
ORIGINAL RESEARCH

Synthese (2022) 200:370
https://doi.org/10.1007/s11229-022-03696-w

Abstract
The so-called integration problem concerning mechanistic and computational expla-
nation asks how they are related to each other. One approach is that a computational
explanation is a species of mechanistic explanation. According to this view, com-
putational or mathematical descriptions are mechanism sketches or macroscopic
descriptions that include computationally relevant and exclude computationally ir-
relevant physical properties. Some suggest that this results in a so-called single
hierarchy view of physical computation, where computational or mathematical
properties sit together in the same mechanistic hierarchy with the implementational
properties. This view can be contrasted with a separate hierarchy view, accord-
ing to which computational and physical descriptions have their own hierarchies
which are related to each other via a bridging implementation relation. The single
hierarchy view has been criticized for downplaying the explanatory value of com-
putational explanations and not being hospitable to multiple realization of cognitive
processes. In this paper, I argue that (1) the aforementioned criticisms fail, and (2)
there might be a deeper problem with the single hierarchy view, which is that the
single hierarchy view might collapse into a separate hierarchy view. The kind of
abstraction used by the single hierarchy view does not seem to grant mathematical
or computational descriptions but only more stripped physical or implementational
descriptions.

Received: 1 October 2021 / Accepted: 12 April 2022 / Published online: 30 August 2022
© The Author(s) 2022

No computation without implementation? A potential
problem for the single hierarchy view of physical
computation

Jesse Kuokkanen1

 Jesse Kuokkanen
jesse.kuokkanen@helsinki.fi

1 Cognitive Science, University of Helsinki, Helsinki, Finland

1 3

http://orcid.org/0000-0003-1944-4130
http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03696-w&domain=pdf&date_stamp=2022-8-22

Synthese (2022) 200:370

1 Introduction

In cognitive sciences, researchers use both computational and mechanistic expla-
nations (e.g., Chirimuuta 2014; Craver, 2007, 2015; Magnani & Bertolotti, 2017).
Given that, traditionally, computational explanations are taken as abstract and math-
ematical, while mechanistic explanations are taken as physical and causal (Rusanen
& Lappi, 2016), one might ask how are they related to each other. Some, including
Gualtiero Piccinini, have suggested that computational explanation is, in fact, a spe-
cies of mechanistic explanation and hence, there is no actual tension between compu-
tational and mechanistic explanation (e.g., Kuorikoski 2020; Piccinini, 2015, 2020;
Piccinini & Craver, 2011). Mechanistic explanation is decompositional, resulting in
a hierarchy of mechanistic levels (Craver, 2015). If computational explanations are
mechanistic, it would seem to result in two mechanistic hierarchies: one implementa-
tional or medium-dependent and one computational or medium-independent.

Elber-Dorozko & Shagrir (2019a, 2019b) have raised a worry concerning how the
two resulting mechanistic hierarchies might relate to each other. They claim that some
(e.g., Rusanen & Lappi 2016; Shagrir, 2016) take Piccinini’s mechanistic account of
physical computation (MAC) to entail a view which Elber-Dorozko & Shagrir call
a single hierarchy view of implementational and computational properties.1 In the
single hierarchy view, implementational and computational properties are lumped
together in one mechanistic hierarchy. Elber-Dorozko & Shagrir contrast the single
hierarchy view with a separate hierarchy view, where implementational and compu-
tational hierarchies are kept apart. According to Elber-Dorozko & Shagrir, the single
hierarchy view has two main problems. First, it downplays the explanatory value of
computational explanations. Second, it does not easily accommodate the multiple
realizability of cognitive processes. They also argue that the separate hierarchy view
avoids these problems.

In this paper, I make two suggestions. First, the arguments from explanatory value
and multiple realizability are not real problems for MAC as a single hierarchy view.
Second, even if the arguments from explanatory value and multiple realizability were
resolved, this might be cold comfort for the single hierarchy view as there might be
a deeper, more fundamental problem built into the idea of MAC as a single hierarchy
view as described by Elber-Dorozko & Shagrir. The problem is that MAC seems to
rely on so-called descriptive abstraction when it comes to the relation between imple-
mentational and computational or mathematical properties (Kuokkanen & Rusanen,
2018). Descriptive abstraction excludes implementational detail from the system’s
description and includes only computationally relevant properties. However, it seems
that performing descriptive abstraction does not result in computational or math-
ematical descriptions but simply in more stripped physical descriptions.

In Sect. 2, I introduce the mechanistic account of computation. In Sect. 3, I intro-
duce the ideas of single and separate hierarchies of physical computation. In Sect. 4,
I analyze the arguments from explanatory value and multiple realizability against the

1 Elber-Dorozko & Shagrir (2019b) also suggest that Harbecke’s (2020) analysis opts for a similar struc-
ture of explanation.

1 3

370 Page 2 of 15

Synthese (2022) 200:370

single hierarchy view and present my own argument against it. Section 5 contains my
concluding remarks.

