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Abstract
Computer simulations are often claimed to be opaque and thus to lack transparency. 
But what exactly is the opacity of simulations? This paper aims to answer that ques-
tion by proposing an explication of opacity. Such an explication is needed, I argue, 
because the pioneering definition of opacity by P. Humphreys and a recent elabora-
tion by Durán and Formanek are too narrow. While it is true that simulations are 
opaque in that they include too many computations and thus cannot be checked by 
hand, this doesn’t exhaust what we might want to call the opacity of simulations. I 
thus make a fresh start with the natural idea that the opacity of a method is its dispo-
sition to resist knowledge and understanding. I draw on recent work on understand-
ing and elaborate the idea by a systematic investigation into what type of knowledge 
and what type of understanding are required if opacity is to be avoided and why the 
required sort of understanding, in particular, is difficult to achieve. My proposal is 
that a method is opaque to the degree that it’s difficult for humans to know and to 
understand why its outcomes arise. This proposal allows for a comparison between 
different methods regarding opacity. It further refers to a kind of epistemic access 
that is important in scientific work with simulations.

Keywords  Epistemology of computer simulation · Understanding why · Verification 
of simulations · Modeling · Unsurveyability

1  Introduction

Computer simulations are often claimed to be opaque. The rough idea is that com-
puter simulations are not transparent and that their workings are difficult to access. 
The opacity of simulations is often noted with a sense of regret (e.g., Durán & For-
manek, 2018, pp. 645–646) and taken to be relevant for the appraisal of the method 
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of computer simulation. It is thus an important topic in the epistemology of com-
puter simulation (Humphreys, 2009).

Although the opacity of simulations has been noted before (e.g., Di Paolo et al., 
2000; Turkle, 1997, 2004), the preoccupation with opacity in the philosophy of sci-
ence goes back to Paul Humphreys. Drawing on earlier work (Humphreys 1994), 
Humphreys (2004, pp. 147–151) argues that the relationship between the inputs and 
the outputs of computer simulations is opaque roughly because the computational 
steps cannot be known. Humphreys (2009, pp. 618–619) elaborates his claims about 
opacity to argue for the novelty of computer simulations.

Humphreys’s claims about the opacity of simulations have led to a lively philo-
sophical debate. In this debate, the opacity of simulations has rarely been disputed; 
rather, philosophers have tried to show that opacity doesn’t compromise the ability 
of computer simulations to achieve their tasks. In this vein, Barberousse and Vorms 
(2014) and Durán and Formanek (2018) have argued that, despite being opaque, 
computer simulations can produce knowledge. As far as understanding is concerned, 
Lenhard (2006) has suggested that the opacity of simulation models is compatible 
with their delivering a pragmatic variety of understanding (see also Lenhard 2009, 
2019, ch. 4). Kuorikoski (2011) has discussed how we can improve our understand-
ing of computer simulations despite their opacity. Jebeile (2018) has observed that 
visualizations can help researchers to use opaque simulations for explanatory pur-
poses. On a more critical level, Saam (2017) has argued that, in the social sciences, 
opacity is a persistent concern only about one specific kind of simulation. Newman 
(2016) has suggested that, pace Humphreys (2009), the opacity of simulations is not 
essential and may be avoided by appropriate software construction. Kaminski et al. 
(2018) have argued that opacity is an exclusive characteristic of simulations only if 
it is understood in a mathematical sense.

Given this lively debate, it is no surprise that authors have offered additional 
clarifications of, and reflections on, the notion of opacity. Lenhard (2011) uses the 
opacity of computer simulations to distinguish them from traditional thought experi-
ments. Imbert (2017, p. 746) lists several ways in which simulations can be opaque 
(see Imbert 2017, pp. 746–758 for further discussion; cf. Kaminski et al. 2018 for a 
similar approach). In recent work, Durán and Formanek (2018), Boge and Grünke 
(forthcoming) and San Pedro (forthcoming) have suggested further clarifications on 
the opacity of simulations.

Although the discussion so far has led to valuable insights, we still lack a system-
atic reflection on opacity. As I will argue in detail below, central ideas about opacity 
have themselves remained opaque (see Kaminski et al., 2018, p. 256 for a similar 
diagnosis). The term is in fact used differently by different people.

To be clear, opaque objects cannot be seen through. But we can at least think 
through the opacity of computer simulations. This paper aims to do this. I start (in 
Sect.  2) with a thorough analysis of Humphreys’s influential account of opacity. 
Since problems for this account will emerge, I consider (in Sect. 3) a recent elabora-
tion in terms of unsurveyability by Durán and Formanek (2018). Section 4 unfolds 
an alternative approach for explicating opacity. I start from the broader meaning that 
“opacity” has in ordinary language, and I propose that we think of opacity as a dis-
position to resist epistemic access, where epistemic access includes both knowledge 
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and understanding. I elaborate this idea and specify what kinds of knowledge and 
understanding are relevant for opacity. Here, I can draw on the recent literature on 
understanding (see Baumberger et al., 2017 for an overview), in particular on Hills 
(2016). Section 5 offers my conclusions.1

