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Abstract
The debates between Bayesian, frequentist, and other methodologies of statistics have
tended to focus on conceptual justifications, sociological arguments, or mathematical
proofs of their long run properties. Both Bayesian statistics and frequentist (“classi-
cal”) statistics have strong cases on these grounds. In this article, we instead approach
the debates in the “Statistics Wars” from a largely unexplored angle: simulations of
different methodologies’ performance in the short to medium run. We used Big Data
methods to conduct a large number of simulations using a straightforward decision
problem based around tossing a coin with unknown bias and then placing bets. In this
simulation, we programmed four players, inspired by Bayesian statistics, frequentist
statistics, Jon Williamson’s version of Objective Bayesianism, and a player who sim-
ply extrapolates from observed frequencies to general frequencies. The last player
served a benchmark function: any worthwhile statistical methodology should at least
match the performance of simplistic induction.We focused on the performance of these
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methodologies in guiding the players towards good decisions. Unlike an earlier sim-
ulation study of this type, we found no systematic difference in performance between
the Bayesian and frequentist players, provided the Bayesian used a flat prior and the
frequentist used a low confidence level. The Williamsonian player was also able to
perform well given a low confidence level. However, the frequentist and Williamso-
nian players performed poorly with high confidence levels, while the Bayesian was
surprisingly harmed by biased priors. Our study indicates that all three methodologies
should be taken seriously by philosophers and practitioners of statistics.

Keywords Bayesianism · Decision theory · Formal epistemology · Frequentism ·
Philosophy of statistics · Probability

1 Introduction

If there is any suspicion that philosophy of science is an ivory tower subject, it should
be extinguished by what Deborah Mayo has called the “Statistics Wars” between
classical statisticians, Bayesians, and a prismatic assortment of variations of these
views (Ioannidis, 2005; Howson and Urbach, 2006; Wasserstein and Lazar, 2016;
Mayo, 2018; van Dongen et al., 2019; Sprenger and Hartmann, 2019; Romero and
Sprenger, 2020). Even apparently recondite questions about concepts like evidence,
probability, and rational belief are connected with questions of statistical practice.
These questions have beengivenparticular salience by the “replication crisis”, inwhich
the rates of replication in published statistical research across a range of scientific fields
are apparently below what would be expected from random variation alone (Gelman,
2015; Open Science Collaboration, 2015; Smaldino and McElreath, 2016; Fidler and
Wilcox, 2018; Trafimow, 2018). All factions within the StatisticsWars make plausible
(but often incompatible!) cases that their particular methodology, properly applied,
can mitigate some of the malpractices behind the replication crisis. Furthermore, far
from being dry debates, the Statistics Wars are frequently characterised by the sort of
aggressive rhetoric, bombastic manifestos, and political maneuvering that their name
would suggest. And this war-like atmosphere is understandable, because the Wars
affect statistical practice, and thereby the health, wealth, and happiness of nations.

Statisticians are often very practical people, so when they are faced with these
debates, many of them naturally think that either classical or Bayesian methods can be
appropriate in various contexts. Statisticians often say very reasonable things such as
“Whatmatters is notwho is right about issues in philosophical analysis, butwhatworks
best”. Some philosophers of science might be attracted to such attempts to pacify the
conflicts. Unfortunately, by itself, this pacification strategy fails, because assessing
whether a methodology will “work” in a context depends on standards for evaluating
what constitutes “working”, and as soon as we start determining those standards, we
start making choices about the proper analysis of terms like “evidence”, “test”, “severe
test”, and for that matter “work”.

Yet there is wisdom in the practicing statistician’s pragmatism. The philosophical
debateswithin the StatisticsWars are rumbling onwith no end in sight, as philosophical
debates tend to do. One problems is that the rival statistical methodologies often have
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different goals, e.g. Bayesians often focus more on the decisions of an ideally rational
agent, whereas frequentists are often more interested in the reliability of a particular
type of test. Statisticians could reasonably use different tools for different contexts.
This opens up the opportunity to examine particular types of problem and see which
method performs better at achieving some goal that all statisticians share.

One approach to such a question would be historical case studies of real-life cases
where one or other method (or both) were used, and then comparing the two. However,
it is rarely, if ever, possible to make such comparisons fairly and rigorously. Instead,
we employ and expand the use of simulation studies for comparing statistical method-
ologies. Our simulations use a simple decision problem to pit four players against each
other: (1) a confidence interval approach, which classical (“frequentist”) statisticians
might use for such a problem; (2) conditionalization upon a beta distribution, which
many Bayesians would regard as an appropriate family of priors in this context; (3)
a hybrid approach based on Jon Williamson’s “Objective Bayesian” methodology,
which involves forming beliefs about the relative frequencies using confidence inter-
vals and then combines themwith an updated version of the Principle of Indifference in
order to generate precise probabilities; and (4) a “Sample” player who simply uses the
relative frequencies in their observed samples to make point estimates of probabilities,
akin to maximum likelihood estimation.

All the methodologies we discuss have some intuitively attractive performance
properties as our sample sizes tend towards infinity. Long run performance properties
are often given as the raison d’être of frequentist methods, while—in the right sorts
of problems and with the right sorts of priors—Bayesian methods will also lead to
credences (also called “degrees of belief”) that, in the long run, approximate or even
match the true relative frequencies (De Finetti, 1980). That is to these theories’ credit:
we never reach the long run, but information about it arguably provides defeasible
information about the short run. If all the methodologies do well in the long run, then
the short run is a more promising place to look for divergent performances. For this
reason, we used simulations to compare the performance of players inspired by the
methodologies when these players were given only small or moderately large samples.

Vituperative rhetoric and dismissive criticisms are common in the Statistics Wars.
However, our results indicate that such disrespect is unfounded, at least for the deci-
sion problem we study. We found that Bayesianism, frequentism, and (what we call)
Williamsonianism can all performwell with suitable player settings. As the number of
games becomes large, this similarity can be explained by similar decisions. In the short
run, we found differences in decisions. However, with the right player settings, all three
of the statistical methodologies can exceed the benchmark that we set for them, and
this similarity should increase the respect that the different factions of the Wars have
for each other. Our results thus are contrary to what some dogmatic statistical warriors
might expect. From each perspective, the other factions might seem absurd, but our
study shows how all of them can sometimes lead to good decisions in two senses: (1)
the players based on methodologies of statistics do not do significantly worse than
the naïve sample-extrapolating player and (2) given the right settings, the players’
performances with small samples are not bad in comparison to their performances
with more information.
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We briefly review the relevant literature in Sect. 2. We then explain our methods
and the “players” in Sect. 3. We display the results and analyse them in Sect. 4, discuss
them in Sect. 5, and conclude in Sect. 6.

2 The Statistics Wars: a multi-dimensional dispute

The Statistics Wars have a long history, dating back centuries, and they feature a
“Who’s Who” of statistics. The Wars are sometimes framed in terms of a simple
conflict between Bayesian statisticians and classical (or “frequentist”) statisticians,
but this greatly oversimplifies the debates, asMayo has detailed (Mayo, 2018). Indeed,
no brief summary is possible, but for understanding our simulation study, it helps to
note that the participants disagree across multiple dimensions, which we now broadly
summarise.

2.1 The concept of probability

From a philosopher’s perspective, perhaps the most fundamental dimension is which
concepts of probability that a statistician regards as appropriate within statistical rea-
soning. As a preliminary, we must distinguish two potentially divergent domains in
which we use probabilistic language: (i) everyday language like “The traffic will prob-
ably not be bad today” and (ii) the use of mathematical probability in science, such as
a statistic for the probable error of a test. According to some philosophers of proba-
bility (including many labelled “frequentist”) there is no need for a formal analysis of
probabilistic language of type (i). In everyday life, we use “probability” and cognate
terms in all sorts of ways, but it is debatable whether there is much of a connection
between this ordinary usage and the proper place of probability in scientific reasoning.
Insofar as the Statistics Wars are disputes over the proper concept of probability, they
are disputes about which concept is appropriate in scientific reasoning.

1a Some theorists adopt physical interpretations of probability, inwhich probability is
variously defined as finite relative frequencies (Venn, 1876), long run hypothetical
relative frequencies (von Mises, 1957), propensities (Popper, 1959) or some other
type of objective physical magnitude. According to this family of theories, prob-
abilistic statements are generally logically contingent and non-psychological.1

Epistemologically, there is no fundamental difference between knowledge of
probabilities and other types of knowledge. While probabilities might appear in
scientific hypotheses, no hypothesis itself has a probability: it is either true or false,
but there is no sense in which statements like “This hypothesis has a probability
of 0.5” can be true with a physical interpretation.

1b Epistemic interpretations analyse probabilistic concepts in terms of an epistemo-
logical framework—a system of concepts to do with evidence, belief etc. Within
this family, we can distinguish two subgroups. The first subgroup interpret prob-
ability psychologically, as either unique (“Objective Bayesian”) (Jaynes, 1957)

1 With two obvious exceptions: assertions that are true by definition and assertions within psychology.
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or non-unique (“Subjective Bayesian”) (De Finetti, 1980) rational credences. In
both cases, probability is analysed as the degree of confidence of either idealized
or actual reasoners. The second subgroup of epistemic theorists regard probabili-
ties as “partial entailment” relations between evidential statements and hypotheses
(Keynes, 1921; Benenson, 1984; Kyburg, 2001). These “logical” probabilities are
arguably guides to rational credences,2 but they are not strictly speaking the same
thing, just as deductive logical relations (on any non-psychologist philosophy of
logic) can often guide rational belief, but cannot be reduced to psychological
relations. On either a psychological or partial entailment interpretation, scientific
hypotheses can have probabilities.