2 Mechanistic account of physical computation

Computation is a well-established branch of mathematics. It studies, for example,
which mathematical functions certain algorithms can solve, and how much comput-
ing resources such computations require. This work on formal computation leans
on abstract mathematical entities such as Turing machines, and it provides the most
rigorous definition we have for computation. We also speak of physical computation,
such as neural or molecular computation or the operation of our desktop computers.
The relation between formal and physical computation is tricky: formal computation
does not tell us, for example, what makes something a physical computing system.
This is the so-called implementation problem of physical computation: the problem
of capturing the conditions under which a physical system implements or realizes a
mathematical or abstract computation. Conditions that are too weak lead to pancom-
putationalism, while conditions that are too strict lead to ruling out some intuitively
paradigmatic cases of physical computing systems. Traditionally, both are taken as
undesirable outcomes.

Mechanistic accounts of computation have become popular in explaining physi-
cal computation and trying to provide a satisfactory answer to the implementation
problem. One such account is Gualtiero Piccinini’s (2015) mechanistic account of
physical computation (MAC), which is the focus of this paper.2 In Piccinini’s theory,
a physical computing system is a functional mechanism. It has a teleological func-
tion of manipulating medium-independent vehicles according to a rule. A standard
PC is an example of a physical computing system: it is a mechanism supposed to
operate in a certain way, which makes it a functional mechanism. Furthermore, it
operates by manipulating bits according to certain rules. A definition of a bit does not
depend on its physical fingerprint, which makes it a medium-independent vehicle.
Next, leaning on Piccinini (2015), I further unpack the mechanistic account and its
main components.

There are many approaches to what counts as a mechanism. According to a popu-
lar view I follow in this paper, a mechanism “is a structure performing a function in
virtue of its component parts, component operations, and their organization” (Bechtel
& Abrahamsen, 2005, 423). In other words, a mechanism can be explained and ana-
lyzed by breaking it down or decomposing it into its constituent components or parts,
their organization, and activities. These parts can be further decomposed into their
constituent components, and so on.

According to MAC, computations are mechanistic in this sense as well: computa-
tions can be decomposed into their sub-computations, which can be decomposed into
their sub-computations, and so on. In physical computing systems, the operation of
memory registers, for example, can be analyzed and decomposed into the operation

2 Other mechanistic accounts of physical computation are also available (Dewhurst, 2018; Fresco &
Miłkowski, 2019; Miłkowski, 2016), but they are not discussed in this paper.

1 3

Page 3 of 15 370

Synthese (2022) 200:370

of their constituent computing components, logic gates. In standard digital comput-
ers, logic gates are primitive computing components. They have constituent parts,
but the parts are not themselves computing mechanisms. Computational mechanistic
explanation, then, bottoms out at the level of primitive computing components. One
can, however, continue the mechanistic analysis by decomposing the implementation
of primitive computing components. Primitive computing components are combined
with each other in a certain way to build complex computing components, such as
memory registers. Complex computing components can be combined with each other
to build even more complex components, and so on.3

One might point out that surely logic gates of standard digital computers can be
further mechanistically analyzed as they can be decomposed into individual transis-
tors, which are the constituent parts of logic gates. However, according to MAC, the
analysis is not computational in the sense that individual transistors do not count as
computing mechanisms. For this reason, primitive computing components can be
mechanistically analyzed, but the analysis is not computational. It is important to
note as well that the term logic gate or memory register does not itself refer to any
specific physical realization. In standard electronic digital computers, logic gates are
realized by transistor circuits. However, a logic gate does not have to be realized by
transistors: logic gates can be built using domino block tiles, for example. A logic
gate is an abstract, medium-independent computational term that does not depend on
any specific physical medium. What matters is how it operates. Moreover, in Picci-
nini’s account, a logic gate is the lowest one can go in computational decomposition.
The mechanistic decomposition of the logic gate’s physical realization, however, can
continue further. I will have more to say on this later.

According to MAC, physical computing systems are functional mechanisms.
Functional mechanisms have teleological functions: they are mechanisms for some-
thing. According to Piccinini, most mechanisms do not serve any goals or fulfill any
functions: “They do what they do, and there is nothing more to it. For example, the
mechanisms of chemical bonding, galaxy formation, weather, or plate tectonics do
what they do without fulfilling any function in any teleological sense. Their activities
are explained by the organized activities of their components, without attributing any
teleological functions to the components” (2015, 100).

Certain artefacts and biological mechanisms, on the other hand, seem different.
A heart is for pumping blood, a coffee maker is for making coffee, and a computing
artefact is for performing computations. Each does many other things as well, but
what they are for sets their teleological functions. In Piccinini’s theory, teleological
functions are stable contributions towards the goals of organisms within a popula-
tion. While survival and inclusive fitness are paradigmatic objective goals, systems
can also have subjective goals, attributing to which may be a function as well.4 The
fact that physical computing systems are functional mechanisms sets them apart from

3 There are also components in physical computing systems that do not perform any computations but are
nevertheless crucial components of the system. A fan might be thought of as such a component: it does
not perform any computation, but without it the computing system can overheat.

4 The plausibility of teleological functions in general is beyond the scope of this paper (see, e.g., Dewhurst
2018).

1 3

370 Page 4 of 15

Synthese (2022) 200:370

mechanisms that do not have teleological functions. Furthermore, physical comput-
ing systems are a special case of functional mechanisms in that their teleological
function is to compute, not to make coffee or to pump blood.

