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Abstract

The predominance of machine learning based techniques in cognitive neuroscience
raises a host of philosophical and methodological concerns. Given the messiness of
neural activity, modellers must make choices about how to structure their raw data
to make inferences about encoded representations. This leads to a set of standard
methodological assumptions about when abstraction is appropriate in neuroscientific
practice. Yet, when made uncritically these choices threaten to bias conclusions about
phenomena drawn from data. Contact between the practices of multivariate pattern
analysis (MVPA) and philosophy of science can help to illuminate the conditions under
which we can use artificial neural networks to better understand neural mechanisms.
This paper considers a specific technique for MVPA called representational similarity
analysis (RSA). I develop a theoretically-informed account of RSA that draws on
early connectionist research and work on idealization in the philosophy of science. By
bringing a philosophical account of cognitive modelling in conversation with RSA, this
paper clarifies the practices of neuroscientists and provides a generalizable framework
for using artificial neural networks to study neural mechanisms in the brain.

Keywords Machine learning - Cognitive neuroscience - Connectionism - RSA -
Mechanistic explanation - Real patterns - Idealization

1 Introduction

We are experiencing an unprecedented era of explosive progress in Artificial Intel-
ligence (AI) research. This success comes on the back of machine learning systems
based on deep neural networks. Over the course of the last decade, deep learning has
become by far the most successful approach to Al (Lecun et al., 2015). These net-
works achieve human-level performance at natural image classification, defeat human
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masters of complex strategy games (Silver et al., 2016), and accurately predict the
three-dimensional structure of proteins from their amino acid chains (Jumper et al.,
2020). Understanding how information is encoded in abstract representations in these
systems is crucial for understanding their intelligent capacities and their utility as
scientific instruments. This imperative suggests revisiting connectionism, a view that
explains intelligence in terms of domain-general capacities to learn abstract repre-
sentations from low-level perceptual inputs (Hassabis et al., 2017; Buckner et al.,
2018).

Connectionists hope to explain cognition using artificial neural networks (hereafter,
ANNSs) as models (Rumelhart et al., 1986). ANNs consist in large, parallel collections
of artificial neurons called units, or nodes, together with weights that measure the
strength of connections between nodes. We can view these networks as models of the
neurons and synaptic links in the brain at some level of abstraction. Indeed, renewed
interest in connectionism within the philosophy of science points out that ANNs can be
understood as idealized, multilevel models capable of generating explanatory insight
into the mechanisms underlying cognition (Bechtel et al., 1998; Stinson, 2018, 2020).
This aligns with the prominent philosophical view that one of the primary explanatory
goals of neuroscience is to illuminate the parts and functions of structured mechanisms
that give rise to our diverse cognitive capacities (Bechtel, 1998; Cummins, 2000;
Machamer et al., 2000; Bechtel & Abrahamsen, 2005; Kaplan & Craver, 2011).

Consonant with these developments in the philosophy of cognitive modelling,
mounting empirical evidence from computational cognitive neuroscience suggests that
deep neural networks (henceforth, DNNs) are useful tools for learning about regions of
interest in the brain (Cichy et al., 2016; Yamins et al., 2014; Yamins & DiCarlo, 2016;
Diedrichsen & Kriegeskorte, 2017; Kriegeskorte & Douglas, 2019). Deep learning
classifiers now play a pivotal role in multivariate pattern analysis (MVPA) (Haxby,
2012; Kriegeskorte & Diedrichsen, 2019), a set of methods that involve decoding and
analyzing information from collected patterns of neural activity (Haxby, 2012). These
methods are depicted as probing the abstract representational geometry of the brain
(Haxby et al., 2014; Kriegeskorte & Kievit, 2013; Kriegeskorte & Diedrichsen, 2019).
Yet, there are complications issuing from the use of DNNs as instruments of measure-
ment in neuroscience. DNNs are ruthless correlation extractors unconstrained by the
information that is actually consumed by downstream processes (Carlson et al., 2018;
Ritchie et al., 2019). Attempts to justify these measurement methods often reveal a
circular reliance on the very same kind of machine learning classifiers. Consider, for
example, the observation that the vast majority of variation in complex neural activity
can be reduced to a comparably tiny number of explanatory variables. Many take this
observation to support the hypotheses that neural representations are sparsely coded.
This is taken in turn to support the reliability of data-driven techniques for identifying
that neural code. However, the evidence for the former observation primarily derives
from the application of such data-driven techniques themselves.

A closely related issue stems from the fact that neuroscientists work with messy
data. Neural activity has many degrees of freedom, resulting in very high-dimensional
data. With so many degrees of freedom it becomes increasingly difficult to determine
which dimensions of variation are functionally relevant for controlling behavior. In
other words, how can we distinguish signal from noise? In practice, modelers must
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make choices about how to structure their raw data to make inferences about encoded
representations. This leads to a set of standard methodological assumptions about when
abstraction is appropriate in neuroscientific practice. But when made uncritically these
choices threaten to bias conclusions about phenomena drawn from data (Carlson et al.,
2018). For example, investigators must select a range of voxels to be analyzed from
a given fMRI study to make analysis tractable. But an unprincipled selection process
runs the risk of generating spurious correlations in the data. If DNNs are going to
do useful work for neuroscience and cognitive psychology, we must confront these
methodological barriers head on.

The practices of MVPA will benefit from greater contact with the philosophy of
science. In what follows, I consider in detail a specific type of MVPA called represen-
tational similarity analysis (RSA) (Kriegeskorte et al., 2008a; Roskies, 2021). RSA
is noteworthy for its shared conceptual DNA with earlier connectionist approaches to
cognition that use similarity in a semantic space as a measure of representational con-
tent (Churchland, 1998; Horgan & Tienson, 1996; Rumelhart et al., 1986). Our recent
connectionist ancestors can arm us with a more philosophically informed picture of
this methodology. This, alongside work on idealized models in the philosophy science,
can illuminate how RSA with goal-driven DNNs can provide legitimate insight into
the representational mechanisms in the brain. Ultimately, what I aim to provide is a
descriptive account of RSA that shows how and why it sometimes embodies a useful
pattern of inference despite its perspicuous limitations.

I begin by introducing the notion of a representational space that forms the basis of
RSA. With that on board, I describe the practice of RSA before discussing some of its
limitations. I go on to show how the formal machinery of RSA can be traced to earlier
approaches to cluster analysis in connectionist modeling. With this analogy in mind, I
consider the relationship between RSA and mechanistic explanation. Neuroscientists
are concerned to use RSA to study functional mechanisms in the brain, but the exact
nature of these inferences are not always explicit. I proceed to argue that RSA can
contribute to connectionist-style mechanistic explanations by indirectly linking goal-
driven ANNs to target mechanisms in the brain via idealized causal patterns. This
indirect route to mechanism through shared causal patterns helps us make sense of the
interest-relative idealizations and abstractions present in RSA.

2 What is a representational space?

Representations have long preoccupied philosophers and neuroscientists alike. The
most influential philosophical accounts of representational content—especially Fodor
(1990), Dretske (1988), and Millikan (1984)—focus primarily on the intentionality of
perceptual states. Their hope was to incorporate intelligent behavior into the scientific
image of the world in a way that preserved the behavior-guiding role played by the
contents of internal states. In seeing that my dog Frasier is now sitting beside me,
there is something that my accompanying perceptual state is directed at—my furry,
tail-wagging companion. The idea goes that there is some internal state that repre-
sents Frasier to the mechanism in my brain responsible for processing sensory inputs
and producing the right behavior, namely petting him. First, this involves identifying
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physical constituents of a mechanism that we can group into types. It also requires
a principled criterion for fixing the meaning of these groups according to the infor-
mation which they purport to encode. To do this we need to say how a system could
manage to carve out features of its environment that are alike in kind and represent
them for processing in a physical mechanism. Historically, this has meant showing
that representations reliably instantiate the right kind of causal relation with what they
represent such that they function to track the relevant kind of phenomena (Dretske,
1988). However, the sense of representation used by neuroscientists tends to be fairly
thin and pragmatically oriented (Cao, 2020; Egan, 2020). Representations are typi-
cally cashed out in terms of encoded information that can be read out by downstream
processes to produce behavior (Kriegeskorte & Diedrichsen, 2019).

