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Abstract
Evidential pluralists, like Federica Russo and JonWilliamson, argue that causal claims
should be corroborated by establishing both the existence of a suitable correlation
and a suitable mechanism complex. At first glance, this fits well with mixed method
research in the social sciences, which often involves a pluralist combination of statis-
tical and mechanistic evidence. However, statistical evidence concerns a population
of cases, while mechanistic evidence is found in individual case studies. How should
researchers combine such general statistical evidence and specific mechanistic evi-
dence? This article discusses a very recent answer to this question, ‘multi-method
large-N qualitative analysis’ or multi-method LNQA, popular in political science and
international relations studies of rare events like democratic transitions and cease-fire
agreements. Multi-method LNQA combines a comprehensive study of all (or most)
relevant event cases with statistical analysis, in an attempt to solve the issues of gener-
alization faced by other types of qualitative research, such as selection bias and lack of
representativeness. I will argue that the kind of general causal claim that multi-method
LNQA is after, however, is crucially different from the average treatment effect found
in statistical analysis and can in fact only be supported with mechanistic evidence. I
conclude from this that mixed method research, and thereby evidential pluralism, may
be inappropriate in this context.

Keywords Evidential pluralism · Causal mechanisms · Case study research ·
Large-N qualitative analysis · LNQA · Mixed-methods research · Multi-method
research · Causal inference · Social science · Political science · International
relations · Generalization, · Qualitative research

T.C.: Evidential Diversity in the Social Sciences

B Rosa W. Runhardt
rosa.runhardt@ru.nl

1 Faculty of Philosophy, Theology and Religious Studies, Radboud University, Erasmusplein 1, P.O.
Box 9103, 6500 HD Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03650-w&domain=pdf
http://orcid.org/0000-0002-8679-4977


171 Page 2 of 23 Synthese (2022) 200 :171

1 Introduction

Evidential pluralists argue that “in order to establish a causal claim one normally needs
to establish the existence of an appropriate conditional correlation and the existence
of an appropriate mechanism complex, so when assessing a causal claim one ought to
consider relevant association studies and mechanistic studies, where available” (Shan
& Williamson, 2021, p. 4). For instance, the evidentially pluralist Russo-Williamson
Thesis (Russo &Williamson, 2007) states that causal claims in (bio)medical research
ought to be corroborated by both evidence of mechanisms and evidence of difference-
making. Evidence of difference-making here could consist of statistically significant
relations between a (proxy) variable for the putative cause and putative effect. Evidence
of mechanisms, on the other hand, needs to show how the putative cause produces the
putative effect, i.e. it needs to establish the existence of a suitable mechanism complex
(cf. Shan&Williamson, 2021). In biomedical and biological research,mechanisms are
commonly conceptualized using Peter Machamer, Lindley Darden and Carl Craver’s
definition, as “entities and activities organized such that they are productive of regular
changes fromstart or set-up tofinishor termination conditions” (Machamer et al., 2000,
p. 3), meaning that evidence of mechanisms should consist of working out amongst
others what the relevant entities and activities are and how they are interrelated. In
recent years, evidential pluralism in the form of the Russo-Williamson Thesis has led
to a variety of fruitful discussions in amongst others epidemiology (cf. Canali, 2019),
pharmacology (cf. Parkkinen &Williamson, 2020), and evidence-based medicine (cf.
Clarke et al., 2014; Russo & Williamson, 2011).

Evidential pluralism and the Russo-Williamson thesis have also been analyzed
outside of (bio)medical research, in amongst others labor economics (cf. Claveau,
2012), econometrics (cf. Moneta & Russo, 2014), and political science. Philosopher
of political science Sharon Crasnow has pointed out some clear parallels between
mixed method research and evidential pluralism, as have I (cf. Crasnow, 2010, 2012;
Runhardt, 2021). Yafeng Shan and Jon Williamson have recently applied the original
Russo-Williamson thesis to the social sciences in general, arguing that it can be fruit-
fully applied there, amongst others as a motivation for mixed methods research (Shan
&Williamson, 2021). Indeed, inmixedmethod research the combination of qualitative
and quantitative methods often comes down to a Russo-Williamson-like combination
of statistical and mechanistic evidence. In these research contexts, mechanisms are
conceptualized more broadly than in (bio)medical research, as “the causal pathway,
process or intermediate variable by which a causal factor of theoretical interest is
thought to affect an outcome” (Gerring, 2008, p. 163).1

One important problem for evidential pluralists andmixedmethod researchers alike
is what I will call the problem of generalization. Evidence of difference-making is
typically general, concerning a population of cases. However, evidence ofmechanisms
is most often found in individual case studies. Thus, the question is how one may
combine general difference-making claims and specific mechanistic claims. Under
what circumstances can one fruitfully generalize from single case studies to a whole

1 For evidential pluralists Shan andWilliamson, this difference in conceptualization seems unimportant, as
they argue that their version of evidential pluralism “makes no direct claims about the nature ofmechanisms”
(Shan & Williamson, 2021, p. 5).
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population? And when can case study results support conclusions about a general
hypothesis implied by statistical reasoning?These questions seemespecially important
in social scientific research, since individual entities (e.g., civil wars, peace treaties,
instances of the acquisition of nuclear powers by states) often have idiosyncrasies
that complicate across-case comparisons. In the social sciences, the common intuition
is that case study results are highly context-dependent and difficult to generalize (cf.
Steel, 2008). The use of case studies to support a general causal claim faces such issues
as selection bias and lack of representativeness. If evidential pluralism wants to gain
a foothold in social science research, for instance as a fundamental defense of mixed
method research, the problem of generalization must therefore be faced head-on.

A very recent answer to the problem of generalization for mixed method research
in the social sciences is ‘multi-method large-N qualitative analysis’ or multi-method
LNQA, defended by Goertz and Haggard (Goertz, 2017; Goertz & Haggard, 2022).
The multi-method LNQA approach is firmly based on a pluralist view of causal evi-
dence.Multi-methodLNQAcombines statistical researchwith LNQAas a stand-alone
method, which consists of detailed case study analyses to find the causal mechanisms
behind statistical patterns.2 Multi-method LNQA solves the problem of generaliza-
tion in a unique way. Unlike other mixed-method approaches, multi-method LNQA
distinguishes itself by requiring the researcher to do a case study analysis of all (or
most) relevant cases in a population, which is only possible when the events under
study are rare enough to indeed cover all of them.

In this article, I will argue that multi-method LNQA should be seen as a unique
way to solve the problem of generalization outlined above, since it is based on a
comprehensive study of all or most cases in the potentially heterogeneous population.
However, I will argue that the kind of general causal claim that multi-method LNQA is
after, the ‘mechanistic generality claim’, is crucially different from both philosophy of
causation’s type-level causal claim and the average treatment effect. For corroborating
such a mechanistic generality claim, all the evidential weight is on the individual case
studies. The statistical step in multi-method LNQA is redundant, and (in heterogenous
contexts) possibly misleading.