Throughout this paper, I restrict myself to computer simulations (simulations, for 
short). This is a method in which a computer is used to trace the time evolution of 
a system (be it real or merely imagined) by yielding a possibly partial and approxi-
mate solution to the dynamical model equations. I illustrate my argument using 
climate simulations done using the Hadley Centre Coupled Model 3 (HadCM3) 
by the British Met Office.2 By the output of a simulation, I will mean the ‘data’ 
produced by that simulation (e.g., the number 0.44, maybe together with a unit). 
These ‘data’ are often visualized using images or animations. When the ‘data’ are 
interpreted as descriptions of states within the model implemented, I’ll talk of out-
comes; for instance, one run of a simulation program may yield the outcome that, 
in the model implemented, the global-average sea-level rise in a certain time span 
is 0.44 m. I assume that the outcomes include only information that scientists want 
to learn about the model from running the simulation. I also allow that an outcome 
is obtained from several model runs and includes estimates of the uncertainties. The 
result of a simulation, finally, summarizes what scientists conclude from the simula-
tion (e.g., that in the real world, a certain emissions scenario leads to a global-aver-
age sea-level rise of about 0.44 m in a given period of time).

2 � Paul Humphreys on opacity

It’s useful to begin with a closer look at Humphreys’s pioneering work on opacity.

2.1 � Humphreys on the notion of opacity

Humphreys (2004) introduces opacity as follows (pp. 147–148):

In many computer simulations, the dynamic relationship between the initial 
and final states of the core simulation [i.e., the process during which the simu-
lation program is run, p. 109] is epistemically opaque because most steps in 
the process are not open to direct inspection and verification.

Here a computer simulation is conceptualized as a process; its opacity is sup-
posed to derive from the fact that most steps in the process cannot be known.

Humphreys (2009) defines opacity for processes in general as follows:

1  Opacity and transparency are also discussed in the philosophy of photography (Walton 1984) and in 
the philosophy of language (Quine, 1953, p. 142). In social epistemology, Wagenknecht (2014) draws a 
distinction between opaque vs. translucent epistemic dependence among collaborators.
2  See https://​www.​metof​fi ce.​gov.​uk/​resea​rch/​appro​ach/​model​ling-​syste​ms/​unifi​ed-​model/​clima​te-​mod-
els/​hadcm3 for a description (last checked 13.4.2021). I rely on the details published in Gordon et  al. 
(2000) and Pope et al. (2000).

https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadcm3
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadcm3
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[(Op-H)] Here a process is epistemically opaque relative to a cognitive agent X 
at time t just in case X does not know at t all of the epistemically relevant ele-
ments of the process (p. 618).

He adds that a process is essentially epistemically opaque if all relevant elements 
cannot be known to X due to X’s nature (Humphreys, 2009, p. 618).

In more recent work, Alvarado and Humphreys (2017) use the notion of opacity 
with reference to representations. But since this work does not mention computer 
simulations, I assume that the 2009 definition reflects Humphreys’s mature position 
on the opacity of simulations (more comments on the 2017 paper follow in Sect. 3.3 
below).

2.2 � A critical discussion of Humphreys’s definition

What should we think of Humphreys’s (2009) proposal? Let me first make two 
observations, and then I will raise an objection.

The first thing to note is that Humphreys’s definition does not unfold the ordinary 
language meaning of “opaque” or “opacity”. In ordinary language,3 “opacity” means 
the difficulty (i) to look through something or (ii) to understand something (where 
the second meaning has likely been obtained from the first using a metaphor). When 
we call processes opaque, we do not mean to say that they cannot be looked through 
in a literal sense; rather, we take them be difficult to look through in a metaphorical 
sense—because their details are difficult to know. On top, clearly, processes can be 
difficult to understand. In brief, then, when a process is opaque, there are difficulties 
with the epistemic access to the process. What Humphreys does in his definition 
of opacity is to focus on a particular aspect of epistemic access: the process is not 
known because not all relevant elements are known. The definition does not refer to 
understanding, but immediately after the introduction of opacity, Humphreys points 
out that opacity may lead to a loss of understanding (Humphreys, 2004, pp. 148 f.).

Second, Humphreys’s preferred notion of opacity is agent-relative. This is natural 
given that the definition has opacity depend on the agent’s knowledge. However, in 
much talk about opacity (e.g. Humphreys, 2009, p. 621), the notion is not relativized 
to agents. So there must be a way of interpreting unrelativized occurrences of “opac-
ity”. An unrelativized understanding of opacity is indeed useful because philoso-
phers discussing the opacity of simulations are not interested in the relation of indi-
vidual people to simulations, but rather in features that simulations have generally in 
relation to people. Humphreys himself calls opacity a feature of computational sci-
ence (2009, p. 618). A natural way of introducing an unrelativized notion of opacity 
is to say that opacity tout court is opacity to a human being or to a scientist with 
average-level abilities. Humphreys’s notion of essential opacity aligns with this if 
indeed the agent’s nature mentioned in the definition of essential opacity includes 
average-level abilities of humans. The lack of clarity about what exactly constitutes 

3  See https://​www.​oxfor​dlear​nersd​ictio​naries.​com/​defin​ition/​engli​sh/​opaci​ty.

https://www.oxfordlearnersdictionaries.com/definition/english/opacity
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“average-level abilities” does not matter in practice because simulations will turn 
out to be opaque regardless of how exactly the average level is defined.4

My objection is that Humphreys’s definition lacks clarity. For one thing, it’s not 
clear what Humphreys means in saying that a person knows the epistemically rel-
evant elements. Does she have to know that there are such elements? Or what func-
tions these elements have in the computation? Or what their inputs and outputs are? 
And whether their results are correct? These questions mention different kinds of 
knowledge, and the content of the notion of opacity will vary depending on the kind 
of knowledge that the agent is not supposed to have in instances of opacity.