So, computational explanations involve identifying representational vehicles and a
criterion for fixing their representational content. The vehicles of content are physical
particulars over which the network performs computations and which carry informa-
tion that can be read out by various downstream processes. While individual neurons
transform input signals and pass output signals to their neighbors, it would be a mis-
take to identify them as the vehicles of content. Whether biological or artificial, no
two neural networks are the same. Their high degree of variance means a strong neu-
ronal doctrine, which takes individual neurons to be the vehicles of content, rules
out the possibility of two networks sharing the same representational content. Rather
than identifying individual units as representational vehicles, we typically assume that
mental representations are distributed across many neurons. Tokened representations
are realized by patterns of activity throughout an ensemble of interconnected neurons.
Each of these patterns corresponds to a point in an abstract representational space.
The semantic content of these representations is then typically analyzed in terms of
proximal clusters of activity in an abstract representational space.

Identifying representations from a collection of neural data thus involves a degree
of mathematical abstraction right off the bat. Modelers begin by measuring the dis-
tributed patterns of activity associated with different experimental conditions. Each
token representation will be one such pattern of neural activity distributed across the
population. Such a pattern, or activation vector, can be characterized as an n-tuple,
where n is the number of neurons in a population (or hidden layer nodes in the case
of an ANN). We can conceptualize these activations as points in a geometric space
for the purpose of comparing informational content. State space refers to an abstract,
multidimensional space whose axes are constituted by the possible activation of neu-
rons in a population—or units in the hidden layers of an ANN—such that any pattern
of simultaneous activity corresponds to a point in that space. A point in state space
corresponds with a token representation. Thus, it will be useful to refer to the state
space of a neural network thus characterized as a representational space. Many of
the practices of cognitive neuroscience involve mapping and analyzing the represen-
tational space of a given region of interest in the brain. The various techniques used to
carry out this inquiry very often involve the assistance of machine learning classifiers.
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3 Representational similarity analysis (RSA)

Over the course of the last twenty years, MVPA has been championed as uncovering
the representational structure of the brain. Non-invasive brain imaging techniques
like functional magnetic resonance imaging (fMRI) enable scientists to collect
population-wide neural recordings from many human subjects. A caveat to this is that
fMRI provides only an indirect indicator of neural activity. fMRI measures blood-
oxygenation-level-dependent (BOLD) signal, which relates to the ratio of oxygenated
to de-oxygenated blood (Passingham & Rowe, 2016). This signal is represented in 3
cubic millimeter regions of tissue called voxels, or volumetric pixels. This means that
MVPA depends on measurement channels that are more coarse-grained than individual
neurons.

Representational similarity analysis (RSA) is an increasingly prominent encoding
model approach to MVPA. Encoding models aim to predict the response patterns of
neural activity from descriptions of the experimental conditions (Naselaris et al., 2011;
Naselaris & Kay, 2015; Kriegeskorte & Douglas, 2019).! RSA provides a framework
for comparing the abstract geometries of different representational spaces (Kriegesko-
rte et al., 2008a; Kriegeskorte & Kievit, 2013). This is achieved by calculating pairwise
similarity measures between different patterns of activity and assembling these mea-
sures into a two-dimensional matrix called a representational dissimilarity matrix
(RDM). An RDM thus summarizes the similarity relations between patterns of activ-
ity in response to changes in experimental conditions. Neuroscientists can then use
statistical methods to test the similarity of different RDMs generated from distinct
representational spaces. This gives a quantitative sense of to what degree two different
representational spaces are alike (Kriegeskorte & Kievit, 2013; Roskies, 2021).

Like all methods of MVPA, RSA begins by selecting an array of voxels from whole-
brain recordings that correspond to a functional region of interest in the brain. This
selection can be seen as a kind of decomposition, whereby the operations that con-
tribute to the overall functioning of a mechanism are associated with various working
parts of the whole (Bechtel & Abrahamsen, 2005). RSA proceeds by measuring the
activity of these voxels in response to changes in experimental conditions. For exam-
ple, we might expose subjects to a stimulus set consisting of a series of natural images
to study early visual perception. In this case, we will measure the responsiveness of
selected voxels to each novel image. This activity across all selected voxels can then
be coded as a vector. Such an activation vector captures the distributed activity within
the region of interest in response to each novel stimulus. An RDM contains a cell for
each unique pair of experimental conditions. Each cell contains a value measuring
the similarity between the activation vectors associated with two stimuli according

! The encoding methods which are the focus of this paper stand in contrast to decoding methods. Decoding
models aim to detect the presence of specific information in the brain by treating a linear classifier as
a proxy for the downstream processes that read out information encoded by neural representations from
voxelwise data. Encoding models instead work in the same direction as the flow of information in the brain
to make comprehensive predictions about the representational space (Naselaris & Kay, 2015; Diedrichsen &
Kriegeskorte, 2017). The model itself can be generated by statistical descriptions of participant behaviors,
neural data obtained directly from proxy organisms like chimpanzees, or patterns of activity from ANN
models trained on some sensory-perceptual task (Kriegeskorte & Douglas, 2019; Martin et al., 2018;
Roskies, 2021).
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Fig.1 Computing representational dissimilarity matrices (RDMs) [reproduced from Nili et al. (2014)]

to some chosen metric (e.g Euclidean, correlation, etc.). Entries along the diagonal
represent comparisons between identical stimuli and take a value of 0. The value of
each off-diagonal entry represents the dissimilarity between patterns in response to
two different stimuli. Lower value entries indicate that a pair of stimuli produce more
similar responses, while a value of 1 indicates no correlation whatsoever. We then
construct the matrix by arranging each stimulus into an order, usually according to an
observers’ intuitive similarity judgments, and assigning the computed (dis)similarity
value to its corresponding cell (Kriegeskorte et al., 2008a). In an experiment with N
experimental conditions, this yields an N x N RDM (Fig. 1). Such an RDM provides
a two-dimensional map of the similarity relations between a set of activation vectors.

For example, RDMs measuring inferior temporal cortex (IT) neural population
responses exhibit a clear block-diagonal structure characteristic of the I'T’s high per-
formance at object categorization. Predictively adequate neural network models will
exhibit a similar block-diagonal structure in their own RDMs. When cells are arranged
according to observer similarity judgments, strong structural correlation provides evi-
dence that the activation space implements a representational space (Kriegeskorte et
al., 2008a; Roskies, 2021). RDMs can thus be interpreted as a simplified description
of the geometry of a given representational space.