An important consequence of this analysis is that mixed method research and evi-
dential pluralism are both misguided in the LNQA context. Specifically, this article
calls into question the evidential pluralists’ claim that in all but a few instances3 one
needs to establish both the existence of a correlation and the existence of a mechanism
complex. By arguing that appropriately performed LNQAmakes evidence from asso-
ciation studies redundant, I show that one may assess a causal claim with mechanism

2 The authors use the term ‘multi-method LNQA’ to refer specifically to a combination of LNQA as a
stand-alonemethod and statistical approaches. Such a combination of qualitative and quantitativemethods is
sometimes labelled ‘mixed-method’ research in themethodology literature. I will keep to the terminological
convention in Goertz and Haggard’s article here, but I will use the term ‘mixed-method research’ when I
refer to a combination of qualitative and quantitative methods in general. In doing so, I follow Creswell and
Plano Clark’s definition of mixed method research, according to which both qualitative and quantitative
data are gathered and merged with one another to answer research questions and test hypotheses (Creswell
& Plano Clark, 2018).
3 Such cases include some rather uncommon instances of overdetermination, in which a causal relation
does not co-occur with a correlation. See Williamson (2019).
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studies alone.4 Moreover, this part of the article goes against the claim that “evidence
of correlation is (…) required” in process-tracing studies (Shan & Williamson, 2021,
p. 21).

This article is set up as follows. Firstly, I will give a short overview of multi-method
LNQA’s keymethodological assumptions and give a few paradigmatic examples of the
method. I then discuss howmulti-method LNQA researchers approach the problem of
generalization outlined above, by describing the very narrow, ‘mechanistic general-
ity’ approach to general causal claims which researchers using multi-method LNQA
assume. I compare mechanistic generality with essential concepts from philosophy of
causation, using Dan Hausman’s discussions of the limitations of average treatment
effects. I show that the general causal claims multi-method LNQA researchers aim at
are considerably different from claims about average treatment effects, and that only
multi-method LNQA’s case study step is reliable for testing ‘mechanistic generality’.
I conclude with some additional questions regarding the feasibility of mechanistic
generality in political science and international relations, meant for further research.

2 What is large-N qualitative analysis (LNQA)?

In this section, I first introduce large-N qualitative analysis as a stand-alone method.
Next, I show how LNQA is combined with statistical analysis in multi-method LNQA
and provide some examples of the method. I end Sect. 2 with a discussion of the
assumptions in multi-method LNQA.

2.1 Large-N qualitative analysis as a stand-alonemethod

Large-Nqualitative analysis is a new research approach in political science and interna-
tional relations that is especially focused on developing and testing general hypotheses
about the causal mechanisms5 by which a putative cause is thought to affect a certain
effect of interest. Methodologist Gary Goertz has shown that LNQA is now widely

4 François Claveau has recently argued against the use of theRusso-Williamson thesis in the social sciences,
arguing that establishing the existence of a mechanism complex only can in some cases be sufficient to
establish a causal claim (Claveau, 2012). As such, there is an important parallel between Claveau’s work and
my own here. One of the reasons why evidential pluralists like Shan andWilliamson have rejected Claveau’s
argument is that the general causal claim under study by Claveau is corroborated by limited mechanistic
evidence. Claveau only discusses mechanistic evidence from a small number of all the relevant countries in
which the claim is said to hold. “More would be needed to be done to establish a general mechanistic claim
that holds more widely across countries: it would need to be shown that the mechanisms are extrapolable
to other countries” (Shan & Williamson, 2021, p. 21). Coming back to my own position, even if this is
an issue for Claveau’s of mechanistic research, it may not be an issue for the much more comprehensive
LNQA study of all cases of some rare event. As such, the analysis in this article may be seen as an extension
of Claveau’s criticism of the Russo-Williamson thesis. I come back to this in the conclusion of the article.
5 Here, I will use the term ‘causal mechanism’ in the broad sense mentioned in the introduction, i.e.
following Gerring’s definition as “the causal pathway, process or intermediate variable by which a causal
factor of theoretical interest is thought to affect an outcome” (Gerring, 2008, p. 163). This is admittedly
philosophically limited, since I will not discuss the rich and diverse ontological theories of mechanisms
to be found in the social science literature (cf. Gerring, 2008; Hedström & Ylikoski, 2010). However, I
believe my use in this article best suits the intuitive use of the term by LNQA methodologists, who never
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used, in research published in some of the fields’ top-ranked journals such as the
American Political Science Review, American Sociological Review, and International
Organization (Goertz, 2017). However, LNQA is a very recent development, and
in 2017 Goertz remarked that it had not yet been analyzed by methodologists and
philosophers: “no author has explicitly defended [LNQA’s] causal inference strategy”
(Goertz, 2017, p. 208). Goertz has since unpicked the method in more detail with a
prominent political scientist who uses LNQA himself, Stephan Haggard (Goertz &
Haggard, 2022).

TheLNQAresearcher starts theirwork fromahypothesis about the relation between
some causal variable X and an effect Y , along with the stipulation of the causal
mechanism the researcher believes may link X and Y . A relevant population, in which
the researcher believes X and Y are so linked, is defined. Next, the researcher tries to
establish ‘regularities’ in this population of cases. The regularity is expressed as either
a “percentage of X followed by Y (X -regularity) or percentage of Y preceded by X
(Y -regularity)” (Goertz & Haggard, 2022, p. 6).6 This, then, is the jumping-off point
for the researcher’s within-case analysis of the causal mechanism:

The crucial step in the analysis is within-case causal inference to establish that
the postulated causal mechanism is present and operates as expected. (…) In
short, LNQA is a combination of regularities AND within-case causal inference
of cases contained in the regularity. It is the combination that generates valid
causal generalizations (Goertz & Haggard, 2022, p. 5)

Unlike other qualitative studies, in which only a few cases in a population of interest
are analyzed, LNQA is revolutionary since it seeks evidence for its causal hypotheses
in case studies of all or most of the cases in the population of interest. Such case
study research often takes the form of process-tracing (cf. Beach & Pedersen, 2013;
Bennett, 2010; Bennett & Checkel, 2015; Collier, 2011; Crasnow, 2017; Hall, 2013),
in which a researcher looks for the observable implications of their own postulated
mechanism as well as the implications of other mechanisms in the literature, in order
to judge which mechanism was actually present in the case. LNQA researchers use
process-tracing in each of the cases in the population separately.

Since ideally all cases in the population of interest will be studied and process-
tracing is a labor-intensive method, LNQA is mainly used when there are few cases in
the population. Thus, LNQA is used amongst others in the study of rare events, where
such a comprehensive look at the relevant population is practically feasible. Rare
events are events which are only said to occur when a complex set of criteria is met,
and which as a result have only occurred a few dozen times in (modern) history. For
political science, Goertz and Haggard name democratic transitions, coups, civil wars,
and social revolutions. For international relations, they mention wars, acquisition of
nuclearweapons, and shifts in hegemonic order. The large-Nnature of LNQAcontrasts
clearly with other qualitative case study approaches, which may focus on only one

Footnote 5 continued
define the term “causal mechanism” but who use it to denote the means through which the putative cause
has produced the effect of interest.
6 Goertz and Haggard’s notion of ‘regularity’ is therefore not Humean, despite the authors’ own linking of
the term to constant conjunction. For them, a regularity “is simply the share of cases that appear to conform
with the generalization” (Goertz & Haggard, 2022, p. 5).
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or a handful of individual cases, e.g. only on the ceasefire between Turkey, Greece,
and Britain in July of 1974 rather than all ceasefire agreements since the 1940s. If
only one or a handful of cases were to be used to support general conclusions, this
would bring up the problems of generalization outlined in the introduction, including
selection bias and lack of representativeness. So, in short, LNQA is an answer to the
problems of generalization by virtue of its comprehensiveness.