For another thing, it’s not clear what “epistemically relevant elements” are (see 
Kaminski et al., 2018, p. 265, for a similar criticism, which is soon withdrawn, how-
ever, for reasons that I do not really understand). As far as the opacity of processes 
is concerned, Humphreys (2009, p. 618, fn. 5) clarifies that the answer depends on 
the type of process. But there is nothing epistemic about types of processes as such. 
Processes may become the object of different epistemic projects, depending on what 
the precise aims of the investigation are, and these aims determine what is relevant. 
It may be objected that the elements have to be epistemically relevant to the agent 
to whom Humphreys’s original definition is relativized. But this won’t do because 
it would follow that many processes are not opaque to an agent simply because she 
doesn’t care about their elements – because she doesn’t have an epistemic project 
that requires knowing the elements.

The problem doesn’t disappear when we narrow the focus to the opacity of com-
puter simulations. Here, Humphreys thinks of epistemically relevant elements as 
computations. For instance, Humphreys rephrases the claim that simulations are 
opaque by saying that “no human can examine and justify every element of the 
computational processes that produce the output of a computer simulation” (Hum-
phreys, 2009, p. 618).5 But what exactly are the epistemically relevant elements 
on this level? Qua computational process, a computer simulation can be split up 
into elements in several ways (e.g., Barberousse & Vorms, 2014, pp. 3612–3613). 
According to a very coarse description of the computational process, there is just 
one computation that provides the approximate solution to some equations. The 
same process can also be split up into multiple computations, each of which evalu-
ates characteristics such as position or velocity at a time. Under an even more fine-
grained description, every call of a function that is pre-defined on the level of the 
programming language is a computation. Even finer descriptions of the computa-
tional steps are possible.

Humphreys does not say what exactly the epistemically relevant computations 
are. But it’s clear that there must be many of them, since the problem is supposed 
to be that their entirety cannot be known. As just mentioned, Humphreys (2009, p. 
618) describes the opacity of simulations by saying that “no human can examine 
and justify every element of the computational processes” (my emphasis). In the 

4  On the basis of this assumption, Boge and Grünke (forthcoming) quantify over agents in their defini-
tion of fundamental opacity.
5  See Imbert (2017, pp. 746, 755) for a similar interpretation of Humphreys’s.
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terms proposed by Imbert (2017, p. 746), the problem is global opacity, while single 
computations may be transparent (see also his p. 753). Humphreys certainly has an 
important point because, in some way (given a certain individuation of computa-
tions), computer simulations run so many computations that a human agent cannot 
know them.

But this impossibility leads to opacity in Humphreys’s preferred sense only if 
all computations are epistemically relevant. There is a danger that Humphreys runs 
into a theoretical dilemma at this point: if, on the one hand, the elements or units 
are assumed to be relatively comprehensive (e.g., the evaluation of the approximate 
solution to a set of equations for a specific time), then they seem intuitively rel-
evant, but it’s not so difficult to know something about them—for instance, a sci-
entist may know their outcomes, because the elements are few and their outcomes 
manifest themselves in the output that is examined in detail. Accordingly, the simu-
lation is not opaque to the scientist, contrary to what Humphreys fears. On the other 
hand, if the units are small (e.g., single additions of numbers), it may be questioned 
whether each calculation of this sort is epistemically relevant. If this is not the case, 
then again, opacity does not hold true of simulations. Humphreys himself expresses 
doubts as to whether finely individuated elements are relevant. As Humphreys 
(2004, p. 148) explains, abstracting from some details can increase understanding. 
Humphreys (2009, p. 618) draws our attention to two analogous cases, viz. mathe-
matical proof and scientific instrumentation. If there are philosophically respectable 
reasons to think that scientists can use instruments without knowing much about 
their functioning, why not think that a lot of details about computer simulations are 
likewise irrelevant?

As it stands, then, Humphreys’s definition lacks clarity: it’s not clear what Hum-
phreys means in saying that an agent must know the epistemically relevant elements 
of the computer simulations. The reply that it all depends on the agent and her epis-
temic projects won’t do because it renders opacity a matter of arbitrary interests. 
Fortunately, Durán and Formanek (2018) have recently made a proposal to clarify 
Humphreys’s definition.

3 � An elaboration of Humphreys’s definition: opacity as lack 
of surveyability

3.1 � The elaboration explained

Durán and Formanek (2018, p. 615) elaborate Humphreys’s (2009) definition as 
follows:

[A] process is epistemically opaque relative to a cognitive agent X at time t 
just in case X at t doesn’t have access to and can’t survey all of the steps of the 
justification.

The process of a computer simulation is now conceptualized as justification and 
regarded as an argument: descriptions of a series of states are inferred from the 
specification of initial conditions and the model assumptions (cf. Beisbart, 2012). 
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This process yields at least conditional inferential justification: the state descriptions 
are justified conditional on the initial conditions and the model assumptions. The 
justification is subject to a normative standard, viz. validity: the state descriptions 
have to follow from the initial conditions and the model assumptions. This standard 
is fulfilled if, and only if, the computational processes are correct in the sense that 
they provide approximate solutions to the equations of the model that the research-
ers have intended to implement in the simulations. To simplify the terminology, let’s 
just talk of the correctness of the simulations when referring to the equivalent nor-
mative standards just mentioned.