Despite the thus far rosy picture of RSA, there is a swath of methodological
and philosophical barriers that threaten the prospects of generating genuine expla-
nations with the framework. For instance, the modelers’ choice of similarity measure
is a decision that has significant implications for how the representational space is
reconstructed from the underlying data. It is commonplace to use correlation distance
because, unlike standard Euclidean distance, normalization makes it scale invariant.?
Scale invariant measures make it easier to compare relative distances within different
representational spaces because they abstract away from the absolute magnitude of

2 Correlation distance equals 1—Pearson’s p. Pearson’s correlation is a measure of normalized covariance
between two variables. It can be calculated by dividing the covariance of two variables by the product of their
standard deviations. Correlation can be given a geometric interpretation due to its relation to the angular
metric, cosine distance. The cosine of the angle between two vectors can be obtained by normalizing them
by their Euclidean distance and then calculating their inner product. The correlation distance between two
vectors is equivalent to their cosine distance after subtracting the mean value from each activity pattern.
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those distances. However, it remains an open question as to whether this is a principled
reason for choosing correlation distance as a similarity measure (Walther et al., 2016;
Bobadilla-Suarez et al., 2020). Results from Walther et al. (2016) and Bobadilla-
Suarez et al. (2020) both seem to suggest that other measures of similarity better
capture the decoding processes used by the brain for certain kinds of stimuli.’> More-
over, modelers typically opt for some form of noise normalization to better capture the
dimensions of variation in the representational space. This typically precedes some
kind of data-driven approach to feature selection and subsequent dimensionality reduc-
tion. Dimensionality reduction can prove helpful for navigating intractably complex
activation spaces and representing only the dimensions that are functionally relevant
to a representational space with lower intrinsic dimensionality. However, these data-
driven methods are not guaranteed to generate a hypothesis-neutral transition from
data to phenomena (Goddard et al., 2018; Carlson et al., 2018). Data-driven dimen-
sionality reduction techniques can reduce the variation found in very high-dimensional
recordings to only a few explanatory dimensions, but there is no guarantee that this low-
dimensional representation corresponds to the information that plays a functional role
in downstream processes. And there are still further idealizing assumptions embed-
ded in these practices. For instance, modelers typically assume that the distribution
of noise in voxelwise data is Gaussian. How the modeler chooses to carve up the data
affects the structure of the representational space.

Figure 2 illustrates this effect. Kriegeskorte et al. (2008b) used data-driven meth-
ods to identify the responsiveness of voxels in the IT cortex to visual stimuli. Sets of
voxels were then selected for inclusion in the similarity analysis according to their
responsiveness. This marks an implicit decision to treat voxels that are highly respon-
sive to stimuli as functionally relevant to the representational space and to treat less
responsive voxels as noise. The number of voxels selected for inclusion impacts the
structure and discernibility of patterns in the representational space. As the number
of selected voxels increases the categorical structure found in the RDM becomes less
distinct. At 10,000 voxels the organization between faces and bodies appears almost
completely obliterated. Of course, we have good, theory-driven reasons to suspect that
structure is there. Stripping away irrelevant features reveals that structure. However,
selecting for certain sets of voxels over others, even when using data-driven methods,
runs the risk of biasing results towards a favored hypothesis.

Scientists using RSA thus face various methodological decisions concerning how
and when to idealize. Getting on with normal scientific practice requires scientists to
make arange of assumptions about when idealizations and abstractions are appropriate.
Without careful consideration such assumptions threaten to undermine explanatory
findings issuing from RSA.

3 Admittedly, Bobadilla-Suarez et al. (2020) rely on a familiar but problematic assumption that decodability
can stand in as a proxy for information transfer in the brain and that high confidence by a classifier can
reliably indicate information gain (2020, pp. 372-373).
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Fig.2 RDMs (left), MDS arrangements (middle), and dendrogram trees (right) were computed on the same
region while varying the number of voxels selected for inclusion. The similarity structure and categorical
clustering of human IT varies based on the number of voxels [(reproduced from Kriegeskorte et al. (2008b)
supplemental data]

4 The connectionist roots of representational geometry

The combination of quantitative and qualitative analysis of similarity structures within
a representational space has many historical precedents in philosophy and cognitive
psychology. In fact, all of the tools needed for RSA are already contained within earlier
work on connectionist models (see especially Laakso & Cottrell, 2000). Re-examining
these connectionist roots will help to clarify the kinds of inferences we can draw from
RSA and when those inferences are sound.

Connectionism broadly-construed takes ANNs as idealized models of cognition.
An ANN consists in multiple, interconnected layers of units joined together by a
pattern of weights which determine the strength of activity passed from one unit to
the next. The layers of a network are divided into three classes: an input layer that
receives encoded information for processing, an output layer that produces the result
of processing, and a hidden layer (or layers) that lies in between. The process of
training a simple, supervised classifier network involves introducing a large number
of antecedently labeled example inputs and using a supervised algorithm called error
backpropagation to fine-tune the associative links between units such that the network
learns to successfully generalize to novel inputs.

The de facto solution to the problem of identifying representational content in
connectionist models has been to take clusters of distributed activity as the the true
vehicles of content (Tiffany, 1999; Rupert, 2001; Gardenfors, 2000; Shea, 2007). Call
this proposal the cluster approach to content. This approach dates as least as far back
as Hopfield (1982) and was brought to prominence in the philosophy of cognitive sci-
ence by connectionists such as Horgan and Tienson (1996) and Churchland (1998).4
According to the cluster approach, we can identify clusters of points, or regions in
representational space, as corresponding to different representational types (Horgan
& Tienson, 1996; Gardenfors, 2000; Shea, 2007). Rather than identifying individual
hidden units or the relational structure between individual points as the vehicles of
content, the cluster approach identifies clusters of activity in state space as the cor-
rect vehicles of content. On this view, representations can be grouped into identical

4 Churchland (1998) defends a somewhat different version of state space semantics based on relative
similarity. This similarity approach takes the overall pattern of simultaneous activation levels across the
nodes of a model’s hidden layers as the vehicles of content, but holds that a point in a model’s state space
acquires a specific semantic content as a function of its position relative to all of the other contentful points
within that space. So, Churchland replaces the notion of semantic identity with one of relative similarity.
Fodor and Lepore (1999) observe, however, that the similarity approach amounts to an unacceptable form
of content holism. The content of a particular activation vector depends on its relation to all other contentful
points in the space. But the identity of those contentful points each depends on their relations to every other
point, and regress threatens to collapse the distinction between tokens and types. It follows that individual
representations cannot to be compared between two different models, since comparisons are only possible
between entire state spaces. Put another way, if representational content is adjudicated according to similarity
in semantic space, then the type-token distinction seemingly breaks down, and there is no principled way
of characterizing a model that separates points in state space into types (Fodor, 2000, p. 50).
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semantic types in virtue of their falling within separable regions in state space where
clusters of neural activity emerge through training. The idea is just that a set of training
samples that produces a cluster of points in state space A might likewise produce a
cluster of points in state space B. In such a case, two different state space clusters in
two different neural networks can represent the very same property to their respective
networks.

This approach builds on modeling work by Laakso and Cottrell (2000). This work
helped to establish cluster analysis as a procedure for comparing representations
between networks with individual differences in weight matrices and architecture.
Cluster analysis refers to a family of techniques for measuring the distribution of
activation points in state space. Laakso and Cottrell (2000) demonstrated this by com-
paring clustering patterns in pairs of networks. To do this, they first trained a series of
simple ANNs with a variety of different architectures to perform color classification.
Each of these were shallow, three-layer networks, but varied in their number of input
nodes and number of nodes in hidden layer. Changes at the input layer alter how inputs
are encoded by the network, whereas variation in the number of hidden units affects the
dimensionality of the the network’s state space. Laakso and Cottrell’s experiment was
thus designed to compare the distribution of activity across networks with different
input encoding schemes and dimensionality when sorting through identical data. They
ultimately found that their different networks acquired highly correlated arrangements
of activity in state space despite the variation in architecture.

To get these results Laakso and Cottrell devised a method to compare distances in
state space that would be insensitive to dimensionality. They achieved this by first com-
puting the distances between every unique pair of activation points in each network’s
respective state space. They then constructed a pairwise matrix of said distance mea-
sures for each network. Since each network was trained on the same number of input
samples, each matrix would have to be the same size. So, reproducing this procedure
for every input/output pair for two different networks results in a pair of matrices with
n(n — 1)/2 unique elements, where n is the number of input samples (2000, p. 57).

