2018a, 2018b).
9  Of course, this point is not totally new. See e.g. Steiner (1998), Bangu, (2008), Pincock, (2012), 
Ginammi, (2016) for different approaches to it. I thank one of referees for this remark.
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Thus, in this paper I argue that mathematical representations can have ampliative 
power by examining at a fine-grained level their ampliative way of working both 
intra-field and inter-fields (Darden-Muall, 1977).10 In addition, I argue that the con-
struction of a representation is inferential as it employs ampliative inferences (e.g. 
Cellucci, 2013), that is, non-deductive inferences such as analogies, inductions, and 
combinations thereof.11

1.1 Repraesentans, repraesentatum, and mathematics

The two parts involved in a representation, the repraesentans (the representation) 
and the repraesentatum (the represented object), can be very different and, in a sense, 
they must be. As already theorized by Plato with the argument of the ‘imperfect 
resemblance’ and the paradox of the ‘two Cratyluses’ (Cratylus, 431c-433b, see also 
Sedley, 2003), a perfect isomorphism is not possible because it implies the ‘para-
dox of the duplicate’, that is, we will produce not a representation of a given thing, 
but rather a perfect duplicate.12 Since the repraesentans and the repraesentatum are 
necessarily different, Plato maintains that an omission or addition does not prevent 
a representation from being a representation of a given object (see e.g. Ademollo, 
2011). That is, representations can work not only in a subtractive, but also in an addi-
tive way.13

This implies that a representation is always selective: it requires a choice, a trade-
off, between the features to show or disregard. The selection depends on the aim of a 
representation, and therefore a representation is never neutral or passive: while some-
thing is lost in representation, something else can be gained since we can add new 
features to the repraesentatum by means of a suitably chosen repraesentans. There is 
always an intention behind a representation.

It is useful to make a distinction here. On the one hand there is the selection of 
which known properties of the repraesentatum to show in the representation; on the 
other, there is the construction of new elements in the repraesentatum that might 
allow new actions or manipulations and consequently new inferences about the rep-
resented object. Not only are representations always partial and selective but they can 
involve the manipulations of certain features of the repraesentatum in order to regard 
it as equivalent, isomorphic, or equal to the repraesentans under a given viewpoint.14

10  For an interesting use of this distinction in philosophy of mathematics see Hacking (2014) and Ginammi 
(2018). I thank one of referees for this remark.
11  Ampliative inferences are defined in terms of containment (see e.g. Cellucci, 2013). In a deductive (or 
non-ampliative) rule, the conclusion is contained in the premise, in the sense that the conclusion is either 
literally a part of the premise or it implies nothing that is not already implied by the premise. In an amplia-
tive rule, the conclusion is not contained in the premise, so information context extends that of the premise.
12  This idea is also defended by Aristotle’s theory of representation (see Quarantotto, 2019), according 
to which “a system can represent another system, without that they share the same kind of organisation” 
(Quarantotto, 2019, 339).
13  The idea that the repraesentans adds something to the repraesentatum is defended by Plato also in the 
Timaeus, as noted by Thien (2006), since “an image can also differ from its original by having some fea-
tures or structures that the original does not possess, which does not make the image less derived or – in 
some ways – defective” (Thien, 2006, 245).
14  See also Ippoliti (2018a, 2018b) on this point.
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1.1.1 Representations and assimilations

In order to construct a mathematical representation and to consider objects that can 
be very different in nature as equivalent, isomorphic, or equal under a given view-
point, we have to assimilate them (see Thomas, 2011). Thomas stresses that even if 
an assimilation fails or is misleading, it permeates and regulates mathematical prac-
tice15: “we can assimilate anything we want to anything else we want; it just means 
ignoring the differences” (Ibid., 365) and “the result of our doing this, which we do 
with all of our concepts, is to create what I call assimilation classes” (Ibid.). In more 
detail, Thomas notes that:

(i) Mathematics operates on the basis of a ‘principle of assimilation’, which is a 
sort of methodological principle that allows us to safely ignore the differences 
between the objects we assimilate.

(ii) Assimilation is useful since it meets a basic principle of economy in scientific 
inquiry. From a human point of view, most objects have an infinite number of 
characteristics, most of which are irrelevant to the goal of a particular inquiry. 
And so objects that do not differ in ways that are pertinent to the goal can be 
assimilated. But this depends on a carefully judged combination of salience and 
relevance.

(iii) This is highly context-sensitive since it is obviously relative to one’s goals.

Now, I argue that the very first step of an assimilation requires identifying, typi-
cally at an informal level, similarities between elements and properties of different 
objects in order to consider them as equivalent, isomorphic or equal under a certain 
viewpoint.16

More precisely:

a. An assimilation draws on similarity17: assimilating diverse objects requires find-
ing similarities between them, which depends on the way we connect and repre-
sent them.

b. This implies the adoption of a viewpoint, which is obtained from the problem to 
solve and its subproblems.

A finer-grained characterization of assimilation requires taking the role of representa-
tions into account. This means that we also must consider the role of the repraesenta-
tum and not only that of the repraesentans in the analysis of the process aiming to treat 
them as equivalent in some way when solving a problem. To develop an assimilation, 

15  Thomas stresses that assimilation is a common way of building mathematical definitions and men-
tions several historical examples of interesting assimilations, like Cantor’s assimilation of infinite numbers 
to finite ones, Newton and Leibniz’s plausible assimilation of infinitesimals to numbers, and the initial 
assimilation of functions to rules expressed by algebraic formulas.
16  It is worth noting that in the sense used by Thomas ‘assimilation’ is similar to abstraction, in that they 
both require ignoring differences and finding resemblances between things. I thank one of the referees for 
suggesting this remark.
17  For a recent analysis of the role of similarity see Weisberg (2013).
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we could also perform certain manipulations and inferences on the repraesentatum in 
order to construct elements that can reproduce properties or relations in the reprae-
sentatum that are analogous to those of the repraesentans. This gives mathematical 
representations a great heuristic power, since in this way they introduce new features 
into the repraesentatum and do not only select certain known features to express and 
make visible in the repraesentans. In this case, the adopted repraesentans is crucial to 
suggesting what features can be added to the repraesentatum and how to do it.

For instance, when we use algebra to solve a problem in topology, we aim at 
assimilating elements belonging to these two distinct domains. To this end, we can 
design and add new elements in topology, like simple points, sets of paths, or loops, 
because they enable us to reproduce certain algebraic structures and their relations 
into a topological space like a 3-manifold (see e.g. §2.1). Thus, the algebraic repre-
sentation suggests how to adapt a topological space in a way that makes its elements 
and relations treatable analogously to how an algebraic structure treats its own ele-
ments and relations. Of course, this does not tell us exactly how and what elements 
to design or draw in a repraesentatum, a topological space X, but it does suggest 
and delimit what they should be like in order to achieve this goal. Therefore, once 
we have added certain elements to a topological space, like a basepoint and sets of 
loops, we can build over them other functions (e.g. an orientation for loops or their 
composition on a basepoint), making it possible to build more articulated structures 
that are the analogue of the algebraic ones (e.g. a semi-group or a group). We can use 
them to approach a solution to a problem to solve in topology, for example to find 
invariants to tell 3-manifolds apart. That is, we produce similarities that can be the 
basis for ampliative inferences (e.g. analogies or inductions) that gradually structure 
a hypothesis to solve the problem.

1.1.2 Representations’ faithfulness

Especially in science, these characteristics of a representation raise the question of 
the faithfulness of a representation and how to choose one specific representation 
over another (see e.g. Frigg and Nguyen, 2016). One way of dealing with this issue 
in science and mathematics is to employ the notion of relevance (e.g. Bueno, 2016). 
In effect, a specific representation like a diagram does not need to convey faithfully 
every aspect of the relations between the relevant mathematical objects, but it is 
crucial that the central, relevant relations are properly displayed in the diagram; 
instead, the non-relevant relations need not be properly represented at all, and dia-
grams often knowingly misrepresent many unimportant features of the objects under 
consideration.

Here, of course, the problem is how to identify these relevant relations—and do it 
in a rational way. The adequacy of this selection varies according to its purpose and 
in science the relevance depends, in the first place, on the goal of our inquiry, which 
is given by the problem we are trying to solve.18 To mention a simple example, to 
represent planets as points on a Cartesian coordinate system can be convenient for 

18  Here I mean problem-solving a là Simon (1987), that is, both problem-solving and problem-posing.
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calculating the trajectory of an interplanetary trip, but not for calculating how to land 
on a specific point on one of those planets.

It is worth noting that we have an additional issue here. Since a mathematical rep-
resentation contains a partial interpretation (explicit or not) of the elements involved 
in a problem to solve, the selection of relevant properties can be opportunistic. This 
means that we could consider certain properties as relevant or salient because they can 
be approached and expressed by known mathematical formalisms and not because 
we think that they are the most relevant for solving a problem.19 In other words, a 
selection of variables for a given problem identifies certain features as pertinent or 
prominent for solving a problem because they can be approached by means of the 
available mathematical apparatus.

