
Synthese (2021) 199:14017–14033
https://doi.org/10.1007/s11229-021-03408-w

ORIG INAL RESEARCH

Action control, forward models and expected rewards:
representations in reinforcement learning

Anna-Mari Rusanen1 ·Otto Lappi1 · Jesse Kuokkanen1 · Jami Pekkanen1

Received: 1 June 2017 / Accepted: 7 September 2021 / Published online: 1 November 2021
© The Author(s) 2021

Abstract
The fundamental cognitive problem for active organisms is to decide what to do next in
a changing environment. In this article, we analyzemotor and action control in compu-
tational models that utilize reinforcement learning (RL) algorithms. In reinforcement
learning, action control is governed by an action selection policy that maximizes the
expected future reward in light of a predictive world model. In this paper we argue
that RL provides a way to explicate the so-called action-oriented views of cognitive
systems in representational terms.

Keywords Representation · Reinforcement learning · Action control · Radical
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“…I see the new leaves on the tree

soon they are dancing with the whirlwind.”

- Sonata Arctica, “Whirlwind”
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1 Introduction

The fundamental cognitive problem for active organisms is to decide what to do next
in changing environments. According to representationalists, neurocognitive systems
rely on representations when solving this problem. These internal model-like states
allow organisms to plan and control sequences of behavior.1 They enable adaptive,
flexible and goal-directed action.

According to critics, however, the appeal to representations distracts rather than
guides the research of cognitive phenomena (Chemero & Silberstein, 2008; Stepp
et al., 2011; van Gelder & Port, 1995). For some, the representationalist framework
is a result of a misinterpretation concerning what the experimental research actually
entails. And some, such as recent radical enactivists, argue there is no satisfactory
account of how contentful representational states drive action (Hutto & Myin, 2020).
Instead, enactivists demand, we should explain action in terms of reactivations and
re-enactments (Hutto & Myin, 2020).2

In their arguments, sensorimotor action control is typically taken as a paradigmatic
example of a non-representational phenomenon. For example, Myin and Hutto (2015,
p. 62) write “… acts of perceptual, motor, or perceptuomotor cognition—chasing and
grasping a swirling leaf—are directed towards worldly objects and states of affairs, or
aspects thereof, yet without representing them” (2015, p. 62). Cognitively, for a small
and simple creature, such as a fly with little inertia, short temporal delays and few
action choices, non-representational “reactivations” and “directedness” may suffice.
For a human-sized complex organism with multiple possible actions, they may not.

When a human grasps a swirling object, a cognitive systemmust integrate informa-
tion across multiple sensory sources (vision, touch, kinesthesia). It must also control
multiple effectors (eyes, limbs, posture) in a goal-directed, temporally organised and
purposeful way (Fiehler et al., 2019; Mischiati et al., 2015;Wolpert et al., 2011).3 Fur-
thermore, the environments where agents operate are constantly changing. To obtain
success in such circumstances, agents can’t rely only on actions that have been effec-
tive in the past. Instead, agents nust also explore options they have not tried before.
Thus, they anticipate, prepare and plan. This may require surprisingly sophisticated
cognitive synchronization, coordination and prediction abilities (Fiehler et al., 2019;
Hayhoe, 2017).

In this paper, we analyse how reinforcement learning (RL) is used to study action
control. RL is a computational framework in which the focus is on automating goal-
directed learning and decision-making.4 The heart of RL is an elegant and efficient
trial and error algorithm. Its goal is to learn an optimal action policy, which maximizes
the expected rewards in a given environment. The RL algorithm learns by exploring
the possible actions and by observing the consequences of them.

RL-based action control models are more sophisticated than, say, simple propor-
tional feedback models of the control theory from 1960s. Today, RL has an impressive

1 Craik (1943): Ryder 2009, Grush (1997, 2004), Egan (2014, 2020).
2 For discussion see Milkowski (2015), Zhao and Warren (2015).
3 See also Wolpert and Kawato (1998), Wolpert and Ghahramani (2000), Desmurget and Grafton (2000).
4 For a general account on RL-algorithm, see the work by Sutton and Barto (2018).
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range of successful applications in AI, robotics and cognitive sciences. It is deployed,
for example, in controlling the movements of robotic arms, navigating the routes in
autonomous vehicles, predicting stock markets and playing various games. In compu-
tational neuro- and cognitive sciences, the framework is used to study various forms
action and motor control, memory, decision-making and learning, and it is supported
by a growing number of empirical and theoretical evidence.5

Crucially, RL-based action control is typically given a representational interpre-
tation. It, however, differs from the portrait of representationalism drawn by recent
enactivists. In enactivistic arguments, the paradigmatic case of a cognitive represen-
tation is a “percept”, a sensory-like state that is used to “represent how things are with
theworld” (Hutto&Myin, 2020). The task of representations is to provide information
about the environment, to which they are connected via sensory contact (Hutto, 2015).