Each unique element in a given matrix can be laid out as a vector. Call this a net-
work’s vector coding. Recall that each of these vectors will have the same number
of elements, since each network was trained on the same data. So, to determine the
overall similarity of the state space of network A to that of network B, Laakso and
Cottrell computed the statistical correlation between their respective vector codings
(2000, p. 57). Correlation (using Pearson’s p) measures the extent to which the values
in one data set can predict the values from another. The degree of statistical correla-
tion between the vector codings of two networks gives us sense of whether pairs of
input samples which produced proximal activations in the state space of one network
produced similarly nearby activations in the state space of another network, and, like-
wise, whether samples which produced distant pairs in the state space of one network
also produced distant pairs in the state space of the other. In short, Laakso and Cot-
trell’s strategy was to construct a distance matrix for each network that contained the
same number of elements irrespective of dimensionality, hence enabling the straight-
forward calculation of statistical correlation. This methodology mirrors that of RSA
nearly exactly and laid the groundwork for further refinement by Kriegeskorte et al.
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(2008a). In fact, the original paper proposing RSA as a neuroscientific framework,
Kriegeskorte et al. (2008a), explicitly cites Laakso and Cottrell as inspiration.

Laakso and Cottrell (2000) argue that their method has a number of advantages.
Using statistical correlations in this way purports to achieve scale invariance, since
it is insensitive to the magnitude of the distances being compared. We hold true that
individuals can share the same beliefs despite presumably different neural architec-
tures. As such, providing a criterion for semantic similarity that eschews the need for
an absolute match in the dimensionality of representational space is a crucial desidera-
tum for an adequate state space semantics. If computing the the similarity of distances
between points in two spaces is scale invariant, then the cluster approach will satisty
this desideratum.

The direct lineage from connectionist work on cluster analysis can inform our
theoretical understanding of RSA. By reframing RSA against the backdrop of con-
nectionist modeling, I argue that we can better understand how RS A can explain neural
mechanisms. Traditional connectionist models are taken to comport to the mechanis-
tic account of explanation (Bechtel, 1998; Bechtel & Abrahamsen, 2005; Cummins,
2000; Machamer et al., 2000; Zednik, 2011; Stinson, 2018, 2020). In very broad
strokes, mechanistic explanation aims to understand cognitive capacities by isolat-
ing the concrete, working parts that generate them. However, the rampant abstraction
and idealization present in RSA seems at odds with mechanistic explanation. RSA
considers only internal relationships by abstracting away from implementation details
and the absolute magnitude of activity measures. In virtue of this, RSA can compare
structure in such a way that is invariant across different modalities (Roskies, 2021).
Yet, the main thrust of mechanistic explanation depends on relating the behavior of
a system to operations performed by the concrete parts of a structured mechanism. I
aim to bridge this gap by bringing renewed discussions of connectionist modeling into
conversation with RSA. In what follows, I discuss philosophical work on idealization
and argue that, much like its connectionist forbears, RSA can sometimes contribute
to mechanistic explanations despite such idealizations.

RSA itself is a method for generating idealized representations of a system’s rep-
resentational geometry. This idealization appears to occlude a simple mapping from
model to mechanism. But, there is another way of understanding the route to mech-
anisms that draws on recent work on connectionist modeling (Stinson, 2020). The
idealization present in RSA functions to emphasize causal patterns embodied by a
mechanism. These causal patterns mediate inferences from neural network models to
neural mechanisms. RSA achieves this by connecting neural network models and their
targets to shared causal patterns.

5 Models and their targets instantiate causal patterns

This section aims to make explicit the connection between the representational expla-
nations found in RSA and mechanistic explanation. Philosophical work on cognitive
modeling emphasizes how models contribute to mechanistic explanations (Kaplan &
Craver, 2011; Stinson, 2018, 2020). Neuroscientists themselves gesture towards the
goal of understanding functional neural mechanisms, but rarely spell out how RSA
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contributes to this kind of explanation (Kriegeskorte & Diedrichsen, 2019). Hence,
explicitly specifying how RSA contributes to mechanistic explanations can help to
clarify the framework’s utility in the face of recent skepticism about representational
explanations afforded by computational models in cognitive neuroscience (Carlson
et al., 2018; Ritchie et al. 2019; Gessell et al. 2021). I aim to do so by drawing on
philosophical work on causal patterns, idealization, and connectionist modeling. Con-
necting this work to RSA can give us a clearer picture of how it can help explain the
functional neural mechanisms that support our cognitive capacities. I argue that ide-
alizations and abstractions present in RSA function to emphasize such causal patterns
between mechanisms and their environment. These shared causal patterns mediate
inferences from model to mechanism (Stinson, 2020).

This idea of a causal pattern draws upon Andersen’s information-theoretic revital-
ization of Dennettian “real patterns” (see also Dennett, 1991; Potochnik, 2017; Stinson,
2020). Real patterns—as discussed by Andersen (2017) and Potochnik (2017)—refer
to causal patterns that structure our natural world. For Andersen, causal relationships
are informational relationships between patterns instantiated in a rich causal nexus
(2017, p. 594). Hence, I will refer to these patterns as causal patterns to avoid confu-
sion. According to Andersen, a causal pattern is one that “can be reliably picked out
and tracked through time and which allows one to make predictions that are better than
chance” (2017, p. 602). Causal patterns are counterfactually robust: the microphysical
state underlying a tokened pattern could have been slightly different, while still token-
ing the same pattern. The basic idea is that kinds or patterns can be reliably picked out
and tracked by information-theoretic means and make useful predictions. This ensures
that patterns are not met with jury-rigged kinds. Nevertheless, they remain metaphys-
ically innocuous. Since causal patterns make useful predictions and are stable under
counterfactual perturbation, a collection of phenomena that manifest a causal pattern
will constitute a robust kind (Stinson, 2020).

To get a handle on what constitutes a causal pattern, consider a digital chess program
in which two computational engines are playing each other in a game of chess. The
state of this game at any one moment in time can be described as no more than
a complex array of pixels, or a bit map. The bit map gives a complete, accurate
description of the state of the board at any one instant in the game much like a complete
microphysical description of an actual chess board would. In principle, we could
compute the entirety of the current board-state using nothing but the bit map. If we
know enough details about the algorithms our chess-playing engines implement, then
we could use the bit map to accurately predict future board-states. But this would
be extremely computationally costly. It is much more efficient to characterize our
program at a higher-level of description in terms of chess positions. At this level of
description, familiar patterns emerge from the complicated array of flashing pixels.
We can identify them as knights, rooks, pawns, and all of the recognizable features
that constitute a board-state in a game of chess. Once recognized as a game of chess,
enormously more efficient ways of predicting future board-states become available to
us with relatively little loss of accuracy (depending on how adept you are at chess).
Recognizing these patterns means the difference between computing millions of pixels
and merely inferring in your head what is likely to be the best move in an ongoing
game of chess. The same idea applies to causal relata. We can make fabulously accurate
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predictions by considering the complete microstructure of a physical system, but doing
so would be very computationally costly. Instead, we can make predictions about
said system on the basis of causal patterns. These predictions may be somewhat less
accurate, since information is lost in the move to the level of patterns. But, we are
more than compensated for this loss with subsequent improvements in efficiency. In
short, we sacrifice a small degree of fidelity for large gains in efficiency. A causal
pattern just is any such description that is more efficient than a bit map and facilitates
prediction.

As noted above, this notion of causal patterns can help us make sense of the rela-
tionship between idealized models and mechanistic explanations. Idealization has
enjoyed significant philosophical attention, especially in the context of scientific mod-
els (Cartwright, 1994; Morgan & Morrison, 1999; Morgan, 2002, 2003; Weisberg,
2007, 2013; Rohwer & Rice, 2013). Here it is useful to draw on Potochnik’s extensive
account of the relationship between patterns and idealization in science. She describes
how the practice of science by limited humans in a complex world leads to widespread
idealization. Potochnik (2017) argues that scientific enterprise can be understood as
a search for causal patterns in the face of “causal complexity”. Causal complexity
refers to the fact that phenomena under investigation are causally influenced by a
multitude of factors beyond the variables targeted by the investigation, including by
controls implemented to highlight the targeted variables and many other influences
(Potochnik, 2017, p. 35). Science aims to represent patterns embodied by causally
complex phenomena. This is because patterns play a central role in promoting under-
standing and manipulability.

