Correction: Non-classical probabilities invariant under symmetries

Alexander R. Pruss ${ }^{1}$ (1)

Published online: 9 September 2022
© Springer Nature B.V. 2022

Correction to: Synthese (2021) 199:8507-8532 https://doi.org/10.1007/s11229-021-03173-w

Let \mathcal{F} be an algebra of subsets of Ω. A full conditional probability on \mathcal{F} is a real-valued function on $\mathcal{F} \times(\mathcal{F}-\{\varnothing\})$ such that:
(C1) $P(\cdot \mid B)$ is a finitely additive probability function
(C2) $P(A \cap B \mid C)=P(A \mid C) P(B \mid A \cap C)$. ${ }^{1}$
If G is a group (intuitively, a group of symmetries, such as rigid motions on \mathbb{R}^{n}) acting on a set Ω^{*} containing Ω, we say that P is G-invariant provided that $P(g A \mid$ $B)=P(A \mid B)$ whenever $A, g A$ and B are all in \mathcal{F} with B nonempty, $g \in G$, and $A \cup g A \subseteq B$. (There is no assumption here that \mathcal{F} is itself G-invariant.)

One of the main theorems in Pruss (2021) characterized when exactly a G-invariant full conditional probability on the powerset $\mathcal{P} \Omega$ exists. Unfortunately, the proof of Lemma 2 was erroneous. The proof used the claim

$$
\frac{\sum_{\mu \in \mathcal{B}_{B}} \mu(A)}{\sum_{\mu \in \mathcal{B}_{B}} \mu(B)} \cdot \frac{\sum_{\mu \in \mathcal{B}_{C}} \mu(B)}{\sum_{\mu \in \mathcal{B}_{C}} \mu(C)}=\frac{\sum_{\mu \in \mathcal{B}_{C}} \mu(A)}{\sum_{\mu \in \mathcal{B}_{C}} \mu(C)},
$$

which it was erroneously said "follows" from the identity $\frac{\alpha}{\beta} \cdot \frac{\beta}{\gamma}=\frac{\alpha}{\gamma}$.
There does not seem to be a simple fix for this, but there is a new proof using the Rényi order in a way inspired by ideas in Armstrong (1989). ${ }^{2}$

[^0]The original article can be found online at https://doi.org/10.1007/s11229-021-03173-w.

[^1]Lemma 1 Let G act on $\Omega^{*} \supseteq \Omega$. Suppose that for every nonempty subset E of Ω, there is a G-invariant finitely additive measure $\mu: \mathcal{P} \Omega \rightarrow[0, \infty]$ with $\mu(E)=1$. Let \mathcal{F} be a finite algebra on Ω. Then there is a G-invariant full conditional probability on \mathcal{F}.

Proof All the measures in the proof will be finitely additive. If μ and ν are measures on the same algebra, say that $\mu \prec v$ provided that for all $A \in \mathcal{F}$, if $\nu(A)>0$, then $\mu(A)=\infty$. Say that a measure μ is non-degenerate provided that $0<\mu(A)<\infty$ for some A. Then \prec is known as the Rényi order (Armstrong, 1989; Rényi, 1956) and is a strict partial order on non-degenerate measures.

Choose a G-invariant probability measure μ_{1} on \mathcal{F} (there is one on $\mathcal{P} \Omega$, so restrict it to \mathcal{F}).

For $n \geq 1$, supposing we have chosen a G-invariant measure μ_{n} on $\mathcal{P} \Omega$, let

$$
E_{n+1}=\bigcup\left\{B \in \mathcal{F}: \mu_{n}(B)=0\right\}
$$

Note that $\mu_{n}\left(E_{n+1}\right)=0$ since \mathcal{F} is finite, so E_{n+1} is the largest μ_{n}-null member of \mathcal{F}. If $E_{n+1}=\varnothing$, let $N=n$, and our construction of μ_{1}, \ldots, μ_{N} is complete.

If E_{n+1} is nonempty, choose a G-invariant measure ν on $\mathcal{P} \Omega$ with $\nu\left(E_{n+1}\right)=1$. For $A \in \mathcal{F}$, let $\mu_{n+1}(A)=\nu(A)$ if $A \subseteq E_{n+1}$ and $\mu_{n+1}(A)=\infty$ otherwise.