In RL, the goal of the algorithm is to detect opportunities for successful action, not
to construct descriptions of the world. The algorithm’s computational objective is to
learn the best possible action policy, in light of reward maximization. For doing so,
it utilizes representational states. These states, however, are not “percepts”.6 Instead,
they are goal-directed representations, which stand in for the estimated outcomes of
action. Thus, this framework challenges the enactivist presuppositions on what action
control representations are, and what they are used for.

2 Basics of reinforcement learning

Reinforcement learning (RL) is a computational framework, which focuses on
automating goal-directed learning and decision-making.7 Historically, RL is based
on the work of early behaviorists. Thorndike’s (1911) “Law of Effect” described
how reinforcing events (i.e., reward and punishment) affect the tendency to select
actions. For Pavlov (1927) and Skinner (1937), Thorndike’s law provided a scientif-
ically acceptable description for the mechanisms of conditioning. It offered a way to
remove suspicious mentalistic concepts from psychology and neurosciences.

Later, Turing proposed an overall architecture for a “pleasure-pain system” in com-
puters (Sutton&Barto, 2018). The actual formalisms ofRL algorithmwere formulated
in the 1970s and 1980s, when computer scientists found a way to combine Optimal
Control Theory, Temporal Difference Learning and Learning Automata.8 Over the
years, the approach has been developed further and complemented by a number of
technical and conceptual additions.9 As it stands, it is a family of efficient and sophis-
ticated learning algorithms, which are widely used in computational cognitive and
neurosciences, artificial intelligence and robotics.

5 For overviews, see Eichenbaum and Cohen (2004), Niv (2009), Gershman and Daw (2017), Hayhoe
(2017), Brea and Gerstner (2016).
6 Rick Grush (1997) would call these percepts as “presentations”.
7 Sutton and Barto (2018).
8 Sutton and Barto (2018).
9 Just to mention some common supplements: The RL-algorithms utilize, for example, Markov decision
processes (in the model-based RL), Q-learning (in the model-free RL), and Deep Neural Networks. For an
overview of techniques, Sutton and Barto (2018).

123



14020 Synthese (2021) 199:14017–14033

In the 1990s, when cognitive neuroscientists began to utilize RL to model higher
brain function, the initial “behavioristic” interpretation of reinforcement learning
changed (Niv, 2009). Namely, one of their key theoretical insights was the idea
that RL can be used to describe how neurocognitive systems learn by representing
value.10 Perhaps ironically, neuroscientists gave, thus, a thoroughly representational
reinterpretation for a framework that was originally intended to eliminate such con-
ceptualizations from the brain and behavioral sciences.

This reinterpretation of RL, however, does not fit well with recent enactivist views
on representations. In enactivistic arguments, the task of representations is to provide
information about the external environment (Hutto, 2015; Hutto &Myin, 2020). Rep-
resentations are states, which (should) tell how the world is. In RL, however, the goal
of the algorithm is not to detect the environment “in a correct way”, but to learn the
best possible action policy. That is, in RL, representations are goal-directed states.11

Their success is not assessed by “veridicality” but by reward maximization.
To see this more clearly, we must unpack some core concepts of RL and take a look

at a concrete example of a RL-based action planner.12 Before that, some words of
warning are in order. First, in this article we describe the algorithm in a simplified and
vernacular way. Second, the concepts—such as an agent, an environment, learning,
or rewards—are theoretical terms in computer sciences. They should not be confused
with their counterparts in everyday language. For example, an agent does not refer
to a whole organism, but a formal entity as specified in the formal description of the
algorithm. Likewise, an environment is not a synonymous with the physical, concrete
world around us. Instead, in RL “environment” denotes the so-called synthetic and
technical environment, the state space of the RL model. It is the formally specified
agent’s world in which the algorithm interacts.