Causal complexity also means that phenomena can embody many patterns. The
more causal influences there are on a target phenomenon, the more variables there
are to produce patterns. Scientists thus have a choice not only about what phenomena
should be the targets of study, but also about which patterns should be the focus
of their study. Just as competing pragmatic and epistemic considerations inform the
design decisions specifying how a single pattern is described, human interests inform
which patterns will be useful for making scientific progress. Causal patterns that are of
interest to scientists tend to be simple and general enough to facilitate understanding,
but fine-grained enough to provide the basis for manipulability.’

Specifying patterns that are productive for science motivates idealization. Idealiza-
tions are assumptions made without regard for whether they are true and often with
full knowledge that they are false (Cartwright, 1994; Potochnik, 2017, p. 42). Physics
often assumes frictionless planes even though no such planes exists. But idealizations
in science often take subtler forms. A linear regression model draws a curve that
purports to represent the relationship between variables and treats divergence from
this curve as error or noise. This is done with full knowledge that divergence in the
data also represents observed facts. Cartwright (1983) calls this representation as-if.
Idealizations of this kind interpolate and extrapolate beyond the data to identify the
pattern they instantiate. Elgin (2004) suggests that these “felicitous falsehoods” play

5 The emphasis on manipulability is meant to capture that information-theoretic causal patterns are by
and large causal patterns (Woodward, 2003). Causation, however, is a metaphysically fraught topic. Those
unfriendly to manipulability accounts of causation should still feel free to regard causal patterns as both
cognitively and pragmatically valuable for their role in facilitating understanding and manipulability.
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a cognitively valuable role in science. They “impose an order on things, highlight
certain aspects of the phenomena, reveal connections, patterns and discrepancies, and
make possible insights that we could not otherwise obtain” (Elgin, 2004, p. 127).
The positive content of idealizations is to center the relevance of some causal pattern.
Potochnik suggests that “idealizations contribute to understanding by representing
as-if to the end of depicting a causal pattern, thereby highlighting certain aspects of
that phenomenon (to the exclusion of others) and revealing connections with other,
possibly disparate phenomena that embody the same pattern or, in some cases, that
are exceptions to that pattern” (Potochnik, 2017, p. 97). So idealizations, understood
as deliberate false assumptions, can contribute to successful scientific representations
by highlighting causal patterns in what they are intended to represent.

This picture also distinguishes idealizations from abstractions. The former inten-
tionally represents a target system as different than it actually is, while the latter merely
omits certain details. Abstractions represent by ignoring some features of the target
phenomenon that are inconsequential for the representation. This generates a pic-
ture of idealizations and abstractions as distinct but compatible practices of scientific
investigation. These practices often become intertwined in scientific models.

The above is abundantly clear in neurocognitive modeling. Computational models
are built out of transistors, not cells. In comparing a target system, like the visual
pathway, to a computational model, scientists apply abstractions that coarse-grain the
target system and its computational model. These abstractions relinquish certain details
in order to meaningfully compare the abstract dynamics of target system and model.
The enduring details are those scientists take to be functionally relevant for providing
an adequate explanation of the phenomena of interest. Simply describing the system
in terms of a state space constitutes one such kind of abstraction. But with complex
biological systems scientists often need to make difficult choices about what to measure
and what features of the abstract dynamics are functionally relevant. These choices
constitute, either implicitly or explicitly, a commitment to some degree of abstraction
as adequate for explaining their target phenomenon. Precisely how much abstraction
qualifies as empirically or predictively adequate should be informed by principled
theoretical and pragmatic reasons. Similarly, linear transformations allow for a class
of systems with the same kinds of underlying components to be considered a single
explanatory target, even when the actual target systems differ in some substantial way
(Cao & Yamins, unpublished, p. 10). Such transformations are used to address the fact
that there is no one-to-one mapping between neurons in different brains. The basic
idea is that we can define a transform class that consists of a set of linear maps between
populations of neural activity in different individuals. This transform class posits that
activity of any neuron in a given region of one individual can be reproduced by a linear
combination of neural activity in the corresponding region of another individual.®

RSA involves a similar combination of abstraction and idealization. For instance,
feature selection idealizes by treating a subset of a neural population as functionally
relevant for a given task. Similarly, the invocation of representational geometry marks

6 Stated more formally, this means that for all input stimuli x, the neuronal responses to x by neuron i
in individual 7' can be written as niT(x) = Z?’I: 1a jinf(x) where aj; are constants that represent the
contribution each source neuron makes to replicating the activity of the target neuron (Cao & Yamins,
unpublished, p. 7).
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a common abstraction between models and their targets. Yet, this picture of idealized
cognitive models seems at odds with the goals of mechanistic explanation. On the
standard model-mechanism-mapping (3M) account, for abstract dynamical models to
have explanatory force in systems and cognitive neuroscience there must be a plausible
mapping between elements in a model and the parts of the mechanism they represent
(Kaplan & Craver, 2011). Instead, RSA involves mappings between models and their
targets that are mediated by a common abstraction to representational space. But, this
appears to conflict with the original point of 3M, which is to connect abstract dynamics
to particular, concrete mechanisms. How, then, can we expect to make inferences about
mechanisms using this idealized framework?

I think this question is best answered by considering the role of causal patterns
in mediating inferences to mechanisms. Along these lines, I contend RSA is better
positioned as a specific application of Catherine Stinson’s account of model inferences
in cognitive science (2020, p. 602). Stinson (2020) gives an account of models on which
inferences about a target system are drawn from connectionist models indirectly via
the kinds of phenomena that both model and target exemplify. Her concept of “kinds”
is equally well captured by the notion of causal patterns I am working with here.
This indirect route to mechanism helps to make sense of the role of idealization in
neuroscientific modelling, since these models aim to capture the characteristic causal
patterns associated with a kind of phenomenon. On this view, clustering patterns in
an RDM are idealized representations of causal patterns that enable us to efficiently
predict the behavior of a system. When it makes statistical comparisons of different
representational spaces, RSA functions as a test of whether two different systems (i.e.
a model and its target) instantiate the same causal pattern. When a model and target
embody the same pattern, we can have confidence that the consequences produced
by manipulating the model can be brought to bear on our understanding of the target
mechanism.

Tools like RSA can thus provide the confirmatory evidence needed to link a model
and target system by highlighting shared causal patterns. The visual pathway and a neu-
ral network model both exemplify a particular cognitive capacity, namely early visual
perception. The goal-driven nature of visual perception gives rise to certain causal
patterns—such as the formation of separable clusters of activity—that our models
make salient. We can use these causal patterns to establish an indirect link between
neural mechanisms and models designed to solve similar tasks. This is because systems
that need to solve similar tasks will tend to instantiate the same kinds of causal patterns.
The idea here is simply that, under the right circumstances, function constrains mech-
anisms. For instance, visual perception places functional and architectural constraints
on neural mechanisms. The informational structure of the world is far too complex
to represented at the “pixel” level (Dennett, 1991). Such computational costliness
begets representational compression as a driving force on neural mechanisms (Gluck
& Myers, 2001; Buckner, forthcoming). The high-dimensional encoding scheme of the
brain suggests that learning may require domain-general inductive biases that impose
structure on the space of possible activity (Poldrack, 2020). Error-correction learning
tends to economize representational resources by treating stable clusters of activity
patterns that predict the same output as identical. These clustering patterns support
generalization to the extent that they conform to the informational structure of the
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Fig. 3 RSA gives us evidence that an encoding model instantiates the same kind of causal pattern as its
target. These shared causal patterns facilitate indirect inferences about the target

environment. RSA can help us to highlight these patterns, however idealized, in the
model and compare them to their target system. When we can use RSA to predict the
behavior of the target from a model, we get evidence that they instantiate the same
causal pattern (Fig. 3).