A more detailed characterization of ‘faithfulness’ is advanced by Carter (2018, 
2019), who defines it in terms of heuristic power and manipulations.20 She maintains 
that when certain objects “are manipulated so that new relations become visible, [it] 
gives rise to a faithful representation” (Carter, 2019, 4013). In more detail, a faithful 
representation is one that:

 – “represents as either an image (resembling what it stands for) or as a metaphor 
(sharing some underlying structure) […] certain relevant relations” (Ibid.) and,

 – “manipulations on the representations respect manipulations on the objects they 
represent, so that new relations may be found” (Ibid.).21

Carter argues that representations produce an epistemic gain in this way, and she 
offers diagrams as a paradigmatic example in virtue of their two unique features:

i) they exhibit the type of relation, that is, they show that a relation exists rather 
than simply stating in words that it exists.

ii) they present multiple relations in a single diagram.

For instance, in the case of C*-algebras (Carter, 2018), representations based on 
graphs can be produced and manipulated so as to reveal relations on the represented 
object: “the representations of graphs become concrete objects that can be manipu-
lated, or experimented on, in order to obtain knowledge about C*-algebras” (Ibid., 
185). In particular, Carter argues that they present relevant information in a more 
tractable way than other representations: a diagram can require a smaller number of 
actions than a formal presentation in accomplishing a specific task.22 Thus, the epis-

19  An interesting example is the representation of economic and financial systems in terms of thermody-
namics (see e.g. Ray, 2011, and Ippoliti, 2020).
20  Carter’s characterization emerges from an application of Peirce semiotics to mathematical diagrams in 
particular: for the purpose of this paper, I will not examine this point, and I will focus on her analysis of 
the role of heuristics and manipulation in representations.
21  She underlines that this process uses a faculty resembling the notion of ‘manipulative imagination’ put 
forward by De Toffoli and Giardino (2014), and Giardino (2018).
22  It is worth noting here that not all diagrams are geometric in kind, and some may be ‘formal’—see for 
instance Shin (1994) on diagrams used in logic, and De Toffoli (2017) on commutative diagrams. I thank 
one of referees for this remark.

1 3

407 Page 6 of 28



Synthese (2022) 200:407

temic gain provided by diagrammatic representations is ‘economic’ in nature, and 
hence a representation has heuristic power in the sense that it allows us to solve prob-
lems in a more efficient way. We can define it as a ‘weak’ form of heuristic power as 
compared to a ‘strong’ form. As a matter of fact, the construction of a repraesentans 
can be characterized in a strong heuristic way, that is, in terms of novelty and not only 
in terms of efficiency, for there are cases where it enables us to discover genuinely 
new pieces of knowledge that are not accessible otherwise. In these cases, a specific 
representation can bring new features and constraints into the repraesentatum that are 
essential to solving a problem, and that enable the construction of new elements in 
the repraesentatum that allow new actions or manipulations and consequently new 
inferences about it.

1.1.3 Manipulations of the repraesentatum

These actions and inferences are proposed in the first place using the information 
content embedded in the adopted repraesentans, that is its specific set of elements, 
properties, and functions. Since different representations do not convey the same 
information content and handle the repraesentatum in different fashions, they can 
change the repraesentatum suggesting different operations and inferences for it. This 
step is typically informal, material and goal oriented. For example, determining spe-
cific points on a 3-manifold and connecting them with simple paths or determining a 
single point and using it as a base for loops (see §2.1) serves the goal of providing an 
increasingly better basis for taking the information content contained in the formal 
algebraic structures and making it applicable to 3-manifolds.

These actions are preliminaries to certain structures and inferences whose aim is 
bringing the information content of the repraesentans and its formal apparatus (e.g. 
algebra) into the repraesentatum (e.g. 3-manifolds). Naturally, the proposed actions 
and inferences can turn out to be inadequate to achieve the desired goal, so we must 
abandon or refine them.

It is in this sense that representations are heuristic and ampliative. They are heu-
ristic because they provide the means to solve a problem in the form of a hypothesis 
with specific information content that is gradually regulated by the adopted reprae-
sentans. They are ampliative because they bring new knowledge and information 
into the represented object by (re)structuring its elements and adding new pieces of 
information. So, this characteristic way of working of representations, that is, not 
only by subtraction, but also by addition, gives them great heuristic power. This also 
implies a form of sensitivity to representation, in the sense that what we can discover 
about the repraesentatum depends on the adopted mathematical repraesentans: a new 
representation does not simply make certain elements visible (Carter, 2018), but it 
can gradually build new ones in the repraesentatum so as to lead us to discover some-
thing new about it.

In more detail, the repraesentans has specific information content that can be used 
to adapt the elements of the repraesentatum in ways that enable us to develop a new 
approach to a problem. When we introduce something like a specific point into a 
topological space and we stipulate that it acts as a base for loops (§2.1), we are liter-
ally adding new elements to the topological space by reasoning by analogy with a 

1 3

Page 7 of 28 407



Synthese (2022) 200:407

specific repraesentans (algebra). We are adapting a topological space to introduce a 
few properties into it that are equivalent to those of an algebraic structure in order to 
achieve a certain purpose or advantage. In this case, the purpose is to develop a calcu-
lation that can assign unique values to different 3-manifolds. Of course, this analogy 
is not purely formal but is based on features that are material and content in kind.

Moreover, not all the similarities between two given objects may be evident at the 
very beginning, and a manipulation of one object may be necessary in order to find 
them, while the other object involved in the assimilation suggests how to manipulate 
it so as to express these similarities.

Now, as we have noted, we can advance different mathematical representations for 
a given object, each generating different interpretations of it23, that is, they suggest 
different actions and inferences to perform on it. Indeed, solving a problem in science 
and mathematics, as Grosholz (2007) also notes, is typically carried out by employ-
ing multiple representations, both formal and informal, that contribute to construct-
ing a hypothesis to solve a problem. These representations can interact at different 
stages of problem-solving and in different forms—such as juxtaposition (Grosholz, 
2007), composition (Carter, 2019, Ippoliti 2018), and concatenation (Spiro et al., 
1989)—and they connect several parts of a field (intra-domain) or different fields 
(inter-domains). Therefore, the choice of the repraesentans is crucial to solving a 
problem, since each different repraesentans will bring in new and diverse elements, 
properties, and relations in various combinations.

The presence of multiple representations raises an important issue, that is, how to 
select one specific representation over another. The answer advanced in this paper is 
that, especially at intra-field level24, they are evaluated and selected in the first place 
on the basis of their efficacy in tracking certain properties of the repraesentatum that 
are crucial to solving a problem.25 Of course, this does not guarantee a solution to the 
problem, but offers a rational albeit not mechanical way of improving our representa-
tions and favouring (abandoning or adjusting) one or more of them.

In the next section, I will consider two different examples to substantiate and 
ground this analysis in detail, namely the classification of 3-manifolds and DNA 
supercoiling.

1.2 Main points of the paper

Before discussing the two examples, I will provide a brief outline of the main points 
of the paper to make it easier to follow how the case studies instantiate the heuristic 
treatment of mathematical representation presented here.

23  See also Starikova (2010) on this point.
24  At inter-field level, the selection of the more convenient mathematical representation can be operated 
also by means of a comparison with experimental evidence that is already available or that can be obtained 
by an experiment.
25  For instance, when trying to solve the problem of classifying 3-manifolds (§2.1), the algebraic repre-
sentation based on sets of equivalence classes of loops turns out to be preferable to the one that employs 
simple sets of loops, which in turn is preferable to the one based on sets of simple paths. The representation 
based on equivalence classes of loops is preferable because it provides a (better) way of tracking proper-
ties, like holes in a topological surface, that are essential to telling topological spaces apart.
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In brief:

1. A representation (repraesentans) is not the same as what it seeks to represent, its 
object (repraesentatum). It is not a copy; a map is not a landscape, a planetary 
system is not an atom.

2. A representation is by its nature partial and selective, and the selection is tenta-
tively regulated by the problem and subproblems we are trying to solve.

3. The repraesentans must be ‘faithful’ in that it must express selected relations of 
the repraesentatum so that manipulations of the repraesentans reproduce manipu-
lations on the repraesentatum. For example, a change in position of a planet in 
a planetary representation of atoms should reflect an equivalent change in the 
position of an electron around a proton-nucleus.

4. A representation assimilates its object, that is, it treats the object as equivalent, 
isomorphic, or equal to itself under a certain viewpoint.

5. In some scientific or mathematical cases, a representation requires a manipula-
tion of the represented object. For example, the introduction of a planetary repre-
sentation to describe an atom imposes new elements, like the elliptic orbits in a 
fixed plane for electrons moving around a fixed proton-nucleus. Electrons do not 
have orbits like this, but representing them as such allows us to perform certain 
actions on them, for example by moving them on a fixed plane, we can calculate 
their fixed energy. I will describe this mechanism in detail in the paper.

