CORRECTION



## Correction: Non-classical probabilities invariant under symmetries

Alexander R. Pruss<sup>1</sup>

Published online: 9 September 2022 © Springer Nature B.V. 2022

## Correction to: Synthese (2021) 199:8507–8532 https://doi.org/10.1007/s11229-021-03173-w

Let  $\mathcal{F}$  be an algebra of subsets of  $\Omega$ . A full conditional probability on  $\mathcal{F}$  is a real-valued function on  $\mathcal{F} \times (\mathcal{F} - \{\emptyset\})$  such that:

(C1)  $P(\cdot | B)$  is a finitely additive probability function (C2)  $P(A \cap B | C) = P(A | C)P(B | A \cap C).^1$ 

If *G* is a group (intuitively, a group of symmetries, such as rigid motions on  $\mathbb{R}^n$ ) acting on a set  $\Omega^*$  containing  $\Omega$ , we say that *P* is *G*-invariant provided that P(gA | B) = P(A | B) whenever *A*, *gA* and *B* are all in  $\mathcal{F}$  with *B* nonempty,  $g \in G$ , and  $A \cup gA \subseteq B$ . (There is no assumption here that  $\mathcal{F}$  is itself *G*-invariant.)

One of the main theorems in Pruss (2021) characterized when exactly a *G*-invariant full conditional probability on the powerset  $\mathcal{P}\Omega$  exists. Unfortunately, the proof of Lemma 2 was erroneous. The proof used the claim

$$\frac{\sum_{\mu \in \mathcal{B}_B} \mu(A)}{\sum_{\mu \in \mathcal{B}_B} \mu(B)} \cdot \frac{\sum_{\mu \in \mathcal{B}_C} \mu(B)}{\sum_{\mu \in \mathcal{B}_C} \mu(C)} = \frac{\sum_{\mu \in \mathcal{B}_C} \mu(A)}{\sum_{\mu \in \mathcal{B}_C} \mu(C)},$$

which it was erroneously said "follows" from the identity  $\frac{\alpha}{\beta} \cdot \frac{\beta}{\gamma} = \frac{\alpha}{\gamma}$ .

There does not seem to be a simple fix for this, but there is a new proof using the Rényi order in a way inspired by ideas in Armstrong (1989).<sup>2</sup>

Alexander R. Pruss Alexander\_Pruss@baylor.edu

<sup>&</sup>lt;sup>1</sup> Pruss (2021) also includes the condition that if P(A | B) = P(B | A) = 1, then P(C | A) = P(C | B), but that follows from (C1) and (C2).

<sup>&</sup>lt;sup>2</sup> I am grateful to Grzegorz Tomkowicz for comments on the proof.

The original article can be found online at https://doi.org/10.1007/s11229-021-03173-w.

<sup>&</sup>lt;sup>1</sup> Baylor University, One Bear Place #97273, Waco, TX 76798-7273, USA

**Lemma 1** Let G act on  $\Omega^* \supseteq \Omega$ . Suppose that for every nonempty subset E of  $\Omega$ , there is a G-invariant finitely additive measure  $\mu : \mathcal{P}\Omega \to [0, \infty]$  with  $\mu(E) = 1$ . Let  $\mathcal{F}$  be a finite algebra on  $\Omega$ . Then there is a G-invariant full conditional probability on  $\mathcal{F}$ .

**Proof** All the measures in the proof will be finitely additive. If  $\mu$  and  $\nu$  are measures on the same algebra, say that  $\mu \prec \nu$  provided that for all  $A \in \mathcal{F}$ , if  $\nu(A) > 0$ , then  $\mu(A) = \infty$ . Say that a measure  $\mu$  is non-degenerate provided that  $0 < \mu(A) < \infty$  for some A. Then  $\prec$  is known as the Rényi order (Armstrong, 1989; Rényi, 1956) and is a strict partial order on non-degenerate measures.

Choose a *G*-invariant probability measure  $\mu_1$  on  $\mathcal{F}$  (there is one on  $\mathcal{P}\Omega$ , so restrict it to  $\mathcal{F}$ ).

For  $n \ge 1$ , supposing we have chosen a G-invariant measure  $\mu_n$  on  $\mathcal{P}\Omega$ , let

$$E_{n+1} = \bigcup \{B \in \mathcal{F} : \mu_n(B) = 0\}.$$

Note that  $\mu_n(E_{n+1}) = 0$  since  $\mathcal{F}$  is finite, so  $E_{n+1}$  is the largest  $\mu_n$ -null member of  $\mathcal{F}$ . If  $E_{n+1} = \emptyset$ , let N = n, and our construction of  $\mu_1, \ldots, \mu_N$  is complete.