Here, it is important to note a limitation to this solution to the problem of generaliza-
tion. At first glance, we may be tempted to describe the general causal claims aimed at
in LNQA as type causation, i.e. as causal claims in which the causal relata are generic,
not referring to any particular case. Ellery Eells, for example, describes type causation
as “a relation between event types, or factors, or properties” (Eells, 1991, p. 6), and
distinguishes type causation from token causation, which is “a relation between par-
ticular, actually occurring, token events” (Eells, 1991, p. 6). Christopher Hitchcock
suggest we can also distinguish the two by describing type causation as “concerned
with a full range of possibilities, whereas [token] causation is concerned with how
events actually play out in a specific case” (Hitchcock, 2018, Sect. 1.4).

However we construe it, a type-token interpretation of LNQA’s general causal
claims is problematic. LNQA is aimed at establishing causal claims at the level of
an existing, predefined population of cases, and as such its causal claims should be
seen as unit-population generalizations. Unlike type-token generalizations, LNQA
generalizations do not inherently allow for extrapolation beyond the population of
existing cases to the ‘full range of possibilities’, i.e. all potential (future) instances
and contexts. So, for example, while a LNQA study may corroborate a general causal
claim about the set of all cease-fire agreements since 1940, it does not necessarily
corroborate causal claims about potential future cease-fire agreements.

While this is indeed a limitation, LNQA methodologists acknowledge it as such.
Goertz andHaggard, for instance, claim to be “interested in themore practical question
of the empirical scope” (Goertz & Haggard, 2022, p. 9), i.e. the set of actual cases
that will be investigated. In preparing the research, some factors or variables are
introduced to define this scope. The underlying assumption is that one circumscribes
the scope in this way because these factors are what enables the mechanism. In other
words, changing any of these variables might invalidate or inhibit the postulated causal
mechanism from working.

Goertz and Haggard describe multiple options which may limit the scope of LNQA
research, e.g. by “considering tails of distributions, by conceptual engineering, or
through (…) choosing samples not on [the putative cause X or effect of interest Y ] but
by other parameters—such as region—that will of necessity limit cases” (Goertz &
Haggard, 2022, p. 14). From this, we may conclude that limiting the scope is at once
a practical issue (given that process tracing is so labor intensive) but also a judgement
call about the possible enabling conditions of the causal mechanism. I will come back
to thematter of scope in Sect. 3. It is worth stressing, however, that the scope as defined
by LNQA researchers often does not coincide with what a statistician would normally
call the population of cases. The latter refers to all the cases in a statistical data set
regardless of the values of X and Y , of which the empirical scope of LNQA will be a
subset.
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2.2 Multi-method LNQA

So far, we have seen that the stand-alone use of LNQA is aimed at establishing general
causal claims, based on comprehensive case study research of all the cases in the
population.We have also seen that this type of general causal claim is best seen as unit-
population generalization, rather than as type-token generalization. In this section, I
will show how the stand-alone method of LNQA is combined with statistical research
in multi-method LNQA and illustrate the method using several examples from the
literature.

Multi-method LNQA combines LNQA case study research with statistical anal-
ysis in at least two important ways, thereby making multi-method LNQA part of
mixed method research. Firstly, the case study work can be used to falsify a general
hypothesis generated by the statistical analysis, as happens when no evidence can be
found that there is an underlying pathway connecting cause and effect, despite cor-
relational evidence. This is what Goertz dubs ‘large-N qualitative testing’ (Goertz,
2017). Secondly, the case study work can be used to verify statistical analysis. In the
latter, more positive case, multi-method LNQA combines evidence of statistical reg-
ularities with evidence of causal mechanisms from the start. This second variant of
multi-method LNQA therefore seemingly fits well with evidential pluralist arguments
like the Russo-Williamson Thesis.

Like stand-alone LNQA, the positive variant of multi-method LNQA starts from a
hypothesized generalization about the causal relation between a causal variable X and
effect Y for some population of interest. For the simplest scenario, in which X and
Y are either present or absent in any given case (i.e. in which X � 0 or X � 1 and
Y � 0 orY � 1), multi-method LNQA proceeds as follows. After a statistical dataset
is created for some population of interest, the ‘average treatment effect’ between X
and Y is estimated, i.e. the difference between unit-level outcomes Y in the presence
or absence of the causeX , averaged over an entire population of interest.7 Should the
average treatment effect between X and Y prove statistically significant, the researcher
turns to special subsets of the total statistical population, most often to the cases in
which both X and Y are present (i.e. X � 1 andY � 1, the (1,1) cell). They then
perform process-tracing of the postulated causal mechanism in all these cases.8

2.2.1 Examples of multi-method LNQA

Page Fortna’s peace time Now that we have seen what multi-method LNQA
involves, consider an early example of this research, Page Fortna’s study of the relation

7 For a recent overview of how modern research designs in political science estimate the average treatment
effect, as well as these designs’ underlying assumptions, see Keele (2015). For more details, see Sect. 3.2.2
below.
8 While for the (1,1) cell the focus is thus on cases where cause, mechanism, and effect are present, this can
be combined with other analyses as well. For example, Goertz argues, one could investigate equifinality and
the importance of one’s hypothesized mechanism versus alternative causal mechanisms in the literature by
also studying cases where the effect is present (Y � 1) but the cause and/or mechanism are not (X � 0).
Furthermore, one could attempt to find cases where the cause and mechanism were present (X � 1) but the
effect remained absent (Y � 0), in order to find out whether the causal mechanism always operates or not.
See Tables 2 and 4 in Goertz and Haggard (2022) for further visualization of these options.
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between cease-fire agreements and the duration of peace (Fortna, 2004). As Goertz
and Haggard point out, this study seems to be the first to use the term LNQA (Goertz &
Haggard, 2022, p. 3). Fortna’s statistical analysis is based on a duration model, which
estimates the effects of the content of cease-fire agreements (independent variables
for e.g., whether forces must withdraw, whether demilitarized zones are put in place,
whether there is some form of arms control) on the length of peace (the dependent
variable). Fortna’s statistical analysis and case study research both cover the same
set of forty-eight cease-fire agreements and fifteen follow-up agreements (where an
earlier agreement was significantly changed) in the period between 1946 and 1998.
Fortna argues that this set provides “a comprehensive survey of a population of cases,
giving the big picture, indicating general patterns and tendencies, and providing infor-
mation on whether particular cases are typical or unusual” (Fortna, 2004, p. 41). She
welcomes the addition of case study analysis because, she claims, it allows her to
include all relevant details about the idiosyncratic cases under study: “[r]educing an
issue as complex as why peace lasted or fell apart to a series of numbers for quantita-
tive research entails the loss of much information, information that can be employed
in qualitative analysis” (Fortna, 2004, p. 42).