1c Pluralist combinations of 1a and 1b. For example, Carnap (1945b) combined a
partial entailment interpretation of the probabilities of hypotheses (“H’s probabil-
ity relative to our total evidence is 0.5” etc.) with a long run relative frequency
interpretation of the probabilities mentioned in hypotheses, such as assertions
about radioactive half-lives in physics. Pluralistic interpretations are very com-
mon among philosophers of science, e.g. Popper (2002), Howson and Urbach
(2006), Williamson (2010).

To appreciate these differences in the conceptual analysis of probability, consider how
these approaches might interpret some sentences that might occur within scientific
reasoning:

H1 : “There is a high probability that height will be approximately normally
distributed in a large subset of humans.”

– Physical: There is a tendency (interpreted in terms of relative frequencies or
propensities) of large subsets of humans to be approximately normally distributed
with respect to their height.

– Epistemic: On a pure psychological interpretation (such as an uncompromising
Subjective Bayesianism) this is an assertion of high confidence that height will
be approximately distributed in a large subset of humans, or that a high degree
of confidence is rationally appropriate. However, note that most contemporary
Subjective Bayesians are pluralists: see below. On a pure partial entailment inter-
pretation, H1 is best interpreted as a claim about a probability relation between
statements, plus the assertion that one of those statements is true. For instance,
we can interpret H1 as the combination of three assertions: (i) a statistical hypoth-
esis Hs , which asserts a physical probability statement such as “There is a high
relative frequency of an approximately normal distribution of height among large
subsets of human beings”, (ii) the claim that Hs is our best evidence regarding the
single-case hypothesis Ht “A particular randomly selected large subset of humans
is approximately normally distributed with respect to height”, and (iii) a claim that
Hs has a high partial entailment relation in favour of Ht (Benenson, 1984; Kyburg,
1990).

– Pluralist: Most pluralists would adopt a physical interpretation of H1, in most
contexts.

2 Popper (2002) makes use of logical probabilities, without regarding them as mapping onto rational
credences; indeed, he entirely rejects the latter concept.
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H2 : “It is 99% probable that there is no life currently on Mars.”

– Physical: No relative frequency interpretation of H2 is possible, without being
false. H2 might have some function in unscientific language as a way of indicating
confidence, so a supporter of a relative frequency interpretation might interpret H2
as an informal, extra-scientific expression of confidence. On a propensity inter-
pretation, H2 could be an assertion about the physical chances of life on Mars at
this time.

– Epistemic: On a subjectivist psychological interpretation (as in Subjective
Bayesianism) H2 is an assertion about the speaker’s confidence. On an objec-
tivist psychological interpretation (as in Objective Bayesianism) H2 asserts that
99% is the degree of confidence, for the hypothesis that there is life on Mars, that
is uniquely rational relative to some body of evidence. On a partial entailment
interpretation, H2 is an assertion about a partial entailment relation between the
hypothesis that there is life on Mars and some body of evidence, such as the total
body of evidence in astrobiology.

– Pluralist: Most pluralists would adopt some epistemic interpretation of H2, in
most contexts.

2.2 The evaluation of statistical methods

If we are testing a statistical hypothesis, then we need to select a method. Often, we
might look at what has worked well in the past, but that just pushes the question
back: “This method generally works well” is itself a (vague) statistical hypothesis.
Additionally, if we are investigating some new or relatively new topic, we might not
know what “works”. There are three broad families of answers to this question in the
Statistics Wars.

2a One criterion is the method’s long run performance. For example, suppose that
we kept on using a particular procedure for estimating some relative frequency
as our sample sizes grew larger and larger. Suppose also that there is a limit that
the relative frequency would tend in the long run.3 Will the margin of error of our
estimates tend towards zero if we stick to this method? If so, does the estimation
method have other attractive properties, e.g. does it not depend on the language
in which we formulate our hypothesis (Reichenbach, 1938; Feigl, 1954; Salmon,
1967)? Alternatively, we might ask whether the test would almost always provide
statistically significant4 results in the long run (Fisher, 1947, p. 14)? Alternatively,
we may ask whether, in the long run, the test provides a satisfactory5 combination
of mistaken rejections (Type I errors) and mistaken non-rejections (Type II errors)
(Neyman, 1949)?

2b In terms of the doxastic (belief-modifying) properties of the test (Howson and
Urbach, 2006;Williamson, 2010). Is the testing procedure a rational way to update

3 If there is no limit, then obviously no method will work for estimating it.
4 For some contextually determined standard of statistical significance.
5 As with statistical significance, a “satisfactory” balance must be determined contextually, but Neyman
went deep into the decision theory behind such a choice—what he called “inductive behavior” (Neyman,
1957).
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our beliefs? Put differently, ifwe adopt a doxastic approach to evaluation,we assess
the test based on how its use would affect the structure of our beliefs. For example,
diachronic Dutch Book Arguments are intended to show that, if we adopt some
systematic procedure for revising our beliefs that is not an application of Bayesian
conditionalization, then we shall be vulnerable to accepting a series of bets in
which we will inevitably lose money. Others advocate conditionalization based on
its benefits for “epistemic” utilities (Greaves and Wallace, 2006). However, not
all philosophers who adopt a doxastic approach to evaluating tests have endorsed
conditionalization as a general norm (Bacchus et al., 1990).

2c In terms of whether the testing procedure provides a severe test in a particular
context (Mayo, 1996; Spanos, 2010; Mayo, 2018). A “severe” test adequately
probes the possible sources of error in our inference, like extrapolations from
spurious correlations in the data. In particular, there should be a good chance that
our test would uncover a flaw in the hypothesis that we are investigating, if such a
flaw exists. A hypothesis might have an excellent fit for our data, but it has not been
severely tested unless it was at risk of being rejected by our test, if it were false.
Put another way, there should be a low probability that using the testing procedure
will lead us to a mistaken inference from the data, i.e. a low “error probability”.
The role of probability in this methodology is to assess the extent to which tests
have probed (or would probe) our hypotheses. Note that severity requires more
than just the long term performance properties of 2a: a test might have good long
run properties, but if the test is unlikely to detect a flaw in a single usage and
we only evaluate a hypothesis once using that test, then that hypothesis has not
been severely tested. In general, according to a severe testing (“error statistical”,
“probative”) evaluation approach, there are problems (such as p-hacking) that do
not involve the lack of good long run performance properties, but nonetheless can
make our tests inadequate (Mayo, 2018, pp. 13–14).

Naturally, there are interrelations between the criteria used by these three approaches
to evaluation. For example, adherents of 2a and 2c care about revising our beliefs in
rational ways, but evaluate what is a “rational” method for belief revision in terms of
long run performance or probative capacity. They believe that the formal models of
belief used by adherents of 2b are not the right place to start.6 Similarly, one intuitive
feature of proper doxastic states is that there should be proper coherence between (a)
beliefs about long run performance of tests and (b) beliefs in how to update one’s
beliefs given individual tests. Meanwhile, error statisticians (2c) think that the long
run performance qualities of a test are one aspect of its probative quality (Mayo, 2018).

2.3 Testing procedures and statistics

Finally, there are testing procedures and test statistics that different methodologists
judge to be appropriate in general or in some context. Even given a particular interpre-
tation of probability and shared standards to evaluate our methods, selecting among
types of tests can be controversial.

6 And, for those methodologists who reject such formal models entirely, not the right place to finish either.
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3a Classical tests and test statistics. The former include confidence interval estima-
tion, null-hypothesis significance testing, maximum likelihood estimation, and so
on. For our test statistics, we might use p-values, confidence levels, and other
descriptive statistics that indicate the long run properties of the testing procedure
that we shall implement.

3b Bayesian tests and test statistics, involving the use of conditional probabilities and
Bayes’ Theorem to update a prior using conditionalization. There are associated
test statistics like Bayes factors and posterior probabilities to indicate, respectively,
(i) the performance of the tested hypothesis in comparison to another hypothesis
and (ii) the warranted degree of belief in the tested hypothesis given the initial
prior and the acceptance of the new data.

3c Pluralist combinations of 3a and 3b. For example, according to Kyburg and Teng
(2001), we should use Bayesian methods when we have prior probabilities based
on previously inferred statistical information about relative frequencies. However,
when such background knowledge is lacking, we should use classical statistics.

Often, in methodological debates, the immediate battleground is one of these dimen-
sions, but disagreements in the others intrude and further complicate the discussions.
A simple type of example occurs when, during debates about the adequacy of partic-
ular testing procedures, the term “probability” is insufficiently clarified. Researcher
A can then say things to Researcher B that are obviously absurd given the other’s
interpretation of “probability”, even though they might be able to develop a practical
consensus on the immediate point of disagreement if theymade some disambiguations.
In such cases, a fundamental disagreement across dimension 1 (Sect. 2.1) unnecessar-
ily frustrates the possibility of consensus on dimension 3 (supra, Sect. 2.3). Moreover,
while some of these viewpoints are closely correlated in practice, a great variety of
permutations are logically consistent.

Despite the complexities of this debate, we were able to identify three ideas to
inspire the three non-benchmark players in our simulations. Thus, in addition to our
benchmark player (who naïvely uses their observed sample frequencies) we based on
our players on the following methodologies:

A. Frequentism, in the sense of adopting 3a, at least for the reasoning problem that
we use in this paper. Thus, we are specifically referring to the methods of classicial
statistics and their direct epistemic consequences of providing estimates of relative
frequencies. For classical methods, we only need interpretation 1a, although these
methods are compatible with other interpretations of probability. In particular, we
shall focus on confidence interval estimation. Note that this choice of statistical
method for our problem might be justified by any of the evaluative methodologies
falling under the categories 2a, 2b, or 2c. For the sake of convenience, we shall
assume that a frequentist will also interpret probabilities as relative frequencies,
even though this is not necessitated by confidence interval estimation methods.