If  $E_{n+1}$  is nonempty, choose a *G*-invariant measure  $\nu$  on  $\mathcal{P}\Omega$  with  $\nu(E_{n+1}) = 1$ . For  $A \in \mathcal{F}$ , let  $\mu_{n+1}(A) = \nu(A)$  if  $A \subseteq E_{n+1}$  and  $\mu_{n+1}(A) = \infty$  otherwise.

I claim that  $\mu_{n+1}$  is a *G*-invariant measure on  $\mathcal{F}$ . To check finite additivity, suppose *A* and *B* are disjoint members of  $\mathcal{F}$ . Then if *A* or *B* fails to be a subset of  $E_{n+1}$ , so does  $A \cup B$ , and so  $\mu_{n+1}(A) + \mu_{n+1}(B) = \infty = \mu_{n+1}(A \cup B)$ , and if  $A \cup B$  fails to be a subset of  $E_{n+1}$ , so does at least one of *A* and *B*. But if *A*, *B* and  $A \cup B$  are all subsets of  $E_{n+1}$ , then  $\mu_{n+1}$  agrees with  $\nu$  as applied to these sets, and  $\nu$  is finitely additive.

It remains to check *G*-invariance. Suppose that  $A, gA \in \mathcal{F}$ . If both *A* and *gA* are subsets of  $E_{n+1}$ , the identity  $\mu_{n+1}(A) = \mu_{n+1}(gA)$  follows from the *G*-invariance of  $\nu$ . If neither is a subset of  $E_{n+1}$ , then  $\mu_{n+1}(A) = \infty = \mu_{n+1}(gA)$ . It remains to consider the case where one of *A* and *gA* is a subset of  $E_{n+1}$  and the other is not. Without loss of generality, suppose that *A* is a subset of  $E_{n+1}$  and *gA* is not (in the other case, let A' = gA and  $g' = g^{-1}$ , so A' is a subset of  $E_{n+1}$  and g'A is not). Since  $A \subseteq E_{n+1}$ , we have  $\mu_n(A) = 0$ . By *G*-invariance,  $\mu_n(gA) = 0$ , and so  $gA \subseteq E_{n+1}$ , and thus the case is impossible.

Next note that that  $\mu_{n+1} \prec \mu_n$ . For if  $\mu_n(A) > 0$ , then A is not a subset of  $E_{n+1}$  and so  $\mu_{n+1}(A) = \infty$ .

The finiteness of  $\mathcal{F}$  guarantees that the construction must terminate in a finite number N of steps, since we cannot have an infinite sequence of non-degenerate measures on a finite algebra  $\mathcal{F}$  that are totally ordered by  $\prec$ .

We have thus constructed a sequence of *G*-invariant measures  $\mu_1, \ldots, \mu_N$  such that  $\mu_N \prec \cdots \prec \mu_1$ . I claim that for any nonempty  $A \in \mathcal{F}$ , there is a unique  $n = n_A$  such that  $0 < \mu_n(A) < \infty$ . Uniqueness follows immediately from the ordering  $\mu_N \prec \cdots \prec \mu_1$ , so only existence needs to be shown. By our construction, the only  $\mu_N$ -null set is  $\emptyset$ , so  $\mu_N(A) > 0$ . Let *n* be the smallest index such that  $\mu_n(A) > 0$ . If  $\mu_n(A) < \infty$ , we are done. So suppose  $\mu_n(A) = \infty$ . We cannot have n = 1, since

 $\mu_1$  is a probability measure on  $\mathcal{F}$ . Thus, n > 1. By minimality of n, we must have  $\mu_{n-1}(A) = 0$ . Thus,  $A \subseteq E_n$ , and so  $\mu_n(A) \leq \mu_n(E_n) = 1$ , a contradiction.

Now, for any  $(A, B) \in \mathcal{F} \times (\mathcal{F} - \{\emptyset\})$ , let  $P(A \mid B) = \mu_{n(B)}(A \cap B)/\mu_{n(B)}(B)$ . Then  $P(\cdot \mid B)$  is finitely additive since  $\mu_{n(B)}$  is.