2.2.2 Stephan Haggard and Robert Kaufman’s Dictators and Democrats

As a second example, consider Stephan Haggard and Robert Kaufman’s 2016 book
Dictators and Democrats (Haggard & Kaufman, 2016), which uses multi-method
LNQA to investigate which causal mechanisms played a role in democratic transitions
and reversals during the third wave of democracy (which started in the mid-seventies),
using a combination of statistical analysis (with a mixed effects logistic regression
model) and process-tracing. While Haggard and Kaufman did not use the term LNQA
in their book, I include this study here since Goertz and Haggard mention it as an
example in their analysis.

Amongst others, in Haggard and Kaufman’s study of so-called ‘distributive conflict
transitions’,9 the authors test whether there is a relation between the level of inequality
in a state (measured using the Gini coefficient for income inequality) and the proba-
bility of a democratic transition. Haggard and Kaufman perform a logistic regression
analysis of the relationship for the entire population, and then use process-tracing
in case studies of distributive conflict transitions, tracing their own proposed causal
mechanism (density of social organization) and rejecting alternative mechanisms in
the literature. In their process-tracing analysis, the authors consider a subset of the
entire population: they select on the dependent variable and consider all distributive
conflict cases, i.e. all caseswhere the effect of interest (a distributive conflict transition)
is present. They cover 52 cases altogether (Haggard & Kaufman, 2016, p. 103).

I have included both Fortna and Haggard and Kaufman’s research projects here
since they will prove simple examples of some the overall advantages and disadvan-
tages of multi-method LNQA. However, both research projects, though they combine

9 A distributive conflict transition is a transition to a democratic system of government in which eco-
nomically disadvantaged groups have mobilized, demanding redistribution and threatening the continuing
rule by the current authoritarian incumbents, and in which incumbents are ousted or forced to concede to
democratic elections.
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statistical analysis with a purportedly comprehensive case study analysis, may not be
the most representative example of current best practice in multi-method LNQA. The
main reason these projects are not as representative is that the work covers over fifty
cases, arguably too many to conduct thorough enough process-tracing analysis. On
the other hand, as Goertz and Haggard point out, this also depends on the level of
complexity of the causal mechanism involved; Haggard and Kaufman’s hypothesized
causal mechanism is “relatively spare” (Goertz & Haggard, 2022, p. 15). I will come
back to this issue in the conclusion.

2.2.3 Dale Copeland’s economic interdependence and war

Dale Copeland’s work Economic Interdependence and War (2015) is a recent example
of multi-method large-N qualitative analysis with a lower number of cases. Copeland
studies the relationship between economic interdependence between states (e.g., in
the form of trade) and the probability of military conflict (such as war) between those
same states. Copeland’s own theory, ‘trade expectations theory’, argues in short that
the expectations a state has of potential future trade with other states play a key
role in linking economic interdependence and conflict between those states. Research
on the relation between trade and conflict has traditionally been purely quantitative.
Copeland, however, focuses on in-depth case study analysis to supplement earlier
statistical results because, he argues, “causal mechanisms that lead to peace or war
will be inadequately understood if [quantitative methods] [are] our sole or primary
methodology, given that quantitative methods are inherently about correlations and
associations between variables rather than causality per se.” (Copeland, 2015, p. 51).

Copelandprovides case studies of all serious great power conflict since1790, includ-
ing war and crises that made war more likely but eventually dissolved. This comes to
a total of forty cases. Using these forty case studies, Copeland aims to investigate the
salience of the trade expectations theory’s mechanisms versus the salience of mech-
anisms posed by competing theories. Copeland concludes that in thirty of the forty
total cases, economic interdependence played a role (X � 1) and that out of those
cases, a further twenty-six show evidence of the mechanisms postulated in his trade
expectations theory. This evidence consists of causal process observations, including
observations of the extent to which trade expectations were part of political leaders’
deliberations during periods of conflict or near-conflict.

2.3 Assumptions in LNQA

Now that we have seen both a theoretical description of the method and several exam-
ples of the multi-method LNQA research, I will finish this section by turning to two
important assumptions which all examples described above (Fortna, Haggard and
Kaufman, and Copeland) arguably share: the conceptual monism assumption and the
epistemic reliability assumption.
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2.3.1 Conceptual monism

Firstly, all researchers discussed above implicitly assume that the evidence of statis-
tical regularities and the evidence of causal mechanisms in case studies both support
conclusions about the same causal concept.10 Sharon Crasnow has made clear that this
conceptual monism assumption underlies mixed method research in political science
more generally. Mixed method researchers believe that combining different methods
is valuable since this may serve as a kind of triangulation11:

We might generate statistical evidence of causal connection through multiple
regression analysis, a core statistical technique in political science research, but
a case study that traced a causal process or identified a causal mechanism would
make us more confident that we had indeed established a cause. (…) The idea is
that the statistical work and the case study research are methods that support the
conclusion about the same causal connections (Crasnow, 2010, p. 37, emphasis
added)

For example, Haggard and Kaufman in their study of distributive conflict transitions
assume that their logistical regression and subsequent process tracing case studies both
test the same general causal connection, viz. that between inequality and democrati-
zation in (all) distributive conflict cases.

Copeland’s case is admittedly less clear-cut. Copeland argues that correlations and
associations are not about “causality per se” (Copeland, 2015, p. 51). However, he does
intend to test previously hypothesized correlations and associations between economic
interdependence and conflict, including those postulated by liberal and realist theory.
As evidence of this, in later work Copeland has argued that “quantitative research (…)
provide[s] a useful ‘first cut’ test of the possible explanatory value of trade expecta-
tions theory” (Copeland, 2017b, p. 34). Therefore, I believe that Copeland’s approach
reasonably falls under conceptual monism as well.12

Conceptual monism is opposed to ‘causal pluralism’ (sometimes ‘conceptual plu-
ralism’), that is, the view that “every evidential method define[s] its own concept (…)
[and that] when moving from method to method we would in fact change the hypoth-

10 There is a subtle question worth exploring here, namely to what extent this assumption is metaphysical
versus epistemic for LNQA researchers andmethodologists.Williamson has described his view of causation
as purely epistemic, and in hismore recentwork describes evidential pluralism as “a thesis about establishing
and assessing causality, not an analysis of the concept of cause nor a claim about the metaphysical nature
of causality” (Shan & Williamson, 2021, pp. 4–5). Further analysis of this question is beyond the scope of
this paper.
11 For completeness, it is worth noting two things. Firstly, triangulation is only one of several possible
motivations for mixed methods research in political science. For an overview of some of the alternative
literature, see Brookes (2017). Alternative approaches are beyond the scope of this article, as they are more
dissimilar to multi-method LNQA. Secondly, LNQA is far from the only mixed-method approach that
aims at triangulation. For example, ‘Causal-Oriented Mixed-Methods Research’ or CMMR “uses large-N
analysis to establish a robust relationship between [putative cause] X and [effect of interest] Y and detailed
process-tracing case studies to probe the X/Y relationship in specific settings” (Barnes & Weller, 2017,
p. 1019). As already highlighted, however, unlike CMMR multi-method LNQA coves all relevant cases
within some scope of interest.
12 For a helpful situating of Copeland’s assumptions about causation in the wider international relations
literature, see also Büthe (2017).
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esis to be tested” (Reiss, 2009, p. 28). Crasnow has argued against this interpretation
of mixed method research, showing that in many political science examples, diverse
evidence corroborates the same causal claim in mutually supportive ways (Crasnow,
2010). The role of case study analysis in mixed method research, Crasnow argues, is
to provide contextual details which the statistical results lack, i.e. “case study research
methodology develops attention to and respect for specific circumstances and thus
an awareness of relevant differences (the extent to which a general theory may not
pertain) as well as relevant similarities (the extent to which it does)” (Crasnow, 2010,
p. 47).13

In what follows, I will criticize the conceptual monism assumption, finding that the
relevant differences and similarities found by process tracing will, in many instances,
support a conclusion about a different type of causal claim than the statistical evidence,
namely a ‘mechanistic generality claim’. This consideration is not a part of Crasnow’s
defense of causalmonism formixedmethod research. Iwill comeback to the feasibility
of this first assumption in Sect. 3.