In Piccinini’s account, a physical computing system has a teleological function of
computing a mathematical function f from inputs I (and possibly internal states S)
to outputs O. The mathematical function f is an abstract or macroscopic description
of the behavior of a physical computing system when it fulfills its teleological func-
tion. The mathematical function f is also the rule followed by the physical system in
manipulating its vehicles. Processing or manipulation of a vehicle is any transforma-
tion of one portion of a vehicle into another. The term ‘vehicle’ can mean either a
variable, that is, a state that can take different values and change over time, or a spe-
cific value of such a variable. A rule is a mapping from inputs, and possibly internal
states, to outputs. The rule need not be represented within the system.

Physical systems, physical computing systems included, can be described at dif-
ferent levels of grain or abstraction. MAC takes the abstract nature of physical com-
putational descriptions to mean abstract descriptions. Abstract descriptions omit or
abstract away detail from the description of the system. Piccinini uses a Dell Latitude
laptop as an example. We can choose to describe it as a ‘Dell Latitude,’ which omits
or abstracts away many details about the system. We could, if we wanted to, also
describe the laptop’s components, electrical circuits, or even atoms. The same goes
for, say, a pineapple. Instead of describing its molecular structure, we can use a much
more economical description information-wise by simply calling it ‘a pineapple.’

Computational and mathematical descriptions are similarly abstract: “Mathemati-
cal descriptions of concrete physical systems are abstract in this sense. They express
certain properties … while ignoring others … [C]omputational descriptions of con-
crete physical systems are mathematical and thus abstract in the same sense” (Pic-
cinini, 2015, 9). This idea has among other things been called epistemic abstraction
(Kuokkanen & Rusanen, 2018). However, as this carries unnecessary connotations, I
call it descriptive abstraction.5

According to Piccinini, when defining computations of physical systems, and the
vehicles they manipulate, we only need to consider the physical properties relevant
for the computation according to the rules defining the computation in question.
That is, we do not need to consider all physical properties of the vehicles: we can
perform descriptive abstraction. Computations and their vehicles can be described
and defined independently of the physical media implementing them, which is why
Piccinini calls them medium-independent. In a computer, the teleological function
of a logic gate, which is a computing mechanism, is to manipulate bits, which are
medium-independent vehicles. Neither ‘logic gate’ nor ‘a bit’ refers to the physical
medium implementing them.

Summing up, a physical computing system is a functional mechanism with a teleo-
logical function of manipulating medium-independent vehicles according to a rule.
Computations and their vehicles are medium-independent in the sense that they are
defined according to rules which are specified on an abstract level that does not refer
to physical properties of their implementing medium.

5 This is not Piccinini’s terminology.

1 3

Page 5 of 15 370

Synthese (2022) 200:370

3 MAC as a single hierarchy view of physical computation

Mechanistic explanation is hierarchical: the explanandum is decomposed into its con-
stituent parts, which can be further decomposed into their parts, and so on. A transis-
tor circuit is a mechanism that can be analyzed by decomposing it into its constituent
transistors, wires, and the organization and activities of these parts. Those parts can
be further analyzed by decomposing them into their parts and their organization and
activities. This analysis in question would be implementational, not computational,
as it deals with the medium-dependent mechanism.

According to MAC, computational descriptions are mechanistic and hierarchi-
cal but different from those just mentioned in the sense that computational descrip-
tions are medium-independent. Medium-independent descriptions do not refer to any
specific physical properties of the explanandum. We might describe the transistor
circuit above as a ‘logic gate,’ which is a computational-level description: it does not
describe the transistor circuit as transistors and wires. Instead, it focuses on how it
manipulates inputs and outputs, which can be described, for example, with numerals
such as 1 and 0.

When it comes to physical computing systems, then, it seems that we have two
mechanistic hierarchies: implementational, which is medium-dependent, and compu-
tational, which is medium-independent. How are the two hierarchies related to each
other?

Elber-Dorozko & Shagrir (2019a, 2019b) discuss two options: the separate hier-
archy view and the single hierarchy view. In the separate hierarchy view, “there are
two separate hierarchies, one computational and another implementational, which
are related by the implementation relation” (Elber-Dorozko & Shagrir, 2019b, 43).
In other words, the implementational hierarchy is kept apart from the computational
hierarchy. Furthermore, one does not need to take a stance regarding, for example,
whether the computational hierarchy is mechanistic or not. In the single hierarchy
view, there is only one mechanistic hierarchy. Computational or mathematical prop-
erties sit together with the implementational or physical properties in the same mech-
anistic hierarchy. In other words, “the mechanistic hierarchy embeds at the same
levels computational and implementational properties” (ibid.).

According to Elber-Dorozko & Shagrir, the idea of computational explanation as
a mechanism sketch (Piccinini & Craver, 2011) is often associated with the single
hierarchy view. The idea that computational explanations are mechanism sketches is
endorsed by MAC. Furthermore, Piccinini’s ideas concerning implementational and
computational descriptions and abstraction, and the fact that he takes computational
descriptions to be mechanistic, suggests that MAC does indeed lean on the single
hierarchy view (Kuokkanen, under review).