6. The specific information content of a repraesentans, i.e. its specific set of ele-
ments and properties, suggests manipulations, i.e. actions that can be performed 
on the repraesentatum. This content permits new elements and properties to be 
attributed to the repraesentatum and (i) helps us to identify which elements and 
relations of a hypothesis are needed to solve a particular problem, and (ii) puts 
constraints on the many possible ways of designing those elements and relations.

7. Since a representation can add new elements to the represented object, its con-
struction has ampliative power, that is, it brings pieces of information into the 
repraesentatum that were not present at the beginning of this construction. This 
is not a purely formal process but is content-sensitive.

 a. This construction of a representation is provisional and employs ampliative 
inference like analogies and induction drawn on the basis of certain similari-
ties that become more evident during the construction, and a manipulation 
of the represented object may be necessary in order to help those similarities 
emerge.

b. To this end, several repraesentans are proposed, and their efficacy is evalu-
ated on the basis of the goal we are trying to achieve. Again, it is context 
dependent.26

8. When it works in this ampliative way, a new mathematical representation brings 
out new relations and properties, which can in turn be employed to produce new 
theorems for the represented object. Since these relations and properties may 

26  See also Macbeth (2012) on this point.
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depend on the chosen repraesentans, the same goes for the theorem derived from 
it. Thus, a problem of sensitivity to representation may arise.

2 Inter-field and intra-field heuristic powers of representations: two 
examples

The analysis of two case studies of the classification of 3-manifolds and of DNA 
supercoiling enables us to bring out a few salient features of the heuristic power of 
mathematical representations in the case of both intra-field (algebra-topology) and 
inter-fields (topology-molecular biology).

First, they show that a representation can act in an ampliative way, and not only 
as an ‘economic’ device (revealing more easily or efficiently something that could be 
found otherwise).

Secondly, they show that a representation allows us to identify actions and opera-
tions to perform on the repraesentatum in a rational way by suggesting what the ele-
ment and relations contained in the hypothesis should be like, and putting constraints 
that reduce the several ways of designing these new elements and that regulate how 
to favour one set of actions and operations over another. Moreover, they show that 
the construction of a representation is inferential in kind: these representations draw 
on ampliative inferences to build elements and relations that can be transformed into 
formal results.

Thirdly, they show that the heuristic procedure is representation-sensitive, as the 
specific information content that a particular repraesentans embeds is crucial to giv-
ing content to a candidate hypothesis. Different representations can attribute different 
set of elements, properties, and functions to the represented object, which can be 
employed to produce new theorems for the represented object. I will explain it in 
detail in the next paragraphs.

2.1 Intra-field heuristic representations: the case of the first homotopy group

The search for a solution to a problem in topology provides us with a remarkable 
example of the heuristic power of mathematical representation in the advancement 
of intra-field knowledge, that is intra-mathematical. One of the initial aims of topol-
ogy was to classify manifolds27 of all dimensions completely, for example by finding 
topologically invariant numbers. A very interesting case is the class of 3d-manifolds. 
Here the construction of a new representation of a topological structure is the key 
to solving the long-standing mathematical problem of classifying them. It requires 
establishing when two given 3d-manifolds are equivalent or not, that is, if one can 
be transformed into the other by a set of specific operations and constraints. This can 
then be used to classify them. The search for this solution ends up with the production 
of the first homotopy group (or ‘fundamental group’).

27  That is, a generalization and abstraction of the notion of a curved surface.
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2.1.1 Development of solutions using mathematical representation

The first attempts to solve the problem of the classification of 3-manifolds were based 
on geometrical notions such as genus, orientability, or boundary components, which 
worked for 2-manifolds (see for example Stillwell, 2012). The goal was to deter-
mine certain characteristic numbers for closed three-dimensional spaces to show the 
possibility of their one-to-one geometrical correspondence. Those attempts all failed 
since they did not produce a characterization of 3-manifolds that was rich enough 
to produce a hypothesis to tell apart even very simple instances. Therefore, another 
attempt was put forward using invariants, that is ‘structures’ that remain unchanged 
under a given class of transformations. Again, these invariants were sought within 
geometry—e.g. using the Euler characteristic χ. These geometrical representations 
put forward certain actions and inferences on a topological space, like keeping track 
of bent regions, which seemed more promising. Unfortunately, also these invariants 
based on geometrical representations turned out to be useless because their values 
became zero for 3-manifolds, and therefore they were not able to distinguish them.

So, in order to find good invariants for 3-manifolds, a new attempt was put for-
ward using not a geometric representation of the elements, but an algebraic one. 
The choice of algebra was suggested not only by its previous successful application 
to geometry, but also by the fact that algebra provides us with several examples of 
invariants (see Cayley, 1845, 1849). The core of this approach to classifying 3-mani-
folds is to find a way of associating algebraic structures to topological entities, that 
is, building a bridge to assimilate them and employing the calculation of algebraic 
formal apparatus to assign a different value to each 3-manifold. In effect, if we can 
design a topological entity that reproduces certain features of an algebraic structure, 
and if this algebraic structure can be uniquely associated to the topological entity and 
is preserved under certain transformations, then we could employ it to tell 3-mani-
folds apart and classify them. In effect, algebra offers a better way of constructing a 
(partial) solution to this problem by proposing actions like the introduction of points 
connected by a set of paths, then basepoints for loops, and later for oriented loops.

The first step towards building such an algebraic representation is to show how 
and which basic algebraic elements, if any, can be uniquely associated to basic topo-
logical elements. That is, we try to mimic certain features of the repraesentans in the 
represented object. Poincarè (1895) developed this approach ending up with the con-
struction of the first homotopy group. Of course, there are several possible ways of 
associating algebraic structures to topological spaces using entities like rings, semi-
groups, groups, and modules. So, we face a typical under-determination problem 
here, that is, the data of the problem do not uniquely determine the most appropriate 
algebraic representation. The choice of one representation over another, as we will 
see, is guided by the features of the problem we are trying to solve, that is, by the 
way the candidate representations capture and track certain features that are relevant 
to solving that problem.

The search for such a representation requires looking for similarities and then 
drawing ampliative inferences for the repraesentatum, a 3-manifold. The first homo-
topy group is the outcome of such a step-by-step construction and ends up associating 
a group to a 3-manifold: this group comprises a set of elements with a composition 
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map and three properties—associativity, identity element, inverse element. Essen-
tially, the first homotopy group provides an algebraic way of telling topological spaces 
apart by assigning them different numerical values using algebraic calculations.

I argue that the first homotopy group (or ‘fundamental group’, see Poincaré 1904), 
the endpoint of the search for a solution to this problem, is the outcome of the con-
struction of a new representation that assimilates two diverse mathematical struc-
tures, i.e., topological and algebraic structures, and that construction transforms the 
problem so as to introduce new information into topology. This information (which 
takes the form of new functions, relations, elements) is not contained in it at the 
beginning of the assimilation that makes the construction of the new representation 
possible. The search for a solution to the classification of 3-manifolds is paradigmatic 
in this sense as it shows us that the assimilation of diverse entities is the first step of 
the construction of a representation.

In more detail, in order to build this bridge between algebra and topology, it is also 
necessary to manipulate a topological space and its elements in the light of algebraic 
properties so as to construct:

 – A topological counterpart of the set of elements of an algebraic structure.
 – A topological counterpart of operations over algebraic structures.
 – A topological equivalence (a homeomorphism) that reproduces algebraic invari-

ance so that we can tell when certain entities are equivalent or not.

It is worth noting that homotopy is a legitimate candidate to help reach this goal as it 
is a kind of homeomorphism that allows a continuous deformation that compresses a 
geometrical element, as well as pulling and stretching it. The point here is to establish 
if homotopy can be adapted to serve as a discriminant for telling topological spaces 
apart, and to what extent it can do this. Tellingly, the employment of homotopy intro-
duces a new topological feature (i.e. ‘contractibility’) to approaching the problem, 
which implies that it is possible to change dimension: something that is not possible 
with other forms of homeomorphism. For instance, under homotopy, a solid disk can 
be reduced to a single point, that is, to a one-dimensional object: you can deform 
the disk continuously to a single point. They are equivalent in homotopy. By con-
trast, they are not homeomorphically equivalent because there is no bijection func-
tion between them since one is an infinite set, while the other—the single point—is 
of course finite.

