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Abstract
There are many reasons we might want to take the opinions of various individuals
and pool them to give the opinions of the group they constitute. If all the individuals
in the group have probabilistic opinions about the same propositions, there is a host
of pooling functions we might deploy, such as linear or geometric pooling. However,
there are also cases where different members of the group assign probabilities to
different sets of propositions, which might overlap a lot, a little, or not at all. There
are far fewer proposals for how to proceed in these cases, and those there are have
undesirable features. I begin by considering four proposals and arguing that they don’t
work. Then I’ll describe my own proposal, which is intended to cover the situation in
which we want to pool the individual opinions in order to ascribe an opinion to the
group considered as an agent in its own right.

Keywords Judgment aggregation · Probabilistic opinion pooling · Linear pooling ·
Credences · Subjective probabilities · Expert judgment · Awareness growth

1 Introduction

There are many reasons we might want to take the opinions of various individuals and
pool them to give the opinions of the group they constitute. Theymight be demographic
modellers, and we wish to summarise their views for policymakers. Or they might be
ice sheet modellers and we wish to pool the probabilities they assign to various future
sea level scenarios in order to include these in our global climate models (Bamber
& Aspinall, 2013; Bamber et al., 2019). We might be producing a textbook on the
epidemiology of respiratory viruses, and we wish to present something that we might
legitimately call the view of the scientific community (French, 1987, 2011). Or we
might be the lead author on a scientific paper with many co-authors and we wish to
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ensure that the conclusions presented in the paper are genuinely those of the entire
group of authors (Bright et al., 2017; Dang, 2019). Outside science, the individuals
whose opinions we wish to pool might be employees of a company or institution
whose collective opinion we wish to assess in order to determine liability for some
harm, such as the board members of tobacco, oil, or social media companies, or the
senior management of a university or a police force (Lackey, 2020). Or they might
be superforecasters, renowned for the accuracy of their previous predictions of future
political or sporting events, and we wish to learn what they, as a group, think about the
outcome of a forthcoming election or the next World Cup (Tetlock & Gardner, 2015).
And so on.

If all the individuals in the group have probabilistic opinions about the same propo-
sitions, there is a host of pooling functions we might deploy. For instance, linear
pooling takes the group’s probability for a proposition to be the arithmetic mean of the
probabilities that its members assign to that proposition. Or, to calculate the group’s
probabilities for the possible states of the world, geometric pooling takes, for each
state, the geometric mean of the probabilities that its members assign to that state, and
then normalizes the results to ensure the pooled probabilities for the possible states
sum to one. And so on. Each of these methods has its own desirable and undesirable
features, which have been explored extensively (Genest & Zidek, 1986; Dietrich &
List, 2015).

However, there are also cases where different members of the group assign prob-
abilities to different sets of propositions, and these sets might overlap a lot, a little,
or not at all. Indeed, unless the probabilities are elicited by asking the same roster of
questions to each individual in the group, this is the situation we are most likely to
encounter in the wild. For instance, if we glean the probabilities that academic experts
assign by looking at what they report in their scholarly publications, we will find that
they do not all report probabilities in the same propositions. One climate scientist
might assign a probability to sea levels rising by at least 60cm by 2100, but nothing
more fine-grained, while another might assign probabilities to it rising by 60–80cm,
80–100cm, and more than 100cm by that date. As they are usually formulated, most
pooling functions don’t cover these cases; more precisely, they don’t tell us which cre-
dence the group assigns to a proposition to which some of its members fail to assign
a credence. In this paper, I explore how we might fill that gap.

In Sect. 2, I’ll introduce the formal framework in which we’ll explore our problem.
In Sects. 3–6, I’ll consider four proposals and argue that they don’t work. Some of these
exist in the literature explicitly as an answer to our question; some exist as answers
to different questions, but are naturally repurposed to address ours; and some simply
occur to us naturally when we consider the question. Because so little has been written
on this question, I beginwith these four unsatisfactory proposals partly in order to clear
the ground. But we will also see that, by doing so, an alternative proposal suggests
itself. This is described in Sect. 8. It is designed to cover those situations in which our
purpose in pooling the opinions of the individuals in the group is to assign an opinion
to the group itself, considered as an agent in its own right.
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2 The formal framework

Let me begin by laying out the formal framework we’ll be working within.

• Individuals Let’s assume there are n ≥ 2 individuals whose opinions we wish to
pool.

• Propositions Let Fi be the set of propositions to which individual i assigns sub-
jective probabilities or degrees of belief, which we will call credences throughout.
We might call Fi their agenda. Let F = ⋃n

i=1 Fi be the union of all the individ-
uals’ agendas. Throughout, we assume that each Fi is finite, and therefore F is
finite too.

• Possible states of the world LetW be the set of possible worlds grained just finely
enough to assign truth values to each proposition in F . We might represent W as
the set of classically consistent assignments of truth values to the propositions in
F . Since eachFi is finite and thereforeF is finite,W is also finite. If a proposition
X in F is true at world w in W , we write w |� X , and we represent X by the set
{w ∈ W : w |� X} of worlds at which it is true.

• Subjective probabilities/credences Let Pi record the credences that individual i
assigns to the propositions in Fi . We’ll call this their credence function. For X
in Fi , Pi (X) is the credence that individual i assigns to X . It is at least 0 and
at most 1. We assume that these credences functions are coherent: that is, if F+

i
is the smallest Boolean algebra that includes Fi , then it is possible to extend Pi
to a credence function P+

i on F+
i that satisfies the probability axioms—that is,

P+
i assigns credence 1 to the tautology, 0 to the contradiction, and the credence

it assigns to a disjunction of pairwise incompatible propositions is the sum of the
credences it assigns to the disjuncts.

• Pooling functions A pooling function� takes a sequence of n credence functions,
P1, . . . , Pn , where Pi assigns credences to the propositions in Fi , and returns a
credence function �(P1, . . . , Pn), which assigns credences to the propositions in
F = ⋃n

i=1 Fi . In this definition, we don’t assume that a pooling function must
give a coherent output for any sequence of coherent inputs, but this is a desirable
feature and in fact nearly all the examples we consider boast it.

Existing accounts of probabilistic opinion pooling deal with the particular case in
which F1 = . . . = Fn = F . They often also assume that F is a Boolean algebra.1 In
such cases, for every world w in W , there is a proposition in F that is true at w and
only at w—these are sometimes called the atoms of the Boolean algebra F . We abuse
notation and write w for that proposition. We can then define linear and geometric
pooling as follows:

Linear pooling Suppose P1, . . . , Pn are defined on the same agenda F . Then,
if X is in F , then

�LP(P1, . . . , Pn)(X) = 1

n

n∑

i=1

Pi (X)

1 For an exception, see (Dietrich & List, 2017).
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That is, the credence that the linear pool of P1, . . . , Pn assigns to a possible
world is the arithmetic mean of the credences that each Pi assigns to it.