I claim that μ_{n+1} is a G-invariant measure on \mathcal{F}. To check finite additivity, suppose A and B are disjoint members of \mathcal{F}. Then if A or B fails to be a subset of E_{n+1}, so does $A \cup B$, and so $\mu_{n+1}(A)+\mu_{n+1}(B)=\infty=\mu_{n+1}(A \cup B)$, and if $A \cup B$ fails to be a subset of E_{n+1}, so does at least one of A and B. But if A, B and $A \cup B$ are all subsets of E_{n+1}, then μ_{n+1} agrees with v as applied to these sets, and v is finitely additive.

It remains to check G-invariance. Suppose that $A, g A \in \mathcal{F}$. If both A and $g A$ are subsets of E_{n+1}, the identity $\mu_{n+1}(A)=\mu_{n+1}(g A)$ follows from the G-invariance of ν. If neither is a subset of E_{n+1}, then $\mu_{n+1}(A)=\infty=\mu_{n+1}(g A)$. It remains to consider the case where one of A and $g A$ is a subset of E_{n+1} and the other is not. Without loss of generality, suppose that A is a subset of E_{n+1} and $g A$ is not (in the other case, let $A^{\prime}=g A$ and $g^{\prime}=g^{-1}$, so A^{\prime} is a subset of E_{n+1} and $g^{\prime} A^{\prime}$ is not). Since $A \subseteq E_{n+1}$, we have $\mu_{n}(A)=0$. By G-invariance, $\mu_{n}(g A)=0$, and so $g A \subseteq E_{n+1}$, and thus the case is impossible.

Next note that that $\mu_{n+1} \prec \mu_{n}$. For if $\mu_{n}(A)>0$, then A is not a subset of E_{n+1} and so $\mu_{n+1}(A)=\infty$.

The finiteness of \mathcal{F} guarantees that the construction must terminate in a finite number N of steps, since we cannot have an infinite sequence of non-degenerate measures on a finite algebra \mathcal{F} that are totally ordered by \prec.

We have thus constructed a sequence of G-invariant measures μ_{1}, \ldots, μ_{N} such that $\mu_{N} \prec \cdots \prec \mu_{1}$. I claim that for any nonempty $A \in \mathcal{F}$, there is a unique $n=n_{A}$ such that $0<\mu_{n}(A)<\infty$. Uniqueness follows immediately from the ordering $\mu_{N} \prec \cdots \prec \mu_{1}$, so only existence needs to be shown. By our construction, the only μ_{N}-null set is \varnothing, so $\mu_{N}(A)>0$. Let n be the smallest index such that $\mu_{n}(A)>0$. If $\mu_{n}(A)<\infty$, we are done. So suppose $\mu_{n}(A)=\infty$. We cannot have $n=1$, since
μ_{1} is a probability measure on \mathcal{F}. Thus, $n>1$. By minimality of n, we must have $\mu_{n-1}(A)=0$. Thus, $A \subseteq E_{n}$, and so $\mu_{n}(A) \leq \mu_{n}\left(E_{n}\right)=1$, a contradiction.

Now, for any $(A, B) \in \mathcal{F} \times(\mathcal{F}-\{\varnothing\})$, let $P(A \mid B)=\mu_{n(B)}(A \cap B) / \mu_{n(B)}(B)$. Then $P(\cdot \mid B)$ is finitely additive since $\mu_{n(B)}$ is.

Next, suppose we have A, B and C with $A \cap C$ nonempty. If $n(A \cap C)=n(C)$, then let $\mu=\mu_{n(C)}=\mu_{n(A \cap C)}$, so we have

$$
\begin{aligned}
P(A \mid C) P(B \mid A \cap C) & =\frac{\mu(A \cap C)}{\mu(C)} \cdot \frac{\mu(B \cap A \cap C)}{\mu(A \cap C)} \\
& =\frac{\mu(A \cap B \cap C)}{\mu(C)}=P(A \cap B \mid C) .
\end{aligned}
$$

Now suppose that $n(A \cap C) \neq n(C)$ so $\mu_{n(C)}(A \cap C) \notin(0, \infty)$. Since $\mu_{n(C)}(A \cap$ $C) \leq \mu_{n(C)}(C)<\infty$, we must have $\mu_{n(C)}(A \cap C)=0$. But then $P(A \mid C)=$ $\mu_{n(C)}(A \cap C) / \mu_{n(C)}(C)=0$ and $P(A \cap B \mid C)=\mu_{n(C)}(A \cap B \cap C) / \mu_{n(C)}(C)=0$, and so both sides of (C2) are zero.