2.3.2 Epistemic reliability

The second key assumption in multi-method LNQA is that the pieces of evidence
gathered of statistical regularities and of mechanisms can both reasonably reliably
give the researcher knowledge about causal relations in the evidential context of the
study.14 In other words, they must assume there are no factors which complicate the
use of either process-tracing evidence or statistical evidence for testing general causal
claims.

For example, Haggard and Kaufman assume that a mixed effects logistic regression
model is suitable for examining the general causal connection between inequality and
democratization across different countries (see Haggard & Kaufman, 2016, pp. 69–73
and 90–95 for some of the relevant considerations). Moreover, they assume that the
causal process observations they conduct are also informative of this causal connection.
For example, they assume that the process-tracing they perform on the historical
events that occurred in Argentina between the military’s seize of power in 1976 to the
organization of democratic elections in 1983, provides reliable evidence for the causal
connection between inequality and democratization as well.

13 Goertz and Haggard state explicitly that they “do not take a position on causal pluralism” (Goertz
& Haggard, 2022, p. 7). However, given that they argue for a combination of “regularity and mechanistic
approaches” (Goertz&Haggard, 2022, p. 8) (for LNQA) and “statistical aswell as regularity andmechanism
approaches” (Goertz & Haggard, 2022, p. 8) (for multi-method LNQA), we may argue that they must be
committed to causalmonism: the statisticalwork, regularities, andmechanismsmust all support a conclusion
about the same causal connection. Note, however, that since regularities in and of themselves are only a
report of the percentage of cases which fit a certain pattern, arguably they are not linked to any causal claim.
I will therefore limit myself to evaluating the feasibility of causal monism behind combining statistical and
mechanistic evidence.
14 To assume that both methods are reliable in the same evidential context is not obvious. As Shan (2022)
discusses, assumptions underlying mixed methods research vary wildly depending on one’s philosophical
position. For example, pragmatists argue that researchers are free to choose whichever methods are the best
fit for their research aims and context. Yet this position is arguably compatible with the view that statistical
methods and qualitative (mechanism-based) methods are both valuable but for different aims and evidential
contexts.
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Aswith the first assumption, Iwill argue below that checkingwhether this reliability
assumption holds requires a further study of what, exactly, is meant by a general
causal claim in political science and international relations. This deserves careful
attention, because individual entities inLNQA(viz., the different cases in the particular
population under study)may bemarkedly different from one another. This complicates
comparisons and thereby leads back to the problem of generalization that LNQA
researchers aimed to solve.

In the next section, I will describe and analyze the narrow ‘mechanistic generality’
approach to general causal claims that researchers usingLNQAassume. Iwill compare
this definition with a parallel discussion in philosophy of causation, Dan Hausman’s
distinction between average treatment effects and other types of general causal claims.
Using this theoretical analysis, I will then argue that in fact only standalone LNQA
is reliable for testing general causal claims, given the narrow mechanistic definition
of generality employed by researchers using multi-method LNQA. I will thereby
cast doubt on both the conceptual monism assumption and the epistemic reliability
assumption.

3 General causal claims in political science and international relations

So far, I have shown that multi-method LNQA is a unique way to solve the problem
of generalization, based on both a comprehensive process tracing study of all cases
within a (usually heterogeneous) empirical scope of interest and a statistical analysis
of the wider population. I have argued that multi-method LNQA methodologists and
researchers assume that the statistical analysis and case study analysis both provide
evidence of the same underlying general causal claim. In this section, I will link multi-
methodLNQAresearchers andmethodologists’ interpretation ofwhat ‘general’means
with theoretical concepts from philosophy of causation, following Dan Hausman’s
analysis of type-level causation and average treatment effects. I conclude that LNQA
‘mechanistic generality’ claims, found at the level of individual case studies, provide
much richer information than statistical claims. Therefore, if and when the LNQA
research step has been performed thoroughly and convincingly, the statistical research
step is superfluous at best.

3.1 Mechanistic generality

We have already seen some evidence in Sect. 2 that type causation does not neatly fit
with the type of generality that LNQA methodologists like Goertz and Haggard have
in mind. Goertz and Haggard state that the generalizations they aim at contain two
important components: a “hypothesized causal regularity between X and Y and a pro-
posed causal mechanism” (Goertz & Haggard, 2022, p. 10). The hypothesized causal
regularities stem, as stated in Sect. 2.2, from an observed statistically significant aver-
age treatment effect within some population. Regularities, however, are only part of
the story; the second component, the causal mechanism, is more crucial to the author’s
notion of generalization. Goertz and Haggard argue that “the qualitative component
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of the method is clearly its labor-intensive core” (Goertz & Haggard, 2022, p. 16) and
state that a significant average treatment effect in itself “does not establish a causal
relationship (…). The causal generalization is established through the within-case
causal inference, which in turn is organized around a number of further casual mecha-
nism claims linking [themechanism] to [the effect].” (Goertz &Haggard, 2022, p. 19).
Themotivation for mechanistic generalization, rather than an average treatment effect,
seems to be that the multi-method LNQA proponents believe evidence of mechanisms
is necessary for causal inference in the social sciences, since as Goertz argues “[i]f
one cannot produce convincing case studies showing the causal mechanism in action,
it is hard to find the statistical analyses convincing at all” (Goertz, 2017, p. 215). So, in
short, Goertz and Haggard’s general causal claims seem to be a kind of ‘summing up’
of all the causal mechanism claims connecting X and Y in the individual case studies.
To them, making a general causal claim means that the same causal mechanism is
behind the causal relation between X and Y in all the cases in the population where
X � 1 and Y � 1.15 Let us call this mechanistic generality.