In MAC, computational or mathematical descriptions of concrete systems abstract
away or ignore medium-dependent properties of the system and express only the
medium-independent properties: “[t]hey express certain properties … in an economi-
cal way while ignoring others” (Piccinini, 2015, 9). In other words, instead of map-
ping properties of some separate medium-independent or mathematical hierarchy to
the medium-dependent hierarchy, one simply abstracts away the medium-dependent
properties when providing a mathematical or computational description. According

1 3

370 Page 6 of 15

Synthese (2022) 200:370

to a recent suggestion for illustrating this approach (Kuokkanen, under review), each
mechanistic level is wide: one end of the level has all the relevant medium-dependent
properties in place. Moving horizontally towards the other end of the level, one starts
to exclude the medium-dependent properties, gradually arriving at a computational
or mathematical, medium-independent description. This kind of horizontal abstrac-
tion can be performed at every mechanistic level of the physical computing system.6

The idea of computational explanations being mechanistic is not without its crit-
ics. First, some argue that mechanistic explanations describe causal relationships,
which is something that many prohibit from computational or mathematical expla-
nations (Rusanen & Lappi, 2016). Second, Elber-Dorozko & Shagrir (2019a) argue
that while some computational explanations may be decomposable, others may not
be. Third, they continue that even in cases where computational explanations are
decomposable, the resulting levels are not mechanistic but functional: the fact that
some computational descriptions are decomposable or hierarchical does not entail
that they are mechanistic.

The aforementioned criticism focuses on the claim that computational explana-
tions are mechanistic. Another strategy is to consider what follows if computational
explanation is mechanistic: even if the medium-dependent and medium-independent
hierarchies did manage to integrate and form a single mechanistic hierarchy, Elber-
Dorozko & Shagrir (2019b) argue that the single hierarchy view has two additional
problems. First, it downplays the explanatory role of computational descriptions:
once we know all the implementational properties of a specific logic gate, its com-
putational description becomes redundant in the single hierarchy view. If there is
nothing in the computational description that is not already in the implementational
description, why should one bother using the computational description when it does
not have any additional value? This is in tension with scientific practice, where com-
putational descriptions have real explanatory value even when the implementational
details of the system are already known.

Second, the single hierarchy has trouble in accommodating the multiple realiz-
ability of cognitive processes. Traditionally, cognitive science takes at least some of
our cognitive processes to be multiply realizable. The general idea behind multiple
realizability is that the same cognitive process can be realized in various systems.
One motivation behind the idea is that in the cognitive sciences, it is common to build
computational or mathematical models of cognitive processes that can then be imple-
mented in different computational systems. What defines or matters the most for the
cognitive process in question is the description at the mathematical or information
processing level, not the fine implementational details of the realizing system. The
idea behind Elber-Dorozko & Shagrir’s argument is that if the computational descrip-
tion is not an independent description separate from the medium-dependent descrip-
tion, it is not clear how it is the same computational description that is implemented
across different systems.

6 In MAC, a physical computing system has a ‘computational floor level’: the floor level consists of
primitive computing components. In the case of digital computers, primitive computing components
are logic gates. These can be further analyzed and decomposed mechanistically, but the analysis is not
computational as the parts are not themselves computational. In other words, if one wants to analyze the
level of primitive computing components mechanistically, one first needs a ‘horizontal de-abstraction.’

1 3

Page 7 of 15 370

Synthese (2022) 200:370

Elber-Dorozko & Shagrir argue that the shortcomings of the single hierarchy view
can be avoided by separating the computational hierarchy from the implementational.
This results in two hierarchies: one medium-independent or computational and one
medium-dependent or implementational. An additional virtue is that in the separate
hierarchy view, one does not have to make any commitments regarding whether com-
putational explanations are mechanistic or not. In the separate hierarchy view, the
two hierarchies are kept apart and related via an implementation relation, and the
computational properties are mapped to, or implemented by, the implementational
properties of the physical structure. As the computational and physical hierarchies are
separate, it is more intuitive to take computational explanations as independent, full
explanations and not merely partial implementational descriptions. In other words,
the separate hierarchy view does not downplay the explanatory role of computa-
tional explanations, and computational descriptions do not become redundant once
we know the implementational details of some system.

A further merit of the view, according to Elber-Dorozko & Shagrir, is that it bet-
ter accommodates the multiple realizability of cognitive functions. Multiple real-
ization about cognitive processes means that the same cognitive process can be
realized across different systems. Traditionally, cognitive sciences aim at providing
computational or mathematical explanations and models of cognitive phenomena. If
mathematical or computational descriptions and explanations are not merely partial
implementational descriptions but are independent and separate from the physical
hierarchy, the idea that the same cognitive process is realized in different systems
seems more intuitive: we have an independent mathematical model or explanation
which is related to various physical structures via an implementation relation.

In the next section, I argue that neither the explanatory value of computational
explanations nor the multiple realizability of cognitive processes are real problems
for the single hierarchy view. However, and more importantly, I also argue that there
is a more fundamental problem with the single hierarchy view: it seems to collapse
into a separate hierarchy view.

4 The non-problems and the problem of MAC as a single hierarchy
view

In the previous section, I introduced different criticisms against the mechanistic
account of computation and the single hierarchy view. It is a good idea to keep these
criticisms apart: even if one does not subscribe to the criticisms arguing that com-
putational explanations are not mechanistic, one can still worry about the MAC as
a single hierarchy view of physical computation. In this section, I argue that neither
of the two arguments targeted against the idea of MAC as a single hierarchy view,
the explanatory value of computational explanations and the multiple realizability of
cognitive processes, are real problems for the single hierarchy view. However, I also
argue that there is a more fundamental problem with the idea of the single hierarchy
view, which is that the whole idea of a single hierarchy view might collapse into a
separate hierarchy view.