We can thus use neural networks as minimal models to make inferences about the
mechanisms responsible for early vision because both instantiate the relevant causal
patterns. RSA provides a method of establishing this link. We thus need abstraction
and idealization to make these patterns salient. For a fully-runnable computational
model, this merely requires reading off activity of each unit in the model for each
stimulus response and plotting a trajectory through representational space with those
values. For the target system, we may have to do more work, such as defining a
transform class to represent the contributions of multiple source neurons as identical
to the contribution of a single model unit. The result of this transformation represents
the state space of the target system as if it was isomorphic to the model’s state space.
Such a tranformation thus constitutes a kind of idealization that operates in tandem
with prior abstractions to represent a target causal pattern.

By shifting focus to causal patterns, we can better understand how neuroscientists
can make inferences about neural mechanisms via the manipulation of idealized mod-
els. I argue that this should be seen as the explanatory goal of RSA. Moreover, what
causal pattern occupies the focal point of a particular scientific explanation is, to some
degree, sensitive to the interests and goals of scientists. Therefore, it should not come
as a surprise that even more data-driven methods of decomposing a high-dimensional
state space are not hypothesis-neutral, nor should this be seen as a devastating flaw.
Causal patterns that are of fundamental interest to the explanatory goals of scientists
already constrain the hypothesis-space. This is legitimate so long as those interests are
sufficiently well-motivated by empirical and theoretical considerations. Carlson et al.
(2018) make a similar remark that hypothesis-driven approaches that use dimensional-
ity reduction can be defensible, “so long as they are carefully constrained” (Carlson et
al., 2018, p. 95). As long as these conditions are satisfied, different ways of decompos-
ing state space in order to make causal patterns salient to scientists are sound methods
of testing whether a target phenomenon really does embody the causal pattern of
interest.
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Moreover, by emphasizing mechanistic rather than representational explanations,
we can somewhat sidestep skeptical worries about the latter. Even in cases where it
seems like the specific content of representations is radically underdetermined by the
available evidence (Gessell et al., 2021), we can still use RSA to get evidence about
the relationship between a model and a target system. This is because our goal is to test
whether a model and its target both instantiate some idealized causal pattern. When our
aim is broadly to understand functional mechanisms, we can do this without attending
so closely to problems concerning representational content. Put another way, we can
think of RSA as a means of reducing “link uncertainty,” which occurs when there
is a dearth of evidence supporting the link between a model and its target (Sullivan,
2020). None of this is to deny the fruitfulness of more straightforward representational
explanations using RSA. Rather, casting RSA in terms of testing whether different
systems embody causal patterns sheds light on how RSA can play a role in mechanistic
explanations even when representational content is underdetermined by the data.

6 Inferring neural mechanisms with goal-driven models via causal
patterns

ANNS provide us with idealized models of biological neural pathways. These models
explain neural mechanisms indirectly. They do so by instantiating a shared causal
pattern between sensory mechanism and environment. Modern deep neural networks
(DNNGs) are optimized to solve the same sensory categorization tasks faced by the
brain. This “goal-driven” approach turns the search for neuroscientific explanations
into an optimization problem, where the goal is to maximize the accuracy of predic-
tively adequate models (Yamins & DiCarlo, 2016). Recent work using the goal-driven
approach has uncovered a surprising fact about deep convolutional neural networks
(DCNNs). Models optimized merely to classify images predict spiking responses in
the highest level of the ventral stream, the inferior temporal cortex (IT) (Yamins et al.,
2014; Cichy et al., 2016). That such task-optimized models manage to predict some-
thing about the brain supports the notion that these neural networks and the primate
visual pathway embody the same causal patterns.

RSA provides a method for drawing out these indirect inferences about representa-
tional mechanisms in the brain using task-optimized DNNSs as idealized models. RSA
gives us evidence that model and target both instantiate a hypothetical causal pattern.
With this link established, neuroscientists can then manipulate these goal-driven mod-
els to make inferences about neural mechanisms. A clear proof of concept can be found
in Khaligh-Razavi and Kriegeskorte (2014). Khaligh-Razavi and Kriegeskorte (2014)
analyzed brain responses in both monkey IT and human IT for a set of color images of
objects spanning a range of animate and inanimate categories. They then used RDMs
to compare these representations to those generated by 37 different computational
models of varying designs. To measure the strength of clustering they created ten
category-cluster RDMs as predictors, which they fit to each IT and model RDM (Fig.
5). These grouped the set of experimental conditions according to a number of intuitive
categories. The category-clusters represented animate, inanimate, face, human face,
non-human face, body, human body, non-human body, natural inanimate, and artifi-
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Fig.4 Khaligh-Razavi and Kriegeskorte (2014) created ten different category-cluster RDMs as predictors
of clustering. These prediction RDMs were then fit to each computational model using a linear regres-
sion to model the semantic structure of the their representations [(reproduced from Khaligh-Razavi and
Kriegeskorte (2014)]

cial inanimate (Khaligh-Razavi & Kriegeskorte, 2014). Though models designed to
emulate the structure of the ventral stream (such as HMAX and VisNet) were included
among the 37 computational models, they found that these were outperformed in pre-
dictive accuracy by a task-optimized DCNN. The representations generated by the
supervised DCNN best predicted the the category clustering found in the IT RDMs
(Fig. 4).

One way of interpreting this procedure is that the modelers identified informational
patterns in their experimental conditions and constructed a model of a conceptual
space around these patterns to generate the category-cluster RDMs. By fitting this
categorical model to an encoding model, we can identify the causal patterns that
arise as plausible candidates for the content of representations. The modelers then
used these patterns to predict the representational structure of IT RDMs. What we
find is that—much like the primate visual system—higher levels of processing in the
DCNN begin to approximate the same patterns. Each subsequent layer represents and
processes higher-level properties of the input stimuli with greater tolerance for noise
and nuisance variation than the layers preceding it. This procedure clearly concerns
the sense of patterns discussed in Sect. 6. However, one might be interested in the
second sense of causal patterns. Hence, we might want to abstract away from the
specific contents of clusters and instead consider the how particular architectures in
the brain structure activity in a way that supports function (Fig. 5).

Comparing brain and model RDMs establishes a kind of second-order isomor-
phism between the representational geometries produced by both model and brain
(Kriegeskorte et al., 2008a; Kriegeskorte & Kievit, 2013; Roskies, 2021). This suggests
that both our computational model and its target system instantiate the same causal
patterns between a representational mechanism and its environment. This allows these
systems to efficiently identify new stimulus conditions and generalize successful per-
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Fig.5 Category-cluster analysis of a supervised DCNN model reveals that a similar representational struc-
ture to human and monkey IT neuronal population responses emerges across the various layers of the model.
The final weighted combination of layers (bottom right) shows a similar clustering structure to that of the
hIT and mIT [reproduced from Khaligh-Razavi and Kriegeskorte (2014)]

formance to these conditions. If this interpretation is right, then DCNNs turn out to
be predictive of neural activity in the primate visual system precisely because they
both instantiate the same causal patterns between mechanism and stimulus conditions.
Establishing this fact allows the modelers to draw out inferences about the constitutive
mechanisms responsible for early vision and the structure of representations acquired
by such mechanisms from a fully-runnable DCNN.