Crucially, themulti-methodLNQAresearchers introduced inSect. 2.2 (Fortna,Hag-
gard and Kaufman, and Copeland) also consider the causal mechanisms they uncover
to be essentially different from statistical constructs like interaction terms. Copeland,
for example, admits that statistical research into the relation between economic inter-
dependence and conflict has become increasingly sophisticated. The inclusion of
interaction terms in later quantitative models meant that these models were able
to specify particular properties of states (e.g., domestic variables) which helped or
hindered economic interdependence’s impact on the chances for peace. However,
Copeland argues that these quantitative models, while more complex, are not infor-
mative enough by themselves: “quantitative findings, in and of themselves, are merely
suggestive correlations; they cannot tell us anything directly about the causal mecha-
nisms underlying the correlations.” (Copeland, 2015, p. 60) Copeland is not interested
in such correlations alone, and argues that:

Our common scholarly goal must be this: to discover a plausible interpretation
that covers asmanyof the findings as possible. In short,which of the causal expla-
nationsmakes themost sense of all the diverse quantitative evidence? (Copeland,
2015, p. 60)

So, multi-method LNQA researchers require case study research precisely because
they consider statistical research alone (even when it includes sophisticated tools
like interaction terms) inadequate evidence for mechanistic generality. However, the
emphasis on mechanistic generality speaks to more than just the weakness of corre-
lational, average effect results in supporting causal claims. In the next section, I will
argue that mechanistic generality and the average treatment effect are fundamentally
different concepts.

15 Note, here, that LNQA does not require that this subset of cases is otherwise homogeneous. There may
exist various heterogeneous variables within the subset, as long as these variables do not influence the causal
mechanism and so are in a sense irrelevant to the analysis. I will come back to this in Sect. 3.2.1.
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3.2 Mechanistic generality versus average treatment effects

So far, I have argued that in LNQA, researchers do not aim for an average treatment
effect claim. Rather, LNQA researchers combine information of each specific case in
the empirical scope of interest into a ‘mechanistic generality’ claim, i.e. they claim
that the same causal mechanism is behind the causal relation between X and Y in
all the cases that fall under certain scope conditions (e.g., all instances of some rare
event). This distinction, between average effects and mechanistic generality, has some
support in the theoretical literature in the form of Dan Hausman’s philosophical anal-
ysis of causal generalizations in the special sciences (Hausman, 2010). In this section,
I will first make the theoretical, philosophical case for the distinction between average
effects and mechanistic generality. Then, I will use the distinction to stress that statis-
tical evidence is superfluous at best in supporting mechanistic generality. By drawing
this conclusion, I strongly question the evidential pluralist position that one must
demonstrate the existence of both a correlation and a mechanism complex in order to
establish a causal claim. I cast doubt on both the conceptual monism assumption and
epistemic reliability assumption from Sect. 2.

To further analyze the distinctionbetween average treatment effects andmechanistic
generality, first note that many putative causes X in political science and international
relations are not sufficient for the effect of interest Y . The putative cause can only
lead to the effect of interest if the circumstances are right, viz., if some set of required
background conditions are present. This is why, in the set-up of an LNQA study,
researchers must describe the factors they are using to define the empirical scope. In
more complex scenarios, X may be part of a set of INUS conditions, where the putative
cause X is an insufficient, but necessary part of an unnecessary but sufficient condition
for the effect of interest Y .16 In LNQA, the conditions that defined the empirical scope
may be other elements in the set of INUS conditions besides X itself. Problematically,
which background factors play a role in the X − Y relation may be unknown. In other
words, we may not be aware of all sets of background conditions under which X will
be a cause of Y .

3.2.1 The contextual unanimity condition

Dan Hausman (Hausman, 2010) evaluates solutions to the above problem of unknown
background conditions from the philosophical literature. In the philosophyof causation
for the special sciences, he argues, the most common response to such complexity
has been to introduce a theory of probabilistic causality. In this probabilistic theory
the problem of unknown background conditions is fixed by maintaining that “C is a
positive cause of E (in some population P) if and only ifC increases the probability of
E in every causally homogeneous background circumstance in P” (Hausman, 2010,

16 In some scenarios, there is no equifinality (no other possible causes that may bring about Y ). Therefore,
in these simple scenarios we are not dealing with INUS conditions. Arguably, this is the case in what Goertz
and Haggard call ‘Y regularities’, which take the form of “if Y � 1 then X � 1” (making X a necessary
condition for Y ). However, the background conditions will still need to be just right for X to affect Y and so
most of the considerations that will follow below still apply. Thanks to an anonymous reviewer for pointing
out this subtlety.
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p. 53). Hausman points out two key reasons for imposing this ‘contextual unanimity
condition’ relevant for the argument in this article. Firstly, the condition “is the easiest
way to avoid relativizing causation to particular contexts” (Hausman, 2010, p. 53),
since under this definition there are no contexts in which C does not increase the
probability of E . Secondly, this condition is “an attempt to evade the irregularity of
causal generalizations” (Hausman, 2010, p. 54), given that the causally homogeneous
background contexts are often not known, and it may not be possible to judge which
of the different possible background contexts apply to a particular individual or case.

To give an example, for Fortna the contextual unanimity condition would imply that
the probability of a long peace should be increased by the instatement of a demilitarized
zone in all causally homogeneous background conditions: in any situation with the
same level of monitoring by a third party, arms control measures, confidence-building
measures, etc. This, the proponents of the contextual unanimity conditionwouldmain-
tain, helps us avoid relativizing the causal claim that demilitarized zones increase the
probability of long peace to background conditions.Moreover, wewould evade having
to specify which homogeneous background condition any given cease-fire agreement
is a part of, glossing over such individual idiosyncrasies.

However, as we clearly see in the Fortna example, and as Hausman himself argues,
the contextual unanimity condition is likely too strong for the special sciences:

C can be a cause of E even though its bearing on E differs in different causally
homogeneous circumstances. To interpret the causal generalization ‘C causes E
in population P’ as maintaining that C increases the probability of E in every
homogeneous circumstance in this population implies that causal generalizations
are almost all false or else have such narrow or unclear scope as to be useless
(Hausman, 2010, p. 55).

For example, if Fortnawere tomake the causal generalization that ‘demilitarized zones
cause a longer duration of peace in the ceasefire agreements drawn up since 1946’, we
should not take this to mean that demilitarized zones have this effect on peace in all
the ceasefire agreements drawn up. In some cases, for example, other putative causes
may trump any effect of a ceasefire agreement.

Similarly, Copeland argues that trade expectations are causally related to conflict
in the population of forty cases he has studied, but argues that “trade expectations
may be playing an important causal role within different [INUS] bundles that lead to
war or to the ending of cold war, even if [trade expectations are] not implicated in all
[INUS] bundles that do so” (Copeland, 2017a, p. 49). In both the Fortna and Copeland
example, insisting on the contextual unanimity condition would lose sight of the other
factors that are causally relevant. In general, there will most likely be a great deal of
variation on causal variables within a given population under study in multi-method
LNQA, making the contextual unanimity condition a poor solution.
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3.2.2 The average effect theory

Hausman himself supports a different solution to the problem of unknown background
conditions, the ‘average effect’ theory.17 In this theory, X is a cause of Y iff, when one
holds fixed the frequencies of all the other background factors relevant to Y (apart from
X and its effects) at their frequency in population P , there is a significant difference in
average outcomes Y between cases where X � 0 and cases where X � 1. Hausman’s
average effect theory is a relevant alternative to the contextual unanimity condition
since the average effect can be calculated without strong homogeneity assumptions.
Modern statistical research designs based around the average treatment effect do not
require information about each individual in the population(cf. Keele, 2015). Rather,
the average effect serves as guidance, Hausman argues, which “is needed when the
details concerning the contexts are not known” (Hausman, 2010, p. 57). He contin-
ues that the average effect theory can provide advice in particular cases even when
researchers do not know which homogeneous context is relevant to that case: “one
has to generalize across contexts in which the effects of causal factors are not uni-
form” (Hausman, 2010, p. 57). Such generalizations are therefore practical tools for
Hausman, and not the endpoint of research.