1 3

370 Page 8 of 15

Synthese (2022) 200:370

Elber-Dorozko & Shagrir (2019a, 2019b) argue that the single hierarchy view
downplays the explanatory value of computational explanations. In the single hierar-
chy view, computational descriptions are partial implementation descriptions: imple-
mentational medium-dependent properties are abstracted away so that one is left only
with medium-independent or computational properties. Consider a logic gate: first,
we have the relevant medium-dependent detail of the transistor circuit implementing
or realizing the logic gate. To arrive at the computational or medium-independent
description, one then performs descriptive abstraction, omitting properties such as
color, height, and mass, which are irrelevant for its operation as a logic gate.

Once we are done with the descriptive abstraction, we are left only with the prop-
erties relevant for the computational or mathematical description: depending on the
electrical current, the state of the logic gate is either on, in which case the state is 1, or
the logic gate is off, in which case the state is 0. During the process, one stays within
one level of mechanism or organization. Hence, the abstraction in question can be
thought of as horizontal descriptive abstraction. Horizontal descriptive abstraction
abstracts away the detail within one level of mechanism, while vertical descriptive
abstraction abstracts away levels of mechanism.

Elber-Dorozko & Shagrir’s argument emphasizes the fact that some who argue for
the mechanistic nature of computational explanations take computational explana-
tions to be incomplete mechanistic descriptions. In other words, forming a computa-
tional description is just one step on the quest toward a full mechanistic or physical
description, filling in all the physical details on the horizontal axis of physical prop-
erties. According to this line of thought, we use computational descriptions because
they are the best we have: once we have filled in all the details, we can dispense with
the computational descriptions since they are partial and incomplete. That is, compu-
tational descriptions become redundant.

A problem with this argument is simply that the single hierarchy view does not
entail that we use computational explanations due to a lack of knowledge concern-
ing the implementational properties. On the contrary, there are many reasons why
researchers use computational descriptions and explanations, and an advocate of the
single hierarchy view can happily accept this. While ignorance of physical detail
might be one reason for abstraction and using computational explanations in some
cases, it is certainly not the only reason. Other reasons for abstraction include making
the phenomenon tractable and isolating it from its surrounding structures or trying
to capture a general phenomenon. As Boone & Piccinini (2016) note, there are many
epistemic roles for abstraction. Depending on the situation, abstracting away physi-
cal properties can have different reasons and may result in different benefits. This
means that computational explanation does not need to become redundant even if one
adopts the single hierarchy view. The single hierarchy view does not entail explana-
tory physical chauvinism.7

Another alleged problem of the single hierarchy view is that it is less hospita-
ble to the multiple realizability of cognitive processes than the separate hierarchy

7 The question regarding the single hierarchy view and the explanatory value of computational descrip-
tions deserves more attention and argumentation than is given here. However, a proper discussion is
beyond the scope of this paper.

1 3

Page 9 of 15 370

Synthese (2022) 200:370

view.8 In cognitive sciences, it is a popular idea that some cognitive functions can
be performed by different implementational structures. There are many variants of
the multiple realizability thesis. According to weaker formulations, some cognitive
functions are defined on a basis that allows the same cognitive process to be realized
in different human organisms. According to stronger formulations, some cognitive
processes are realizable in various media. Memory, for example, can be realized not
only in the human brain but also in computer chips. Here, cognitive functions are
defined at the mathematical level of information processing, which does not directly
refer to physical or chemical properties. For this reason, these cognitive functions are
called medium-independent. What is important is how something is processed, not
what processes it.

Apparently, the idea behind Elber-Dorozko & Shagrir’s argument is that if the
computational description is part of the same hierarchy that describes the imple-
mentational properties of the system, it is difficult to see how it is the same math-
ematical model which is realized in other systems. In other words, the mathematical
description carries all the implementational detail with it, and taking a mathematical
description of system x is not compatible with system y unless they are also identi-
cal in implementational detail. With the mathematical description, one also gets the
full package of physical properties which the mathematical description is abstracted
from. This can be avoided by keeping the mathematical description separate from
the implementational mechanistic hierarchy. In this case, it is more intuitive to say
that it is the same computational description which is implemented across different
physical media.

One reply to this argument is simply to note that it is not clear how the separate
hierarchy view accommodates the multiple realizability of cognitive functions bet-
ter than the single hierarchy view. It seems that there is a hidden premise built into
Elber-Dorozko & Shagrir’s argument, which is that adopting the single hierarchy
view entails that a computational description is intimately tied to the physical details
it is distilled from. In other words, it is assumed that when one forms a computa-
tional description using descriptive abstraction, the resulting computational descrip-
tion still carries all the omitted physical details with it. This, then, entails that the
computational-grain descriptions of two systems that are computationally similar but
physically different, are different because their physical implementational details are
incompatible with each other. However, I do not see this as a fatal problem for the
single hierarchy view: simply put, the computational-grain description might well be
the same for systems with different implementational structures.9

However, MAC as a single hierarchy view has a more fundamental problem. MAC
seems to lean on so-called descriptive abstraction (Kuokkanen & Rusanen, 2018;

8 Currently, there is much discussion on whether the mechanistic view of computational explanations is
compatible with multiple realization, but unfortunately this discussion is beyond the scope of this paper.
Instead, I will take a slightly different angle regarding the reasons why the multiple realization issue is
not relevant for the debate in question.