More recently, Martin et al. (2018) provide an instructive use of RSA that integrates
multiple different regions of interest into a single study. They aimed to understand how
the brain integrates clusters of low-level perceptual features with high-level conceptual
properties. Many ordinary objects—for instance, hairdryers and guns—tend to possess
highly confusable conjunctions of perceptual features, while having radically diverg-
ing sets of functional and conceptual properties. Successful behavior requires that we
can effortlessly distinguish between these objects. An explanation of object recognition
and semantic memory must provide insight as to how the brain integrates these different
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kinds of information. Using RSA, Martin et al. (2018) compared multiple behaviorally
derived statistical models, neural network models, and fMRI data to identify candi-
date regions of interests where this conceptual integration likely takes place. Martin
et al. asked volunteers to answer questions about different objects while lying inside
a neuroimaging machine. These questions concerned both the appearance of objects
as well as abstract, conceptual knowledge about them. From participants’ responses
they constructed behavior-based visual and conceptual RDMs. These models captured
visual and conceptual similarity of object concepts separately. They found that these
behavior-based RDMs were not significantly correlated, ensuring that perceptual and
conceptual semantic dimensions would not be confounded (Martin et al., 2018, pp. 4—
5). Additionally, they constructed corresponding brain-based RDMs generated from
activity retrieved from voxelwise fMRI data and a conceptual neural network model
RDM constructed from activation vectors derived from a fully-runnable neural network
model. The brain-based RDMs used multi-voxel activity patterns obtained from mul-
tiple regions of interest selected based on empirical evidence linking them to different
functional roles in visual and conceptual object recognition. These regions included
perirhinal cortex (PRC), the temporal pole, parahippocampal cortex, and lateral occip-
ital cortex. The neural network model RDM was generated from a word2vec-based
natural language model (Mikolov et al., 2013), which mapped 3 million words to 300
vectors in a high-dimensional feature space. This word2vec-based model RDM turned
out to be significantly correlated with the behavior-based conceptual RDM (Martin et
al. 2018, p. 6).

Martin et al. (2018) then conducted second-order RSA to compare visual and con-
ceptual behavior-based RDMs with their respective brain-based counterparts. The
results of their study showed several important findings. Their approach suggested
that context-responsive visual, conceptual, and integrated visual-conceptual semantic
content are represented in distinct similarity codes across several different regions
of interest. Most notably, their results support the notion that activity patterns in the
PRC represent both visual and conceptual similarity of objects when participants
made judgements about either the visual or conceptual features that characterized an
object concept. In other words, activity in the PRC captures both the visual similarity
of hairdryers and guns and the conceptual similarity of hairdryers and hairbrushes
regardless of task context (Martin et al., 2018, pp. 10-11).

The studies above suggest a promising avenue for conceptualizing RSA against
the backdrop of philosophically informed modelling principles. What Martin et al.
(2018) appear to be after is evidence about the structure of mechanisms responsible
for complex cognitive functions. We can thus think of RSA as a hypothesis-driven
search for causal patterns with the end goal of uncovering new insights concerning
the constitutive mechanisms underpinning our cognitive capacities. The framework I
have in mind involves a hypothesis about a target system, a neural network model, and
a shared causal pattern. It begins by identifying some cognitive phenomenon and its
putative constitutive mechanism. This mechanism—a region of interest in the brain,
for example—picks out the target system. Cognitive phenomena of interest are iden-
tified by the kinds of robust, generalizable causal patterns that obtain between a target
system and its environment. Identified causal patterns help us isolate hypotheses about
how the target represents the informational structure of a neural task. Together, these
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elements comprise a hypothesis about some aspect of intelligent behavior. Borrow-
ing an example from Martin et al. (2018), modelers might hypothesize that PRC is
responsible for the integration of visual and conceptual semantic information. Neural
network models can then be selected or designed using a goal-driven approach. These
models should be optimized to perform the same kinds of tasks solved by the targets in
the brain with goal of instantiating a shared causal pattern with the target. That these
models do instantiate the same pattern is established via the statistical tools of RSA.
Moreover, this might motivate novel architectures and combinations of multiple net-
works to tackle increasingly complex, high-level tasks. In the case above, this might
involve a model of visual perception like a DCNN combined with a word2vec-based
natural language model, and, perhaps, a third network that integrates inputs from both
networks to arrive at a unified object concept.

A further advantage arises from the fact that—unlike other kinds of non-human
surrogates—neural network models are fully-runnable. This makes manipulating and
analyzing their structure more tractable. Insofar as neural network models and their
targets instantiate shared causal patterns, we can make predictions and inductive
inferences about how a target system approximates the informational structure of
its environment. When clusters of activity in a model are predictive of some object
category, the presence of that cluster provides evidence that the model has acquired a
robust categorical representation. If we can then establish that their model embodies
the same causal pattern as the target system, the modelers can then use RSA to collect
evidence about the presence of category representations acquired by the target system.
Once a model is established via RSA, we can manipulate or perturb the model and
observe the downstream effects. This can provide us with indirect insight into how the
physical structure of neural mechanisms produce the representational geometries that
support robust performance.

Finally, by shifting focus to illuminating mechanisms, we can somewhat sidestep
worries about the underdetermination of semantic content by the available evidence
(Ritchie et al., 2019; Gessell et al., 2021). Though we are still concerned to understand
the content of representations, establishing a high degree of predictive success can be
enough to establish that a model instantiates a shared causal pattern. This approach
enables computational cognitive neuroscientists to collect confirmatory evidence about
the mechanisms hypothesized to be responsible for cognition in virtue of the shared
causal patterns instantiated by neural network models. RSA provides a formal toolbox
for highlighting salient patterns and establishing task-optimized neural networks as
models of cognitive mechanisms. Modelers can then use this framework to draw out
inductive inferences about the mechanisms responsible for various cognitive phenom-
ena, generate predictions about target systems from established models, and correct
for model errors given what is known about the target system. We can begin modeling
more complex, high-level phenomena by combining diverse architectures operating
on multiple sensory modalities with the ultimate goal of shedding light on the nature
of our intelligent capacities.
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7 Conclusion

I have just suggested a framework for understanding the practices of RSA in light of
philosophically informed modeling principles. This should help us to make sense of
the prevalent idealization that RSA studies rely on. The upshot of this is that it moti-
vates a rigorous, empirical approach to studying localized aspects of cognition with
connectionist models. If we want to understand the various mechanisms underlying
cognition, we should begin by isolating regions of the brain which might instantiate
those mechanisms. We can use RSA as a formal tool to establish similarity between a
model and the region of interest in the brain in virtue of some shared causal pattern.
This also motivates a more exploratory approach to Al-driven neuroscience. By test-
ing models with varying designs and degrees of neurophysiological inspiration we can
begin to uncover the minimal features of the underlying mechanism that are essen-
tial for reproducing the cognitive phenomenon of interest. Through such an iterative
process we approach a genuinely explanatory mechanistic model of that cognitive
phenomenon.

Funding Funding was provided by Gates Cambridge Trust.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Andersen, H. K. (2017). Patterns, information, and causation. The Journal of Philosophy, 114(11),592-622.

Bechtel, W. (1998). Representations and cognitive explanations: Assessing the Dynamicist’s challenge in
cognitive science. Cognitive Science, 22(3), 295-318.

Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Phi-
losophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,
36(2), 421-441.

Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., & Love, B. C. (2020). Measures of neural
similarity. Computational Brain & Behavior, 3(4), 369-383.

Buckner, C. (2018). Empiricism without magic: Transformational abstraction in deep convolutional neural
networks. Synthese, 195(12), 5339-5372.

Buckner, C. (forthcoming). A forward-looking theory of content. Ergo.

Cao, R. (2020). Computational explanations and neural coding. In The Routledge Handbook of the Com-
putational Mind, (pp. 283-296).

Cao, R. & Yamins, D. (unpublished). Making sense of mechanism: How neural network models can explain
brain function.

Carlson, T., Goddard, E., Kaplan, D. M., Klein, C., & Ritchie, J. B. (2018). Ghosts in machine learning for
cognitive neuroscience: Moving from data to theory. Neurolmage, 180, 88—100.

Cartwright, N. (1983). How the Laws of Physics Lie. Oxford University Press.