The average effect theory, then, is intended as a practical solution to the problem of
unknownbackground conditions.Hausman shows clearly that the average effect theory
is not useful for causal generalization when sufficient information on the background
conditions of each specific case in the population is available. “Of course, if one knew
what the causally homogeneous circumstances were, the role of the causal factor in
each of those circumstances, and which circumstances individuals were in, then there
wouldn’t be any need to do any averaging.” (Hausman, 2010, p. 55) In those cases,
constructing the average treatment effect using statistical inferences or randomized
experiments would mean ‘losing information’ from case studies.18

The limitations which Hausman outlines for his average effect theory are equally
applicable to the average effect condition inmulti-method LNQA.However, it is worth
noting that Hausman’s discussion of average effect theory is not a methodological,
statistical approach, but rather a philosophical argument about the advantages and dis-
advantages of the probabilistic theory of causality for the special sciences. Hausman’s
work is an answer to the question of how one may best support a causal claim in the
special sciences and as such, his discussion of the concrete methods for estimating the
average treatment effect is limited.19 However, for purposes of this essay, Hausman’s

17 See also the work of John Dupré (Dupré, 1984).
18 This is akin to Fortna’s claim, cited in Sect. 2.2.1, that “[r]educing an issue as complex as why peace
lasted or fell apart to a series of numbers for quantitative research entails the loss of much information,
information that can be employed in qualitative analysis” (Fortna, 2004, p. 42).
19 A readermore concernedwith concretemethods can draw on an extensive literature in statistical method-
ology (cf. Imbens, 2004; Keele, 2015; Morgan & Winship, 2015). Of particular interest is this literature’s
approach to ‘identification assumptions’, i.e. the assumptions under which a statistical estimate like the
ATE can be given a causal interpretation (Keele, 2015, p. 314). This literature, too, concerns itself with
heterogeneity of causal relationships. Morgan and Winship, for example, point out that “quantities such as
the ATE should not be assumed to be equal to the individual-level causal effect for any individual [case].
(…) [W]hen individual-level heterogeneity of causal effects is present, individual-level causal effects (…)
will not all be equal to the average of these individual level effects.” (Morgan & Winship, 2015, p. 47).
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global conclusion is both defensible and relevant: the average effect is not a useful
basis for making a general causal claim if the circumstances of each specific individual
in the population are known.

Hausman’s analysis supports my earlier argument that the average treatment effect
is not the kind of generalizability which the multi-method LNQA researchers and
methodologists under discussion in this article are after. In LNQA, information of each
specific case is available. After all, the revolutionary contribution of the LNQAmethod
is to check all occurrences of the (rare) events under study. In those cases, Hausman
would urge us to forget about the average effect interpretation of causal generalizations,
as indeed Goertz and Haggard prescribe. In other words, if the qualitative case study
analysis step in multi-method LNQA indeed provides strong evidence that X causes
Y via a certain causal mechanism in all case studies where X � 1 and Y � 1, then
a population level average treatment effect would lose causal information. All the
evidential weight is on the individual case studies. It is only when we do not have
access to detailed knowledge of the individual cases that we need average effects.

3.2.3 Moving beyond average effects

So far, we have seen that while there is a need for average effect calculations in cases of
unknown background conditions, such as caseswhere the population of cases is simply
too large to find out in which circumstances each individual case is in, arguably once
we have conducted a thorough large-N qualitative analysis, average effect calculations
are extraneous. In themulti-method LNQA research of Fortna, Haggard andKaufman,
and Copeland, the researchers actively sought information of each specific case. After
all, the point was to thoroughly investigate all the case studies within the empirical
scope of interest. In those cases, I take it that Hausman would urge us to forget about
the average effect interpretation of causal generalizations. It is only when we do
not have access to detailed knowledge of the individual cases that we need average
effects. In sum, if LNQA results in causal knowledge about all case studies within
the scope of interest, this then makes the statistical results combined with LNQA
results in the multi-method approach superfluous at best. As a consequence, Shan
andWilliamson’s belief (mentioned in the introduction) that evidence of correlation is
somehow required in process-tracing appears false in this particular context.While it is
the case that evidence of correlation is established bymulti-methodLNQA researchers
and can inform the scope conditions for subsequent within-case analysis, this evidence
is redundant once the process-tracing step is completed.

To stress this point further, consider an example by Hausman of the negative effects
of using an average treatment effect when more information is available:

Generalizations about the average effects may (…) be badly misleading. For
example, if, contrary to fact, smoking lowered the risk of lung cancer in women
but increased it sufficiently amongmen that, on average, the risks over the whole

Footnote 19 continued
The statistical methodology literature also includes valuable discussions of how one may define a

population for statistical analysis, described as the choice for a particular ‘population model’ (cf. Morgan
&Winship, 2015, pp. 74–76). To what extent the particular population model chosen affects the discussion
in Hausman is beyond the scope of this article, but a relevant area for further (philosophical) research.
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population were higher among smokers than non-smokers, then, on the average
effect view, smoking causes lung cancer. But women seeking to avoid lung
cancer would of course be ill-advised to quit smoking. If this difference in the
average effect among men and among women were known, then the population-
wide generalization would be irrelevant. If the difference in the average effect
of smoking among men and among women were not known, then the surgeon
general’s announcement that smoking causes lung cancer, though true, would
lead women to make bad choices (Hausman, 2011, p. 230)

An equivalent scenario can be constructed using the Haggard and Kaufman study of
democratization. In this study, the average treatment effect is used to identify whether
medium inequality (rather than low or high inequality), as measured by the Gini coeffi-
cient, is a cause of democratization. There are other factors related to democratization;
at best, medium inequality is part of an INUS condition. If we did not know which
other factors in the population of countries were relevant, then the average effect could
be informative for policy purposes. However, the effect may be misleading about indi-
vidual countries, e.g., when we try to encourage democratization in a certain state
without knowing in detail which of the homogeneous background conditions apply to
this state. Were we in a situation (as LNQA intends) where the details of each member
of the population are known, then the average effect is not what political scientists
and international relations scholars (or policymakers) should be after. Focusing on the
average effect when individual mechanisms are known would be, as Fortna puts it,
‘throwing away information’, or even, as Hausman says, ‘misleading’.

3.2.4 The usefulness of statistical analysis

Before concluding this article, I wish to preempt one potential point of criticism. A
critic may ask whether my analysis is not too harsh about the usefulness of statistical
analysis. I have so far argued that statistical analysis cannot be reliably used to test
mechanistic generality claims, since statistical analysis is focused on the identification
of average effects instead. However, the critic may continue, is there not a clear role
for statistical analysis yet in generating useful hypotheses that the case study step
of multi-method LNQA can then test? Looking at the development of multi-method
LNQA, we can see that statistical analysis has indeed been used for this in the past.
As said in the introduction, there are two ways of combining statistical analysis with
LNQA. The first, ‘large-N qualitative testing’, is the use of LNQA to falsify a general
hypothesis generated by statistical analysis (cf. Goertz, 2017). In large-N qualitative
testing, process tracing adds further information about individual cases; it looks into
the potential causalmechanisms behind a statistical correlation. In doing so the average
effect and mechanistic generality claim come apart.