2.1 Core concepts of reinforcement learning

Generally, in RL, an agent learns13 what to do by exploring the possible actions and
by observing the consequences of its actions. The agent is not told which actions to

10 One candidate for implementing this kind of predictive planning in the brain is the network linking
the parietal cortex, frontal cortex, and the striatum. The parietal, premotor, and prefrontal cortices are
most frequently reported as the areas activated in imagery of body movement as well as abstract cognitive
operations (Deiber et al., 1998; Hanakawa et al., 2003; Sawamura et al., 2002). In combination with their
interconnection with the cerebellum, those areas may store and update the predicted future states. The
connections from those cortical areas to the striatum could be used for evaluation of the predicted states
from hypothetical actions (Doya, 1999). A shortcut pathway from the cerebellum to the striatum through
thalamus (Hoshi et al., 2005) may also be used for linking the internal models in the cerebellum and the
value function in the striatum.
11 See Anderson (2005) for the distinction between detection and goal-directed representations. See also
Grush (1997) for a discussion on presentations and representations.
12 For the purposes of this paper, we present a simplified account of RL where rewards are tied to states.
Usually, the reward is associated with state-action pairs or state-action-next state tuples. However, this
distinction is not relevant for the discussion at hand. For a more technical description, see the work by
Sutton and Barto (1998, 2018).
13 In this paper, we don’t analyze learning itself but how a learned representation is used to control action.
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Fig. 1 The organization of a RL-algorithm

take. Instead, it must discover which actions yield the most reward in the long run by
trying them out (Fig. 1).14

The goal of a RL algorithm is to learn an optimal action policy that maximizes the
expected cumulative reward over time in a given environment. An action policy is,
roughly, a strategy that an agent uses in pursuit of its goals. The policy dictates the
actions that the agent takes as a function of (the agent’s estimate of) the current state.

To learn the optimal action policy, RL algorithmsmust come to “know” the expected
long-term cumulative reward, or value, of each state. Given estimates of each state’s
values and how actions affect state transition, the optimal action policy is to take the
action that, on average, leads to the highest value in the next state: at = argmaxa
P(st+1|st,a,M′)V(st+1).15

A reward r is, roughly, the measure by which the immediate success or failure of an
agent’s actions can be estimated. A reward is a simple scalar, which can be negative (a
punishment) or positive (a reward). Thus, a wide variety of entities can be described
in terms of rewards. For instance, a reward signal can refer to different trade-offs,
risk-seeking and risk aversing utilities, and many other combinations of objectives.

In RL, rewards are organism-dependent, and they are not properties of the physical
world. Technically, a reward function R(s) is “a property of the organism”, but the
observed rewards are completely determined by the environment, and are not directly
manipulable by the agent.16 In other words, the reward function is, in a technical sense,
“external” to the agent. The only way the agent can influence the rewards is through
its actions.17

14 There are different versions of RL algorithms. For overviews, see Kober et al. (2013), Sutton and Barto
(2018).
15 One-step prediction is sufficient for optimal behavior if the agent assumes that its value estimates per-
fectly reflect the environment. In practice and during learning, the value estimates are subject to uncertainty,
and the prediction can be extended to multiple-step planning by recursively predicting further states.
16 This prevents the agent fromupdating its reward signal—otherwise it could triviallymaximize the reward
by treating whatever happens as maximally rewarding. For adaptive behavior to emerge, the agent is not
allowed to do this.
17 Different agents may have different reward functions—one not more ‘veridical’ (or adaptive) than the
other—even when the physical world they live in is the same (or even if the state representation for them
is the same).
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The concept of value refers to the cumulative expected long-term reward.18 The
amount of such a reward is specified by the value function: The value V(s) of a state is
the expected future sum of a rewards (rt) observed at time t, and future rewards that are
typically discounted further in the future. The estimates of value take into account the
following states, the reward accrued in those states, and their respective probabilities.
For this reason, immediate high rewards do not always lead to maximal value. Or, a
state might yield a low reward but still have a high value, if it is followed by other,
high reward states.