Geometric pooling Suppose P1, . . . , Pn are defined on the same agenda F ,
which is a Boolean algebra. And suppose that there isw inW such that, for each
Pi , Pi (w) > 0. Then, if w is inW , then

�GP(P1, . . . , Pn)(w) =
n
√∏n

i=1 Pi (w)

∑
w′∈W n

√∏n
i=1 Pi (w

′)

And, for X in F ,

�GP(P1, . . . , Pn)(X) =
∑

w|�X

�GP(P1, . . . , Pn)(w)

That is, the credence that the geometric pool of P1, . . . , Pn assigns to a pos-
sible world (or, more precisely, the corresponding atom of the algebra) is the
normalized geometric mean of the credences that each Pi assigns to it; and the
credence it assigns to a proposition is the sum of the credences it assigns to the
worlds at which the proposition is true (or, more precisely, the atoms that entail
the proposition).

A couple of things to note:

• Since we assume throughout that each Pi is coherent, so is their linear pool and so
is their geometric pool. In fact, we needn’t even assume that each Pi is coherent in
order to ensure that their geometric pool is coherent, but we do in order to ensure
their linear pool is.

• Linear pooling is defined directly for each proposition in F ; as a result, we need
not assume anything about the structure of F .

• Geometric pooling is defined first for the states of the world in W , and then for
each proposition inF ; as a result, we must assume thatF contains the proposition
w for each w inW .

In this paper, we ask: how should we pool in other cases? That is, how should we
pool when two individuals have different agendas; that is, when Fi �= F j for some
individuals i and j?

In the following four sections, I consider different answers to this question. None of
themwork. I consider them partly to situate my proposal within the literature and clear
the ground, but also because solving the problem that rules out the first two proposals
motivates the account that I will go on to give in the remainder of the paper. The third
proposal also attempts to solve that problem. It fails for a different reason, but one that
is equally illuminating. Those impatient to hear the solution I propose for a particular
important case can skip to Sect. 8.
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3 Extending linear and geometric pooling

As we saw in the previous section, linear and geometric pooling are only defined in
the special case in which F1 = . . . = Fn = F ; moreover, geometric pooling requires
that F is a Boolean algebra. But perhaps we might generalize them so that they apply
when Fi �= F j for some individuals i and j?

For instance, suppose {X ,Y , Z} is a three-cell partition, and suppose the first of
two individuals assigns credences to X , Y , and Z , so that F1 = {X ,Y , Z}, while
the second assigns credences only to X and Y , so that F2 = {X ,Y }. Suppose their
probability assignments are as follows:

X Y Z
P1 0.1 0.4 0.5
P2 0.2 0.6 −

Then extending linear pooling to this case and taking the arithmetic means of the
credences assigned to each gives:

X Y Z
�LP′(P1, P2) 0.15 0.5 0.5

But that’s not coherent: the credences in X , Y , and Z sum to more than 1.
On the other hand, extending geometric pooling to this case and taking the geometric

mean of the probabilities assigned to X , Y , and Z , and then normalizing, gives:

X Y Z
�GP′(P1, P2) 0.125 0.433 0.442

Obviously that is coherent, because geometric pooling requires us to normalise the
geometric means; so the result will always be coherent.

Perhapswe should follow the lead of geometric pooling and do this for our extended
version of linear pooling in such cases as well? So first we take the arithmetic means,
and then we normalise the result. That would give:

X Y Z
�LP′′(P1, P2) 0.1304 0.4347 0.4347

Unfortunately, both normalized extended linear pooling (�LP′′ ) and extended geo-
metric pooling (�GP′ ) violate a principle that I take to govern judgment pooling in the
cases we are considering, where the agendas of some of our individuals differ.

Extension Invariance (EI) If, for each individual i , there is a unique coher-
ent credence function P�

i defined on F = ⋃n
i=1 Fi that extends Pi , then

�(P1, . . . , Pn) = �(P�
1 , . . . , P�

n ).2

2 P�
i defined on F extends Pi defined on Fi ⊆ F if P�

i (X) = Pi (X) for all X in Fi . That is, if the
restriction of P�

i to Fi is just Pi .
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The point is well illustrated by the example we’ve been considering in this section.
While P2 does not assign a credence to Z , it does assign credences to X and Y
and together those determine the credence it would have to assign to Z in order
to remain coherent—since X , Y , Z form a partition, it must assign 0.2. Extension
Invariance (EI) says that, in cases like this, where the probabilities that an individual
assigns to the propositions in Fi determine the probabilities they must assign to the
remaining propositions inF , the result of pooling the original probability assignments
on F1, . . . ,Fn should be the same as the result of pooling the probability functions
on F that are obtained by filling in the gaps in the way that coherence requires. The
idea is that, if the credences you have reported commit you to further credences, then
adding those further credences explicitly shouldn’t change the outcome of pooling
your credences with the credences of others. We will offer a partial accuracy-based
justification of the principle in Sect. 7 below.

Thus, return to our case above:

X Y Z
P1 0.3 0.4 0.3
P2 0.2 0.6 −
P�
2 0.2 0.6 0.2

So (EI) says that�(P1, P2) = �(P1, P�
2 ). But notice that neither normalized extended

linear pooling (�LP′′ ) nor extended geometric pooling (�GP′ ) deliver this:

X Y Z
�LP′′(P1, P2) 0.1304 0.4347 0.4347
�LP(P1, P�

2 ) 0.15 0.5 0.35
�GP′(P1, P2) 0.125 0.433 0.442
�GP(P1, P�

2 ) 0.149 0.517 0.333

(EI) will cause problems for the proposal we consider in the following section as
well. But before we move on to that, there is another problem with our attempt to
extend linear and geometric pooling to the case in which Fi �= F j for some i, j .
Suppose F1 = {X ∨Y } and F2 = {Y ∨ Z}, where again X , Y , and Z form a partition.
And suppose P1 assigns credences only to the proposition in F1, while P2 assigns
only to the proposition in F2. In particular,

X ∨ Y Y ∨ Z
P1 0.2 −
P2 − 0.3

Now, first try to apply the extended linear pooling operator, �LP′′ . By averaging the
credences in each proposition, we get:

X ∨ Y Y ∨ Z
�LP′ 0.2 0.3
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But that is incoherent: the credences in X ∨ Y and Y ∨ Z must sum at least to 1. So
now we need to normalize. But how to do this? To normalize a credence function,
we need to know the credences it assigns to the possible worlds. But in this case, we
don’t know that. So �LP′′(P1, P2) is undefined. And of course the same fate befalls
�GP′(P1, P2): indeed, it can’t even get started, since it is defined initially on possible
worlds, and then only at the second stage on logically weaker propositions.