B. Bayesianism, in the sense of using 3b for the problem in our study. Bayesians can
adopt either a strictly epistemic interpretation, 1b, or a pluralist interpretation, 1c.
Bayesians more or less invariably arrive at their view via a doxastic approach to
evaluating statistical methods, 2b.
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C. Williamsonianism, by which we mean Jon Williamson’s combination of “cali-
brating” via reasoning that is fundamentally based on classical methods, 3a, but
using these relative frequency estimates to guide credences, in accordance with
1b. Given the constraints from beliefs about relative frequencies, the credences are
subsequently determined by the Maximum Entropy Principle, described below in
Sect. 3.3.3. The overall package is justified by Williamson on doxastic grounds
(Williamson, 2010).7 In other words, Williamson has an epistemic theory of prob-
ability, but there is a large role for classical statistical methods in his theory of
inference, leading to divergences from conditionalization (Williamson, 2010, pp.
167–169). Williamsonianism hence offers an interesting combination of ideas that
are typically attributed to either frequentism or Bayesianism alone.

Since these methodologies tend to differ across the evaluative dimension, it is
extremely difficult to find ways of comparing them that do not beg crucial questions.
However, a shared goal is that statistics should help scientists achieve their aims.
Scientists have many aims where statistics could reasonably be expected to help:
prediction, explanation, control etc. However, one aim of science that seems amenable
to formal study is making good decisions under conditions of uncertainty. We mean
“decisions” in a broad sense of choices among actions. As Jerzy Neyman pointed out,
this is a broad enough definition to include most or all of scientific practice. Decision-
making includes choosing to publish a paper, to make an expert pronouncement, to
invest in developing an experiment, as well as non-scientific decisions like financial
investing or trying to design a better mousetrap (Neyman, 1941).

In our simulation, we programmed four different “players” using belief models and
choicemodels. These players were inspired by the three positions in the StatisticsWars
that we identified above, plus a benchmark player. The latter enables to see if these
methodological positions fulfill a reasonable basic criterion of adequacy: they should
do at least as well as someone who just expects future frequencies to match the sample
frequency that they have observed thus far. We focused on non-asymptotic decision
making, i.e. performance in a finite number of decisions. This might seem to prejudge
the case against frequentists, because many of them emphasise long run performance
as the proper criterion for testing.However, frequentists are just as interested inmaking
good decisions in the relatively short run as any other other sensible people; that a test
procedure has good long run properties is arguably indicative that it will help us to
make good decisions in the short run, and frequentists have acknowledged this goal
as one objective of statistical inference.

We have no pretense that our study (or simulation studies in general) will or should
end the Statistics Wars. Given the persistence of these conflicts throughout the history
of statistics, it is probable (inmore than one sense) that they are not going to be resolved
any time soon. Nonetheless, simulations provide a useful way to assess whichmethods
help guide us towards better decisions and under what conditions. In particular, they
can help us evaluate whether frequentism, Bayesianism, or Williamsonianism will
enable us to perform systematically better in a particular type of decision problem.

7 Williamsonuses “ObjectiveBayesianism” for his view, butweuse his name for this approach to distinguish
it from (B) and to avoid confusion with the panoply of very different “Objective Bayesianisms”.

123



13698 Synthese (2021) 199:13689–13748

3 Methods

3.1 Simulations

Simulations are a relatively new tool in the philosophy of science. For a review up
to 2009, see Winsberg (2009). There is an even sparser literature that applies simula-
tions to the Statistics Wars. However, within statistics, there are many studies using
simulations to assess Bayesian tools versus frequentist tools for particular problems.
To give just a few examples, Avinash Singh et al. compare Bayesian and frequentist
methods for estimating parameters of small sub-populations using simulations (Singh
et al., 1998). Gilles Celeux et al. use simulations to compare Bayesian regularization
methods against frequentist methods (Celeux et al., 2012). Daniel McNeish applies
simulations within an investigation of the strengths and weaknesses of Bayesian esti-
mation with small samples (McNeish, 2016).8 There is also a literature on Bayesian
estimation versus frequentist estimation in structural equation modelling (Smid et al.,
2019).

Within philosophy, we found only two earlier studies comparing Bayesian and
frequentist methodologies using simulations. Felipe Romero and Jan Sprenger employ
simulations to argue in favour of a Bayesian approach to the replication crisis (Romero
and Sprenger, 2020). Their study is interesting, but its topic is inferential success under
different sorts of scientific institutions, and therefore very different from our own.
Instead, our study builds on a philosophically-motivated use of simulations by Kyburg
and Teng (1999) to compare frequentist statistics versus Bayesian statistics in a simple
decision problem. They use simulations to investigate a game (againstNature) inwhich
a frequentist player and a Bayesian player separately make bets based on a random
binomial event—a toss of a coin with unknown bias or fairness. The frequentist player
used confidence intervals and the Bayesian player used conditionalization. To serve
as a benchmark, Kyburg and Teng also use a player, Sample, who simply estimates
that the probabilities will be equal to the frequency in the sum of their samples. After
observing some randomly generated coin tosses, players had the option to buy a ticket
for heads at a price t or a reversed ticket (effectively betting that the toss will land
tails) at a price (1 − t). The variable t had a randomly generated price in the interval
[0, 1]. Each player was given a decision algorithm for deciding when and how to bet.

The study then compares the average profits across a range of conditions. The
Bayesian player performed at about the benchmark level. Across the full range of
possible coin biases that Kyburg and Teng investigated, the Bayesian performed best
when their prior corresponded to that required by the Principle of Indifference.9 The
frequentist tended tomake better profits than the Bayesian and the benchmark. Kyburg
and Teng do not explain their result, and it has been noted as a puzzle (Schoenfield,
2020, p. 2).

8 While we are also interested in small sample inference in this article, we wanted to make comparisons
in terms of decision making and also with individual predictions, so McNeish’s study was not suitable as a
basis for our own research.
9 The Principle of Indifference requires that, if your evidence is equivocal with respect to m ≥ 2 mutually
exclusive and exhaustive states of the world, then your degree of belief in each of them should also be
symmetrical: 1/m for each state of the world.

123



Synthese (2021) 199:13689–13748 13699

However, comparisons were difficult because the frequentist (unlike the Bayesian)
would sometimes refuse to bet. In particular, the frequentist player’s algorithm meant
that it would not bet if t was within their confidence interval [x, y] where 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, and x ≤ y. Kyburg and Teng believed that this feature of the frequentist
algorithm meant that this player did much better than the Bayesian in absolute profits.
While Kyburg and Teng attempted to address this issue by using average profits rather
than total profits, the difficulty remains that the players are being compared over
an unequal number of bets. Consequently, it is possible that their results are partly
explained by this asymmetry.

Additionally, Kyburg and Teng’s study was published in conference proceedings,
so quite a few details are obscure, such as whether the players confronted the same
sequences of coin tosses and ticket prices. Additionally, they only report the results of
100 simulations for each parameter setting, which means that many of the variations
in performance that they find could be explained by random error.

Despite its limitations, the Kyburg and Teng study offers a novel and relatively
simple way to compare the decision-theoretic performance of Bayesianism and fre-
quentism in a short run reasoning problem. On the other hand, there was a lot of scope
for the expansion, modification, and clarification of their study. Our study design
enables comparisons with Kyburg and Teng (1999), but also explores several novel
directions; it also attains a level of rigour and detail beyond their conference paper-style
investigation. We also sought to reduce the problem of random error by conducting
our simulations many times, as we detail in Sect. 3.5. Overall, we conducted two sets
of 1000 simulations for each player setting. We also varied the random parameters—
the ticket prices and the coin toss results—in the decision problem. Each simulation
involved 1000 games, with 1000 simulations for each of five coin biases, and therefore
there was a total of 5 million games per player setting in each set of simulations. In
this way, by using modern computational power and software, we were able to use a
“Big Data” approach that was missing in the study by Kyburg and Teng (1999).

3.2 Decision problem

The game that the players faced in our simulations is based around a finite sequence of
Bernoulli trialswith an initially unknownphysical probability. For convenience,weuse
the terminology of coin tosses, but we stress that, whereas a real-world player would
know that a coin is likely to land heads/tails with roughly equal long run frequency
(they know that there is a very low proportion very biased coins in the world) in our
game they have no such background knowledge about the coin being tossed. However,
the players do all know that the tosses are random, in the sense that each toss has an
equal (but unknown) chance of landing heads. They also know that the order of coin
tosses is irrelevant, i.e. patterns in the sequences of tosses provide no information.
Thus, they will only regard sample statistics as relevant evidence for the coin biases.

The basic unit of the decision problem is a decision to bet on heads (action bh), bet
on tails (action bt ), or to hold (action b̄). Players have known and fixed payoffs for the
decisions that we depict in Fig. 1.
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Fig. 1 Player payoff matrix heads tails

bh t −t

bt −(1− t) (1 − t)

b̄ −ε −ε

The variable t is a US dollar (USD) value. It was randomly generated for each
game; since it takes values in the [0, 1] interval, its average price over the full series of
simulations was very probably around 0.5. Action bh gives a return of t if the result is
heads, but incurs a loss −t if the results is tails, because the player bought the ticket
at a price t and did not win any money. Action bt gives a return of (1 − t) if the result
is tails and incurs a loss − (1 − t) if the result is heads, again reflecting the price of
purchasing the ticket and the absence of a return. Action b̄ gives a guaranteed result
of −ε. We set ε to be in the unit interval [0, 1].