9 As with the previous argument, this question would deserve a proper and more detailed analysis. The
question relates to, for instance, debates concerning how physical computations and cognitive functions
are defined, which are both beyond the scope of this paper. Narrow and wide views are available for both
questions.

1 3

370 Page 10 of 15

Synthese (2022) 200:370

Kuokkanen, under review), which means the omission of detail from the descrip-
tion of a system.10 Piccinini (2015) uses a pineapple and a Dell Latitude laptop as
examples. We can describe a pineapple as ‘a pineapple’ but this omits a great deal
of information about that particular pineapple. If we wish, we can also choose to
describe the same pineapple at a molecular level, for example. Calling it a pineapple
is more economical information-wise. It is also more abstract in the sense that it
omits more details from the description. Likewise, instead of talking about a ‘Dell
Latitude’ laptop, we can choose to describe much of its properties like color, size,
component parts or electrical circuits, and so on. In case we choose to talk about a
‘Dell Latitude,’ we abstract away numerous physical details.

According to Piccinini, “[m]athematical descriptions of concrete physical systems
are abstract in this sense. They express certain properties … while ignoring others”
(2015, 9). Furthermore, “computational descriptions of concrete physical systems are
mathematical and thus abstract in the same sense. They express certain properties …
in an economical way while ignoring others” (ibid.). In other words, when describ-
ing physical computing systems, we can choose to describe them either in medium-
dependent or medium-independent terms, depending on the properties we include in
and omit from their descriptions.

Consider a logic gate which belongs to the class of primitive computing com-
ponents of modern digital computers. A ‘logic gate’ is a medium-independent,
computational-level description. It is abstract in the sense that it does not refer to
medium-dependent, implementational properties: depending on the situation, logic
gates can be implemented by electronic transistors, cogwheels, domino block tiles,
and so on. When describing the implementational structure in medium-dependent
detail – the operation of transistors, for instance – the resulting description is not
computational and medium-independent but implementational and medium-depen-
dent: we describe the properties which depend on the realizing medium, such as
voltage.

MAC is mechanistic: physical computing systems are functional mechanisms. For
this reason, MAC is also hierarchical in the same sense as a mechanistic explanation
is. Physical computing systems can be analyzed by decomposing them into their con-
stituent parts, and physical computations can be analyzed by decomposing them into
their sub-computations, resulting in a hierarchy of mechanistic levels. Mechanistic
levels are hierarchical in the sense that they are in part-whole relations with each
other.

A mechanistic hierarchy can be thought of as a vertical hierarchy of levels: a
whole is at a higher mechanistic level than its constituting components. The relation
between a computing component and its implementational structure is different as
they do not stand in a part-whole relation: a transistor circuit is not a part of a logic
gate; it realizes or implements it. As the computational description is abstract in the
sense that it abstracts away the implementational details, it has been suggested that in
MAC such descriptive abstraction happens in a horizontal direction at each mecha-
nistic level: in horizontal abstraction, one stays within one level of mechanism and
abstracts away details within that specific level (Kuokkanen, under review). Vertical

10 The term is not used by Piccinini himself.

1 3

Page 11 of 15 370

Synthese (2022) 200:370

descriptive abstraction, in turn, omits or abstracts away higher or lower levels of
mechanisms. In scientific practice, descriptive abstraction probably always involves
both vertical and horizontal abstraction (Mäki, 1992).

MAC does not seem to have the tools to arrive at a single hierarchy in the first
place. Insofar as the single hierarchy uses descriptive abstraction to arrive at compu-
tational descriptions, certain problems follow. The reason is that descriptive abstrac-
tion does not provide mathematical descriptions but simply more stripped physical
descriptions. No matter how much descriptive abstraction one performs, she still
needs to decide the rules according to which the mapping or implementation is car-
ried out between the physical properties left from the descriptive abstraction and
mathematical properties. In other words, the so-called single hierarchy view seems to
collapse into a separate hierarchy view.

Consider logic gates, which are primitive computing components in standard digi-
tal computers. Logic gates cannot do much on their own, but combining them in an
appropriate way is basically how complex computers are made. For example, logic
gates are combined in a certain way to form ALUs, which are combined to form
memory registers, and so on. Basically, when it comes to the computing components
of standard digital computers, it is logic gates all the way down. In standard digital
computers, logic gates consist of electronic transistors. A transistor is largely made of
silicon, and it can act either as a switch or as an amplifier. When it acts as an amplifier,
it takes a small electronic current at its input end and produces a much bigger current
at its output end. A transistor can also work as an electronic switch. This is essentially
how all computer chips and logic gates work.

A logic gate is not defined through its physical properties. In standard digital com-
puters, logic gates are made out of transistors, but one could build a logic gate using,
for example, vacuum tubes or domino block tiles. What matters is that the physical
stuff has an appropriate structure and can maintain stable enough states. When all the
necessary criteria are met, physical stuff can be said to realize or implement a logic
gate. Logic gates are built out of components that hold two stable, different states.
In computational language, a logic gate works by processing 1s and 0s. In physical
language, a logic gate is built out of transistors, and the 1s and 0s are determined
through electrical current. If there is enough current, the transistor is ‘on.’ If there is
not, the transistor is ‘off.’ When the transistor is ‘on,’ its state is labeled as ‘1.’ When
the transistor is ‘off,’ its state is ‘0.’