Finally, G-invariance of P follows immediately from G-invariance of the μ_{n}.
We then get the following which is the same as the Lemma 2 in Pruss (2021) whose proof was flawed.

Corollary 1 Let G act on $\Omega^{*} \supseteq \Omega$. There is a G-invariant full conditional probability on $\mathcal{P} \Omega$ if and only if for every nonempty subset E of Ω there is a G-invariant finitely additive measure $\mu: \mathcal{P} \Omega \rightarrow[0, \infty]$ with $\mu(E)=1$.

Proof First suppose there is a G-invariant full conditional probability P on $\mathcal{P} \Omega$. Then if E were a nonempty paradoxical subset of Ω^{*}, we could partition E into disjoint subsets A and B that could be decomposed under the action of G to form all of E, so that $1=P(E \mid E)=P(A \mid E)+P(B \mid E)=P(E \mid E)+P(E \mid E)=2$ by the finite additivity and G-invariance of $P(\cdot \mid E)$. But if E is not a paradoxical subset, then by Tarski's Theorem (Tomkowicz and Wagon 2016, Cor 11.2) there is a G-invariant finitely additive measure μ on $\mathcal{P} \Omega^{*}$ with $\mu(E)=1$, and we can then restrict μ to $\mathcal{P} \Omega$.

Conversely, suppose for every nonempty E there is a μ as in the statement of the Corollary. For a finite algebra \mathcal{F} on Ω, let P be a G-invariant full conditional probability on \mathcal{F} by Lemma 1. Let $P_{\mathcal{F}}(A \mid B)=P(A \mid B)$ for $(A, B) \in \mathcal{F} \times(\mathcal{F}-\{\varnothing\})$ and $P_{\mathcal{F}}(A \mid B)=0$ for all other $(A, B) \in \mathcal{P} \Omega \times(\mathcal{P} \Omega-\{\varnothing\})$. The set F of all finite algebras \mathcal{F} on Ω, ordered by inclusion, is a directed set. Since $[0,1]^{\mathcal{P} \Omega \times(\mathcal{P} \Omega-\{\varnothing\})}$ is a compact set by the Tychonoff Theorem, there will be a convergent subnet of the net $\left(P_{\mathcal{F}}\right)_{\mathcal{F} \in F}$, and the limit of that subnet then satisfies the conditions for a G-invariant full conditional probability.

References

Armstrong, T. E. (1989). Invariance of full conditional probabilities under group actions. In R. D. Mauldin, R. M. Shortt \& C. E. Silva (Eds.), Measure and measurable dynamics: Proceedings of a conference in Honor of Dorothy Maharam Stone, held September 17-19, 1987. 1-22. American Mathematical Society.
Pruss, A. R. (2021). Non-classical probabilities invariant under symmetries. Synthese, 199, 8507-8532.
Rényi, A. (1956). On conditional probability spaces generated by a dimensionally ordered set of measures. Theory of Probability and Its Applications, 1, 61-71.
Tomkowicz, G., \& Wagon, S. (2016). The Banach Tarski paradox (2nd ed.). Cambridge University Press.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: ${ }^{1}$ Pruss (2021) also includes the condition that if $P(A \mid B)=P(B \mid A)=1$, then $P(C \mid A)=P(C \mid B)$, but that follows from (C1) and (C2).
 ${ }^{2}$ I am grateful to Grzegorz Tomkowicz for comments on the proof.

[^1]: \boxtimes Alexander R. Pruss
 Alexander_Pruss@baylor.edu
 1 Baylor University, One Bear Place \#97273, Waco, TX 76798-7273, USA