To be sure, many simulations are subject to a stronger standard since they are 
supposed to provide accurate descriptions of a real-world target system. Accord-
ingly, such simulations are supposed to justify the descriptions in an unconditional 
way. However, there are other simulations that do not have a real-world target sys-
tem because they are only supposed to trace the behavior of a model, for instance, 
a world in which point particles attract each other with a modified version of the 
gravitational force. So a general account of opacity cannot assume that this stronger, 
unconditional justification is needed, and the account  has to be restricted to the 
weak, conditional form of justification mentioned above.6

In an opaque simulation, the authors take the justification/computation to be 
unsurveyable. The notion of unsurveyability is borrowed from Tymoczko, who calls 
a mathematical proof surveyable if, and only if, it “can be definitively checked by 
members of the mathematical community” by hand (Tymoczko, 1979, pp. 59–60). 
According to Tymoczko, Appel and Haken’s proof of the four-color theorem is not 
surveyable since a computer had to be used to show that more than 1′000 configura-
tions each have a property called reducibility. A human being cannot show this in a 
reasonable amount of time.7

By extending Tymoczko’s idea of unsurveyability from proofs to all arguments, 
we can say that arguments are unsurveyable if their validity cannot be checked by 
hand. Accordingly, we can summarize the elaboration by Durán and Formanek 
(2018) as follows:

(Op-DF) Processes of justification (in particular computer simulations) are 
opaque if, and only if, their correctness cannot be checked by hand.

Most computer simulations are opaque in this sense. A human agent cannot 
immediately see or comprehend that the outcome has been correctly derived from 

6  Durán and Formanek (2018) overlook this point. As a consequence, they take validation to offer a solu-
tion to the problem of what they consider to be epistemic opacity. The task of validation is to show that 
the results of computer simulations reflect their target appropriately. For showing this, it is often impor-
tant to make a case that the simulation solves the equations correctly (Beisbart, 2019), which is to make 
a case that the conditional justification works. But whether the computer simulation and the underlying 
model also represent the target appropriately, does not much impact on opacity, as defined by Durán and 
Formanek.
7  Teller (1980) objects that Tymoczko mischaracterizes the proof of the theorem. For Teller, the authors 
of the proof did survey all configurations, albeit with the help of a computer. As we will see, a similar 
standpoint is possible regarding computer simulations.
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the input and the equations constitutive of the model. Nor is it possible to split the 
simulation into steps each of which can be checked by a human by hand. In this way, 
the proposal escapes the dilemma described in Sect. 2.2 above. The reason is that 
every segmentation of the computational process leads to a situation in which the 
whole computation cannot be checked for correctness. If we call elements of the 
process “epistemically relevant” if, and only if, their correctness can be checked by 
hand, we can say that the opacity of simulations is due to the large number of epis-
temically relevant steps—as Humphreys claims.

The elaboration also clarifies what “knowing the steps” means: checking the 
steps for correctness. So the unclarities noted above have been removed. There is 
also textual evidence that the elaboration articulates what Humphreys had in mind. 
For instance, when Humphreys (2009, p. 618) glosses his claim that simulations are 
opaque by saying that “no human can examine and justify every element of the com-
putational processes,” he refers to justification.

But how convincing is the elaboration from a systematic point of view?

3.2 � Problems with the elaboration

A first problem is that opacity à la Durán and Formanek merely articulates the chal-
lenge of so-called verification, a challenge well-known in the literature. Let me 
explain.

The authors reduce opacity to the impossibility of checking the argument implicit 
in the simulation. This argument is supposed to derive the outcomes of the simula-
tion from the model assumptions, the assumed initial conditions, etc. To check that 
the simulation has in fact traced the consequences of these assumptions is the task of 
so-called verification. As it is often put, verification is about “solving the equations 
right” (e.g., Roache, 1997, p. 124, who refers to other authors).8 That a simulation 
is opaque à la Durán and Formanek then means that verification cannot be done 
by hand. But this is very well-known. Precisely for this reason, verification is typi-
cally done using tests that check whether the program reproduces computations with 
known outcomes (i.e., known solutions to the model equations). There is an exten-
sive literature on how exactly this should be checked and what the difficulties are 
(see, e.g., de Millo et al., 1979; Oreskes et al., 1994; Roache, 2019).

A second problem arises due to the general strategy that Durán and Formanek 
adopt, following Humphreys. The strategy is, broadly speaking, not to content one-
self with the idea that opacity is the disposition to resist epistemic access, as the dic-
tionary definition would suggest. Rather, the strategy is to “dig deeper” and to point 
to a specific way in which epistemic access to computer simulations is difficult. Very 
likely, the aspiration is to explain why and how computer simulations resist epis-
temic access.

To seek such an explanation is worthwhile. But there is no reason to absorb such 
an explanation into the very notion of opacity. An “etiological” definition of opacity 

8  See also Schlesinger et al. (1979) and Oberkampf (2019, pp. 70, 75–79) for the notion of verification.
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would make sense if there was one single way in which epistemic access is difficult 
for humans. But this condition is not met. As will become clear below, computer 
simulations are difficult to access for several reasons. A definition that mentions one 
salient aspect is problematic because it is likely to miss others and to be too narrow 
if compared to the ordinary language meaning of “opacity.”