3.1 A concern about extension invariance

You might think it is not reasonable to demand that our pooling function satisfy
(EI). After all, it is easy to imagine cases in which, were an individual i to assign
credences to all the propositions in F , rather than merely those in Fi , the credences
they would assign to the propositions in Fi would be different from the ones they
actually assign. Here are two reasons this might happen. First, it might be the sort of
case discussed in the literature on awareness growth, in which the individual becomes
aware of a possibility they hadn’t considered before and this leads them to reevaluate
their opinions about the possibilities that they had considered before (Karni & Vierø,
2013; Wenmackers & Romeijn, 2016; Bradley, 2017; Steele & Stefánsson, 2021;
Mahtani, 2021). For instance, I might assign credences only to the propositions It
will rain tomorrow and It will be sunny tomorrow, and assign credence 50% to each,
but then come to consider a third possibility, namely, It will be misty tomorrow, and
that might lead me to reduce my credence in the original two propositions in order
to assign some credence to this new one. Secondly, it might be a case in which, at
the nearest world in which individual i has agenda F rather than Fi , their evidence
is different. For instance, consider the example from the introduction in which one
climate scientist assigns a credence only to the possibility that sea levels will rise by at
least 60cm by 2100, but nothing more fine-grained, while another assigns credences
to it rising by 60-80cm, 80-100cm, and more than 100cm by that date. Now, it might
be that it is only climate scientists who work specifically on sea level modelling who
assign credences to these more fine-grained possibilities. And it might be that such
modellers have substantially different evidence from others. So, let’s suppose that, at
the actual world, the first climate scientist, who assigns credences only to the coarse-
grained possibility, is not a sea level modeller. And now consider the nearest possible
world in which they assign credences to the more fine-grained possibilities. In that
world, they are a sea level modeller and so their evidence is very different from what
it is in the actual world. And that might lead them, in that world, to assign different
credences to the coarse-grained possibility.

These situations are indeed possible. However, (EI) holds of the individuals in
them all the same. After all, it is not justified by saying that, whenever there is, for
each individual i , a unique coherent P�

i defined on F that extends Pi , this P�
i gives

the credences that the individual i would assign were there agenda F instead of Fi .
It is not a counterfactual claim at all. Rather, as I sketched the justification above,
(EI) is justified by noting that the credences that Pi assigns to the propositions in Fi

commit individual i to the credences that P�
i assigns to the propositions in F . So it

does not say that a pooling function should give the same result whether applied to
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the individuals’ actual credence functions or the credence functions they would have
were they all to have F as their agenda; it says that a pooling function should give
the same result whether applied to the individuals’ actual credence functions or to the
credence functions on F to which their actual credences commit them.

Notice that this justification for (EI) applies equally whether we use our pooling
function to provide what Christian List (2014) calls aggregate or corporate group
opinions. In List’s terminology, an aggregate collective attitude provides a summary
of the attitudes of the members of the collective, while a corporate collective attitude
treats the group as an agent in its own right and ascribes to that agent the attitude in
question. When we determine the sort of summary that is encoded in an aggregate
group opinion, we surely wish to include not only the credences that the individuals
have explicitly, but also those towhich they are committed by those theyhave explicitly.
Andwe surely do not wish to include the opinions they would have had in some nearby
possible world inwhich they do explicitly assign credences to these other propositions.
After all,we are summarising the group’s actual opinions, not their counterfactual ones.
Andwhenwe treat the group as an agent, wewant to include in the supervenience basis
for that group agent’s opinions not only the credences the members have explicitly,
but also those to which they are committed.

We will return to (EI) below. So far, we have appealed only to its intuitive plausi-
bility. In Sect. 7, we will compare the accuracy of the credences you obtain if you use
it with the accuracy of the credences you obtain if you violate it in various ways.

4 The coherent approximation principle

In Sect. 3, we saw that it is difficult to extend linear and geometric pooling so that they
apply to the problem of pooling credence functions defined on different agendas—that
is, when Fi �= F j for some i, j . In this section, we turn to one of the few treatments
of the current problem from the literature. It is due to Daniel Osherson and Moshe
Vardi (Osherson & Vardi, 2006).

In fact, Osherson and Vardi treat two problems at once. Not only do they not
assume that the individuals to be pooled assign credences to the same propositions;
they also do not assume that those individuals assign coherent credences. So they seek
a pooling function that takes possibly incoherent credence functions over possibly
different agendas and pools them into a coherent credence function on the union
of the agendas. Their approach, which draws on the pioneering work of Sébastien
Konieczny and Ramón Pino Pérez, is distance-based (Konieczny & Pino Pérez, 1998,
1999). That is, we begin by identifying a measure of distance from one credence to
another.We then take the pool of a set of credence functions to be the credence function
for which the sum of the sum of the distances from the credences that it assigns to
the credences that the individuals assign is minimal. Osherson and Vardi consider two
such measures of distance:

Absolute deviation For credences 0 ≤ p, q ≤ 1,

AD(p, q) = |p − q|
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Squared deviation For credences 0 ≤ p, q ≤ 1,

SD(p, q) = |p − q|2

And there are many others, including the popular Kullback-Leibler divergence:

Kullback-Leibler divergence For credences 0 ≤ p ≤ 1 and 0 < q ≤ 1,

KL(p, q) = p log
p

q
− p + q

We say that a measure d of distance from one credence to another is a divergence if
(i) d(p, q) ≥ 0 for all 0 ≤ p, q ≤ 1 and (ii) d(p, q) = 0 iff p = q. AD, SD, and KL
are all divergences. Now, given a divergence d, here is Osherson and Vardi’s pooling
function, where PF is the set of coherent credence functions on F = ⋃n

i=1 Fi :

Coherent Approximation Principled (CAPd) For Pi defined on Fi ,

�d
CAP(P1, . . . , Pn) = arg inf

P∈PF

n∑

i=1

∑

X∈Fi

d(P(X), Pi (X))

That is, �d
CAP(P1, . . . , Pn) is the coherent credence function for which the sum of the

sums of the divergences from its credences to the credences assigned by P1, . . . , Pn
is minimal.3

In fact, if we wish the minimizer to be unique here, we must restrict the divergences
that we use. For instance, recall our example from the previous section:

X Y Z
P1 0.1 0.4 0.5
P2 0.2 0.6 −
P�
2 0.2 0.6 0.2

Then, if we use the absolute deviation to measure the distance from one credence to
another—that is, if d = AD—then, providing 0.1 ≤ P(X) ≤ 0.2, 0.4 ≤ P(Y ) ≤ 0.6,
and 0.2 ≤ P(Z) ≤ 0.5, P minimises the average distance to P1 and P�

2 . Presumably
for this reason, when Osherson writes about CAP again with different co-authors, they
focus on squared deviation (Predd et al., 2008). We’ll focus on squared deviation and
Kullback-Leibler divergence for the moment.4 Here are the results of pooling P1 and
P2 using �SD

CAP and using �KL
CAP, and the results of pooling P1 and P�

2 using �SD
CAP

3 Amore general definition would permit divergences between credence functions that are not generated by
summing the divergences between the credences they assign. The results I present in this paper concern the
less general definition, but this definition covers the vast majority of divergences that are actually considered
in the literature. The more general definition must await future work. Thanks to an anonymous reviewer for
this journal for this suggestion.
4 Pettigrew (2019) makes the same choice.
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and using �KL
CAP.

X Y Z
�SD

CAP(P1, P2) 0.1125 0.4625 0.425
�SD

CAP(P1, P
�
2 ) 0.15 0.5 0.35

�KL
CAP(P1, P2) 0.13 0.45 0.42

�KL
CAP(P1, P

�
2 ) 0.15 0.52 0.33

Since the first and second row differ, �SD
CAP violates (EI); since the third and fourth

row differ, �KL
CAP violates (EI).

Now, you might try to save the Coherent Approximation Principle in one of two
ways. First, you might seek a divergence d for which �d

CAP satisfies (EI). However,
the following fact shows that this is impossible:

Proposition 1 If d is differentiable in its first argument, �d
CAP violates (EI).

(The proof is given in the Appendix.)
Second, you might think that the problem arises because the single credence

assigned to Z is given exactly as much weight as the two credences assigned to X and
the two credences assigned to Y . But it’s easy to check that assigning twice as much
weight to d(P(Z), P1(Z)) as to d(P(X), P1(X)) or d(P(Y ), P1(Y )) doesn’t bring the
Coherent Approximation Principle into agreement with (EI). For instance,

(SD(P(X), 0.1) + SD(P(X), 0.2)) + (SD(P(Y ), 0.4)

+ SD(P(Y ), 0.6)) + 2 × SD(P(Z), 0.5)

is minimized among coherent functions at P = (0.1, 0.45, 0.45), while

(SD(P(X), 0.1) + SD(P(X), 0.2))+
(SD(P(Y ), 0.4) + SD(P(Y ), 0.6))+
(SD(P(Z), 0.5) + SD(P(Z), 0.2))

is minimized among coherent credence functions at P = (0.15, 0.5, 0.35).

5 Pooling the sets of coherent credence functions that extend the
individuals’ credence functions

Like the Coherent Approximation Principle, the third proposal we’ll consider asks us
to pool by minimizing the average distance from some representation of the individu-
als’ opinions. But whereas CAP represents individual i by the precise credences they
explicitly assign to the propositions in Fi , the third proposal represents them by the
imprecise credences they assign to the propositions inF . That is, instead of represent-
ing individual i by the single credence function Pi defined on Fi , we represent them
by the following set of credence functions defined on F :

Ri = {P ∈ PF | (∀X ∈ Fi )[P(X) = Pi (X)]}
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wherePF is the set of coherent credence functions defined onF , as above. So, Ri is the
set of coherent extensions of Pi toF . And we pool P1, . . . , Pn by pooling R1, . . . , Rn .
And we pool R1, . . . , Rn by finding a credence function P that minimizes the average
distance from P to the Ri s. Now, there are two natural definitions of the distance from
P to Ri . On the first, it is the minimum distance between P and a member of Ri ; on
the second, it is the maximum distance between P and a member of Ri . I’ll consider
both.

For many divergences and many P1, . . . , Pn , these minimization problems will
have a unique solution. In that case, we use the first definition of distance and define:

�
d,inf
MW (P1, . . . , Pn) = arg inf

P∈PF

n∑

i=1

(

inf
Q∈Ri

∑

X∈F
d(P(X), Q(X))

)

And we use the second definition of distance and define:

�
d,sup
MW (P1, . . . , Pn) = arg inf

P∈PF

n∑

i=1

(

sup
Q∈Ri

∑

X∈F
d(P(X), Q(X))

)

I use the subscript ‘MW’ for these pooling functions because this general method
for combining sets of probability functions is proposed byMartinAdamčík andGeorge
Wilmers (Adamčík & Wilmers, 2014; Wilmers, 2015). Seamus Bradley (2019) criti-
cizes it as a pooling function for sets of probability functions that represent uncertainty
in the imprecise credence framework. But his criticisms are less worrying when it is
used to pool sets of probability functions that represent gaps in credal reporting, as we
do here, so I won’t repeat them.

It is easy to see that these two pooling functions will satisfy (EI). After all, if there
is a unique coherent credence function P�

i , defined on F , that extends Pi , which is
defined on Fi , then the set of coherent probability functions that extends Pi is the
same as the set of coherent probability functions that extends P�

i —both contain only
P�
i . That is:

Ri = {P : F → [0, 1] | P ∈ PF & (∀X ∈ Fi )[P(X) = Pi (X)]} =
{P�

i } = {P : F → [0, 1] | P ∈ PF & (∀X ∈ Fi )[P(X) = P�
i (X)]} = R�

i

So these proposals do not suffer from the same problem as the previous two. But
they do face a problem: they give implausible answers in reasonably straightforward
cases. For instance, suppose F = {X ,Y , Z}, where X , Y , and Z form a partition, and
F1 = {X} and F2 = {Y }. And suppose

X Y Z
P1 0.8 − −
P2 − 0.8 −

So:
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Fig. 1 The barycentric plot of the 2-simplex with (1, 0, 0) at bottom left, (0, 1, 0) at bottom right, and
(0, 0, 1) at the top. The dotted lines represent R1 and R2, respectively. And the result of applying �

d,inf
MW

and �
d,sup
MW to P1 and P2 is plotted

• R1 = {P ∈ PF : P(X) = 0.8}
• R2 = {P ∈ PF : P(Y ) = 0.8}
We can illustrate these two sets of probabilities by plotting them within the three-

dimensional simplex on a barycentric plot (see Fig. 1). The problem is that, if d is
squared deviation (SD) or Kullback-Leibler divergence (KL), then�

d,inf
CAP (P1, P2) and

�
d,sup
CAP (P1, P2) are as follows:

X Y Z

�
d,inf
MW (P1, P2) 0.5 0.5 0

�
d,sup
MW (P1, P2) 0.4 0.4 0.2

These are plotted on the simplex as well. The problem here is that both seem too
extreme. �d,inf

MW (P1, P2) assigns credence 0 to Z , even though nothing in the opinions
of either agent forces that. It is the same pool we would obtain if both agents were to
assign credence 0 to Z and fill in Y in such a way that they remained coherent. That
is,

�
d,inf
MW (P1, P2) = �d

MW(P◦
1 , P◦

2 )

where

X Y Z
P◦
1 0.8 0.2 0

P◦
2 0.2 0.8 0
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And �
d,sup
MW (P1, P2) assigns credence 0.2 to Z , even though nothing in the opinions of

either agent forces that. It is the same pool we would obtain if agent 1 were to assign
credence 0 to Y and fill in Z in such a way that they remain coherent, and agent 2
were to assign credence 0 to X and fill in Z in such a way that they remain coherent.
That is,

�
d,sup
MW (P1, P2) = �d

MW(P†
1 , P†

2 )

where

X Y Z

P†
1 0.8 0 0.2

P†
2 0 0.8 0.2

6 Maximising entropy within the set of possible pools

Here’s another proposal that arises naturally. Let

RLP = {�LP(P
′
1, . . . , P

′
n) : P ′

1 ∈ R1, . . . , P
′
n ∈ Rn}

That is, RLP is the set of linear pools of coherent extensions of the individuals’
credence functions. Then let the pool of P1, . . . , Pn be the credence function in RLP

with maximum entropy.5 First, define the Shannon entropy of a probability function
P defined over a setW of possible worlds as follows (Shannon, 1948):

H(P) = −
∑

w∈W
P(w) log P(w)

Then let

�LP
ME(P1, . . . , Pn) := argmax

P∈RLP

H(P)

The problem with this approach is that it gives the same implausible answer as �
d,sup
MW

gave in the case we considered in the previous section. That is, if

X Y Z
P1 0.8 − −
P2 − 0.8 −

5 Strictly speaking, this will only work if F = ⋃n
i=1 Fi contains W . It’s an interesting question how the

proposal might be extended beyond this, perhaps by considering the extensions of each Pi not only to F
but to F�, the smallest Boolean algebra that contains F . But, as we will see, the proposal doesn’t work, so
I won’t spend time on that.
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Fig. 2 The barycentric plot of the 2-simplex with (1, 0, 0) at bottom left, (0, 1, 0) at bottom right, and
(0, 0, 1) at the top. The dotted lines represent R1 and R2, respectively. And the result of applying �LP

ME to
P1 and P2 is plotted

Then

X Y Z
�LP

ME(P1, P2) 0.4 0.4 0.2

Again, we illustrate this in a barycentric plot—see Fig. 2.

7 Extension invariance and the accuracy of pooling functions

In Sects. 3 and 4,we criticized the extensions of linear and geometric pooling,�LP′′ and
�GP′ , and the Coherent Approximation Principle, �d

CAP, because they both violate
(EI), the principle that says that, when there’s a unique coherent extension of each
credence function to the full algebra, pooling those extensions should give the same
result as pooling the original credence functions. At that point, I merely appealed to the
intuitive force of (EI); I gave no further argument in its favour. But there is something
to be said for pooling functions that satisfy it, at least when they are compared with
CAP.

Let’s begin with a slight adaptation of the simple example from above:

X Y Z
P1 0.1 0.4 −
P2 0.2 0.6 −
P�
1 0.1 0.4 0.5

P�
2 0.2 0.6 0.2

(EI) says that pooling P1 and P2 should give the same result as pooling P1 and P�
2 ,

which should give the same result as pooling P�
1 and P2, which should give the same
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result as pooling P�
1 and P�

2 . That is, if � is our pooling function,

�(P1, P2) = �(P1, P
�
2 ) = �(P�

1 , P2) = �(P�
1 , P�

2 )

But let’s apply CAP using the squared deviation:

X Y Z

�SD
CAP(P1, P2)

12
80

40
80

28
80

�SD
CAP(P1, P

�
2 ) 15

80
43
80

22
80

�SD
CAP(P

�
1 , P2)

9
80

37
80

34
80

�SD
CAP(P

�
1 , P�

2 ) 12
80

40
80

28
80

Now,notice that�SD
CAP(P

�
1 , P�

2 ) is the sameas�SD
CAP(P1, P2), andboth are themidpoint

between �SD
CAP(P1, P

�
2 ) and �SD

CAP(P
�
1 , P2). That is,

�SD
CAP(P

�
1 , P�

2 ) = �SD
CAP(P1, P2) =

1
2 (�

SD
CAP(P1, P

�
2 ) + �SD

CAP(P
�
1 , P2)) =

1
4 (�

SD
CAP(P

�
1 , P�

2 ) + �SD
CAP(P1, P2) + �SD

CAP(P1, P
�
2 ) + �SD

CAP(P
�
1 , P2))

That is, when we include the credal assignment to Z that P1 determines, but not the
assignment that P2 determines, �SD

CAP pulls the pool towards P1 and away from P2;
and, mutatis mutandis, if we include the credal assignment to Z that P2 determines,
but not the one that P1 determines. And, moreover, the pull is the same but in opposite
directions in the two cases. So, when we average them, we obtain what we would have
obtained if we’d left out both assignments to Z (and pooled P1 and P2) or if we’d
included both assignments to Z (and pooled P�

1 and P�
2 ).