2.2 Action planning in reinforcement learning

In the mainstream computational work on action, motor control is typically seen as
mappingmoment-by-moment control of movements in a simple motor task (e.g., hand
movements, when grasping a leaf). The control is based on internal inverse and forward
models (Miall &Wolpert, 1996;Weinsteiner &Botvinick, 2018;Wolpert et al., 1995).
Inverse models allow to determine themotor commands necessary to achieve a desired
state (for example, grasping a leaf), while forward models allow the system to predict
the expected sensory feedback of a motor command.19

When the dynamics of action selection is approached in terms of RL,20 the agent is
thought to take an action—for example reaching a leaf—according to its action policy.
The algorithm queries the modelM′ for a state-action pair (st, at), and, in turn, receives
the next state (st+1) and reward (rt+1).21 The algorithm receives a reward outcome in
the form of a signal, and updates its action policy.22 If the reward is positive, the
algorithm strengthens its action policy (say, a sequence of motor movements to reach
the leaf in a certain way). If the reward is negative, it weakens the policy (Fig. 2).

In contrast to many other computational approaches, in RL the algorithm does
not only estimate the immediate next actions (as motor commands as sequences of
physical movements), or focus only onwhat the expected sensory feedback (of amotor
command) might be. Instead, it attempts to find an optimal policy through learning
the values of actions at any state by estimating the expected future rewards. That is,
it anticipates the success of actions before taking them. At the same time, it is able
to estimate the success of the executed actions by receiving feedback in a form of
rewards and punishments.

This combination of exploration and exploitation allows the systems to act in amore
flexible, adaptive and proactive way. Moreover, these algorithms are able to respond
to changes in the environment in a relatively efficient way. If the environment changes,
the appropriate action becomes different. For instance, when the winter comes, instead

18 For more technical details, see Sutton and Barto (2018).
19 Typically the reaching dynamics is described as progressive adjustments of forward models to align the
current observations on the feedback (Berniker & Kording, 2009; Haith & Krakauer, 2013).
20 While in many other computational approach on motor processes the function of the forward model is
to predict the sensory consequences of motor commands, in RL the function of the forward model is to
predict the amount of reward.
21 Thomas and Barto (2012) describes, how a goal-conditioned policy can be learned using multiple motor
primitives.
22 This is known as the basic form of RL. For more details, see Sutton and Barto (2018).
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Fig. 2 Organization of value-based action selection in RL. At each timestep, the agent selects the action that
produces maximal expected value in the next step

of leaves, snowflakes will swirl in the wind. Cognitively, this impacts on the goals of
agent, too. The agent must be able to update its action policy, when necessary.

In RL, the algorithm can use a forward model M′ for updating (Doya, 2008). In
RL, forward models mimic the possible development of the environment, or more
generally, they allow inferences to be made about how the environment will develop
as a response to the agent’s actions (in light of its action policy). Moreover, if such a
forward model is available, with the so-called state transition rule P (new state|state,
action), the agent can perform a following inference: If I take an action (a) in my
current state (t), what is the next state (t + 1) I will end up in?

Technically, this planning and simulation procedure can be described as the maxi-
mization of the value up to a time T:

∑
T t = 0 rt + 1, where t indexes discrete time

steps up to some maximum T, and rt is the reward received at each step (Fig. 3).23,24

This allows that in RL, action planner systems are not limited to actions they’ve
found effective in the past. They can also estimate the success of options that they
have not tried before. Crucially, they are able evaluate which actions may yield the
maximal results in the future. Thus, planner systems are able to prepare for the future,
not only to learn from the past.

3 Action planner systems and representations

RL-based planner systems provide examples of how cognitive systems utilize goal-
directed representations. First, the estimations of value can be taken to represent the

23 Weinsteiner and Botvinick (2018).
24 This approach differs to the so-called one-step model described in the Fig. 2.
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Fig. 3 Forward models and planning in action planners

goals in terms of expected outcomes (for example, the estimated amount of a long-
term reward, if the agent grasps the leaf). Second, the action planners utilize forward
models. They stand in for the future states of the algorithm’s synthetic environment.
That is, in RL the forward models do not represent the entities in the real world (say,
hands grasping leaves), or the future trajectories of real world entities (say, the possible
future trajectories of hands grasping new leaves). Instead, they represent the predicted
states of the algorithm’s environment in light of its action policy.