To be more specific: already Humphreys’s definition concentrates on lack of 
knowledge of epistemically relevant elements as a salient cause. This is too restric-
tive because lack of knowledge is only one way in which epistemic access to com-
puter simulations may be limited or prevented. It may well be the case, for instance, 
that humans struggle with computer simulations at least in part because they do not 
fully understand them, even though they know a lot about them. Humphreys further 
focuses on knowledge of the relevant computational steps. Computer simulations 
cannot only be described on the computational level, but also using other layers, 
e.g., the physical one (Barberousse et al., 2009), raising the question of why Hum-
phreys considers only knowledge on the computational level. The Durán and For-
manek elaboration (Op-DF) is, maybe, not restricted to one specific layer. But it’s 
clearly focused on a particular type of epistemic access to computer simulations.

To see why the difficult epistemic access to computer simulations is not exhausted 
by the features that Humphreys and Durán and Formanek point to, consider the fol-
lowing thought experiment. Suppose that super-scientist Susan knows all the rel-
evant details about the huge number of computations that occur during a computer 
simulation and that she has checked the simulation qua justification. There are still 
two things preventing the achievement of full transparency. First, even if Susan 
knows all the required information about the computations, she doesn’t necessarily 
grasp the connections between the computations. It is one thing to know that, say, 
in step tn, variable v has taken a value larger than 1, and another thing to grasp how 
this is connected to earlier steps. The reason why the value of v is larger than 1 may 
be that, in step tn-1, v had a value larger than 0.8 and that two other variables each 
had values larger than 0.1. Susan knows that, in step tn-1, v had a value larger than 
0.8 and so on, but this knowledge does not imply that this is the reason for why the 
value of v is larger than 1 one step later. Nor does the fact that Susan has checked 
every step imply this. Second, Susan may still not be able to engage in counterfac-
tual reasoning about the simulations or computations. For instance, what would hap-
pen if a particular epistemically relevant computation got it wrong due to a specific 
mistake? Neither knowing the actual results of the epistemically relevant compu-
tations nor having checked the calculations (nor the two combined) enables Susan 
to run the inference about the counterfactual situation. The counterfactual inference 
requires the ability to do something else, for instance, calculate the results in order 
to find out what is implied in the counterfactual scenario, or anticipate the results 
due to an intimate knowledge of the model.

What is lacking here is ultimately understanding. For it is a commonplace in the 
literature about understanding that the latter requires grasp of connections (e.g., 
Kvanvig, 2003, p. 192; Grimm, 2011, p. 88) and the ability to run inferences about 
actual and counterfactual scenarios with slight variations (e.g., Grimm, 2006, pp. 
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532–533; Hills, 2016, p. 3).9 What the thought experiment shows, then, is that the 
notions of opacity discussed so far are indeed narrower than what we would call the 
opacity of simulations in ordinary language.

It may be objected that appeal to a broader notion of opacity from ordinary lan-
guage is misguided because ordinary language is irrelevant to the epistemology of 
computer simulations. The task of the latter is to identify the potentials and possi-
ble pitfalls of computer simulations, but not to provide a conceptual analysis of the 
term “opaque”—or so the objection goes. In response, I grant that we are not in the 
business of conceptual analysis. But what’s the point of calling a special idea about 
computer simulations “opacity” if there is no relation to opacity, as it is understood 
in ordinary language? On a charitable reading, the task that Humphreys etc. have set 
themselves is giving an explication of the notion of opacity for computer simula-
tions (see Carnap, 1950/62, ch. 1). One desideratum for such explications is similar-
ity with the relevant notion from ordinary language.

In fact, if we call a very specific feature of simulations “opacity,” then we are 
likely to slip back to the ordinary language notion of opacity. This has indeed hap-
pened in the literature. Imbert (2017) argues that there are various sorts and origins 
of opacity of simulations (p. 746). One such sort of opacity is the opacity defined 
by Humphreys, but Imbert points to what he takes to be another variety of opacity, 
which is supposed to derive from the fact that computer simulations are often run by 
groups of experts coming from different fields. The thought here is not so much that 
there are too many epistemically relevant elements (which would have to be the cru-
cial point if Imbert was talking about opacity as defined by Humphreys). Rather, the 
problem is that expertise in one field does not suffice for understanding the whole 
simulation. Thus, Imbert cannot be referring to opacity as defined by Humphreys.

It’s interesting to note that the recent definition of opacity by Alvarado and Hum-
phreys (2017) moves closer to the ordinary meaning of opacity. According to them, 
a representation counts as opaque if, and only if, it does not represent “the states of a 
system in a way that is open to explicit scrutiny, analysis, interpretation, and under-
standing by humans” or if it is not the case that “transitions between those states are 
represented by rules that have similar properties” (p. 740).

Here, “explicit scrutiny, analysis, interpretation, and understanding by humans” 
are the sorts of things that I have called epistemic access. But for our purposes, this 
definition will not do. First, it’s not clear how the definition, which is concerned 
with opaque representations, applies to computer simulations. While computer sim-
ulations clearly involve representations, it is not clear whether they are representa-
tions. Further, simulations involve various layers of representations (e.g. Küppers 
& Lenhard, 2005; Winsberg, 1999). The question then is at which layer we should 
apply the new definition. Second, there are clear cases of simulations in which a 
central layer of representation, viz. the conceptual model, is not opaque in the sense 

9  Sometimes, the ability to run inferences about counterfactual scenarios is assumed to be part of grasp-
ing connections (see, e.g., Grimm, 2006, pp. 532–533). Whether or not this is so, it does not matter for 
our argument as long there is an ingredient of understanding that does not reduce to knowledge about the 
calculations.
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defined here. For instance, the state descriptions and the transition rules in Conway’s 
game of life (Gardner, 1970; Wolfram, 2002) are very simple and thus accessible. 
But, intuitively speaking, related simulations are nevertheless opaque because it is 
very difficult for humans to obtain an understanding of how their outcomes arise.