The first and critical step of this construction is to identify actions and operations 
to perform on a topological space X in order to give content to a hypothesis to solve 
the problem. In effect, we can design and define new elements (a point, a segment, 
a curve, etc.), connect or compose them, define operations for them, and we can so 
in many ways. The problem is how to limit and regulate this process. The use of a 
representation, an algebraic one in this case, allows us to shape part of this process 
in a rational way by putting constraints that cut back several ways of designing these 
new elements, and that regulate how to favour one set of actions and operations over 
another. These constraints are of course provisional and revisable, but they structure 
this set of actions and operations by trying to match them with the specific informa-
tion content of the repraesentans. In this case, the actions and operations on a topo-
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logical space X should (a) express certain features of X that are relevant to solving the 
problem, and (b) do so in a way that matches algebraic structures and calculations. 
That is, we draw specific elements on a topological space and operate on them on the 
basis of their ability both to reproduce desired algebraic properties and relations and 
to keep track of features that are relevant for solving the problem of differentiating 
3-manifolds.

Different algebraic structures can suggest different sets of actions and operations 
to perform on a topological space, different elements to add to it, and different ways 
to structure them. I will examine three ways of using homotopy to construct different 
algebraic representations of topological entities, ways that describe the most plausi-
ble inferential path that Poincaré followed in approaching the problem of classifying 
3-manifolds, and that finally produced the first homotopy group.28

The first attempt employs the set of all paths ai of a topological space X between 
two given points, say p0 and p1, and then defines a composition for them—their prod-
uct (Fig.1).

This way of manipulating X offers certain advantages: the paths capture and keep 
track in a proper way of certain information about the shape of the space, e.g. degrees 
of curvature, and their product regulates the behaviour of these paths under homotopy 
in a way that can be expressed algebraically. But even if they can reproduce some 
algebraic structures in X, unfortunately, they do not provide even a partial solution to 
the problem as they cannot distinguish even simple and distinct topological spaces. 
So, this way of keeping track of topological features does not produce a hypothesis to 
solve the problem. Of course, we can give up on this specific representation without 
abandoning the analogy with algebra, that is, we can adjust it.

In effect, a second attempt can be put forward by manipulating the topological ele-
ments of X in a way that mimics the behaviour of algebraic elements better. One way 
is to use loops as basic elements instead of simple paths—that is, paths beginning and 
ending at the same base point x0 in X (Fig.2).

The use of loops (α, β, γ in Fig.2) instead of simple paths is rational because it 
provides us with a representational advantage: we can now express and keep track 
of more salient features of X that are relevant to solving the problem of classify-

28  For a more detailed reconstruction of those attempts, see Crowell and Fox (1963), 13–21.

Fig. 1 Set of paths a1,a2,…,ai 
expressing and keeping track of 
features of a topological space X
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ing 3-manifolds, features like a hole h, angles, or axes. These features cannot be 
expressed fully by simple paths. This way of manipulating X is suggested by an anal-
ogy with a more complex algebraic structure, i.e. a semi-group. It is better than the 
previous one because using loops rather than paths provides at least three important 
advantages.

First, loops can be deformed into another one under homotopy so they can be 
considered as a single ‘element’. Consequently, a loop that cannot be continuously 
deformed into another, such as α, β, γ in Fig.2, identifies and keeps track of the sub-
stantially distinct properties of a 3-manifold. In this way, loops provide a better way 
of distinguishing specific regions of a 3-manifold, introducing a finer-grained clas-
sification for it and, at the same time, expressing properties that can be approached 
in algebraic terms. Secondly, loops keep track of fundamental topological properties 
of a manifold, such as holes in it, that cannot be tracked properly by means of simple 
paths. Thirdly, loops enable us to define the equivalent of an algebraic composition: 
since loops start and end at the same place (the base point x0), their composition is 
certainly defined at x0.

This algebraic representation provides us with a better tool than the previous one 
(sets of paths), but it is still limited as we must adjust it further to account for more 
properties of a 3-manifold that reproduce algebraic properties concurrently. In fact, 
the base point can be thought of as acting as the topological counterpart of the iden-
tity element e in algebra29 and the identity path e is also a multiplicative identity. 
In this way, we have constructed a semi-group with identity for X—the topological 
counterpart of a ‘monoid’—which is given by the set of all x0-based loops in X.

But our manipulation of a topological space regulated by an algebraic representa-
tion can be pushed forward and improved. We can also define the equivalent of the 
inverse element in algebra—the inverse of a loop—thus strengthening the assimila-
tion between an algebraic and a topological structure. To obtain this, we introduce 
a new property, the orientation of paths, by simply allowing a loop to be followed 

29  The identity element e can be thought of as a loop simply standing at the base point.

Fig. 2 Loops expressing and 
keeping track of features of a 
topological space X
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in the reverse direction (see arrows in Fig.2) and denoting it as a− 1. In this way we 
have gradually introduced new information into a topological space thanks to deeper 
analogies with algebraic structures. This new information takes the form of:

 – New elements—like a basic point or the identity element.
 – New properties—like orientation.
 – New notations—like ‘e’ or ‘a− 1’.

Thus, these analogies have suggested actions to perform in order to obtain a good 
candidate to solve a problem that (a) expresses substantial features of a 3-manifold, 
and (b) can approach them using the formal apparatus of algebraic groups.

The last step of this process is to take into account the set of all paths and ‘equiva-
lent paths’, that is, to consider a broader basic set whose elements are the equivalence 
classes of paths: the first homotopy group is obtained combining this idea and the idea 
of loops (Crowell and Fox, 1963, 17). By doing so, we obtain a more refined alge-
braic structure, namely a group, which can be associated to a topological space and 
thus generates the first homotopy group. Such a group is given by the set of equiva-
lence classes of loops at basepoint p under the equivalence relation of homotopy.

2.1.2 Assessing the role of mathematical representation

This process shows that the construction of a specific representation is provisional, 
tentative, and revisable. It is continually evaluated and tested on the basis of its effi-
cacy in tracking certain properties of the repraesentatum (a topological space X) that 
can be crucial to solving the problem—e.g. holes or axes. The construction of a suit-
able algebraic representation is made step-by-step, and several algebraic representa-
tions are tried, evaluated, and then abandoned or refined. For instance, the algebraic 
representation based on simple paths proposes certain actions and inference to per-
form on a topological space X (the repraesentatum). The first actions proposed are 
identifying points in the surface and connecting them with simple paths in order to 
(a) keep track of certain basic properties of the topological space, and (b) provide the 
basis for mimicking an algebraic structure—that is, to define at least a set of basic 
elements and a composition function for them. At this stage, the proposed actions 
and operations allow us to perform a sort of experiment in the repraesentatum (see 
also Carter, 2019 on this point): by means of these actions we build new elements 
and inferences for a topological space, we see their consequences and then we check 
if they are satisfactory, i.e. if and to what extent they meet our goal by providing 
us with a hypothesis that is a sufficient condition to solve the problem or part of it. 
Since the actions and inferences proposed by the simple paths cannot be developed 
into structures rich enough to enable the algebraic calculations that would permit us 
to distinguish between different 3-manifolds, we must abandon them and look for a 
new set of basic elements and a composition function that will still satisfy (a) and (b). 
Then, a more refined version based on loops is introduced and tested.

New representations are put forward and adjusted on the basis of the failures or the 
weaknesses of the previous ones, so benefiting from them: the first homotopy group 
is built on the notion of invariant, which takes advantage of the failures of previous 
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approaches based on pure geometrical representations. This construction, when suc-
cessful, creates new pieces of information in the repraesentatum that can generate the 
hypothesis to solve the problem. This example also shows, as noted also by Grosholz 
(2007), that a representation is not simply a passive, static transfer of properties: it 
does not leave the repraesentatum unaltered but requires a dynamic, active construc-
tion that gradually changes it. In this sense, we have a way of improving our repre-
sentations and we can favour one representation over another on the basis of it—the 
sets of equivalence classes of loops are preferable to sets of loops, which are in turn 
preferable to sets of paths.

Moreover, this construction shows how a gradual assimilation of a topological 
space into algebraic structure takes place. It exhibits the steps necessary to adjust 
a topological space in order to treat it as isomorphic to an algebraic structure under 
a certain point of view, and how new information that is not there at the beginning 
is introduced, providing us with a way of approaching the problem that would not 
be possible otherwise. The employment of algebraic representation guides the con-
struction of new elements into a 3-manifold, like the identity element, or the inverse 
element, which are literally added to the topological space and are not there at the 
beginning of the process. The example also shows how this construction is regulated 
by the goal of the problem that we are trying to solve—in this case, to find a structure 
(i.e. classes of equivalence) that keeps track of features of 3-manifolds thus enabling 
us to distinguish between them.