InKyburg andTeng (1999), a decision to hold has a guaranteed result of 0. However,
as they note (pp. 364–365) it is interesting to see what happens if players are forced to
bet. “Force” implies a sanction, and by setting ε high enough, we can make it rational
for a payoff-maximising player to bet. In particular, if ε > t or ε > (1 − t), then there
will always be at least one bet that is rational for the player, because the bet will have
a non-negative expected payoff, whereas −ε is greater than the loss −t or − (1 − t).
By setting ε to 1, we can ensure that all players will bet in each game.

Our simulation presents players with sequences of coin tosses. After a certain
number of trials, the players are given a choice whether and how to bet. The players’
decisions are completely independent and non-interdependent, so theywill not convert
to another player’s approach if they see that player outperforming them.

3.3 The players

Our simulations feature four players, Bayes, Frequentist, Williamsonian, and Sample.
The player Sample does not correspond to a standard approach to our decision problem,
but it is useful, because a statistical methodology should at least match Sample’s
performance. Sample can also be interpreted as one way that a frequentist might act if
they were forced to give precise relative frequency estimates and use these estimates
to guide their decisions. The players have significant differences in their learning rules
and decision rules, so we shall discuss them each individually.

3.3.1 The Bayesian

Bayes is inspired by Subjective Bayesianism, so there are infinitely many prior proba-
bility distributions that theymight adopt. However, in our simulations,Bayeswill use a
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type of prior that many Subjective Bayesians would use for such a reasoning problem.
Bayes knows that the tosses are random. Therefore, they can estimate the probability
that a particular toss will land heads simply by deciding one degree of belief in heads
for each and every toss. Since they know that each toss will land heads or tails, the
probability of tails will be one minus the probability of heads. The beta distribution
is a popular option in Bayesian statistics for this type of estimation problem (Mun,
2008, p. 906). The beta distribution enabled us to generate a wide variety of priors
for Bayes using just two parameters. For these reasons, we used this procedure for
characterising initial priors for Bayes.

Bayes’s belief revision procedure in this particular game can be represented
with an epistemic model K := {�,�, H , c, p}, where � := {heads, tails} is
the set of possible outcomes of a single coin toss (the decision-relevant states),
� := {

θ ∈ R≥0 : 0 ≤ θ ≤ 1
}
is the set of values representing all the possible biases

of the coin towards heads (from this point onward, we will simply call θ “coin
bias”), H := {H ∪ {∅}} is the set of possible histories10 with a typical element h,
where H := {heads, tails}n is the set of possible histories that can be generated
by n > 0 coin tosses, such that each h ∈ H is a sequence {e1, . . . , en} where each
ei ∈ {heads, tails}, c : H → Z≥0 is a heads event counting function and for every
history h ∈ H , c (h) = |{ei ∈ h : ei = heads}|, and p : H → Δ(�) is a probability
measure which assigns, to every history h ∈ H , a probability distribution on �. After
observing some history h ∈ H , Bayes revises their beliefs about each possible coin
bias θ ∈ � via the standard Bayes rule

p (θ |h) = p (θ) p (h|θ)

p (h)
, where p (θ) = p (θ |h = ∅) > 0 denotes a prior. (1)

Since each coin toss is a Bernoulli trial and the game generates a binomial distribution,
we can use a counting function c to reformulate the Bayes rule for each history h ∈ H
as

p (θ |c (h) , n) = p (θ) p (c (h) , n|θ)

p (c (h) , n)
, (2)

where p (c (h) , n|θ) =
(

n
c (h)

)
θc(h) (1 − θ)n−c(h).

Since our setup ensures that, for every history h ∈ H , the posterior probability
distribution p (θ |c (h) , n) will be in the same family of probability distributions as
prior p (θ), we can use a conjugate prior and represent the prior by a standard beta
distribution with parameters a and b. By denoting beta distribution as B (a, b), we can
express the prior as

p (θ |a, b) = θa−1 (1 − θ)b−1

B (a, b)
. (3)

10 We use ∅ for “no observation”, not for the empty set.
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The Bayes rule for a setup with a beta distribution and some history h ∈ H can be
defined as

p (θ |c (h) , n) =

(
n

c (h)

)
θc(h)+a−1 (1 − θ)n−c(h)+b−1 /B (a, b)

∫ 1

0

((
n

c (h)

)
θ̄c(h)+a−1

(
1 − θ̄

)n−c(h)+b−1
/B (a, b)

)
dθ̄

= θc(h)+a−1 (1 − θ)n−c(h)+b−1

B (a + c (h) , b + n − c (h))
. (4)

Notice that this Bayes rule is just another beta distribution with parameters a+c (h)

and b + n − c (h). Armed with the prior and the Bayes Rule, Bayes now has all they
need both to assign initial priors in the coin toss simulations and to update them in
accordance with conditionalization.

Bayes’s choices can be represented with a choice model Cb := {�,D, H , μ, π},
where D := {

bh, bt , b̄
}
is the set of possible actions, while bh represents the decision

to bet on heads, bt represents the decision to bet on tails, and b̄ represents the decision
to hold, � represents the outcomes of a single coin toss, μ : � × H → X , where
X := {

x ∈ R≥0 : 0 ≤ x ≤ 1
}
is the conditional probability function which assigns,

to every history h ∈ H , some probability q ∈ [0, 1] on heads and 1 − q on tails, and
π : D × � → R is the payoff function which assigns, to every possible action-state
combination, a real number representing player’s payoff. The payoff function assigns
payoffs to the action-state combinations in the same way as they are represented in
Fig. 1, so that

π (bh, heads) = t ; π (bh, tails) = −t ;
π (bt , heads) = − (1 − t); π (bt , tails) = (1 − t);
π

(
b̄, heads

) = −ε; π
(
b̄, tails

) = −ε.

The conditional probability function μ is such that, for history h = ∅, the probability
of heads is

μ (heads|h = ∅) =
∫ 1

0
(p (θ) θ) dθ, (5)

while μ (tails|h = ∅) = 1 − μ (heads|h = ∅).
For every history h ∈ H the probability of heads is

μ (heads|h) =
∫ 1

0
(p (θ |c (h) , n) θ) dθ, (6)

while μ (tails|h) = 1 − μ (heads|h).
The expected payoff from some action d ∈ D given some history h ∈ H is

Eπ [d|h] = π (d, heads) μ (heads|h) + π (d, tails) μ (tails|h) . (7)
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We assume that Bayes is a rational player who seeks to maximise the expected
payoff. Thus, for any history h ∈ H , Bayes always chooses an action d ∈ D, such
that

Eπ [d|h] ≥ Eπ

[
d̄|h]

, for all d̄ ∈ D. (8)

When more than one action satisfies this requirement, Bayes will make a random
choice among these actions. Since hold is never a strictly dominant option, we sim-
plified Bayes by supposing that they never choose this option.

3.3.2 The Frequentist

Just as Subjective Bayesians might adopt many different priors for a coin tossing
problem, so there are multiple ways that a frequentist might estimate the relative
frequencies involved, i.e. the frequencies of heads and tails among the tosses. However,
many frequentists would regard estimation using confidence intervals as a reasonable
method for our decisionproblem, inwhichFrequentist starts outwith no initial estimate
of what the relative frequency might be and where they want to estimate the general
relative frequency for the purpose of guiding their betting behaviour on particular
tosses. Additionally, it is this approach that Kyburg and Teng, who are frequentists (in
the broad sense that we are using in this article) adopt for their frequentist player.

We explain the technical details of how Frequentist works below, but we shall also
provide an informal summary beforehand. Frequentist will estimate that, in the pop-
ulation of coin tosses, the relative frequency of heads is within a confidence interval.
Since they know that all the tosses will land heads or tails, that confidence interval
also provides them with an estimate of the relative frequency of tails. A “confidence
interval” is an estimate that a population frequency is within some range. Let us focus
on the long run relative frequency of heads in the coin tosses. This is the relative
frequency that a hypothetical infinite series of tosses would approach in the limit as
the number of tosses increased. A confidence interval of [0.4, 0.6] for the long run
frequency of heads in the population of coin tosses is an estimate that the relative
frequency of the coin landing heads is at least 40% of the coin tosses and no more
than 60% of them. Frequentist will tentatively believe that the relative frequency for
the coin toss population is somewhere in the estimated interval. They will tentatively
dismiss values outside this range, such as 0.2 or 0.9, as possible values for the relative
frequency. Frequentist’s beliefs are “tentative” in the sense that, with more sample
data, they can change the interval to very different values; a confidence interval using
one sample for estimation could be [0, 0.5], but the interval using an enlarged sample
could be [0.9, 0.99].