What does this tell us? Well, suppose our favoured pooling function for those cases
in which all individuals have the same agenda is linear pooling; and suppose we extend
that pooling function in line with (EI). Then we can say that following in favour of
our approach and against CAP. First, we note the following corollary of the Diversity
Prediction Theorem (Galton, 1907; Page, 2007):

Theorem 2 For any F and credence functions Q, Q1, . . . , Qn defined on F ,

∑

X∈F
SD(�LP(Q1, . . . , Qn)(X), Q(X)) <

1

n

n∑

i=1

∑

X∈F
SD(Qi (X), Q(X))

This says that, for any credence function Q and any set of credence functions
Q1, . . . , Qn all defined on the same set of propositions, the distance of the linear

123



372 Page 16 of 25 Synthese (2022) 200 :372

pool of Q1, . . . , Qn from Q is always less than the average distance of the Qi s from
Q, when the distance between credences is measured using squared deviation.6

How does this help?Well, given a possible worldw, let Vw be the credence function
that assigns maximal credence to all propositions that are true at w and minimal
credence to all propositions that are false at w: that is, Vw(X) = 1 if X is true at w,
and Vw(X) = 0 if X is false atw. We might call Vw the omniscient credence function.
It is natural to say that the ideal credence function for an individual to have at a world
is the omniscient credence function at that world, and that a credence function is more
accurate the closer it lies to that omniscient credence function. Sowemight say that the
inaccuracy of a credence function Qi at world w is the sum of the squared deviations
between the credences it assigns and the credences that Vw assigns: we call this the
Brier score of inaccuracy. So, if P is defined on F ,

B(P, w) =
∑

X∈F
(P(X) − Vw(X))2

And we might think that a credence function is doing better, epistemically speaking,
the greater its inaccuracy and the lower its Brier score. That is, P is better than Q at w
just in caseB(P, w) < B(Q, w) (Brier, 1950; Rosenkrantz, 1981; Pettigrew, 2016).
Then, by Theorem 2,

Corollary 3 For anyF , any world w, and any credence functions Q1, . . . , Qn defined
on F ,

B(�LP(Q1, . . . , Qn), w) <
1

n

n∑

i=1

B (Qi , w)

That is, the inaccuracy of the linear pool of Q1, . . . , Qn is less than the average
inaccuracy of the Qi s.

Now, recall that the linear pool of �SD
CAP(P

�
1 , P�

2 ), �SD
CAP(P1, P2), �

SD
CAP(P1, P

�
2 ),

and�SD
CAP(P

�
1 , P2) is just�LP(P�

1 , P�
2 ). Then it follows that, for anyworld, the inaccu-

racyof�LP(P�
1 , P�

2 ) at thatworld is less than the average inaccuracyof�SD
CAP(P

�
1 , P�

2 ),
�SD

CAP(P1, P2), �
SD
CAP(P1, P

�
2 ), and �SD

CAP(P
�
1 , P2) at that world. That is,

B
(
�LP(P�

1 , P�
2 ), w

)
<

1
4

(
B

(
�SD

CAP(P
�
1 , P�

2 ), w
) + B

(
�SD

CAP(P
�
1 , P�

2 ), w
) +

B
(
�SD

CAP(P
�
1 , P�

2 ), w
) + B

(
�SD

CAP(P
�
1 , P�

2 ), w
))

So pooling in line with (EI) is more accurate than pooling in line with CAP, at least
in expectation and if you are equally likely to find yourself pooling P1 and P2 as you
are to find yourself pooling P1 and P�

2 , or P
�
1 and P2, or P�

1 and P�
2 .

Does this generalise beyond the specific case of P1 and P2? Yes, as the following
theorem shows:

6 Indeed, this generalizes to any convex divergence, but I’ll focus on squared deviation here for the sake
of concreteness.
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Theorem 4 Suppose F ,F ′ are two sets of propositions and F ′ ⊆ F . Suppose P1 is
a credence function on F ′ and P�

1 is the unique coherent extension of P1 to F; and
suppose P2 is a credence function on F ′ and P�

2 is the unique coherent extension of
P2 to F . Then

�LP(P
�
1 , P�

2 )

= 1

4

(
�SD

CAP(P1, P2) + �SD
CAP(P

�
1 , P�

2 ) + �SD
CAP(P

�
1 , P2) + �SD

CAP(P1, P
�
2 )

)

Now, suppose you enter a pooling task knowing only that the individuals will assign
credences either to the propositions in F ′ or to the propositions in F , where F ′ ⊆ F .
Then, if we assume that there is no correlation between the particular credences the
individuals assign and whether they assign them only to the propositions in F ′ or to
the propositions in F , then it is as likely that the group whose opinions you wish to
pool consists of P1 and P�

2 as it is that it will consist of P�
1 and P2, and as likely

that it consists of P1 and P2, and as likely that it consists of P�
1 and P�

2 . And if that’s
right then the expected inaccuracy of using a rule that respects (EI) and thus sets
�(P�

1 , P2) = �(P1, P�
2 ) = �LP(P�

1 , P�
2 ) is lower than the expected inaccuracy of

using CAP, which will give each of �SD
CAP(P1, P

�
2 ), �SD

CAP(P1, P
�
2 ), �SD

CAP(P1, P
�
2 ),

and �SD
CAP(P1, P

�
2 ) a probability of 25%.

8 Beyond extension invariance

Extension Invariance (EI) tells us how our pooling function should work when, for
each individual i , there is a unique coherent extension P�

i of Pi from Fi to F . In such
a case, (EI) tells us, you pick the pooling function you favour for those cases in which
all the credence functions to be pooled are defined on the same set of propositions,
and you apply it to the extended credence functions P�

1 , . . . , P�
n , which are all defined

on F . As it stands, however, (EI) does not tell us how to proceed when, for some
individual i , there is more than one coherent credence function that extends Pi from
Fi to F . In this final section, I consider an important sort of case in which we face
this problem and propose a solution for that case.

In the case I want to consider, we pool credences in order to give what Christian List
(2014) calls a corporate collective attitude. Recall from above: in List’s terminology,
when we ascribe a corporate collective attitude, we assert first that the group counts as
an agent in its own right and second that this group agent has the attitude in question.
From the examples given in the introduction, these are the ones I envisage falling into
this category: the epidemiologists of viruses whose views we wish to present as the
view of the scientific community in our textbooks; the co-authors on a multi-authored
scientific paper whose group view as a collective author we wish to present to the
scientific community; and the employees of a company or institution whose collective
view we wish to identify in order to assess liability for some harm. In all three cases,
the group agents play a role in some normative enterprise. In the first two, it is the
enterprise of science, which has norms that govern the assertions included in textbooks
and scientific papers. In the third, it is the legal system, and there are norms here that
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govern the beliefs we ascribe to an individual whose liability for some harm we are
assessing.

While these normative enterprises and the roles within them that the groups play
are quite different, I will argue that a similar norm governs how we should pool the
credences of the individuals in such a group to give the group’s credences. It is a
conservative norm. It says that we should first pick, for each individual i , a particular
credence function P�

i that extends Pi from Fi to F ; in particular, it says that we
should pick P�

i in the most conservative and unopinionated way possible; that is, we
should introduce as little in the way of further opinions as we can when we extend; and
then, second, we should aggregate these extended credence functions using whatever
pooling function we favour for those cases in which all credence functions are defined
on the same agenda—perhaps linear pooling, perhaps geometric pooling, perhaps
something else.