3.1 Forwardmodels, synthetic environments and real world environments

In RL, the agent-environment construction is a part of the algorithm’s specification,
and the environment is literally a “synthetic” environment for the algorithm. Its content
is specified in terms of the RL formalisms.25 This synthetic environment can be seen as
a surrogate, an abstract and idealized world model, which substitutes the real external,
physical environment for the algorithm.26

In real-world tasks, however, the success of performance often requires a sufficient
correspondence between the synthetic environment and the external physical environ-
ment. To systematically select appropriate and successful policies, the action planner
system must take into account a significant number of external factors. For example,
if the goal of a robot hand is to pick up a leaf in a real environment, relevant factors
include the leaf’s location, size, and distance to the hand, among other things.

25 Grush (1997, 2004) provides a similar analysis in terms of emulators.
26 One should not confuse this kind of representational surrogacy with ontological, causal or constitutive
surrogacy. Something can ontologically or causally act as a surrogate for another thing without representing
it, and an item can represent something as a surrogate without substituting ontologically (e.g. a hologram
of Obi-Wan Kenobi as a surrogate of Obi-Wan in the Jedi high council).
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The “sufficient correspondence”, however, can be achieved in many ways.27

Whether, and to what extent, the synthetic environment corresponds to the real-world
environment depends, however, on the technical details of a particular application.
Not all of them are representational. For example, in robotic reinforcement learning,
the external environment can be designed to serve only as a source of feedback infor-
mation. In this case, the control system receives information, uses it to update the
parameters of the algorithms and to calibrate its actions. The feedback information,
however, may play only a causal role. And, as Ramsey (2007) remarks, mere causal
relations do not represent.

Or, applications can use “sensory-like” information as inputs. For example, in
autonomous vehicles a variety of sensors (such as cameras, radars and lidars) can be
utilized to scan the vehicle’s environment.28 Then, the sensor data can be combined,
for instance, by using a computational technique called “sensor fusion”.29 The vehi-
cle’s control systems can take this fused data into account when they make the driving
decisions. In this way, the sensor systems can “sense” or carry information about the
relevant environmental factors, and the control systems can utilize this information,
when necessary.30

The goal of a RL-based control unit is, however, to compute the driving decisions,
not to track or represent the states of the environment in a correct or veridical way. The
computational objective of RL algorithm is to maximize the reward, not to produce
veridical representations of the environment.

Of course, onemay program aRL application, such an intelligent camera, tomimic,
say, perceptual processes and to learn world models in a more “representational”
way (Silver et al., 2021).31 For example, in a recent RL-based image recognition
application the task is to learn a correct categorization for real-time video images
(say, of leaves behaving in various ways)32 During the learning process, the system
receives observations (real-time videos, say, of swirling and non-swirling leaves) as
input data.33 Then, the system parametrizes the observations, and transforms them
into hidden states.34 At each step, the model predicts the policy, the value function,
and the immediate reward. In RL, the hidden states are, thus, updated iteratively by a
recurrent process that receives the previous hidden states and hypothetical next actions
in the systems.

27 Sutton and Barto (2018).
28 For an overview of various sensor technologies, see Campbell et al. (2018).
29 For technical details, see Yeong et al. (2021) for an overview.
30 This is a rough, vernacular and superficial description. For example, see Yeong et al. (2021) for an
overview.
31 According to some hypothesis (Roefsama et al., 2010), in mammalian brains certain sensory systems
might utilize RL-algorithms.
32 For the original example, see Schrittwieser et al. (2019).
33 The specialty of RL is that computationally they are not designed to produce the predictions about
the statistical patterns of inputs (or similarities in data points) as their outcomes. Instead, the algorithm´s
computational goal is to maximize amount of long term reward in a light of an action policy.
34 In some current RL applications, the system builds amodel of theworld by predicting future observations
given the past (Hafner et al., 2019).
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As a result, as Schrittwieser et al. (2019) put it, “there is no direct … requirement
for the hidden state to capture all information necessary to reconstruct the original
observation, nor is there any requirement for the hidden state to match the unknown,
true state of the environment; nor any other constraints on the semantics of state… they
are free to represent the environment in whatever way is relevant to maximize current
and future rewards.” That is, the algorithm’s goal is not to match the representational
states of the systemwith the “true states” of the external environment. Or, its task is not
to use (current or past) “observations” (about the external environment) to construct
veridical descriptions of the objective world as such. Instead, the algorithm’s job is
to decide which actions it should take to maximize the reward. To do so, it is free
to represent the states of physical environment in whatever way which is relevant for
maximizing the rewards.