The confidence level is not a probability, but instead a value describing the procedure
used to estimate the intervals. We stipulate that Frequentist knows that the sampling
assumptions for confidence interval testing are satisfied. The confidence level is set
via a parameter α, between 0 and 0.5, such that the level is (1− α). The value of α is
exogenous to the confidence interval methodology, so we simulated how Frequentist
will perform with a range of values of α. The confidence level tells us, for a particular
sample size, the minimum possible long run relative frequency of correct estimates of
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a confidence interval of that width using that sample size. For example, if α = 0.05,
then the confidence level for the intervals estimated using this method is 0.95, or 95%.
The level is only the minimum, because if the population is homogeneous—all tosses
land heads or all tosses land tails—then the success rate will be 100%. Therefore, the
success rate in the example could be anywhere from 95 to 100%. Once Frequentist
has estimated a confidence interval given their existing observations, they will use it
to guide their betting behaviour for the individual tosses on which they can bet.11

We now formulate this belief revision procedure in detail. Frequentist revises
their estimate of the coin bias in a way that can be represented with a model
F := {�,H, kα, c}, where � is the set of possible outcomes of a single coin toss,
H = {heads, tails}n is the set of possible histories which can be generated with
n > 0 coin tosses,12 c : H → Z≥0 is the heads event counting function and for
every history h ∈ H, c (h) = | {ei ∈ h : ei = heads} |, and kα : H → P (X), where
X := {

x ∈ R≥0 : 0 ≤ x ≤ 1
}
, is a function which assigns, to every history h ∈ H, an

interval kα (h) = (kl , ku) with lower bound kl and upper bound ku ≥ kl . Since the
game is a sequence of Bernoulli trials that generates a binomial distribution, we can
determine Frequentist’s confidence interval by calculating the Clopper-Pearson inter-
val. For any history h ∈ H, the lower and upper boundaries of the Clopper-Pearson
interval can be represented as the following beta distribution quantiles

kl = B
(α

2
; c (h) , n − c (h) + 1

)
; (9)

ku = B
(
1 − α

2
; c (h) + 1, n − c (h)

)
. (10)

Thus, after observing a history of n coin tosses h ∈ H with c (h) ≥ 0 heads,
if Frequentist adopts a an level 1 − α, they will estimate the actual coin bias to
be within an interval kα (h) = (

B
(

α
2 ; c (h) , n − c (h) + 1

)
,B

(
1 − α

2 ; c (h) + 1, n
−c (h))), and they will not take into account any value k /∈ kα (h).
There is no consensus on how to model decisions with interval-valued beliefs.

There are many options in the literature (Resnik, 1987). However, we programmed
Frequentist to usewhat seems to be the decisionprocedure inKyburg andTeng (Kyburg
and Teng, 1999), which we also interpreted using other publications by Kyburg, in
particular (Kyburg, 1990, 2003).

Frequentist’s choices canbe representedwith a choicemodelCf := {�,D,H, kα, π,

φ}, where � is the set of possible outcomes of a coin toss, D is the set of pos-
sible actions, H is the set of possible histories, kα is the function which assigns
a Clopper-Pearson interval to every history h ∈ H, π is a payoff function identi-
cal to the one defined for Bayes player, and φ : D × H → P (R) is a function

11 In our decision problem,where the players all know that the coin tosses are random,we can safely assume
that Frequentist should use the estimates of the general relative frequency to form their beliefs about
particular tosses. In problems where Frequentist is confronted with e.g. different statistics for different
overlapping reference classes, the applicability of this assumption becomes much more complicated, as
frequentists have known since at least (Venn, 1876). For influential discussions, see also Salmon (1967)
and Reichenbach (1971).
12 The method used to compute the confidence interval cannot be employed when h = ∅. However, the
first bet in the game occurs only after each player observes a number of coin tosses.
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which assigns, to every action-history pair (d, h) ∈ D×H, an expected payoff vector
φ (d, h) = (

Eπ

[
d, k

]
, . . . ,Eπ

[
d, k

])
, where k = min (kα (h)), k = max (kα (h)),

and Eπ [d, k] = kπ (d, heads) + (1 − k) π (d, tails) for every k ∈ kα (h).
The choice behaviour of Frequentist can be defined with the interval-dominance

principle. Action d ∈ D interval-dominates action d̄ ∈ D if and only if, given history
h ∈ H, min (φ (d, h)) > max

(
φ

(
d̄, h

))
. For any pair of actions d ∈ D and d̄ ∈ D,

Frequentist always chooses action d if d interval-dominates action d̄, and is indifferent
between d and d̄ when neither action interval-dominates the other. Reasoning this way
almost corresponds extensionally to the frequentist player’s behaviour in Kyburg and
Teng (1999), where no general decision rule is provided.13

We now apply this approach to the coin tossing problem.Wedefine� as denoting the
interval-dominance of one action over another and ◦ for when neither action interval-
dominates the other. For a particular confidence interval and the fixed utilities given
in Fig. 1, the actions bh , bt , and b̄ can stand in the following relations:

(i) bh � bt and bh � b̄;
(ii) bt � bh and bt � b̄;
(iii) b̄ � bh and b̄ � bt ;
(iv) bh � bt and bh ◦ b̄;
(v) bh ◦ bt and bh � b̄;
(vi) bt � bh and bt ◦ b̄;
(vii) bh ◦ bt and bh ◦ b̄.

Frequentist will choose bh in case (i), bt in case (ii), and b̄ in case (iii). They will make
random choices between bh and b̄ in case (iv), bh and bt in case (v), bt and b̄ in case
(vi), and between all three actions in case (vii). Our decision algorithm for Frequentist
in the code embodies this behaviour.14

3.3.3 TheWilliamsonian

Williamsonian is somewhat of a hybrid player.Consequently, after our discussionof the
previous twoplayers, there are fewnewnotions involved in their reasoning.Williamson
(2010) argues for three fundamental principles about probabilistic reasoning:

13 However, in Kyburg and Teng (1999), if no action interval-dominates holding, their frequentist player
will always choose to hold. Kyburg and Teng provide no justification for this feature of their frequentist
player’s decision algorithm, so we have interpreted it as a programming simplification, and one that was
not helpful for our simulations.
14 One might object that it is unfair to enable Frequentist to hold, while Bayes never makes this decision.
This modelling choice has the advantage that our simulations are more comparable to those of Kyburg
and Teng (1999). It is also acceptable from Bayes’s perspective, since hold is never strictly dominant—
at best, Bayes is indifferent between this option and some other option. However, an anonymous referee
points out that less conventional Bayesian reasoners will not necessarily share this perspective. In particular,
“imprecise” Bayesians, who model agents using sets of probability functions, do not identify the expected
value of not taking a bet to be the negative of the bet’s expected value. In their model, the minimum price at
which an agent is willing to sell a ticket and the minimum price at which they are willing to buy that ticket
can differ, in a similar way to Frequentist. For some influential discussions and excellent expositions, see
Levi (1974), Gilboa and Schmeidler (1989), Seidenfeld (2004), Troffaes (2007), Bradley (2017). We look
forward to investigating the performance of such players in future research. In the present study, we address
this issue using ε = 1, which enables us to simulate what happens when we remove hold as an acceptable
option for Frequentist.
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1. Probabilism: Beliefs should be representable as credences satisfying the additive
probability calculus.

2. Calibration: These credences should reflect any relevant knowledge about relative
frequencies.

3. Equivocation: Subject to the constraints from Calibration, the credences should
be maximally equivocal among the different possible states of the world.

The principle of Probabilism is a familiar Bayesian idea. For Calibration,
Williamson endorses Kyburg’s system of “Evidential Probability” (Wheeler and
Williamson, 2011) and this system requires using confidence intervals where (as in
our simulations) there is no background knowledge of the relevant conditional proba-
bilities for events (Kyburg and Teng, 2001, p. 264). Consequently, Williamsonian will
estimate confidence intervals in the same way as Frequentist.

However, Equivocation and Probabilism entail that Williamsonian will differ from
Frequentist in the other parts of their learning procedure. To determine equivocal cre-
dences in a systematic manner, Williamsonian uses the “maximum entropy principle”.
Williamson gives the full formal connections between entropy maximisation and for-
mal beliefs in Williamson (2010), building on research such as Jaynes (1957). The
salient point is that, given a confidence inferred at some exogenously determined con-
fidence level (1−α) and a set ofm ≥ 2 exhaustive andmutually exclusive states of the
world that are consistent with the relative frequencies estimated using that confidence
level, a Williamsonian will try to minimise the distance between their probabilities for
each state of the world and the value 1/m implied by the Principle of Indifference.

Williamsonian’s belief revision canbe representedwith amodelW := {�,�,H, p,
kα, c, pw}, where � is the set of possible outcomes of a single coin toss, � is the set
of values representing all the possible coin biases, H is the set of possible histories
that can be generated by n > 0 coin tosses, c is the heads event counting function,
p : � → Δ(�) is a function which assigns a uniform probability distribution on �,
kα is a function which assigns a Clopper-Pearson interval to every history h ∈ H,
and pw : H → X , where X := {

x ∈ R≥0 : 0 ≤ x ≤ 1
}
, is a Williamsonian belief

function which assigns, to every history h ∈ H, a belief pw (h), such that

pw (h) ∈ argmink∈kα(h)

∣∣∣∣k −
∫ 1

0
(p (θ) θ) dθ

∣∣∣∣ . (11)

Since function p assigns a uniform distribution on �, we have a case where∫ 1
0 (p (θ) θ) dθ = 1/2. Thus, we can rewrite condition 11 as

pw (h) ∈ argmink∈kα(h)

∣∣∣∣k − 1

2

∣∣∣∣ . (12)

Therefore, in our coin tossing problem, Williamsonian first estimates confidence
intervals for heads and tails in general at a confidence level (1 − α). Secondly, sub-
ject to this constraint, they set a Bayesian probability. For example, suppose that the
Williamsonian has estimated a confidence interval [0.4, 0.6] for heads. This is con-
sistent with assigning a probability of 0.5 for each particular toss landing heads, so
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Williamsonian makes 0.5 their degree of belief. However, if the interval is [0.1, 0.4],
then 0.5 is not consistent with their beliefs about the relative frequencies. Instead, 0.4
is the available value that maximises entropy, and hence Williamsonian makes 0.4
their degree of belief in each particular toss landing heads.