Cartwright, N. (1994). Nature’s capacities and their measurement. Oxford University Press.

Churchland, P. (1998). Conceptual similarity across sensory and neural diversity: The Fodor/Lepore chal-
lenge answered. The Journal of Philosophy, 95(1), 5-32.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Synthese (2022) 200:196 Page230f25 196

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of deep neural
networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical
correspondence. Scientific Reports, 6, 1-13.

Cummins, R. (2000). How does it work? Versus What are the laws? Two conceptions of psychological
explanation. In Explanation and cognition, (pp. 117-144). The MIT Press.

Dennett, D. (1991). Real patterns. The Journal of Philosophy, 88(1), 27-51.

Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common framework for under-
standing encoding, pattern-component, and representational-similarity analysis. PLoS Computational
Biology, 13(4), e1005508.

Dretske, F. (1988). Explaining behavior: Reasons in a world of causes. The MIT Press.

Egan, F. (2020). a deflationary account of mental representation. In J. Smortchkova, K. Dotrega, & T.
Schlicht (Eds.), What are mental representaions? (pp. 26-53). Oxford University Press.

Elgin, C. Z. (2004). True enough. Philosophical Issues, 14(1), 113-131.

Fodor, J. (2000). The mind doesn’t work that way: The scope and limits of computational psychology. MIT
Press.

Fodor, J., & Lepore, E. (1999). All at sea in semantic space: Churchland on meaning similarity. The Journal
of Philosophy, 96(8), 381-403.

Fodor, J. A. (1990). A theory of content and other essays. MIT Press.

Girdenfors, P. (2000). Conceptual spaces: The geometry of thought. MIT Press.

Gessell, B., Geib, B., & De Brigard, F. (2021). Multivariate pattern analysis and the search for neural
representations. Synthese, (0123456789).

Gluck, M. A. & Myers, C. E. (2001). Gateway to memory—Introduction to neural network modeling of the
hippocampus and learning. Issues in clinical and cognitive neuropsychology. The MIT Press.

Goddard, E., Klein, C., Solomon, S. G., Hogendoorn, H., & Carlson, T. A. (2018). Interpreting the dimen-
sions of neural feature representations revealed by dimensionality reduction. Neurolmage, 180(2017),
41-67.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial
intelligence. Neuron, 95(2), 245-258.

Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. Neurolmage, 62(2),
852-855.

Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces using
multivariate pattern analysis. Annual Review of Neuroscience, 37, 435-456.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational
abilities (associative memory/parallel processing/categorization/content-addressable memory/fail-
soft devices). Technical report.

Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. MIT Press.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K., Ronneberger, O., Bates,
R., Zidck, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Potapenko, A., Ballard, A. J., Cowie, A.,
Romera-Paredes, B., Stanislav, N., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Steinegger,
M., Pacholska, M., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., & Hassabis,
D. (2020). High accuracy protein structure prediction using deep learning. In Fourteenth Critical
Assessment of Techniques for Protein Structure Prediction (Abstract Book).

Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in
neuroscience: A mechanistic perspective. Philosophy of Science, 78(4), 601-627.

Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may
explain IT cortical representation. PLoS Computational Biology, 10(11), e1003915.

Kriegeskorte, N., & Diedrichsen, J. (2019). Peeling the onion of brain representations. Annual Review of
Neuroscience, 42, 407-432.

Kriegeskorte, N., & Douglas, P. K. (2019). Interpreting encoding and decoding models encoding and
decoding: Concepts with caveats HHS Public Access. Current Opinion in Neurobiology, 55, 167-179.

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition, computation,
and the brain. Trends in Cognitive Sciences, 17(8), 401-412.

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis—connecting the
branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 1-28.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., & Bandettini, P. A.
(2008). Matching categorical object representations in inferior temporal cortex of Man and Monkey.
Neuron, 60(6), 1126-1141.

@ Springer



196 Page 24 of 25 Synthese (2022) 200:196

Laakso, A., & Cottrell, G. (2000). Content and cluster analysis: Assessing representational similarity in
neural systems. Philosophical Psychology, 13(1), 47-76.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—444.

Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science,
67(1), 1-25.

Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L., & Barense, M. D. (2018). Integrative and distinctive
coding of visual and conceptual object features in the ventral visual stream. eLife, 7, 1-29.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in
vector space. In /st International Conference on Learning Representations, ICLR 2013—Workshop
Track Proceedings, (pp. 1-12).

Millikan, R. G. (1984). Language, thought, and other biological categories. MIT Press.

Morgan, M. S. (2002). Model experiments and models in experiments.

Morgan, M. S. (2003). Experiments without material intervention: model experiments, virtual experiments,
and virtually experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 216—
235). University of Pittsburgh.

Morgan, M. S., & Morrison, M. (1999). Models as mediators: Perspectives on natural and social science.
Cambridge University Press.

Naselaris, T., & Kay, K. N. (2015). Resolving ambiguities of MVPA using explicit models of representation.
Trends in Cognitive Sciences, 19(10), 551-554.

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. Neu-
rolmage, 56(2), 400—410.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for
representational similarity analysis. PLoS Computational Biology, 10(4), e1003553.

Passingham, R. E., & Rowe, J. B. (2016). A short guide to brain imaging: The neuroscience of human
cognition. Oxford University Press.

Poldrack, R. A. (2020). The physics of representation. Synthese.

Potochnik, A. (2017). Idealization and the aims of science. University of Chicago Press.

Ritchie, J. B., Kaplan, D. M., & Klein, C. (2019). Decoding the brain: Neural representation and the limits of
multivariate pattern analysis in cognitive neuroscience. British Journal for the Philosophy of Science,
70(2), 581-607.

Rohwer, Y., & Rice, C. (2013). Hypothetical pattern idealization and explanatory models. Philosophy of
Science, 80(3), 334-355.

Roskies, A. L. (2021). Representational similarity analysis in neuroimaging: Proxy vehicles and provisional
representations. Synthese.

Rumelhart, D. E., McClelland, J. L., & PDP Research Group, C., editors (1986). Parallel distributed
processing: Explorations in the microstructure of cognition: foundations, (Vol. 1). MIT Press.

Rupert, R. D. (2001). Coining terms in the language of thought: Innateness, emergence, and the lot of
Cummins’s argument against the causal theory of mental content. The Journal of Philosophy, 98(10),
499.

Shea, N. (2007). Content and its vehicles in connectionist systems. Mind and Language, 22(3), 246-269.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, 1., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, 1., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016).
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Stinson, C. (2018). Explanation and connectionist models. In Sprevak, M. and Colombo, M., (Eds.), The
Routledge Handbook of the Computational Mind.

Stinson, C. (2020). From implausible artificial neurons to idealized cognitive models: Rebooting philosophy
of artificial intelligence. Philosophy of Science, 2019, 1-38.

Sullivan, E. (2020). Understanding from machine learning models. The British Journal for the Philosophy
of Science.

Tiffany, E. (1999). Semantics San Diego style. The Journal of Philosophy, 96(8), 416.

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). Reliability of dissim-
ilarity measures for multi-voxel pattern analysis. Neurolmage, 137, 188-200.

Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104(12), 639—659.

Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxtord University
Press.

Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford University Press.

@ Springer



Synthese (2022) 200:196 Page250f25 196

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory
cortex. Nature Neuroscience, 19(3), 356-365.

Yamins, D. L., Hong, H., Cadieu, C. F,, Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-
optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the
National Academy of Sciences of the United States of America, 111(23), 8619-8624.

Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238-263.

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Mapping representational mechanisms with deep neural networks
	Abstract
	1 Introduction
	2 What is a representational space?
	3 Representational similarity analysis (RSA)
	4 The connectionist roots of representational geometry
	5 Models and their targets instantiate causal patterns
	6 Inferring neural mechanisms with goal-driven models via causal patterns
	7 Conclusion
	References