The crucial thing is that one does not get the ‘0’ and ‘1’ just by abstracting away
the physical properties of the transistor. When we ignore the transistor’s size, color,
weight, and other irrelevant physical properties, we do not get mathematical descrip-
tions. All we get is more stripped physical descriptions. To arrive at the computa-
tional description, we must make an agreement of a sort: we must agree that when the
current in a certain transistor is between, say, x and y, its state is 1. This establishes
the implementation relation: we set some rules according to which we map math-
ematical descriptions or properties onto physical structures. No matter how much
descriptive abstraction one applies to the physical description, it alone does not pro-
vide this mathematical mapping or implementation relation. What the descriptive
abstraction does grant is the identification of relevant physical structures onto which
the mathematical properties can be mapped.

1 3

370 Page 12 of 15

Synthese (2022) 200:370

For this reason, it seems that the descriptive abstraction does not, by itself, suc-
ceed in establishing a single hierarchy view of physical computation in the way that
Elber-Dorozko & Shagrir suggest. The horizontal descriptive abstraction is crucial in
capturing the relevant structures that are to be mapped onto mathematical descrip-
tions. However, one must still have the implementation relation that relates the math-
ematical properties to the physical properties.

Elber-Dorozko & Shagrir (Elber-Dorozko & Shagrir, 2019a, 217) seem to hint
at a similar kind of conclusion by noting that “[o]ne might argue that the medium-
independent/medium-dependent distinction suffices to support the thesis that compu-
tational explanations are distinct … from the implementational level.” However, this
argument does not, by itself, reach its goal as one might reply by saying that medium-
independence is something which is arrived at gradually by performing descriptive
abstraction. In this section, I have suggested that there is a potential problem with
this line of reply.

5 Conclusions

In this paper, I have argued that (1) the arguments presented against the single hier-
archy view by Elber-Dorozko & Shagrir (2019a, 2019b) are not trivial and require
more detailed discussion, and (2) descriptive abstraction does not, by itself, seem to
result in computational or mathematical descriptions. For this reason, it seems that
Piccinini’s account of physical computation collapses into a separate hierarchy view
if it is the presence of implementation relation between implementational and math-
ematical properties that makes something a single hierarchy view.

Elber-Dorozko & Shagrir have argued that some variants of the mechanistic
account of computation are single hierarchy views in the sense that they take compu-
tational descriptions to be mechanism sketches formed through descriptive abstrac-
tion or the omission of physical details from their descriptions. Here, computational
properties are placed at the same level of mechanism with their implementational
properties, resulting in a single but wide hierarchy. Some take Gualtiero Piccinini’s
mechanistic account of physical computation as an example of such a single hierar-
chy view. In Piccinini’s account, computational descriptions are descriptive abstrac-
tions or macroscopic descriptions.

Descriptive abstraction omits detail from the description of a system. This entails
that descriptive abstraction results in descriptions with fewer physical details. How-
ever, arriving at a computational or mathematical description simply by omitting
implementational properties seems problematic: it only results in more stripped
implementational descriptions but not computational or mathematical descriptions.
Descriptive abstraction helps in identifying the relevant physical structure onto which
the computational or mathematical properties are supposed to be mapped. However,
the implementation relation still needs to be in place. The implementation relation is
a contract or decision of sorts, determining when the mathematical entities map onto
physical entities.

I will briefly mention a few potential objections to my ideas. First, one might say
that descriptive abstraction is not a method for arriving at a computational or math-

1 3

Page 13 of 15 370

Synthese (2022) 200:370

ematical description but merely a way of exposing the mathematical properties of
the physical system that are already there. However, this does not seem to resolve
the problem as one still needs to explain where the mathematical properties come
from, and how they relate to the physical properties. Second, one might insist that
descriptive abstraction does result in mathematical descriptions should one adopt
some kind of a structuralist or nominalist mathematical ontology.11 I do not have a
definite stance towards this suggestion. It is, however, clearly beyond the scope of
this paper and is something that should be studied in more detail in the future.

A third potential objection is that a mechanistic hierarchy does not contain only
physical detail but it also has the explanandum which determines the relevant details
for the mechanism. In MAC, a physical computing system is a mechanism that has a
teleological function determining what it computes. In the explanations discussed in
this paper, mechanisms always have functions of performing specific computations.
Thus, in each case, there is a rule that also determines the relevant computational
properties.12 However, this point does not seem to affect the argument presented in
this paper: even if it were the case that a function determines the computational prop-
erties of the system (a question which is outside the scope of this paper), it does not
entail that it also determines the physical properties implementing the computational
properties in question. A mechanistic explanandum described in physical terms might
determine the physical properties, and a computational function described in math-
ematical terms might determine computational properties. The issue discussed in this
paper deals with bridging these two seemingly different kinds of properties.

If my arguments are correct, they have certain implications. First, they resolve
the juxtaposition between the so-called single and separate hierarchy views. Second,
they draw attention to the role which implementation plays in the theories of physi-
cal computation. Furthermore, the role and implications of different views regarding
mathematical ontology should be further studied to shed more light on the issue of
physical computation and implementation.

Acknowledgements Thanks to the anonymous reviewers for their extremely valuable comments and feed-
back. Also, many thanks to Anna-Mari Rusanen and Otto Lappi for all the discussions, feedback, com-
ments, ideas, and general support along the writing process.