I will grant that statistical analysis has been useful in pointing out ‘where to look’,
i.e. in informing how LNQA researchers may set the scope conditions for subsequent
process tracing analysis. However, this is arguably different from considering statis-
tical analysis as, in Copeland’s words in Sect. 2.4.1 above, ‘a useful first cut test’.
Specifically, using statistical analysis as a hypothesis-generating exercise does not
require the assumption that an average treatment effect claim and a mechanistic gen-
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erality claim support a conclusion about the same kind of general causal connections.
In the words of Sect. 2.3.1, we do not require the conceptual monism assumption.

The second way one may combine statistical analysis with LNQA is by using
case study work to verify some causal conclusion drawn from statistical analysis.20

Here, the aim is to combine evidence of statistical regularities with evidence of causal
mechanisms. Yet given that statistical research and process tracing establish differ-
ent concepts (an average treatment effect versus mechanistic generality), this way of
approaching multi-method LNQA is hard to defend. The statistical analysis may have
been useful in pointing out relevant areas of research, but that does not mean that
we may assume statistical analysis has any reliability for testing mechanistic general-
ity or even (as the Russo-Williamson thesis argues) that one must typically consider
statistical analysis when assessing a causal claim.

4 Conclusion

I started this article by noting that evidence of mechanisms is found at the level of
individual case studies, while difference-making claims are general.We have now seen
that, in fact, the type of general causal claim implied by difference-making (the average
treatment effect) is not what multi-method LNQA researchers are after. Instead, they
seekmechanistic generality, i.e. they require that the same causal mechanism connects
putative cause X and effect of interest Y in all or most of the cases in some relevant
population. So far, I have given clear reasons to doubt the use of statistical research for
testing mechanistic generality, based on the argument that average treatment effects
and mechanistic generality do not support a conclusion about the same kind of general
causal claim.

As such, we may conclude that evidential pluralism as defended by philosophers
like Russo, Shan, and Williamson and as followed by multi-method LNQA method-
ologists is flawed. Evidential pluralism only works when the evidence we collect of
mechanisms and difference-making speaks towards the same causal concept (i.e. con-
ceptual monism holds) and eachmethod is minimally epistemically reliable. However,
we have seen examples here in which these assumptions are untenable. I predict that
the conclusions in this article have further consequences for political science and inter-
national relations, given these disciplines’ often deal with an evidential context of a
highly heterogeneous populationwith relevant background factors, inwhich causes are
often not sufficient for their effects. In such a context, the average treatment effect does
not guarantee anything about individual case studies, nor does it support a conclusion
about mechanistic generality.

In this article, I have focused on the discrepancies between statistical claims and
mechanistic generality. However, I have not evaluated the epistemic reliability of case
study research for testing mechanistic generality. My argument so far has been that
if the qualitative analysis stage of multi-method LNQA is epistemically reliable, i.e.
results in causal knowledge about all case studies within the empirical scope, the

20 This approach is thereby arguably similar to an explanatory-sequential approach in general mixed meth-
ods research; cf. Edmonds and Kelly (2017).
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statistical step of multi-method LNQA is superfluous. However, I have glossed over
how likely it is that this antecedent is indeed true, i.e. how likely it is that the qualitative
analysis stage is reliable. As I discussed in Sect. 2.2, we may worry that some LNQA
projects are less likely to be valid, given how many cases they attempt to cover and
the level of complexity of the causal mechanism involved. The question of how the
number of case studies and complexity of themechanismnegatively impact the validity
of stand alone LNQA is beyond the scope of this article, but undoubtedly an important
topic for further research. Further important questions will include: do we have good
reasons to believe that individual cases of some rare event (e.g. those in the (1,1) cell)
have enough in common with one another to say that the same causal mechanism is
present in all or most of the cases, as mechanistic generality requires? How do the
known background factors, which will likely differ between case studies, interact with
a mechanism? Can these factors thwart mechanistic generalization?

Note that these issues require that we look beyond the epistemic reliability of
process-tracing for singular causal claims alone. The use of process-tracing evidence
for corroborating singular causal claims has already beenwidely discussed bymethod-
ologists and philosophers of social science alike (such as Bennett & Checkel, 2015;
Crasnow, 2017; Hall, 2013; Jacobs, 2016), who generally agree that process tracing is
reliable. However, the case study step of multi-method LNQA does not only require
the reliability of single case study analysis for singular causal claims, but also the
reliability of combinations of single case studies for general causal claims. In other
words, we may still ask if and under what circumstances one can fruitfully support
mechanistic generality with case study evidence.

There is one area where we can see more easily how case study research can
support amechanistic generality claim: single case study evidence canprovide negative
evidence towards a mechanistically general hypothesis. In the simplest scenario, when
no evidence of a causal mechanism under study is found in any of the case studies, this
will speak strongly against mechanistic generality. It makes clear that the same causal
mechanism does not lead to the same outcome in all or even most cases. We may say,
in other words, that process tracing evidence is “negatively reliable” for mechanistic
generality (cf. Runhardt, 2021).

To illustrate this negative reliability of case study research, consider Goertz’s exam-
ple of the statistical hypothesis by Mansfield and Snyder (2005), who found statistical
evidence that stateswhich are transitioning to amature democracy (e.g., from an autoc-
racy) while having weak institutions are more likely to fight wars with democracies
than states which are not transitioning (such as stable autocracies). This statistical gen-
eralization, an average treatment effect, was qualitatively tested by Narang and Nelson
(2009), who investigated all cases of states democratizing with weak institutions and
which fought international war. Narang and Nelson found only six such cases, all
of which took place before the First World War, and concluded that “the Mansfield
and Snyder causal mechanism has limited scope and is not very general” (Goertz,
2017, p. 197). This speaks strongly against the mechanistic generality of Mansfield
and Snyder’s work but does not call into question the average treatment effect they
found.

While the negative reliability of process tracing for mechanistic generality seems
more straightforward, its ‘positive reliability’ is less clear. Under what circumstances
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will individual cases within some empirical scope of interest support mechanistic gen-
erality? Typically, philosophers have approached this question as an issue of external
validity. Philosophers like Francesco Guala and Daniel Steel (cf. Guala, 2010; Steel,
2008) ask under what circumstances causal relations found in a test population can be
extrapolated to a target population. This is especially problematic when it is unclear
whether test and target population have sufficiently similar causal structures to make
comparison feasible. In other words, this literature is mainly concerned with cases
where (in Hausman’s terms from Sect. 3), information about causally homogeneous
backgrounds is missing. Yet this is arguably not an issue in the multi-method LNQA
work discussed in this article. As said above, we do not yet have a framework for how
known background factors, which will likely differ between case studies, interact with
a mechanism and potentially thwart mechanistic generalization. Therefore, further
research must be done into the comparability of mechanisms when such information
is available.21
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