Williamsonian’s choices canbe characterisedwith choicemodelCw := {�,H,D, π,

pw}, where � is the set of coin toss outcomes, H is the set of histories, D is the set of
actions, π is the payoff function identical to that which we defined for Bayes and Fre-
quentist players, and pw is a Williamsonian belief function. Williamsonian’s expected
payoff associated with some action d ∈ D given some history h ∈ H is

Eπ [d|h] = pw (h) π (d, heads) + (1 − pw (h)) π (d, tails) . (13)

We assume that Williamsonian is an expected payoff maximizer and thus, for any
history h ∈ H, always chooses action d ∈ D, such that Eπ [d|h] ≥ Eπ

[
d̄|h], for all

d̄ ∈ D.
Despite the similarities in the learning procedures for Williamsonian and Frequen-

tist, the principle of Equivocation leaves Williamsonian in a very different place,
because the latter has a precise probability when they face each next coin toss. There-
fore, Williamsonian makes decisions, for a particular set of credences, in an identical
way to Bayes.

3.3.4 Sample

Our final player, Sample, serves two primary functions. Firstly, they can be interpreted
as Frequentist in a situation where they are forced to make precise estimates of the
relative frequencies of heads. In that case, Frequentist might estimate the general
relative frequencies of heads to be the limit as α → 0, which is just the sample
frequency. Thus, Sample may be interpreted as estimating that the long run frequency
of heads is just the relative frequency in the total sample that they have observed so far.
These estimates then guide Sample’s bets on each given toss. Sample also thereby has
estimates for tails, given their knowledge of the coin tossing set-up. Sample’s second
function is as a benchmark: if a statistical methodology’s performance is inferior to
just estimating a precise probability using the sample frequency, then this is a bad
mark against that methodology.

Conceptually, there is nothing novel in Sample’s belief revision procedure. They
can be interpreted in multiple ways: as a version of Frequentist with precise estimates
of relative frequencies, as a quasi-Bayesian reasoner (similar to the “λ = 0” agent in
Carnap, 1952) and so on. The divergence with Frequentist is mainly in how different
sample sizes are treated: given a 0.5 sample frequency of heads and a sample of
4, Sample is certain that the limiting relative frequency of heads in the tosses is 0.5,
whereasFrequentist has a verywide confidence interval around 0.5; given a 0.5 sample
frequency of heads and a sample size of 1000, Sample’s beliefs are the same as when
theyhad just 4 observations,whereasFrequentist has averynarrowconfidence interval.
Even this divergence can be reduced if we interpret Sample as a frequentist reasoner
who uses the sample frequency as a decision-making tool, without interpreting the
concomitant probability distributions as degrees of belief. This type of reasoner is
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briefly discussed by Williamson (2007). The divergence with Bayesianism is that
Sample has no initial priors, and thus does not update by conditionalization. While
Sample is not a true Bayesian reasoner, in our simulations they will always have some
sample data prior to making decisions, and therefore there is no need to specify the
beliefs of Sample when they lack sample data.

For the choice behaviour of Sample, we model them as possessing a precise proba-
bility (interpreted either as a relative frequency estimate or as a non-Bayesian credence)
for each possible outcome of each toss. Given this probability, it is natural for Sample
to use Bayesian decision theory, because even many frequentists would say that such
choices would be appropriate if one legitimately possessed the relevant relative fre-
quency estimates, and Sample views themselves as having this information. Thus, for
given credences, Sample makes decisions in the same way as Bayes. This common
decision algorithm has the added advantage that Sample only differs from Bayes in
their learning methods, which helps comparisons between the two players.

3.4 Coding and simulation architecture

Starting from the common decision problem and particular settings specified for each
player in Sects. 3.2 and 3.3, we coded six different Python 3 scripts (version 3.8.1),
based on the statsmodel econometric and statistical library (Seabold and Perktold,
2010) to perform the simulations. The first two scripts generated coin tosses and ticket
prices. This data was subsequently employed as an input for the other four scripts.
The output of the latter scripts gave us the cumulative monetary mean profits for each
player, like those shown below in Tables 1, 2, 3, 4, 5 and 6 and, focusing on the
Frequentist, the statistics of the conditions met by this player (see end of Sect. 3.3.2)
in the simulations, as outlined in Tables 7 and 8. All simulations were performed on
an Ubuntu Linux server powered by an 8 cores (16 threads) Intel Xeon (Skylake type)
processor @ 2.2 GHz. High performance data multiprocessing meant that the overall
computational time was approximately 1.5 hours. The simulation results were stored
in 310,000 different txt files for about 3.5 gigabytes. The code is available from the
authors upon request.

3.5 Variations

The games each consisted of a number of observations of coin tosses, which were
used by the players to update their initial belief state. Once these beliefs were updated,
players used their decision algorithms to choose an action. Players retained informa-
tion from game-to-game within a particular simulation, but they did not retain any
information from one simulation to another.
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Wemade two sets of simulations. Each set consisted of 1000 simulations. In the first
set of simulations, there were 1000 games. In each game, players observed 9 tosses
and then bet on the 10th toss. In the initial game, players had no prior observations.
They updated using their 9 observations and made a decision on how (and whether)
to bet on the result of the 10th toss. After the 10th toss, players updated on the 10th
toss. In subsequent games, retained knowledge of their past observations of tosses.
Thus, for example, in a particular simulation, players had 500 observations after 50
games. In total, there were 1000 opportunities to bet per simulation, corresponding to
the 1000 games.

In the second set of simulations, there were also 1000 games in each of the 1000
simulations. In these simulations, players had just 4 observations in each game, and
they bet on the result of the 5th toss. The players’ updating was otherwise identical to
the first set of simulations. Therefore, after 50 games, players had 250 observations in
a particular simulation. In total, there were 1000 opportunities to bet per simulation.
We conducted this second set of simulations to investigate how players performedwith
very small samples. In each simulation, every player observed the same sequence of
tosses.

For each of the 1000 games in a simulation we used 1000 randomly generated
ticket prices. We used different ticket prices for each simulation. However, for a given
simulation, every player faced the same ticket prices. We recorded the overall mean
payoffs and standard deviations for each player in each simulation. We also recorded
the overall mean payoffs and standard deviations at different points during the simu-
lations, as we show in the tables below. Finally, we recorded how often Frequentist
chose to bet and how often they chose to withhold from betting.

The sample sizes for players’ observations (9 newobservations per game for the first
set of simulations, 4 for the second set) seemed to offer a reasonable balance between
enabling us to look at short run performances and yet also giving players some data to
use.Noplayerwill update their beliefs in a radicalway in response to just several tosses.
Therefore, with extremely small samples and just a few games, we would mainly be
comparing the players’ initial choice models—interesting in some respects, but not
very informative about the differences in the players’ statistical learning procedures.
On the other hand, the players will almost always make identical decisions with very
large samples, due to washing-out of priors and narrowing of confidence intervals. Our
choice of sample sizes is intended to find a reasonable medium between comparisons
with extremely large and extremely small samples.

In addition to varying the sample sizes, we also varied the coin bias across the
values 0.1, 0.3, 0.5, 0.7, and 0.9. For each simulation and each particular coin bias,
we randomly generated a single history of coin tosses and simulated each player’s
behaviour with that history. Our choice to keep the histories fixed ensured that any
differences in performance between players were not due to random variation in the
coin toss histories that they faced.

We also made variations in players’ exogenous parameters—the parameters in their
belief and decision algorithms that are not set by the methodologies. For Bayes, we
varied the values for the beta distribution parameters of (a, b) to (100, 1), (1,1), and
(100,1). For Frequentist and Williamsonian, we varied the values for α to 0.01, 0.05,
and 0.5. Finally, following the suggestion of Kyburg and Teng (1999), we varied the
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penalty parameter ε for Frequentist, with the intention of varying the willingness of
Frequentist to place bets rather than hold. For Sample, there were no parameters to
vary.

Each simulation’s results were independent of every other simulation, and their
basic stochastic parameters were the same for a given setting, e.g. a given coin bias.
Consequently, our simulations might be regarded as independent and identically dis-
tributed draws from the overall population of possible simulations under these settings.
In the next section, we use the standard error under that interpretation and a 95%
confidence interval. However, we strongly stress our study is descriptive rather than
inferential: we have provided some relevant descriptive statistics, but proper testing
of hypotheses regarding our simulations is a project for further research. Like our
simulation’s code, our datasets are available upon request.

4 Results and analysis

We report our results in Tables 1, 2, 3, 4, 5, 6, 7 and 8.We begin with some comparative
points, always using the standard errors reported in the tables. To evaluate the players
in relation to the benchmark Sample player, we compared the best performance of a
player in the confidence interval for that player’s results with the worst performance
of Sample in its confidence interval. Using this analysis, if a player fails to outperform
Sample for a particular number of games (on average over the 1000 simulations) then
we have starred the cell in Tables 2 and 4. In starless cells, the player outperforms
Sample according to the interval analysis. This interval analysis acknowledges the
random errors involved in such an assessment, while also indicating the descriptive
basis for the evaluations that we make in this section.

When Bayes sets a B(1,1) prior15 and Frequentist sets a high value of α, we found
that they both reliably either matched or exceeded the performance of the Sample
player: see Tables 2 and 4 for B(1,1). In this respect, our results differ from those
of Kyburg and Teng (1999). The very similar performance is unsurprising in a large
number of games, where these players’ performances were more or less identical. As
sample sizes become large, then Bayes’s posterior probabilities become very close
the cumulative observed sample frequency, while Frequentist’s confidence interval
estimates are very narrow around that frequency. However, it is surprising with 10
games, where players had less than 100 observations to make their decisions in each
game.Bayeswith a B(1,1) prior andFrequentist withα = 0.5 are behaving differently,
but neither performed detectably better across all the coin biases. The samewas true for
Williamsonian with α = 0.5. Overall, for each of the three statistical methodologies,
there were player settings under which they passed the benchmark that we set.