Furthermore, the specialty of action planner systems in RL is that they do not only
use (current or past) “observations” (about the external environment) to predict future
rewards. Instead, they also estimate the impact of future actions to predict future
rewards. In RL, the forward models tell what the possible development of algorithm’s
synthetic environment may be. These future-oriented states allow the algorithm to
estimate how its environment will develop as a response to agent’s actions (in light
of its action policy). Thus, these estimates have no existing target systems in the real
world. Instead, they stand in for anticipated possible future states.35 Hence, in RL,
forward models represent “possible worlds”, not real environments.

3.2 Value representations

Value estimations stand in for the total amount of reward an agent can expect to
accumulate over the future. Their content is specified in terms of the value function
and other formalisms of the algorithm. While a value is the farsighted judgement of
what is good in the long run, a reward refers to the measure by which the immediate
success of an action can be estimated. It indicates the intrinsic short-term desirability
of environmental states for the agent.36

Rewards, thus, are not signals that indicate the presence of states or entities per
se. A reinforcing stimulus (physical feature) only presents an organism with reward
or value depending on its reward function. The aim of the reward function is not to
represent whether the stimulus is “really” valuable or rewarding.

In animal experiments, of course, rewards are often operationalized as food or drink.
For example, a capuchin monkey can be taught to do various tasks by rewarding
it with a treat, such as a grapefruit (Brosnan & de Waal, 2003). Still, despite this
operationalization, the reward itself is not defined as the grapefruit (or its glucose).

35 One might be tempted to think that if M stands in for E, and if E stands in for W, then M stands in for W.
However, this would violate the so-called intransitivity condition of representational relations (Goodman,
1976). Thus, even in the case, in which the synthetic environment represents the real world environment,
the forward model represents the synthetic environment, and the synthetic environment represents the real
world environment.
36 In RL framework, the reward cannot be normatively evaluated in terms of satisfaction conditions that
the reward signal would be ‘about’.
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Instead, the reward is like the “pleasure” related for getting such a thing (Sutton &
Barto, 2018).

Moreover, rewards are not reducible to an agent-independent physical property
or object. They are organism-dependent features, not organism-independent causes
of neural responses. Factors, such as the hunger-state of the organism, impact the
quantity and the quality of rewards. Sugar, for example, is not equally rewarding for
every organism (with different reward functions). For a capuchin monkey, it usually is.
For a cat, it isn’t. How rewarding sugar is depends on the current glucose metabolism,
or generally the physiological state of the organism. Sugar is more rewarding when
one is hungry, and less rewarding when one is not.

4 Fly detectors and goal-directed representations

The value estimations and forward models are examples of goal-directed represen-
tations. Their role is to detect opportunities for successful action, not to construct
veridical models of the objective world as such. Thus, they do not fit well with the
recent enactivistic arguments, where the paradigmatic case of a cognitive representa-
tion is a “percept”, a mental state used to “represent how things are with the world”
(Hutto & Myin, 2020). These representations, as Hutto (2015) puts it, are connected
with the world via “sensory contact”.

From a cognitive science point of view, Hutto and Myin’s arguments continue the
legacyof “flydetectors”.37 This legacydates back to receptivefield studies from the late
1950s (Hubel & Wiesel, 1959; Lettvin et al., 1959). In these early studies on sensory
mechanisms, the focus was on signal transformation properties of frog ganglion cells,
later known as “fly detectors” (Lettvin et al., 1959). The ganglion cells were found to
respond to small, black, fly-like dots moving against a stationary background in the
frog’s visual field. A few years later Hubel andWiesel (1962) proposed a way in which
“pooling mechanisms” might explain how the cells of mammalian visual cortex are
able to detect more complex features by combining simple responses.

Under the influence of fly detectors, the experimental research of sensory processes
focused on a bottom-up feature detection for decades. This framework impacted also
on philosophers, and fly detectors dominated the discussion on representations for
a long time. For example, in the 1980s, the analysis of representations focused almost
completely on the questions of (1) whether a representation of a fly is really about
flies, (2) how to make the leap from the signal transformation properties of, say,
ganglion cells into semantic properties of receptors, or (3) of how to specify the content
determination of these representations in a satisfactory naturalisticway (Dretske, 1981;
Fodor, 1992; Millikan, 1989).