In addition, this construction is inferential in kind, as it employs ampliative infer-
ence in order to propose and refine a hypothesis to solve the problem. The first step 
for constructing the representation is to find similar features in topological and alge-
braic entities. Similarity is defined with respect to a given viewpoint, i.e., a specific 
property or a set of properties—in the case of the first homotopy group, invariance 
under a form of homeomorphism. Again, the features of the problem to solve regu-
late the choice of these properties. The search for these similarities, as we have seen, 
requires an adaptation of the elements of a 3-manifold. These similarities are the 
basis of analogies, which can be transformed into (partial) isomorphisms or reduc-
tions that are eventually formalized in a theorem. For example, first we construct an 
analogical counterpart in topology of algebraic elements and functions—the identity 
elements, the inverse element, the class of elements, and their composition—in the 
form of base-points, orientation for loops, classes of loops, and homotopy, and then 
we can advance an analogical inference in order to obtain a hypothesis to solve (at 
least a part of) the problem of classifying 3-manifolds. More formally, if g stands for 
a group, t for a 3-manifold, P for the properties of having a unique numerical value, 
≈ for being similar, the following analogical inference regulates the search for a solu-
tion to the problem of classifying 3-manifolds:

(m≈ t ∧ P(g)) → P(t) (A1).
A1 formalises the ampliative reasoning stating that on the basis of certain known 

similarities between a 3-manifold, m, and an algebraic group, g, (here, similarity 
means equivalence under a given viewpoint), we can conjecture that m has a unique 
value on the basis that g has the same property. A1 regulates the construction of the 
problem space (Simon et al., 1987) as it (i) sets the goal, (ii) puts a few constraints on 
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this space thanks to the specific information content of algebraic structures, and (iii) 
suggests the elements and relations of the hypothesis to solve the problem.

After the algebraic representation of a topological entity has been constructed, 
we can use algebraic operations and results as a means for investigating topological 
properties and entities, and we can conduct ‘experiments’ on it. The first homotopy 
serves this purpose as it can tell several surfaces (sphere, torus, annulus) apart, and 
it advances mathematical problem-solving by enabling us both to solve previously 
unsolved problems30 and to find new problems31.

This case study also shows why the search for a proof of a representation theorem 
is so important and intensely sought in mathematics. A new representation theorem 
establishes and formalizes an intra-field bridge between distinct mathematical struc-
tures that boosts problem solving by enabling us to handle certain entities in terms 
of others that do not have the same information content and which can be fruitfully 
employed to add new pieces of knowledge to those entities.

Nevertheless, since the assimilation of diverse mathematical entities and the rep-
resentation that it produces are partial and selective, a problem of sensitivity to rep-
resentation can arise. In effect, some results deriving from a specific representation 
might hold only for that specific representation and thus impossible to extend to 
the original elements. Topology, namely knot theory, provides us with a remarkable 
example in this respect.

In knot theory the use of projections onto a plane, that is, a 2-D representation, 
requires that several 3-D features of knots are lost, while others are added. An exam-
ple of a feature that is added is overcrossings, which are literally defined only in a 2-D 
representation. Now, we cannot be sure that results obtained for the 2-D representa-
tion will hold also for the 3-D original knot. The use of a specific representation (a 
2-D projection) might produce results that are valid only for this representation and 
cannot be extended to the original 3-D mathematical knot.32

Tellingly, the choice of this specific representation, a 2-D projection, enables the 
use of other representations and tools that would be impossible to employ otherwise. 
An example is colouring in knot theory, which needs a 2-D projection.33 In fact, 
an interesting feature of the application of colouring to knot theory is the fact that 
in principle there are no components for knots. In this sense, a 2-D representation 
literally introduces new information into the problem: a knot is a single strand in 
3-D space, and as such it has no crossings. Accordingly, it cannot be discretized as 
required by colouring: no labels for items can be identified for colouring, for there is 
only one item—the single string in 3D. On the other hand, a 2-D entity, like a knot 
diagram, can be discretized and hence coloured. So even if colourability cannot be 

30  The first homotopy group has been successfully employed to solve existing problems. It is worth men-
tioning two examples here. Wirtinger (1905) demonstrated that a trefoil is really knotted by proving that 
the first homotopy group of the trefoil is the symmetric group on three elements. Dehn (1910) developed 
an algorithm for constructing the first homotopy group of the complement of a link.
31  The Poincaré conjecture is a stock example of a new problem that has been generated from the first 
homotopy group (Poincaré 1904, 110).
32  In this case, Reidemeister’s theorem (1927) proved that, and when, a set of operations over 2-D projec-
tions are valid also for the original 3-D knot.
33  See also De Toffoli—Giardino (2014) for a discussion of colorability.
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defined for 3D knots, it does reveal interesting new properties for them and not sim-
ply for their diagrams.

Moreover, this shows that the search for a solution to this problem requires the 
interplay of multiple representations, that in this case a ‘concatenation’34, that is, a 
precise order of inferences and representations.

Such a role of mathematical representations highlights an important historical 
dimension of mathematical research and growth of knowledge. In effect, the con-
struction of a new representation draws on the corpus of available knowledge, which 
is a historical body. As this body expands or changes, new representations can be 
built or old ones modified, so that new assimilations of objects and fields become 
possible. A new representation of a certain object that was previously impracticable 
becomes available, and our toolbox for approaching that problem expands and opens 
the road to new possible solutions to it.

2.2 Inter-fields heuristic representations: the case of DNA supercoiling

Topology also provides us with an interesting example that illustrates the heuris-
tic power of mathematical representations at an inter-fields level (mathematics and 
molecular biology): the topological representations of DNA (see e.g. Benham at al., 
2000).35 In what follows, I will focus on the problem of DNA supercoiling.36

DNA supercoiling describes a higher-order DNA structure, that is, the interwind-
ing of two complementary strands going around one another or around a common 
helical axis (see Fig.3).

Supercoiling is important because it gives structural and energetic properties to 
DNA that affect its biological functions up to eventually inhibiting the ability of DNA 
or RNA polymerases to continue the DNA strand. Thus, supercoiling is important 

34  Spiro et al., (1989).
35  Naturally, the inter-fields case raises issues on traditional topics in the philosophy of mathematics, 
namely the long-standing problem of the applicability of mathematics to the physical world and the role 
of models in it (see e.g. Abbott, 2013; Bueno-Colyvan, 2011; Bueno-French, 2012; Bangu 2016; Cel-
lucci, 2015; Epple, 2004; Morrison, 2015; Pincock, 2012; Sarukkai, 2005). A discussion of these issues is 
beyond the bounds of this paper.
36  For a discussion of the role of knot diagrams in DNA topology see also Priest et al. (2004).

Fig. 3 Pictures of DNA and DNA supercoiling and their topological representation
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in several biological phenomena and strongly impacts DNA metabolism and gene 
expression (see e.g. White, 1995 for more detail). Supercoiling can emerge in two 
ways:

1. When DNA winds around proteins.
2. When the axis of the DNA assumes an interwound (or plectonemic) form.

Supercoiling has been conceptualized geometrically in two ways(see e.g.Fogg et al., 
2009): over-winding (also called ‘positive’ or ‘left-handed’) or under-winding (also 
called ‘negative’ or ‘right-handed’) of a DNA strand (see Fig.4).

These different geometrical structures play salient biological roles: underwind-
ing facilitates strand separation, while overwinding inhibits it. Moreover, because 
of the right-handed nature of the DNA helix, the positive and negative supercoils 
are not equivalent. For instance, negatively supercoiled DNAs are transcribed more 
efficiently than relaxed DNA, “most likely because torsional stress helps to separate 
DNA strands and facilitates open complex formation within promoter/RNA poly-
merase complexes” (Hsieh, 2013,154). The study of the biological function of DNA 
requires a detailed understanding of these geometrical and spatial properties, which 
can be observed by means of several biological experiments—e.g. those based on 
sedimentation, X-ray diffraction, electron microscopy, nuclease digestion, footprint-
ing, and gel electrophoresis (see Fig.5).

These experiments enable us to visualise several properties of DNA in 2D rep-
resentations. These DNA images are empirical data that need to be interpreted and 
fully understood. Mathematics, and topology in particular, can provide us with such 
an understanding: as noted by White (1995), a mathematical representation and a 
mathematical interpretation are necessary “for describing and understanding closed 
circular DNA […] and to explain and classify the data obtained from these experi-
ments” (White, 1995, 154).

Fig. 4 The two geometrical conceptualizations of supercoiling (under-winding over-winding
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2.2.1 Development of solutions by mathematical representation

The construction of suitable mathematical representations enables us to approach the 
problem of DNA supercoiling in new ways and to advance several solutions to inter-
esting questions. For example, a major factor in supercoiling dynamics is the action 
of the main types of cutting enzymes, namely topoisomerases.

Topoisomerases can decatenate, unknot, relax, and supercoil DNA. They are clas-
sified into two types—Type I and Type II (see Fig.6). Type I introduces transient sin-
gle-strand breaks in DNA to permit adjustments in helical winding. Type II enables 
the passage of one portion of duplex DNA into the same or a different molecule by 
means of a provisional double-strand break.