We did find inferior performance relative to Sample when Bayes’s beta prior was
biased towards either heads, B(100,1), or tails, B(1,100). Indeed, in Tables 1 and 3,
we can see that this player setting is the only one under which any player made a loss
in the short-term. It is not surprising that, with a biased prior that differs from the coin
bias, Bayes would perform badly. It is perhaps more surprising that these biases never

15 A beta prior with parameters a = 1 and b = 1.
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yielded detectable special advantages relative to the flat B(1,1) prior. Even in the short
run, there were no simulation settings where Bayes performed less well (in either the
short run or the long run) than Sample using a B(1,1) prior but not with a biased prior
for the 1000 simulations as a whole. Consequently, a biased prior created the risk of
some very bad performances for Bayes, without identifiable benefits relative to flat
priors. Furthermore, these costs of biased priors were persistent: even with thousands
of observations over many games, the Bayes with a badly inappropriate prior was still
performing badly. While a washing-out of priors would occur in the long run, it can
take a long time in this sort of decision problem.

The absence of special benefits fromabiased prior can be explained by the “flatness”
of the B(1,1) Bayesian prior. Although this prior is an equivocal and thus would
generally have some advantages for a 0.5 coin bias, it is not this equivocation that
is the key to its success in our decision problem. Instead, the advantages come from
the speed with which Bayes revises their beliefs using this prior. Suppose that the
coin is biased towards heads, such that its frequency of heads is 0.9. Such a bias
will tend to produce samples that are themselves usually biased towards heads, and
the Bayesian will quickly update on this sample data if they have a B(1,1) prior, thus
quickly eliminating any special advantages that theB(100,1) priorwill have frombeing
biased towards heads. Some other equivocal priors—e.g. a B(100,100) prior—would
not perform so well when observing the tosses of a biased coin.

In terms of common points, all players tended to do better when the coin bias
was set further away from 0.5. This result is unsurprising, because the chance of a
very unrepresentative sample is greatest when the coin is fair. In contrast, if the coin
bias is 0.1 or 0.9, then the randomisation process in the Python code will generate
very unrepresentative samples at a lower rate. Kyburg and Teng found the same result
(Kyburg and Teng, 1999, pp. 362–363).

We now turn to particular players. As previously noted, Bayes did best with a
B(1,1) beta prior. While this result might seem to be favourable to Objective Bayesian
approaches, according to which such a prior would be mandatory, note that Subjective
Bayesians regard flat priors as permissible, provided that they are coherent with the
total credence distribution. They just deny that they are rationally required. Further-
more, as a matter of contingent fact, most real-world Subjective Bayesian statisticians
would choose such a prior if faced with the decision we describe. Since Bayesian rea-
soning with such a “flat” prior is similar to maximum likelihood estimation, it is also
unsurprising that Bayes with a B(1,1) beta prior would at least match the performance
of Sample.

We now consider theWilliamsonian. They differ from the players studied in Kyburg
and Teng (1999). AlthoughWilliamson’s theory of statistics is not as prominent as the
Bayesian or frequentist methodologies, it provided us with the basis for an intriguing
“hybrid” player.16 Notably, Williamsonian matched the performance of Bayes and
Frequentist. In some cases, with low values of α, the Williamsonian failed to match
the performance of Sample in the very short run. However, this varied with different
coin bias settings, so it was not a consistent pattern.Muchmore investigation is needed

16 We stress that it was inspired by Williamson’s views; we do not presume that Williamson would agree
with every detail of it, anymore than all Bayesians or all frequentists will approve of Bayes and Frequentist
respectively.
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to infer anything definite about the best values of α for Williamsonian’s performance.
The problemmight be that low values of α increase the importance of the Equivocation
norm as their confidence intervals will detect coin biases more slowly. If the coin bias
is 0.5, then this behaviour is unproblematic: see Tables 2 and 4. However, when the
coin is biased, the Equivocation norm can repeatedly drag Williamsonian’s credences
towards 0.5. Our results are consistent with Williamson’s principal justification for
the Equivocation norm: its advantages in minimising loss for the worst-case scenarios
(Williamson, 2007). For combinatorial reasons, 0.5 is the least favourable stochastic
condition for binomial sampling, because it maximises the number of unrepresentative
samples.

At least in our simulations, Williamsonian was able to “have their cake and eat
it” by using a (maximally) low value of α = 0.5. They were still able to match or
exceed the performance of Sample when the coin bias was 0.5, in both the short and
long run. Yet the greater receptiveness to sample data when α = 0.5 meant that they
were also able to pass our benchmark with other coin biases. Nonetheless, one cannot
extrapolate to all decision problems and say that a low value of α will always be better
for Williamsonian. In some decision problems, perhaps with rare extreme risks, being
firmly equivocal could be beneficial.

Regarding biased priors, Williamsonian excludes these via the Equivocation norm,
and thus they do not face the problem of having such a prior in this decision problem.
Consequently, even the worst performances of Williamsonian were not as bad as the
worst performances of Bayes with a prior that was biased in the wrong direction.
For instance, see Table 4, for coin bias = 0.1 or 0.9, and runs of 10 games, where
Williamsonian with α = 0.01 does far better than Bayes with B(100,1).

Finally, we considerFrequentist. For ε, we firstly found that this parameter achieved
its intended function of increasing Frequentist’s propensity to bet, as we report in
Tables 7 and 8. On the other hand, ε does not seem to reliably affect Frequentist’s
performance, as we see in Table 6. As for α, we found the same result as Kyburg and
Teng (1999). In the very short run, there were some suggestive but indefinite signs
that very low values of α—particularly α = 0.01—could lead to a poor performance
relative to Sample, but more research is needed; the differences were not as clear as
with Bayes using a biased prior. For α = 0.05 and α = 0.5, there were at least some
occasions where Frequentist matched Sample. When α = 0.5, this above-benchmark
performance was consistent.

Whymight high values of α hurt the performance ofFrequentist? This questionwas
not a focus of our study and thus it would benefit from more comprehensive analysis.
Nonetheless, one notable point from Tables 7 and 8 is that a lower value of α made
an identifiable difference to the rate of using randomisation. Recall that, in Frequen-
tist’s mixed strategy decision rule, they randomise between buying a ticket, buying a
reversed ticket, or withholding from betting in situation (vii), and between buying a
ticket or a buying a reversed ticket in situation (v), as we detail in Sect. 3.3.2.17 In sit-
uation (v), neither betting heads nor betting on tails interval dominates the other given
Frequentist’s estimated confidence interval. Thus, they randomise between these two

17 Due to the incentive structure of the game, there was no occurrence of situations (iii), (iv) and (vi), which
correspond to cases where withholding interval dominates at least one other action. This clearly appears
also in Tables 7 and 8.
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bets using an additional fair coin. In situation (vii), none of their three possible actions
is interval dominated, and therefore Frequentist randomises between all three. Both
these randomisation procedures mean that Frequentist is acting equivocally between
heads and tails. Consequently, if α is low, then they are not makingmuch use of sample
data indicating bias, but if α is high, then Frequentist quickly detects bias and exceeds
the minimum performance of Sample even in the very short run, as in Tables 2 and 4.
It does not follow that a high value of α is better for decision problems in general.
Instead, our results suggest high values are better for this kind of decision problem,
because it makes prompter use of the sample information, and hence helps avoid acting
equivocally when the coin is biased.

5 Discussion

Although our simulations did not detect any reason to use one statistical methodology
rather than another, it does not follow that the choice is underdetermined. Firstly,
Bayesians might note that, unlike Bayesian decision theory, Frequentist’s decision
algorithm has no axiomatic derivation; Kyburg acknowledges that it is produced by
unsystematic intuitive considerations (Kyburg, 2003, p. 148).Wewere able to use these
intuitive considerations to infer how Frequentist should extend the algorithm from
Kyburg and Teng (1999) to cases where there was a non-zero penalty for holding, but
it would be an extreme exaggeration to call it a decision “theory”.More generally, there
is no agreement on how to make decisions with interval-valued beliefs.18 Secondly,
frequentists might argue that there are broader aspects like long run decisions, social
decisions, or epistemological points that we do not address in our simulations, which
only involve individual decision-making in the short run. Thirdly, Williamsonians
also think that their approach has long run virtues that favour their view for decision-
making (Williamson, 2007). Our results suggest that either (1) we need a different
sort of challenge for comparing their short run performance or (2) the choice between
them—even whenwe focus on the relatively narrow issue of making good decisions—
must be approached via questions of systematic coherence, the social consequences
of their implementation in science, asymptotic strengths or weaknesses, results of
debates in formal learning theory (Schulte, 2018) and other angles.

Our results have some good news for all three methodologies. For Bayesians, our
results are better than those of Kyburg and Teng (1999). Unlike their study, we did
not find that the Bayesian player will generally be outperformed by the frequentist
player. For frequentists, they can take comfort from the fact that Frequentist can
match Bayes in performance, even when the Bayesian’s prior is set to the true relative
frequency, and even though guiding us to good decisions is often regarded as a strength
of Bayesianism. Finally, for Williamsonians, we have shown how they can match the
performance of the more well-known Bayesian and frequentist methodologies. This
strong performance by Williamsonian might encourage a wider audience of philoso-

18 For some discussions, see Kyburg (1990), Seidenfeld (2004), Troffaes (2007), Haenni et al. (2011),
Bradley (2017).
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phers, statisticians, and other interested groups to inquire further into the relatively
marginal Williamsonian position.