Why is this the appropriate norm in the scientific case? In particular, why does the
norm require us to extend Pi to P�

i in the most conservative way possible. In fact, I
think there are two reasons. The first reason is the duty of the textbook’s author or
the paper’s lead author to represent fairly the views of the individuals on behalf of
whom they write. The textbook’s author presents the views of that part of the scientific
community; the lead author presents the views of their fellow co-authors. In both cases,
they have a duty not to impute to those individuals any further opinions beyond what
is necessary to extend their credences to the full set F . The second reason is the duty
of scientific authors to their audience. Now, I don’t think it is the duty of each scientist
not to form opinions beyond what is strictly implied by their evidence. Over years of
training and experience in their field, scientists gain an ability to form opinions on the
basis of the evidence that sometimes seems to go beyond what the non-expert might
conclude, and yet which it is legitimate to report in a scientific publication because
of the expertise of the scientist. Nonetheless, when the scientist hasn’t formed any
opinion about a proposition and when we must nonetheless ascribe an opinion to them
in order to carry out the pooling, we are obliged to make that opinion as conservative
as possible. In other words, deviations from a sort of Cliffordian conservatism about
opinion are permitted, but only when they are made explicitly by the scientist, and not
when they are made by a textbook author or lead author on a paper who is filling in
the gaps in another scientist’s opinions.

Why is conservatism the appropriate norm in the legal case? Here, I think the key
lies in the legal notion of the ‘reasonable person’. Often this abstract individual is
invoked to personify a certain standard of proof that is required in order to find a
defendant liable or guilty. On the websites of many US police departments, you will
find a definition of ‘probable cause’ in terms of what a ‘reasonable person’ would
believe on the basis of the evidence in hand. But it is also used to determine when
a defendant’s actions are reasonable. For instance, in Brown vs.@ Kendall, Chief
Justice Shaw determined that the ‘ordinary care’ that is necessary for the defendant
to avoid liability is “that kind and degree of care, which prudent and cautious men
would use”.7 And in Commonwealth vs.@ Horsfall, Chief Justice Rugg declared that
“every traveller upon a highway is bound to exercise the care of the ordinarily prudent

7 Brown vs.@ Kendall, 60 Mass. 292 (1850).
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and cautious person under all circumstances”.8 In both of these cases, we see that
the ‘reasonable person’ is identified with the ‘prudent and cautious person’. In the
cases cited, the prudence and caution relate to the individual’s practical choices about
their actions; but it seems reasonable to infer that the same condition is placed on the
individual’s beliefs. Take the case of Commonwealth vs.@ Horsfall, where a car on
a public highway hit an individual, who then died from their injuries. The individual
who was killed was stationary, and the driver had seen them from some distance off
and sounded their horn. While there was plenty of room to pass, the driver didn’t take
it, presumably thinking that the person would move out of the way at the sound of
the horn. Even if it might have been rationally permissible to have a high credence
that the person would move out of the way, given the driver’s evidence, if that high
credence is unusually high or incautious or unreasonable, it seems that its rationality
would not exculpate them. Rather, when they are assessed for liability, their action is
assessed from the point of view of a person who is cautious in both their beliefs and
the actions they perform on the basis of those beliefs.

Now let me explain how we might respect these conservative norms formally.
If we wish to extend a credence function in the most conservative way possible,
it’s natural to appeal to the Principle of Maximum Entropy (Jaynes, 2003; Paris &
Vencovská, 1990; 1997; Williamson, 2010). Typically, that principle applies to an
individual whose evidence constrains their credences to some extent, but still permits
a range of different credence functions. It is then used to pick out a single credence
function from among those: it picks the one that has maximal Shannon entropy.9 The
idea is this: Shannon entropy measures how unopinionated a probability distribution
is. The higher its entropy, the less opinionated it is. Thus, a uniform distribution
over a finite partition, which is maximally unopinionated, receives the highest entropy
among probability functions over that partition,while a probability function that places
all of its mass on a single possible world, and is therefore maximally opinionated,
receives the lowest entropy. The idea is that your credence function should respect your
evidence; but among credence functions that do this, it should be the least opinionated.
In this sense, it should not go beyond the evidence; it should not encode opinions that
aren’t demanded by the evidence.10

In our case, the situation is a little different. It is not only the individual’s evidence
that constrains how we might extend their credences to the propositions that lie in F
but not in Fi . It is also the credences that they assign to the propositions in Fi . So
we might imagine that each individual has their own body of evidence Ei , and we
might model this as the set of credence functions on F that respect that evidence.
Thus, for instance, if among individual i’s body of evidence is the fact that the coin
in their pocket is fair, then each credence function in Ei should assign credence 50%
to that coin landing heads if tossed; and so on. Now, just as we are supposing that
all individuals have coherent credence functions, so we might suppose that they all

8 Commonwealth vs.@ Horsfall, 213 Mass. 232 (1913).
9 It is typically used only when it is guaranteed that there will be just one such credence function.
10 It is worth noting that there are other notions of entropy available, and you might prefer to take one of
those to measure the unopinionatedness of a probability function instead. I focus here on Shannon entropy,
partly because it is the most commonly used, but also because there are persuasive axiomatizations of it,
including Shannon’s own (Shannon, 1948; Paris & Vencovská, 1990; 1997).
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have credence functions that respect their evidence. Thus, for all i , Ri and Ei overlap.
Then we might say: when we extend individual i’s credence function from Fi to F ,
we should ascribe the credence function PME

i , which is defined on F as follows:

PME
i = arg sup

P∈Ei∩Ri
H(P)

where, recall:

• Ei is the set of credence functions on F that respect the evidence that individual
i has;

• Ri is the set of coherent credence functions on F that extend Pi ; and
• H(P) is the Shannon entropy of P .

The motivation is the same as in the standard application of maximal entropy rea-
soning, where an individual’s credences are constrained only by their evidence, and
we demand that they pick among those that satisfy the constrains the one that is least
opinionated. Similarly here, where both the individual’s evidence and their existing
credences impose constraints, we ascribe to them the credence function among those
that satisfies both constraints that is least opinionated. Thus, we define

�ME∗(P1, . . . , Pn) = �(PME
1 , . . . , PME

n )

where � is our favoured pooling function for credence functions defined on the same
set of propositions—e.g., linear pooling (�LP) or geometric pooling (�GP).