Since supercoiling requires measuring the interwinding of the backbone strands 
and the compacting of the DNA into a relatively small space, it can be approached 
as a geometrical problem, in particular a topological one. The construction of such 
a topological approach outlines the heuristic power of mathematical representations 
and their way of working at a fine-grained level.

A mathematical representation of supercoiling in DNA has been put forward by 
introducing three mathematical (geometric) descriptors: linking (L), twisting (T), 
and writhing (W) number (Fuller, 1971, 1978).37 These descriptors are the basis for 

37  The linking number (L) is the number of times that the two strands of a closed-circular, double-helical 
molecule cross each other. The twisting number (T) of a relaxed closed-circular DNA is the total number of 

Fig. 6 Types of topoisomerases (Type I Type II)

 

Fig. 5 Images of DNA obtained by different techniques ((a) DNA electron microscopy (b) DNA gel 
electrophoresis (c) DNA X-ray diffraction)
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creating a topological representation of DNA sequences (Vinograd et al., 1965), and 
they were at least in part developed formally before being applied to this specific 
problem (see Listing, 1847; Tait, 1877). For instance, the Writhing number (W) was 
developed to account for knots and was then adjusted to provide a suitable represen-
tation of some properties of DNA that are conjectured to be relevant to solving the 
problem, that is, overcrossing and undercrossing of two strands (see. Figure7). They 
are denoted by two numbers (+ 1, -1).

Moreover, L, T and W, are connected by an important relationship that has been 
proved formally. The three quantities are interrelated by a theorem stating that, for 
a closed curve on a surface, the linking number is given by the sum of the surface 
writhe number and the twist number, namely L = W + T (White, 1969). This implies 
that for a closed DNA strand of constant linking number, a change in W implies that 
there must be an equal but opposite change in sign in T. Moreover, “the biological 
importance of this relationship is that all three of these quantities are experimentally 
measurable. Thus, having determined any two of them, one can calculate the other 
and then compare with the experimental value” (White, 1995, 174).

Essentially, these topological descriptors aim at representing salient features of 
the action of the major types of cutting enzymes, topoisomerases of Type I and Type 
II, and at developing “the differential topological invariants necessary to describe the 
structural changes that occur in the DNA” (White-Bauer, 1989, 334). In effect, L, T 
and W turn out to be good devices for representing and measuring the interwinding of 
the backbone strands and the compacting of the DNA into a relatively small volume. 
In more detail, the linking number is a measure of the crossings “seen” in any view 
and these crossings can be divided into two categories:

 – distant crossings, occurring when the DNA axis is “seen” to cross itself (the back-
bone curve of one crossing segment is seen to cross the axis of the other seg-
ment)—represented and measured by W (writhe).

 – local crossings, occurring when the helical winding of the backbone curves 
around the axis—represented and measured by T (twist).

base pairs in the molecule divided by the number of base pairs per turn of the helix. The writhing number 
(W) is the number of times the axis of a DNA molecule crosses itself by supercoiling.

Fig. 7 Writhing number for the 
overcrossing (+ 1) and under-
crossing (-1) of two strands
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So, the linking number associated with two closed oriented curves remains unchanged 
when the two curves are distorted but not broken.

Just as for the algebraic representation of the classification of 3-manifolds, there 
are several possible ways of treating DNA supercoiling by means of a mathematical 
representation, such as elastic rod theory, isotropic elastic polymer, or freely-jointed 
chain model (Stump et al., 2000). They represent the DNA sequence and some of its 
geometrical properties in different fashions and suggest different ways of acting on it: 
for example, in the freely-jointed chain model the molecule is represented as broken 
down into disjointed sections (i.e. discretized), which can be labelled, while in the 
others the molecule is represented as a continuous curve for which folding and twist-
ing is distributed uniformly throughout.

2.2.2 Assessing the role of mathematical representation

This case study shows again that the construction of a suitable representation is par-
tial, selective, and ampliative as it picks out which aspects to show or add, and which 
to neglect in a mathematical representation of DNA supercoiling. Regarding the 
neglected features, we note that in the construction of the linking number the feature 
of bond polarity is explicitly neglected, as the two strands are represented as oriented 
in a parallel fashion even if this is “not consistent with the bond polarity”, and the 
reason for this is that it “greatly facilitates the mathematics necessary for the descrip-
tion of supercoiling” (White, 1995, 155).

On the other hand, this representation is ampliative because it adds new elements 
to the biological problem that can turn out to be crucial to solving the problem. Spe-
cifically, a topological representation introduces new elements and new ways of orga-
nizing and decomposing DNA. In effect, linking, writhe and twist do not exist in 3D 
space stricto sensu, and they are added to DNA as a result of its interpretation by 
means of a 2D representation. Thus, the attempt to apply a topological representa-
tion of DNA supercoiling suggests how to manipulate DNA and how to introduce 
elements and information (notations, elements, properties) that can be used in order 
to advance a hypothesis to solve the problem. In more detail, topology suggests how 
to introduce suitable start-points and endpoints into the DNA so as to divide it into 
segments, which are literally not there before the employment of this representa-
tion. These segments are obtained on the basis of the specific information content of 
the adopted topological representation. In principle, DNA is a double strand in 3-D 
space, and as such it has no crossings and no contacts between the strands: accord-
ingly, it is not a discrete object and no segments for it can be identified, for there is 
just one item—a continuous curve in 3D space. This is true, even when we introduce 
overcrossings, because we consider DNA as a 2D object in order to enable a geo-
metrical and topological approach to it. We represent DNA and some of its properties 
in this specific mathematical fashion to assimilate DNA and topological elements, 
that is, to ignore many differences between them, and we do this because of the heu-
ristic and ampliative power of such a representation: a 2-D representation (like a knot 
diagram or a Writhe), which can be discretized, adds new information to the elements 
involved in the problem, so as to make it possible to define new components and 
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investigate their properties at a mathematical level and compared them with existing 
data and knowledge about DNA sequences.

Naturally, unlike in the case of 3-manifods classification, the set of actions and 
operations to perform on a DNA sequence is limited by constraints that come not 
only from topology, but also from empirical data. Nonetheless, the use of a topologi-
cal representation enables us to shape part of this process in a rational way by impos-
ing constraints that reduce the number of ways of designing these new elements and 
that regulate how to favour one set of possible actions and operations over another.

It is worth noting that in order to represent supercoiling and the winding problem 
of DNA in mathematical terms, we need to make certain assumptions about it that 
are dictated by the adopted mathematical representations and not necessarily by the 
empirical data (i.e., DNA images). In effect, when mathematical representations are 
inter-fields, the properties or relations suggested by a specific repraesentans might 
go beyond the empirical data. A representation may project properties that are con-
tained explicitly only in the adopted mathematical representation but not in the data. 
A paradigmatic example is the mathematical representation of time as a real number 
line in classical Newtonian mechanics,38 where properties such as linearity or conti-
nuity, rather than a discrete representation of time (see e.g. Ardourel and Barberousse 
2017), are ascribed to the data by an adopted mathematical representation but are not 
necessarily required by the data.

In this respect, also a few properties contained in the assumptions about DNA 
might go beyond the data, in the sense that the data do not necessarily require these 
properties: using Hesse’s terminology (Hesse, 1966), these properties are neutral 
analogies, as we do not already know if they are shared by the target system (DNA) 
even if they are present in the adopted mathematical representation of it. Nonetheless, 
these properties structure the content of the hypotheses and their predictions, and 
they suggest how to manipulate the elements of the represented object under inquiry. 
Thus, certain properties might be tentatively ascribed to elements of DNA sequence 
in order to apply certain mathematical representations, but they do not derive from 
the data. This makes a proposed representation fallible, but it is also what gives it 
heuristic power. In effect, as noted by Fogg: “predicting the extension of a super-
coiled molecule is non-trivial and requires numerous model-dependent assumptions 
(Strick et al., 1998). Consequently, the conclusions from the single-molecule data 
are only as reliable as the model used to interpret them. Nevertheless, these single-
molecule experiments have provided an unprecedented insight into the properties of 
DNA” (Fogg et al.,  2000, 83).

This shows, again, that a problem of sensitivity to representation may arise. In this 
inter-fields case, the problem can be solved partially by means of empirical data and 
experiments that are suggested by the adopted mathematical representation alone.

Moreover, also the understanding of DNA supercoiling requires the interplay of 
multiple representations. This pluralism explicitly characterizes the study of this 
problem: “in order to quantify and interpret the effects of various topoisomerases 
on the DNA, biologists rely on a combination of experimental techniques, theoreti-
cal mathematical models, and computational visualization” (Robic and Jungck 2011, 

38  See e.g. Ippoliti (2016a).
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115). These representations generate an epistemic gain because they allow us to pose 
and solve problems. First, they put us in a position to pose and, when possible, to 
answer “what if questions, and carefully investigate the utility of the assumptions” 
(Sumners, 2011, 350). Secondly, they enable predictions about DNA or suggest how 
to set up an experiment. For instance, it is possible to use crossing-number informa-
tion to qualify and predict the geometry of the packing of viral DNA in organisms 
like phage capsids (see White, 1995, 177). Once we know the crossing number of 
the DNA products, we can write down tangle equations and solve them. This task 
requires us to plug in all the possible knot (link) products of a given crossing number 
for the right-hand sides of each tangle equation. It can be performed by computer 
programs that also visualize the answer.