Next, suppose we have A, B and C with  $A \cap C$  nonempty. If  $n(A \cap C) = n(C)$ , then let  $\mu = \mu_{n(C)} = \mu_{n(A \cap C)}$ , so we have

$$P(A \mid C)P(B \mid A \cap C) = \frac{\mu(A \cap C)}{\mu(C)} \cdot \frac{\mu(B \cap A \cap C)}{\mu(A \cap C)}$$
$$= \frac{\mu(A \cap B \cap C)}{\mu(C)} = P(A \cap B \mid C).$$

Now suppose that  $n(A \cap C) \neq n(C)$  so  $\mu_{n(C)}(A \cap C) \notin (0, \infty)$ . Since  $\mu_{n(C)}(A \cap C) \leq \mu_{n(C)}(C) < \infty$ , we must have  $\mu_{n(C)}(A \cap C) = 0$ . But then  $P(A \mid C) = \mu_{n(C)}(A \cap C)/\mu_{n(C)}(C) = 0$  and  $P(A \cap B \mid C) = \mu_{n(C)}(A \cap B \cap C)/\mu_{n(C)}(C) = 0$ , and so both sides of (C2) are zero.

Finally, *G*-invariance of *P* follows immediately from *G*-invariance of the  $\mu_n$ .  $\Box$ 

We then get the following which is the same as the Lemma 2 in Pruss (2021) whose proof was flawed.

**Corollary 1** Let G act on  $\Omega^* \supseteq \Omega$ . There is a G-invariant full conditional probability on  $\mathcal{P}\Omega$  if and only if for every nonempty subset E of  $\Omega$  there is a G-invariant finitely additive measure  $\mu : \mathcal{P}\Omega \to [0, \infty]$  with  $\mu(E) = 1$ .

**Proof** First suppose there is a *G*-invariant full conditional probability *P* on  $\mathcal{P}\Omega$ . Then if *E* were a nonempty paradoxical subset of  $\Omega^*$ , we could partition *E* into disjoint subsets *A* and *B* that could be decomposed under the action of *G* to form all of *E*, so that 1 = P(E | E) = P(A | E) + P(B | E) = P(E | E) + P(E | E) = 2by the finite additivity and *G*-invariance of  $P(\cdot | E)$ . But if *E* is not a paradoxical subset, then by Tarski's Theorem (Tomkowicz and Wagon 2016, Cor 11.2) there is a *G*-invariant finitely additive measure  $\mu$  on  $\mathcal{P}\Omega^*$  with  $\mu(E) = 1$ , and we can then restrict  $\mu$  to  $\mathcal{P}\Omega$ .

Conversely, suppose for every nonempty *E* there is a  $\mu$  as in the statement of the Corollary. For a finite algebra  $\mathcal{F}$  on  $\Omega$ , let *P* be a *G*-invariant full conditional probability on  $\mathcal{F}$  by Lemma 1. Let  $P_{\mathcal{F}}(A \mid B) = P(A \mid B)$  for  $(A, B) \in \mathcal{F} \times (\mathcal{F} - \{\emptyset\})$  and  $P_{\mathcal{F}}(A \mid B) = 0$  for all other  $(A, B) \in \mathcal{P}\Omega \times (\mathcal{P}\Omega - \{\emptyset\})$ . The set *F* of all finite algebras  $\mathcal{F}$  on  $\Omega$ , ordered by inclusion, is a directed set. Since  $[0, 1]^{\mathcal{P}\Omega \times (\mathcal{P}\Omega - \{\emptyset\})}$  is a compact set by the Tychonoff Theorem, there will be a convergent subnet of the net  $(\mathcal{P}_{\mathcal{F}})_{\mathcal{F}\in F}$ , and the limit of that subnet then satisfies the conditions for a *G*-invariant full conditional probability.

## References

- Armstrong, T. E. (1989). Invariance of full conditional probabilities under group actions. In R. D. Mauldin, R. M. Shortt & C. E. Silva (Eds.), *Measure and measurable dynamics: Proceedings of a conference in Honor of Dorothy Maharam Stone, held September 17–19, 1987.* 1–22. American Mathematical Society.
- Pruss, A. R. (2021). Non-classical probabilities invariant under symmetries. Synthese, 199, 8507–8532.

Rényi, A. (1956). On conditional probability spaces generated by a dimensionally ordered set of measures. *Theory of Probability and Its Applications*, 1, 61–71.

Tomkowicz, G., & Wagon, S. (2016). The Banach Tarski paradox (2nd ed.). Cambridge University Press.

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.