4 � A new proposal: opacity as disposition to resist epistemic access

Can we do better than Humphreys or Durán and Formanek? In this section, I make 
a fresh start and begin with the idea that opacity is just what the dictionary sug-
gests: something is opaque if, and only if, it is difficult to know (i.e., difficult to see 
through in a metaphorical sense) or difficult to understand. As before, I summarize 
this by saying that opacity is a disposition to resist epistemic access by humans. 
I apply this idea to computer simulations and inquire more systematically into the 
ways they are difficult to access.

This difficulty in being known and understood is naturally conceptualized as a 
disposition, so I’ll explicate opacity as a disposition. To be sure, this choice is not 
without alternatives. Humphreys defines opacity simply as lack of knowledge and 
understanding. But such a definition of opacity doesn’t get us to the core of opac-
ity. An agent might not know or understand something, but unless there is a barrier 
to her knowing or understanding that thing, opacity cannot be the culprit. As an 
alternative, opacity may be defined modally as the impossibility of having suitable 
epistemic access (this is the idea behind Humphreys’s definition of essential opac-
ity). But this yields the unwelcome consequence that there is no way to overcome 
opacity.

Our idea to start with the ordinary meaning of opacity needs more work because 
many things about a simulation may be known or understood. By contrast, simula-
tions are not opaque just because they contain details here and there that people may 
want to know and understand, and that turn out to be difficult to know and under-
stand. Lack of knowledge or understanding of some details is of interest only if the 
details are—well, relevant. What then are the relevant things that we need to know 
and understand to avoid opacity?10

This question has arisen before in the discussion of Humphreys’s definition. For 
an answer, it suffices to specify certain types of things that are interesting, and which 
turn out to be hard to know or to understand.

4.1 � What knowledge and understanding are relevant?

Relevance is a relation, so to what do knowledge and understanding have to be rel-
evant? A natural answer is that knowledge and understanding must be relevant to the 

10  Note that I can concentrate on the understanding of a computer simulation and bracket the understand-
ing via computer simulation. For the question of how computer simulations may be used to understand a 
target system, see Fernández (2003), Lenhard (2006), Kuorikoski (2011), Grüne-Yanoff (2009), Ylikoski 
(2014) and Parker (2014).
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primary goal for which a given computer simulation is run—where the primary goal 
is the most subordinate goal for which the simulation as a whole is done. Superor-
dinate goals for the sake of which the primary goal is undertaken (to improve one’s 
model, for instance) vary and need not be considered in a general investigation into 
the opacity of simulations.

For each single run of a simulation program (the unit on which I will focus), the 
primary goal is to obtain information about a dynamical evolution that unfolds in a 
model given specific initial conditions (cf. El Skaf & Imbert, 2013). This informa-
tion is contained in state descriptions that can be obtained from the output. Often, 
the primary goal is more specific and focused on certain aspects of the state descrip-
tions, say, a certain pattern of precipitation in some region or its projected average 
temperature for the next ten years with a specified accuracy rating. The information 
that a simulation yields in relation to its primary goal is what I call the outcome of 
the simulation. I assume that the outcome can be formulated in terms of a proposi-
tion p about the sequence of states in the model investigated by the simulation. For 
an example, consider what Gregory and Lowe (2000, p. 3069) report in an applica-
tion of the HadCM3 model: “global-average sea-level rise from 1990 to 2100 is pre-
dicted to be […] 0.44 m in HadCM3.”

For reasons of simplicity, I will often assume that the outcome is only about a final 
state at some final time tf. The generalization to a series of times is straightforward.

A natural question to ask then is this: why did a specific outcome arise from the 
simulation? For short, why p? Every answer to this question will give us knowledge 
of why p. Furthermore, there is the task of understanding why p. If Hills (2016) 
and others are right, then understanding why p goes beyond merely knowing why p. 
Instead, understanding why p requires an agent to grasp the relation between p and 
its explanation: call it q (Hills 2016, p. 3).

It is thus natural to propose that the knowledge and understanding relevant to 
opacity are:

•	 knowledge of why p
•	 understanding why p

for the outcomes of simulations p.11 But what exactly does this knowledge and 
understanding amount to and how difficult are they to obtain?

a.	 Knowledge of why p
	   To know why a specific outcome (p) has arisen is to know an explanation of 

why p has arisen. Every such explanation will involve the computer simulation 
as process. This process has various layers that can be described using different 
vocabularies (Barberousse et al., 2009). For the purposes of this paper, we can 
distinguish between three layers: The physical layer is described by referring to 
the hardware in which physical entities such as wires or electrons interact with 

11  Boge and Grünke (forthcoming) go in a similar direction when they require insight into the way the 
output is obtained from the input.
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each other. In the computational layer, the process is interpreted as doing compu-
tations (e.g., as multiplying two numbers as a contribution to calculating partial 
solutions to certain equations). Regarding the third, representational layer, the 
process is described using a sequence of states in the model (e.g., a series of states 
of the climate of a model of the Earth).