Funding Open Access funding provided by University of Helsinki including Helsinki University Central
Hospital.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

11 See, e.g., Shapiro (2005) for an overview on different positions in the philosophy of mathematics.
12 My thanks to the anonymous referee for making this point.

1 3

370 Page 14 of 15

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Synthese (2022) 200:370

References

Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Phi-
losophy of Science Part C: Studies. History and Philosophy of Biological and Biomedical Sciences,
36(2), 421–441. https://doi.org/10.1016/j.shpsc.2005.03.010

Boone, W., & Piccinini, G. (2016). Mechanistic abstraction. Philosophy of Science, 83(5), 686–697.
https://doi.org/10.1086/687855

Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of com-
putational explanation in neuroscience. Synthese, 191(2), 127–153. https://doi.org/10.1007/
s11229-013-0369-y

Craver, C. F. (2007). Explaining the Brain. Oxford University Press
Craver, C. F. (2015). Levels. In T. Metzinger & J. M. Windt (Eds.), Open MIND (Vol. 8). MIND Group.

https://doi.org/10.15502/9783958570498
Dewhurst, J. (2018). Computing Mechanisms without Proper Functions. Minds and Machines, 28(3),

569–588. https://doi.org/10.1007/s11023-018-9474-5
Elber-Dorozko, L., & Shagrir, O. (2019a). Computation and levels in the cognitive and neural sciences. In

M. Sprevak & M. Colombo (Eds.), The Routledge Handbook of the Computational Mind (pp. 205–
222). Routledge. https://doi.org/10.4324/9781315643670-16

Elber-Dorozko, L., & Shagrir, O. (2019b). Integrating computation into the mechanistic hierarchy in the
cognitive and neural sciences. Synthese. https://doi.org/10.1007/s11229-019-02230-9

Fresco, N., & Miłkowski, M. (2019). Mechanistic Computational Individuation without Biting the Bullet.
British Journal for the Philosophy of Science, axz005

Harbecke, J. (2020). The methodological role of mechanistic-computational models in cognitive science.
Synthese. https://doi.org/10.1007/s11229-020-02568-5

Kuokkanen, J. (manuscript under review). Vertical-horizontal distinction in resolving the abstraction, hier-
archy, and generality problems in mechanistic account of computation

Kuokkanen, J., & Rusanen, A. M. (2018). Making too many enemies: Hutto and Myin’s attack on com-
putationalism. Philosophical Explorations, 21(2), 282–294. https://doi.org/10.1080/13869795.2018
.1477980

Kuorikoski, J. (2020). There Are No Mathematical Explanations. Philosophy of Science. https://doi.
org/10.1086/711479

Magnani, L., & Bertolotti, T. (Eds.). (2017). Springer Handbook of Model-Based Science. Springer, Cham.
https://doi.org/0.1007/978-3-319-30526-4

Mäki, U. (1992). On the Method of Isolation in Economics. Poznan Studies in the Philosophy of the Sci-
ences and the Humanities, 26(4), 317–351

Miłkowski, M. (2016). A Mechanistic Account of Computational Explanation in Cognitive Sci-
ence and Computational Neuroscience. Computing and Philosophy, 191–205. https://doi.
org/10.1007/978-3-319-23291-1_13

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford University Press
Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition. Journal of Chemical

Information and Modeling (Vol. 53, Issue 9). Oxford University Press
Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mech-

anism sketches. Synthese, 183(3), 283–311. https://doi.org/10.1007/s11229-011-9898-4
Rusanen, A. M., & Lappi, O. (2016). On computational explanations. Synthese, 193(12), 3931–3949.

https://doi.org/10.1007/s11229-016-1101-5
Shagrir, O. (2016). Advertisement for the philosophy of the computational sciences. In P. Humphreys

(Ed.), Oxford Handbook of Philosophy of Science (pp. 15–42). Oxford University Press
Shapiro, L. A. (Ed.). (2005). The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford

University Press

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1 3

Page 15 of 15 370

http://dx.doi.org/10.1016/j.shpsc.2005.03.010
http://dx.doi.org/10.1086/687855
http://dx.doi.org/10.1007/s11229-013-0369-y
http://dx.doi.org/10.1007/s11229-013-0369-y
http://dx.doi.org/10.15502/9783958570498
http://dx.doi.org/10.1007/s11023-018-9474-5
http://dx.doi.org/10.4324/9781315643670-16
http://dx.doi.org/10.1007/s11229-019-02230-9
http://dx.doi.org/10.1007/s11229-020-02568-5
http://dx.doi.org/10.1080/13869795.2018.1477980
http://dx.doi.org/10.1080/13869795.2018.1477980
http://dx.doi.org/10.1086/711479
http://dx.doi.org/10.1086/711479
http://dx.doi.org/10.1007/978-3-319-23291-1_13
http://dx.doi.org/10.1007/978-3-319-23291-1_13
http://dx.doi.org/10.1007/s11229-011-9898-4
http://dx.doi.org/10.1007/s11229-016-1101-5

	No computation without implementation? A potential problem for the single hierarchy view of physical computation
	Abstract
	1 Introduction
	2 Mechanistic account of physical computation
	3 MAC as a single hierarchy view of physical computation
	4 The non-problems and the problem of MAC as a single hierarchy view
	5 Conclusions
	References