To further illustrate the heuristic power of a topological treatment of DNA super-
coiling, it is worth mentioning here that it makes it possible to answer an important 
question in the study of minichromosomes, that is, small circles of DNA carrying the 
normal origin of replication. The question is the following:

(Q) does the helical repeat of relaxed DNA (i.e., the number of base pairs per turn) 
remain unchanged (10.5) when the DNA is wrapped around the nucleosome?

A theorem in differential topology can give us the answer. But to use this theorem, 
we must adjust our mathematical representation once again. In the case of geomet-
ric and topological analyses of DNA lying on a surface, a better representational 
approach (see White, 1995, 166-7) is provided by dividing the linking number not 
into twist and writhe, which relate only to spatial properties of the DNA, but into 
components that relate directly to the surface and surface-related experiments. The 
linking number of a closed section of DNA made to lie on a surface can be divided 
into two integral quantities, the surface linking number, which measures the wrap-
ping of the DNA around the surface, and the winding number, which is a measure 
of the number of times that the backbone contacts or rises away from the surface. 
We have now two new descriptors—surface linking number (SL) and winding num-
ber (T) for a closed section of DNA on a protein surface—and in addition, we can 
measure the first quantity experimentally using X-ray diffraction, and the second 
by digestion or footprinting. At this point, we can use the apparatus of topology to 
answer the question Q. A topological theorem tells us that SL = L + T, that is, for a 
closed section of DNA on a surface, the linking number (L) is the sum of the surface 
linking number (SL) and the winding number T (White and Bauer, 1988). So, since 
in this case L = 475 and SL = -45, T must be 520. However, we also know that for 
relaxed SV40, T is equal to L = − 500. Because T = 520, the average helical repeat 
for minichromosomal SV40 equals 5,250/520 = 10.10. It follows that the answer to 
the question Q is negative. Now, even if of course “in this analysis, we have made a 
great many simplifications it is noteworthy that this number is in remarkably good 
agreement with the number 10.17 that is obtained by nuclease digestion experiments” 
(White, 1995, 177).

Thanks to the construction and adjustment of a mathematical representation of 
DNA sequences, we can find a fundamental relationship L = SL + T for three quanti-
ties that are directly accessible to experiment: L by electrophoresis, SL by X-ray dif-
fraction, and T by digestion. Once two of these three quantities are known, we can use 
this relationship both to predict and to verify the experimental evidence for finding 
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the third. This gives differential topology a strong role in molecular biology, which is 
a consequence of the heuristic power of mathematical representation.

3 Conclusion

I have shown that a mathematical representation can work in a genuinely ampliative, 
‘strong’ heuristic way. When it works that way, it can change the repraesentatum 
to make some new elements, relations and properties emerge in it, and it can also 
employ them to produce new theorems or formal pieces of knowledge. Those new 
elements, relations and properties are literally built and added to the repraesentatum 
on the basis of the adopted repraesentans and its specific information content.

Different repraesentans can propose different actions and inferences to perform on 
the represented object. Since the relations and properties that we find at the end of 
this construction may depend on the adopted repraesentans, the same holds for the 
results following from it (e.g. a theorem). Thus, a serious problem of sensitivity to 
representation may arise. Moreover, a representation draws on the corpus of available 
knowledge, which is a historical body. As the corpus of our knowledge grows and 
changes, new representations can be built or old ones modified, so that new assimila-
tions of diverse objects and fields become possible. As we have shown, for instance, 
abstract algebra provides us with a large number of possible structures (e.g. rings, 
lattices, etc.) that could be used to create new representations of a geometrical object. 
So, this process is highly context sensitive.

Sensitivity to representation is typically addressed by proving that this depen-
dence from a specific representation does or does not hold. For example, we have 
seen (§2.1.) that knot theory is approached by several two-dimensional representa-
tions of a mathematical object, i.e. a knot, which is tri-dimensional in nature. The use 
of these two-dimensional representations might produce results that are valid only 
for this specific 2d representation and thus cannot be extended to the original 3-D 
mathematical knot. It is not by chance that it took Reidemeister’s theorem (1927) to 
show when results for certain 2-D projections are valid also for original 3-D knots. 
Of course, it is not always possible to produce these results and to exclude kinds of 
sensitivity to representation in the body of our knowledge.

Acknowledgements I thank very much the anonymous referees for their helpful and valuable comments.

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

Declarations

Conflict of interest The author declares that he/she has no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 

1 3

Page 25 of 28 407



Synthese (2022) 200:407

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Abbott, D. (2013). The Reasonable Ineffectiveness of Mathematics. Proceedings of the IEEE, 101: 
2147–153

Ademollo, F. (2011). The Cratylus of Plato. A commentary. Cambridge: Cambridge University Press
Ardourel, V. (2017). The Representation of Time in Discrete Mechanics. In C. H. Bouton, P. (Ed.), Time of 

Nature and the Nature of Time (pp. 173–208). Boston: Springer
Bangu, S. (2008). Reifying mathematics? Prediction and symmetry classification. Studies In History and 

Philosophy of Science Part B Studies In History and Philosophy of Modern Physics, 39(2): 239 – 58
Bangu, S. (2016). On The Unreasonable Effectiveness of Mathematics in the Natural Sciences. In E. 

Ippoliti, F. Sterpetti, & T. Nickles (Eds.), Models and Inferences in Science (pp. 11–29). Berlin: 
Springer

Benham, C. J., Sumners, W. K., & Swigon, D. W., D. (Eds.). (2000). Mathematics of DNA Structure, Func-
tion and Interactions. New York: Springer

Bråting, K. (2008). Visualization in mathematics. Erkenntnis, 68, 345–358
Bueno, O., & Colyvan, M. (2011). An Inferential Conception of the Application of Mathematics. Noûs, 

45, 345–374
Bueno, I., & French, S. (2012). Can Mathematics Explain Physical Phenomena? The British Journal for 

the Philosophy of Science, 63, 85–113
Bueno, O. (2016). Visual reasoning in science and mathematics. In C. Magnani, L—Casadio (Ed.), Model-

based reasoning in science and technology (pp. 3–19). Cham
Carter, J. (2012a). The role of representations for understanding. Notae Philosophicae Scientiae Formalis, 

1(2), 135–147
Carter, J. (2012b). The role of representations in mathematical reasoning. Philosophia Scientiae, 16(1), 

55–70
Carter, J. (2013). Handling Mathematical objects: Representations and context. Synthese, 190(17), 

3983–3999
Carter, J. (2018). Graph-algebras—faithful representations and mediating objects in mathematics. Endeav-

our, 42(2–3), 180–188
Carter, J. (2019). Exploring the fruitfulness of diagrams in mathematics, Synthese, 196 (10): 4011–4032
Cayley, A. (1845). On the Theory of Linear Transformations.Cambridge Math. J., (4):193–209
Cayley, A. (1849). On the theory of determinants. Trans Camb Philos Soc, VIII, 1–16
Cellucci, C. (2013). Rethinking Logic. London: Springer
Cellucci, C. (2015). Naturalizing the Applicability of Mathematics. Paradigmi, 33(2), 23–42
Cellucci, C. (2019). Diagrams in Mathematics. Foundations of Science, 24, 583–604
Cellucci, C. (2020). The Role of Notations in Mathematics. Philosophia, 48, 1397–1412
Crowell, R. H., & Fox, R. (1963). Introduction to Knot Theory. Heidelberg: Springer
Darden, L. (1977). Interfield theories. Philosophy of Science, 44, 43–64
Dehn, M. (1910). Über die Topologie des dreidimensionalen Raumes. Mathematische Annalen, 69, 

137–168
De Toffoli, S. (2014). Forms and Roles of Diagrams in Knot Theory. Erkenntnis, 79(4), 829–842
De Toffoli, S. (2017). ‘Chasing’ the Diagram - The Use of Visualizations in Algebraic Reasoning. Review 

of Symbolic Logic, 10(1), 158–186
Epple, M. (2004). Knot Invariants in Vienna and Princeton during the 1920s: Epistemic Configurations of 

Mathematical Research. Science in Context, 17(1–2), 131–164
Fogg, J. M., et al. (2009). Differences Between Positively and Negatively Supercoiled DNA that Topoi-

somerases May Distinguish. In C. J. Benham, & W. K. S. D. W. Swigon, D. (Eds.), Mathematics of 
DNA Structure, Function and Interactions (pp. 73–121). New York: Springer