From a cognitive point of view, fly detectors are stimulus-based representations.
That is, the activation of a detector representation is taken to require a causal association
with preceding stimuli, a “neural” signal that triggers the representation (or causes an
indicator to fire). For example, in the crude causal theory a stimulus—say, a black dot
in the visual field of a frog—is a proximal cause for the activation or the triggering

37 See also Grush (1997), Anderson (2005).
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of the tokening of a representation “fly”. The stimulus is caused by a signal, and the
external source of a signal—an entity, say, a fly or a mosquito—is assumed to exist
in the physical environment. In teleosemantics or indicator semantics, the stimulus is
typically taken to be responsible, for example, for the firing of indicator mechanisms,
or to play a part in the causal specification of an indicator mechanism.38

In stimulus-based representations, the source of a signal (causing the stimulus
or the source for a cause that is responsible the firing of an indicator) is taken to
exist, somehow, as a distal object in the physical environment (including, possibly,
parts of the organism’s body). Obviously, RL-based action planning representations
cannot be specified in such terms. They are not caused or triggered by stimuli. For
example, in value representations the content of a reward is specified by the reward
function. Stimulus is, however, not a part of the reward function. Rewards, simply,
aren’t rewarding because they are triggered by entities that happen to function as
reinforcers for the agent. Instead, in RL, reinforcers reinforce because they elicit
reward.

In value or reward representations, thus, the fly-detector based formulation on sig-
nals and stimuli is turned on its head: in RL, the signal is not “a reward signal”, because
it triggers or causes a reward stimulus. Instead, a stimulus is “rewarding” because it
causes a reward signal (i.e., signal that acts the way reward acts in RL). Furthermore,
the reward signal itself does not indicate the presence of some independent feature of
the environment (such as the presence of, say, glucose in a grapefruit as a reinforcing
stimulus). Although the reward can be operationalized as a concrete item (such as
treats, say grapefruits, in animal experiments), the reward itself is not the grapefruit,
but the feeling of “pleasure” related to it. Thus, the question of whether the semantic
content of a reward signal is really glucose, grapefruit, fly or whatever, simply does
not arise.

To sum up, neither rewards nor value representations (as estimated long-term
rewards) can be specified in terms of "fly detectors”, or any other framework, in
reference to environmental stimuli.39 Obviously, these organism-dependent and goal-
oriented representations raise very difficult problems of neural encodings of their

38 In philosophical theories, the role of stimulus is specified in multiple ways. In causal information
semantics, the proximal stimulus (in the visual field) carry information about the distal entity. Since the
stimulus is also caused by the distal entity, in information semantics the stimulus it also has also a causal
role in the tokening of a representation in information semantics. In teleosemantics, stimuli play a role,
for example, in the causal specification for of the mechanisms that implement “teleological functions”
in perceptual detectors or indicators (Dretske, 1995; Millikan, 1989). In some variants of teleosemantics,
stimuli are causal components of the mechanism, which activates the detectors to fire (Neander, 2018).
For example, if a certain perceptual state P of a frog is caused to token whenever a stimulus—small dark
thing—moves in the visual field of the frog. For Millikan´s consumer teleosemantics (1989), the role of
stimulus is, roughly, to activate perceptual state P. Then, this state causes its ‘consumer’ in the system to
initiate a sequence of operations that result in the frog lashing out its tongue. For the producer-teleosemantics,
the function of producers is to respond to visual features of bugs by “producing” representational states.
This makes P carry information about the stimulus i.e. the visual features of bugs. For instance, Neander
(2018, p. 146) writes, “sensory-perceptual representation of type R has the function to carry information
about stimuli of type C is to say that the system that produces Rs has the function to produce them (i.e.,
change into R-states) in response to C-type stimuli.".
39 The “content” of reward is specified in terms of reward functions, and it is dependent on the description
of a particular organism as a RL agent. That is, the physical properties in the environment that constitute
the reward for a specific organism are not given by any organism-independent relevance, veridicality or
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formal and abstract properties. As things stand, there is no appropriate philosophical
account for them.