Figure 3 illustrates the result of this process in the case we’ve considered before
where:

• each individual has no evidence, so that E1 = E2 = PF ; and
• the propositions X , Y , and Z form a partition and the individuals’ credences are
as follows:

X Y Z
P1 0.8 − −
P2 − 0.8 −

Then

X Y Z
PME
1 0.8 0.1 0.1

PME
2 0.1 0.8 0.1

Then, if �LP is linear pooling, then

X Y Z
�LP

ME∗(P1, P2) 0.45 0.45 0.1

It’s worth noting that, when we combine this with the illustration from above,
we see that taking the credence function that maximises entropy among all linear
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Fig. 3 The barycentric plot of the simplex with (1, 0, 0) at bottom right, (0, 1, 0) at bottom left, and (0, 0, 1)
at the top

pools of the possible extensions of P1 and P2 is not the same as taking the linear
pool of the extensions of P1 and P2 that maximise entropy. That is, �LP

ME(P1, P2) �=
�LP

ME∗(P1, P2). And, it seems to me at least, the latter gives the more sensible result.

9 Conclusion

We’ve met a lot of different pooling functions that purport to cover those cases in
which the individuals in the group in question have different agendas. I have argued
that they all fail except �ME∗ , which I introduced in the previous section. There, I
argued that it is the pooling function we ought to use when we wish to determine the
corporate credences of a scientific community in order to present them in a textbook,
or the corporate credences of a company or institution we are assessing for liability.

Perhaps there are other situations in which it is the pooling function we ought to
use, or at least one of the pooling functions we are permitted to use? I think that may
well be true when our purpose is not to determine the corporate credences of a group
but to determine its aggregate credences. Recall, in Christian List’s terminology, the
aggregate credences of a group provide a condensed summary of the credences of the
individuals that make it up. In this case, there is no suggestion that the group is an
agent in its own right. It seems right to say that, when we summarise the credences of
a group of individuals, and we need to fill in a particular individual’s credence in some
proposition in order to perform the summary, we should add as little by way of new
opinion as we can. But I don’t think this mere appeal to intuition is as convincing as an
argument, so I leave this case to future work, when more compelling considerations
might be adduced.
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Appendix: proofs

Proposition 1 If d is differentiable in its first argument, �d
CAP violates (EI).

Proof Suppose W = {w1, w2} and F1 = {w1, w2} and F2 = {w2}. Then (EI) says
that, for any P1 defined on F1 and P2 defined on F2,

d(x, P1(w1)) + d(1 − x, P1(w2)) + d(1 − x, P2(w2))

is minimized as a function of x at x = p iff

d(x, P1(w1)) + d(1 − x, P1(w2)) + d(x, P2(w1)) + d(1 − x, 1 − P2(w1))

is minimized as a function of x at x = p. Now, differentiate each with respect to x
and evaluate at p, where it will take value 0:

[
d

dx
[d(x, P1(w1)) + d(1 − x, P1(w2)) + d(1 − x, P2(w2))]

]

(p) =
d′(p, P1(w1)) − d′(1 − p, P1(w2)) − d′(1 − p, P2(w2)) = 0

And
[
d

dx
[d(x, P1(w1)) + d(1 − x, P1(w2)) + d(x, P2(w1)) + d(1 − x, P2(w2))]

]

(p) = d′(p, P1(w1)) − d′(1 − p, P1(w2)) + d′(p, P2(w1)) − d′(1 − p, P2(w1))

= 0

But subtracting the first from the second, we get:

d′(p, P2(w1)) = 0
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But, since d is a divergence, d(x, P2(w1)) is minimized, as a function of x , uniquely
at x = P2(w1). So p = P2(w1). But by similar reasoning, we can also establish:

d′(p, P1(w1)) = 0

So it is minimized at p = P1(w1). But if P1(w1) �= P2(w1), then this gives a contra-
diction. ��

Theorem 4 is a corollary of this:

Theorem 5 Suppose f1, . . . , fm, g1, . . . , gm are linear functions in n variables. That
is, for each 1 ≤ j ≤ m, there are α j1, . . . , α jn, β j1, . . . , β jn such that

f j (x1, . . . , xn) = α j1x1 + . . . + α jn xn + k j

and

g j (x1, . . . , xn) = β j1x1 + . . . + β jn xn + l j

And suppose x = x1, . . . , xn minimizes

∑

j

( f j (x) − f j (p))2 +
∑

j

( f j (x) − f j (q))2 +
∑

j

(g j (x) − g j (p))2 (1)

and y = y1, . . . , yn minimizes

∑

j

( f j (y) − f j (p))2 +
∑

j

( f j (y) − f j (q))2 +
∑

j

(g j (y) − g j (q))2 (2)

Then, for 1 ≤ i ≤ n, let zi = xi+yi
2 . Then z = z1, . . . , zn minimizes

∑

j

( f j (x) − f j (p))2 +
∑

j

( f j (x) − f j (q))2 +
∑

j

(g j (x) − g j (p))2

+
∑

j

(g j (x) − g j (p))2 (3)

Proof Suppose x minimizes (1). Then, for all 1 ≤ k ≤ n,

∑

j

2α jk

(
∑

i

α j i (xi − pi )

)

+
∑

j

2α jk

(
∑

i

α j i (xi − qi )

)

∑

j

2β jk

(
∑

i

β j i (xi − pi )

)

= 0

123



372 Page 24 of 25 Synthese (2022) 200 :372

And suppose y minimizes (2). Then, for all 1 ≤ k ≤ n,

∑

j

2α jk

(
∑

i

α j i (yi − pi )

)

+
∑

j

2α jk

(
∑

i

α j i (yi − qi )

)

∑

j

2β jk

(
∑

i

β j i (yi − qi )

)

= 0

Now, it’s easy to check that, if we let zi = pi+qi
2 , then zminimizes (3). So nowwe need

only show that xi+yi
2 = pi+qi

2 . That is, xi = pi + qi − yi . So, let x∗
i = pi + qi − yi .

Then

∑

j

2α jk

(
∑

i

α j i (x
∗
i − pi )

)

+
∑

j

2α jk

(
∑

i

α j i (x
∗
i − qi )

)

+

∑

j

2β jk

(
∑

i

β j i (x
∗
i − pi )

)

=

∑

j

2α jk

(
∑

i

α j i ((pi + qi − yi ) − pi )

)

+
∑

j

2α jk

(
∑

i

α j i ((pi + qi − yi ) − qi )

)

∑

j

2β jk

(
∑

i

β j i ((pi + qi − yi ) − pi )

)

=

∑

j

2α jk

(
∑

i

α j i (qi − yi )

)

+
∑

j

2α jk

(
∑

i

α j i (pi − yi )

)

+

∑

j

2β jk

(
∑

i

β j i (qi − yi )

)

= 0

Since y minimizes (2). So x∗ minimizes (1). So x∗ = x, and xi = x∗
i = pi + qi − yi ,

as required. ��
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