Frigg, R. (2016). Scientific Representation. The Stanford Encyclopedia of Philosophy (Spring 2020 Edition), 
Edward N. Zalta (ed.). https://plato.stanford.edu/archives/spr2020/entries/scientific-representation/

1 3

407 Page 26 of 28

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://plato.stanford.edu/archives/spr2020/entries/scientific-representation/


Synthese (2022) 200:407

Fuller, F. B. (1971). The writhing number of a space curve. Proceedings of the National Academy of Sci-
ences of the United States of America, 68(4), 815–819

Fuller, F. B. (1978). Decomposition of the linking number of a closed ribbon: a problem from molecular 
biology. Proceedings of the National Academy of Sciences of the United States of America, 75(8), 
3557–3561

Giaquinto, M. (2007). Visual Thinking in Mathematics. Oxford: Clarendon Press
Giaquinto, M. (2008). Visualizing in mathematics. In P. Mancosu (Ed.), The philosophy of mathematical 

practice (pp. 22–42). Oxford: Oxford University Press
Giardino, V. (2018). Manipulative Imagination: How to Move Things Around in Mathematics. Theoria, 

33(2), 345–360
Ginammi, M. (2016). Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the 

Ω – particle, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy 
of Modern Physics, 53: 20–27

Ginammi, M. (2018). Applicability Problems Generalized. In M. Pulcini, G. Piazza (Ed.), Truth, Existence 
and Explanation (pp. 209–224). Berlin: Springer Verlag

Grosholz, E. (2007). Representation and Productive Ambiguity in Mathematics and the Sciences. Oxford: 
Oxford University Press

Hacking, I. (2014). Why is There Philosophy of Mathematics at All?. Cambridge: Cambridge University 
Press

Halimi, B. (2012). Diagrams as Sketches. Synthese, 186, 387–409
Hesse, M. (1966). Models and analogies in science. Notre Dame: University of Notre Dame Press
Hsieh, T. S. (2013). “DNA Supercoiling”. In W. J. L. Lennarz, M.D. (Ed.), Encyclopedia of Biological 

Chemistry (pp. 154–156). Cambridge (MA: Academic Press
Ippoliti. (2016a). Mathematical models of time as a heuristic tool. In L. Magnani (Ed.), Model-Based 

Reasoning in Science and Technology. Logical, Epistemological, and Cognitive Issues (pp. 119–136). 
Berlin: Springer

Ippoliti, E. (2016b). Ways of advancing knowledge. A lesson from knot theory and topology. In F. I. Ster-
petti, & E. T. Nickels (Eds.), Models and Inferences in Science. Berlin: Springer

Ippoliti, E. (2018a). A Role for Representation Theorems. Philosophia Mathematica, 26(3), 396–412
Ippoliti, E. (2018b). Heuristics and inferential microstructures: the case of quaternions. Foundations of 

Science. doi: https://doi.org/10.1007/s10699-018-9576-9
Ippoliti, E. (2020). Mathematics and Finance. Some philosophical remarks. Topoi, 1–8. https://doi.

org/10.1007/s11245-020-09706-1., doi
Listing, J. B. (1847). ‘Vorstudien zur Topologie’. Gottinger Studien, 1, 811–875
Macbeth, D. (2012). Diagrammatic reasoning in Frege’s Begriffsschrift, Synthese, 186: 289–314
Morrison, M. (2015). Reconstructing Reality. Models, Mathematics and Simulations. xford: Oxford Uni-

versity Press
Pincock, C. (2012). Mathematics and Scientific Representation. Oxford: Oxford University Press
Sedley, D. (2003). Plato’s Cratylus. Cambridge, Cambridge University Press
Poincaré, H. (1895). ‘Analysis situs’, J. de l’ ´Ecole Polytechnique, 2: 1–123 (1904): ‘Cinqui`eme comple-

ment `a l’analysis situs’, Rend. Cir. Mat. Palermo, 18: 45–110
Priest, G. D., & Toffoli, S. Findlen, P. (2018). Tools of Reason: The Practice of Scientific Diagramming 

from Antiquity to the Present. Endeavour, 42(2–3), 49–59
Quarantotto, D. (2019). Aristotle on the Differences in Material Organisation between Spoken and Written 

Language: An Inquiry into Part-Whole Relations, Elenchos, 40 (2): 333–362
Ray, R. (2011). Econophysics: finance, economics and physics. Applied Economics Letters, 18(3), 273–277
Reidemeister, K. (1927). Knoten und Gruppen. Abh Math Sem Univ Hamburg, 5, 7–23
Robic, S. (2011). Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and 

Experimental Biology to Understand Replication, Recombination and Repair. Math Model Nat Phe-
nom, 6(6), 108–135

Sarukkai, S. (2005). Revisiting the ‘Unreasonable Effectiveness’ of Mathematics. Current Science, 88, 
415–423

Shin, S. J. (1994). The Logical Status of Diagrams. New York: Cambridge University Press
Simon, H., & Zytkow, G., J (1987). Scientific discovery: computational explorations of the creative pro-

cesses. Boston: MIT Press

1 3

Page 27 of 28 407

http://dx.doi.org/10.1007/s10699-018-9576-9
http://dx.doi.org/10.1007/s11245-020-09706-1
http://dx.doi.org/10.1007/s11245-020-09706-1


Synthese (2022) 200:407

Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for com-
plex concepts: antidotes for analogyinduced misconception in advanced knowledge acquisition. In 
S. Vosniadou, & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 498–529). New York: 
Cambridge University Press

Starikova, I. (2010). Why Do Mathematicians Need Different Ways of Presenting Mathematical Objects? 
The Case of Cayley graphs. Topoi, 29, 41–51

Steiner, M. (1998). The Applicability of Mathematics as a Philosophical Problem. Cambridge: Harvard 
University Press

Stillwell, J. (2012). Poincare and the Early History Of 3-Manifolds. Bulletin (New Series) of the American 
Mathematical Society, 49(4), 555–576

Stump, D. M. (2000). Mathematical modelling of interwound DNA supercoils. Journal of Biomechanics, 
33(4), 407–413

Sumners, D. (2011). DNA, Knots and Tangles. In D. Banagl, M. Vogel (Ed.), The Mathematics of Knots: 
Theory and Application (pp. 327–354). Berlin: Springer

Tait, P. G. (1877). ‘Some elementary properties of closed plane curves’, Messenger of Mathematics, New 
Series, No. 69. Reprinted in: Tait, P.G. Scientific Papers. Vol.I. Cambridge University Press, 1898: 
207–272

Thien, K. (2006). The Life Forms and Their Model in Plato’s Timaeus. RHIZAI, III.2, 241–273
Thomas, R. (2011). Assimilation: not only indiscernibles are identified. In C. Cellucci, E. Grozholz, & 

E. Ippoliti (Eds.), Logic and knowledge (pp. 363–380). Newcastle Upon Tyne: Cambridge Scholars 
Publishing

Vinograd, J. L., Watson, J. R. R., & Laipis, R. P (1965). The twisted circular form of polyoma viral DNA. 
Proceedings of the National Academy of Sciences of the United States of America, 53(5), 1104–1111

Weisberg, M. (2013). Simulation and Similarity. New York: Oxford University Press
White, J. H. (1969). Self-linking and the Gauss integral in higher dimensions. Am J Math, 91, 693–728
White, J. H. (1995). Winding the Double Helix: Using Geometry, Topology, and Mechanics of DNA. In: 

Lander, E.S.–Waterman, M.S. (eds.). Calculating the Secrets of Life: Contributions of the Mathemat-
ical Sciences to Molecular Biology, Washington, D.C., NATIONAL ACADEMY PRESS: 153–178

White, J. H. (1986). Calculation of the twist and the writhe for representative models of DNA. Journal of 
Molecular Biology, 189, 329–341

White, J. H. (1988). Applications of the twist difference to DNA structural analysis. Proceedings of the 
National Academy of Sciences USA, 85: 772–776

Wirtinger, W. (1905). Über die Verzweigung bei Funktionen von zwei Veränderlichen. Jahresbericht d 
Deutschen Mathematiker Vereinigung, 14, 51

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

1 3

407 Page 28 of 28


	On the heuristic power of mathematical representations
	Abstract
	1 Introduction
	1.1 Repraesentans, repraesentatum, and mathematics
	1.1.1 Representations and assimilations
	1.1.2 Representations’ faithfulness
	1.1.3 Manipulations of the repraesentatum


	1.2 Main points of the paper
	2 Inter-field and intra-field heuristic powers of representations: two examples
	2.1 Intra-field heuristic representations: the case of the first homotopy group
	2.1.1 Development of solutions using mathematical representation
	2.1.2 Assessing the role of mathematical representation


	2.2 Inter-fields heuristic representations: the case of DNA supercoiling
	2.2.1 Development of solutions by mathematical representation
	2.2.2 Assessing the role of mathematical representation

	3 Conclusion
	References