The similarity in performance is particularly intriguing because it is not always
caused by players making the same decisions. It is true that, in the long run, players
have almost identical performances because they have more or less the same beliefs,
and they are making the same decisions. That occurs because, with large samples, the
initial priors lose their significance; the confidence intervals narrow; and the players
concur on the best decisions for the greater proportion of a given coin toss history and
sequence of ticket prices. However, with smaller samples, the players have different
beliefs and make different decisions, which is why their results vary among particular
coin toss histories. The lack of a systematic difference is thus occurring in spite of the
players’ contrasting decisions. Therefore, in the short run, the players have genuinely
different statistical methodologies, but in our problem, their methodologies do not
guide them to relatively better decisions.

The problem of priors is also a heated topic within the Statistics Wars. Overall,
Bayes did badly with an extreme prior, and their performance was no better (relative
to Sample) than the Bayes setting B(1,1), even when their biased prior was in the right
direction relative to the coin bias. However, one point that our simulations illustrate
is that the effects of “washing-out” of the priors can take a long time to manifest. In
the long run, we would expect to see Bayes catch up even with a very “bad” prior.
Nonetheless, in the real world, relative performance in the short run can make an
important difference for aims like attracting investment in business, attracting funding
in science, or winning an arms race.19

Moreover, the decisionproblemandpriorsweused is arguably favourable toBayes’s
catching up in such cases. Bayes views the coin tosses as an exchangeable. This means
that the tosses are independently and identically distributed according to some dis-
tributional form, which implies that the order of the tosses does not matter. More
fundamentally, their prior was always sensitive to evidence. Subjective Bayesianism
as such does not require such priors. Most obviously, extreme priors of 0 or 1 cannot
be changed by conditionalization. However, the further possibility of non-extreme
priors that share this dogmatism have been known since the early days of Bayesian
epistemology (Carnap, 1945a, pp. 80–81). The limits of what can be learned by con-
ditionalization has been a topic of research in recent formal epistemology (Rédei and
Gyenis, 2019). For instance, if a Bayesian player was estimating the general relative
frequencies in a massively large number of tosses, then clearly there are prior dis-
tributions that will be totally insensitive to new evidence. Thus, we recognise that it
would be possible to create tougher learning challenges for the Bayesian—just as it
may be possible to construct choice problems where the frequentist decision theory we
consider entails inconsistent or systematically exploitable choices. On the other hand,
it is possible that Bayesians might do better in problems involving more background
knowledge than the sparse information that they (and the other players) possess in this
article’s simulations.

19 In general, relative short run performance is very significant for problems that are analogous to being at
the front of a stampede of animals, where it is your relative speed that determines whether you are trampled.
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The use of the penalty ε enabled us to remove an asymmetry between the Bayesian
and frequentist players in Kyburg and Teng (1999). In their simulations, the frequen-
tist player would refuse to bet until they either had relatively large samples or they
were faced with very attractive (given their beliefs) ticket prices. In contrast, their
Bayesian player would always bet, even with very small samples. It was possible that
this asymmetry produced Kyburg and Teng’s favourable results for the frequentist.
Perhaps surprisingly, in our simulations, forcing Frequentist to bet using ε made no
systematic difference to their performance relative to Sample. However, there is still
a possibly important asymmetry when ε is high. Frequentist, when forced to bet, will
randomise unless they have either relatively large samples or very attractive ticket
prices. In contrast, Bayes almost never randomises, because they will only randomise
if two bets have the same expected payoff. One might think that this reflects a method-
ological difference, inwhich case this asymmetry is not a problem for our comparisons.
However, it indicates the dangers of generalising from our results to other decision
problems, such as those in which there is a yet another penalty, this time directed at
randomisation. Additionally, one reason for thinking that the asymmetry is not due
to anything specific to the methodologies is that other types of prior for Bayes could
reduce this asymmetry, evenwithin our setup. For instance,Bayes could have an equiv-
ocal prior that was “sticky” in the sense of not changing (or not changing much) until
they had relatively large samples. While a beta distribution was a reasonable way to
model Bayes, there is nothing in Subjective Bayesianism that mandates this family of
priors. Frequentist could also be modified to randomise less, by giving them a rule
like maximin, which would involve less randomisation than the interval-dominance
that we used in this study. We leave such alternative simulations for future research,
but their possibility should warn against generalising from our simulations to other
decision problems or different player settings.

Another contrast with Kyburg and Teng (1999) is that we have extended the simu-
lations in some newways. In addition to those already mentioned (such as the addition
ofWilliamsonian) we have explored the players’ performances in relatively large num-
bers of games—while Kyburg and Teng (1999, p. 362) stopped after 50 games, we
have compared players’ performances over 100, 250, 500, and 1000 games. We thus
investigated both the relatively short and the medium run. Even though our primary
interest was short run performances, the latter provides a useful check of both our
model (if we expect convergence of performance in the long run) and whether clear
differences emerged in the long run.

The principal divergence of our results and those of Kyburg and Teng (1999) is
that we do not find, for any setting, that Frequentist detectably outperforms Bayes.
We can explain the results in Kyburg and Teng (1999) in terms of randomness. They
performed only 100 simulations, so the modest differences between players in their
results can easily be explained by random error. By performing many simulations,
we have greatly reduced the effects of randomness on our results. Their study retains
some interest as a possibility result: our results do not contradict the possibility that
Frequentist will sometimes perform better than Bayes in a relatively small number
of simulations. What we have found is that such an outcome does not systematically
occur for the best settings of these players out of the settings that we investigated.
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Without an extensive theoretical analysis, we can only speculate briefly on why
(with the appropriate settings) the players had similar results. Relative to Sample, the
best performing players were Bayes with a B(1,1) prior, Frequentist with α = 0.5, and
Williamsonian with α = 0.5. Their performances were very similar under every coin
bias and with either games with 5 tosses or with 10 tosses. How can this similarity be
explained?

For these three player settings, a common trait is their use of sophisticated inductive
inference from their evidence. Like Sample, they are all willing to revise their beliefs
quickly given the background knowledge and evidence that we gave them in our study.
In the case ofFrequentist andWilliamsonian, this readiness was due to the low value of
α, which respectively reduced the importance of randomisation and Equivocation. For
Bayes, this readiness was due to a flat prior. Yet, unlike Sample, their early decisions
were moderated by some factor that encouraged equivocal (and thus asymptotically
cautious) reasoning in the early part of the game, thus downplaying the importance of
early uniform samples. ForBayes andWilliamsonian, this equivocation is achieved via
the determination of their degrees of belief, using the beta prior and the Equivocation
norm respectively. For Frequentist, it is achieved in their decision-making procedure:
recall that their mixed strategy requires randomisation using a fair coin when no action
interval-dominates any other; this underdetermination occurs most often early in the
simulations, when sample sizes are small and confidence intervals can be wide even
with α = 0.5.

Hence, for philosophers, our results indicate the power of sophisticated statistical
induction, in the sense of (1) revising one’s initial beliefs about theworld to be closer to
observed frequencies, but also (2) not extrapolating too strongly from small samples.
Sophisticated induction can be achieved by multiple methods, including as condition-
alization and confidence interval estimation. It then only needs an adequate decision
procedure, and we found that both maximising expected payoffs (the approach of
Bayes and Williamsonian) and the interval dominance rule of Frequentist were ade-
quate for the problem we studied, provided that the player’s other settings were also
adequate.

6 Conclusion

Our simulation study had the result of a Caucus Race (Carroll, 1920, p. 34), in which
“everybody has won, and all must have prizes.” This result obtained even in the very
short run, before convergence theorems couldmanifest. In contrast toKyburg andTeng
(1999), we did not find that the frequentist player will generally outperform the other
players. However, contrary to what some philosophers might expect, our frequentist
player did no worse than the Bayesian. We also found that this result obtained after
we introduced new features to the simulations, such as a penalty for not betting that
encouraged Frequentist to place more bets. We also introduced a hitherto unstudied
player, based on Williamson’s version of Objective Bayesianism, and we found that
they performed just as well as the more well-known methodologies.

There are many limitations of our simulations that should be noted in order to avoid
overgeneralisations. We simulated just one type of decision problem. The data and the
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problem itself were both very simple. The players could also be modified in ways
that would be consistent with the statistical methodology that inspired them. We also
only considered one algorithm for Frequentist and this algorithm lacked a systematic
derivation from a generally accepted non-Bayesian theory of decision, because the
latter does not exist. Another issue is that, like Kyburg and Teng (1999), our players
differ in both their inference rules and their decision rules.20 We analysed our results
informally; we welcome the use of either our results or code for more systematic
analyses.

The type of simulations we conducted are largely unstudied and there are many
novel dimensions for further exploration. It would be interesting to investigate more
alternative players. For example, there are many, many types of Bayesians: howwould
Imprecise Bayesians, whose beliefs are characterised by sets of probability functions,
perform in comparison to Bayes? Howwould Frequentist perform with other decision
algorithms? The game set-up could also be modified in various ways. Currently, it
features a relatively simple problem space and simple data, but would the players still
match each other’s performance when faced with more complex challenges? What if
we make the game interactive? These directions indicate the fertility of this field of
research.

The strong performance of all four players in our study should remind philosophers
and those working in applications of statistics to respect the capacity of Bayesianism,
frequentism, and Williamsonianism to guide us towards good decisions. Our little
skirmish does not win the Statistics Wars for any side, but it indicates that all sides
have firepower that is worth taking seriously.
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