As we see it, the algorithmic methods of cognitive and computer sciences may
provide some resources for analyzing them. For example, the formal descriptions of
“synthetic environment” and “expected rewards” may provide a more fertile way to
make an autopsy for these organism-derived, abstract representations than the tradi-
tional philosophical analysis in terms of “secondary qualities”, “observer-dependent
representations” or “organism-produced representations in absence of environmental
targets”. Computational methods provide not only tools for simulating these phe-
nomena in a controlled way but, more importantly, they may also offer concepts for
analyzing them in an exact and mathematically tractable way.

5 Diversity of representations

When assessing what is the most plausible empirical story for behaviors like “chasing
and grasping a swirling leaf”, one should remember that we live in a complex and
changing world. In dynamic environments, even simple action—such as grasping a
new swirling leaf—is a complicated challenge. To solve this challenge, cognitive
systems do not only react, but also explore new strategies and learn from observing
the consequences of their actions. Moreover, to select successful policies, they must
take into account a significant number of external factors, and integrate information
from several sources in a purposeful way. Thus, successful action requires information
from multiple perspectives.

From a neurocognitive point of view, cognitive systems use different representa-
tions for different purposes.40 Perceptual and sensory systems allow systems to detect
the environment and to get feedback from the states of the body.Motor representations
as motor commands help the agent to coordinate the behavior of body. They encode
explicit instructions for sequences of physical movements (Miall & Wolpert, 1996;
Mylopoulos & Pacherie, 2017; Wolpert et al., 1995). And, goal-directed representa-
tions are used to detect and estimate opportunities for successful action.

Representational states vary from neural coding in sensory cells to higher-order
perceptual processing, and from on-line representations to memory-based represen-
tations of previous experiences. And, they vary from simple motor commands to
complex metacognitive simulations of possible actions. While some of them, such
as fly-detectors or simple encodings of visual or acoustic signals, are stimulus-based
and track the external targets via sensory apparatus, other representations such as
motor representations or goal-directed representations,41 do not. And, while some

Footnote 39 continued
other criteria. Instead, the reward function is a description of aspects of the physiology and the cognition
of a particular organism as such an agent.
40 For similar remarks, see Grush (1997, 2004), Anderson (2005).
41 According to Millikan (1984), indicative representations represent how the world is. They track the
actual states of the world. Imperative representations, such as motor commands, represent how the world
will, or should, be. For instance, motor representations stand in for the desired outcome of the sequence of
physical movements. For contemporary discussion, see Thomson and Piccinini (2018), Pavese (2020).
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representations are organism-independent, such as sensory encoding of simple phys-
ical quantities like the speed and direction of motion, others, such as estimates of
long-term rewards, are organism-dependent.

Clearly, this diversity challenges the enactivist presupposition that to represent is
to represent only as fly detectors, or generally, as sensory states do. Furthermore, it
pushes us to ask: to what extent can these various representational states be analyzed
only in terms of a framework which was originally developed to explore the signal
transformation properties of a frog’s ganglion cells. Perhaps we should let go of the
assumption that only states that track external environment count as representational,
and analyze the representational diversity as it is. Eventually, this should not be taken as
a matter of philosophical convictions or presuppositions. Instead, it should be taken as
a question of roles that representations play in explaining action control scientifically.

6 Conclusions

In this article, we have illustrated how reinforcement learning (RL) algorithms are used
to study the cognitive dynamics of action control.When action control is characterized
in this way, it is understood as the control system of a cognitive agent who can learn,
anticipate and adapt.

In RL, the cognitive dynamics of action control is seen as forms of computationally
specified learning-as-decision making processes (Sutton & Barto, 2018). RL provides
an exact and algorithmic way to describe various aspects of these processes. Further-
more, this approach is widely and successfully used in simulating and analyzing them
in computational cognitive sciences, artificial intelligence and robotics.

In RL, the goal of an algorithm is to maximize the long-term reward. For doing so,
the algorithm utilizes internal representational states. These representational states,
however, are not sensory-like “percepts”. Instead, they are goal-directed. Thus, this
algorithmic framework provides examples of representations which challenge the
enactivist conviction that to represent is to represent as fly detectors do. Moreover,
it impugns the enactivist intuition that action-oriented perspective implies the need
for a non-representational theory of cognitive systems. Instead, in the light of RL, it
implies a need for updating intuitions on what action control representations are, and
what they are used for.
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