	   There are thus basically three kinds of explanations of p, call them qj (explana-
tions situated on different levels or combining the layers in different ways need 
not be considered because they are even more complicated). The first explanation 
q1 operates mostly on the physical level; the final physical state of the computer 
simulation is explained using physical laws for the hardware (e.g., Kirchhoff’s 
circuit laws) and an earlier state of the hardware—typically the initial state of the 
simulations. Finally, the description of the final physical state of the hardware is 
translated into a state description of the model following the conventions underly-
ing the simulation. This step is needed because the outcome p is cast in terms of 
the model evaluated by the simulation.

	   The second explanation q2 is mostly computational; the final computational 
state of the simulation is explained in terms of the computations done during the 
simulation following the algorithm, and an earlier computational state, naturally 
at the beginning of the simulation. This explanation assumes that the compu-
tations are properly done by the hardware and that there are, for example, no 
hardware failures that lead to deviations from the application of the algorithm. 
The final computational state then is translated into a state description at the 
representational layer, in a similar way as in the first explanation.

	   Finally, the third explanation q3 is mostly on the representational level. The 
final state in the model is explained using the dynamics holding in the model and 
the initial conditions set within the model. In the coupled climate model HadCM3, 
for instance, there are two components, viz. the atmosphere and the ocean. The 
states of the components are coupled once per simulated day to describe the 
interactions (Gordon et al., 2000). The explanation of the outcomes at this level 
has to assume that the computer simulation traces the model as intended and that 
there are, for example, no approximation errors that lead to a deviation from the 
model implications.

	   Thus, each explanation is an inference that leads from a description of the initial 
state of the simulation and a catalogue of suitable dynamical laws on a particular 
level to a statement about the final state of the simulation. The physical and com-
putational explanations need, in addition, a translation of the description of the 
final state into the terms of the model because the phenomenon to be explained 
is a model state (the outcome). Further, the computational and representational 
explanations must include a premise to the effect that processes on the lower 
levels work as intended.12

	   To know why p, the agent needs to know at least one explanation of p; and to 
know this, she needs to know at least the premises of the explanation and, maybe, 

12  My account doesn’t assume the deductive-nomological (DN) account of explanation, but only the idea 
that explanations are arguments or inferences.
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that the premises explain or imply the outcome. She need not be able to run the 
related inference on her own—she may know the explanation from testimony, for 
instance.

	   The first two explanations, the physical one (q1) and the computational one (q2), 
are too difficult for a human being to know. Knowing the physical explanation 
would require detailed knowledge of the computer and its dynamics because the 
outcomes depend on tiny details of the physical structure. Knowing the com-
putational explanation would demand detailed knowledge of complicated com-
putations that have been arranged according to the algorithm.13 Only the third, 
representational explanation q3 can realistically be known to humans. To know it, 
an agent needs to know the premises of the explanation, that is: the initial state of 
the model (q3

a), the dynamics of the model (q3
b), and that the simulation works 

as intended (q3
c)—in other words, the agent needs to know that the simulation 

solves the model equations to a sufficient approximation.14 Two of these, q3
a and 

q3
b, are easy to know. Knowledge of q3

c is usually established during verification. 
Verification is difficult, but often a sufficiently strong case can be made that the 
simulation solves the equations correctly (see Rider, 2019). Finally, maybe, the 
agent needs to know that q3

a through q3
c imply p. This knowledge is easy to have 

too; what is required beyond knowledge of q3
a through q3

c is only the observation 
that the computer simulation has p as its outcome.

	   All in all, using explanation q3, knowledge of why p is not too difficult to 
acquire.

b.	 Understanding why p
	   Let us turn now to understanding why p. A useful proposal on what this 

amounts to is given by Hills (2016). Following the idea that understanding why 
p requires grasping the relationship between p and an explanation of it, q, Hills 
(2016, p. 3) specifies the following abilities as conditions on understanding why 
p:

	 i.	 follow some explanation of why p given by someone else.
	 ii.	 explain why p in your own words.
	 iii.	 draw the conclusion that p (or that probably p) from the information that 

q.
	 iv.	 draw the conclusion that p* (or that probably p*) from the information 

that q* (where p* and q* are similar to but not identical to p and q).
	 v.	 given the information that p, give the right explanation, q.
	 vi.	 given the information that p*, give the right explanation, q*.

13  Of course, scientists may have a rough knowledge of the explanation by knowing that the simulation 
has approximately solved this and this equation. But this is not to know a detailed explanation of the out-
come at the computational level.
14  Things get more complicated for simulations that don’t work as intended, but we can bracket such 
simulations because if simulations that work are difficult to understand, so will be simulations that don’t 
work.
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Given knowledge of why p, the abilities i, ii, iii, and v are not very interesting. 
They mean only that an agent can work with her knowledge of why p in a suitable 
way—that she can mention this knowledge if asked, etc.

For our purposes, abilities iv and vi are more interesting. They require that the 
agent can run inferences about actual or counterfactual scenarios similar to the ones 
investigated in the computer simulation. More specifically, iv. requires the agent to 
infer variations p* of p from variations q* of q, while vi. mainly requires the agent 
to run inferences from variations p* of p to variations q* of q. Such abilities are 
also deemed central for understanding in the context of simulations by Kuoriko-
ski (2011). The abilities iv. and vi. also cover the ability to infer which parts of the 
model are relevant for the outcome, an ability that Imbert (2017, p. 754) stresses 
in relation to opacity (see also Jebeile, 2018, p. 214; in her terms, there is a gap 
between the model and the outcome of a simulation).

Abilities iv and vi are both extremely demanding. For an illustration, consider 
again the outcome reported by Gregory and Lowe (2000, p. 3069): “global-average 
sea-level rise from 1990 to 2100 is predicted to be […] 0.44 m in HadCM3.” In this 
case, variations q* of the explanans q can arise by changing a. the initial condi-
tions; b. the model assumptions, in particular the model dynamics (e.g. the cloud 
scheme used in the description of the dynamics of the atmosphere); or c. the degree 
to which a computer simulation works as intended. Under each type of modification 
of q, it is extremely difficult to infer how p would change. As an example, focus on 
b. the model assumptions (e.g., the cloud scheme): the question is what would hap-
pen if the assumptions implicit in the cloud scheme were changed. Suitable infer-
ences may, in principle, be run on any of the three levels. However, inferences on 
the level of the model are too difficult because the model equations cannot be solved 
analytically. A numerical approximation is also very difficult because either the sin-
gle steps are too difficult or there are too many of them. Inferences on the level of 
the computations are difficult for precisely the same reason. Inferences on the level 
of the computer hardware, finally, are difficult because the hardware processes are 
too complicated.

Similar results apply to inferences from p* to q*. To have ability vi, scientists 
would have to be able to infer how (for instance) the initial conditions or the cloud 
scheme might be changed to obtain a different sea-level rise (of, say, 0.32 m instead 
of 0.44 m).

The upshot, then, is that understanding why the computer simulation has yielded 
a specific outcome (p) is extremely difficult because this would require the ability 
to run inferences between variations on the setup of the simulation and its outcome. 
According to my proposal, this understanding is relevant to an assessment about 
opacity, so computer simulations are opaque.

In this explanation of why simulations are opaque, the vast number of computa-
tions (the factor stressed by Humphreys) plays a role because it makes grasp of the 
explanatory connections on the computational level impossible. But this grasp is not 
strictly necessary for understanding why p: if an agent were able to run the required 
inferences about modifications of p and q on the physical or on the representational 
level reliably, then the simulation would not be opaque to her anymore, according to 
my definition. The fact that a grasp of the physical level and the model behavior are 
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extremely difficult for humans adds to the full explanation of why, according to my 
proposal, simulations are opaque.

It may be objected that scientists can run the required inferences about counter-
factual scenarios by running variations of the computer simulation under scrutiny. 
A slight variation of the initial conditions can be studied by running the simula-
tion program with a modified input. This is in fact what climate scientists do when 
they run initial condition ensembles (see Parker, 2010 for a discussion of various 
kinds of ensembles). Alternative variations that refer to the model assumptions or to 
the working of the computer simulation may need some changes in the simulation 
program, but using the modified program, the simulation scientists can infer what 
would happen under the variations (see Kuorikoski, 2011, Sect. 4.2 for this perspec-
tive). Again, this is something that climate scientists do. For instance, Gregory and 
Lowe (2000) compare two different versions of the Hadley Centre Coupled Model 
regarding global sea level. Collins et  al. (2007) study how the outcomes of their 
simulations are affected if certain parameter values are changed, for instance, the 
diffusivity of tracers along certain surfaces in the ocean. They explicitly say that 
they do this in order “to understand the leading-order impact of the perturbations 
on future climate change” (Collins et al. 2007, p. 2316). In their final passage, they 
state that “[t]he next stage of the work will be to understand why the simulations 
show only small changes in ocean heat uptake efficiency and global mean tempera-
ture change” (Collins et al., 2007, p. 2320). This is precisely the kind of understand-
ing that I argue is important.

True, running a second (modified) computer simulation can in principle help a 
scientist to run an inference about a counterfactual scenario. But this option doesn’t 
mean that the opacity (in the intended sense) of computer simulations is reduced. 
Already one run of a computer simulation that is needed to make a counterfactual 
inference will typically take a considerable amount of CPU time—coupled climate 
models that trace the climate for 400 years with a time step of 30 min (Gordon et al., 
2000) take a lot of CPU time.15 This CPU time may not be available at all, in which 
case the scientist cannot run the required inference in practice, so she lacks an abil-
ity constitutive of understanding. If, alternatively, the CPU time is available to her, 
running the simulation still takes some time, so the scientist cannot be said to run 
the inference immediately. Note here that our notion of opacity doesn’t require that 
the inference is impossible. It’s sufficient for opacity that such an inference is diffi-
cult for agent, and this is the case if a lot of CPU time must be invested.

But perhaps a different objection can be leveled against my claim that scientists 
have a hard time understanding why the outcomes of a simulation have arisen. This 
objection holds that scientists can easily learn to run the required counterfactual 
inferences by running the simulation program several times and checking the out-
puts using visualizations. On this basis, they are trained to run the counterfactual 
inferences (Lenhard, 2019, p. 100 claims that this method can provide orientation 
within the model). They may either do this intuitively (in which case we may want 

15  According to Hanappe et al. (2011, Table 1), simulating one month using a low-resolution version of 
HadCM3 on a CELL’s PPE takes about 4 h CPU time.
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to speak of tacit knowledge or expert judgement) or because they have learned rules 
for running the inferences. If it is correct that scientists can easily learn this, it seems 
to follow that computer simulations are not, on my proposal, very opaque at all.

The method that Lenhard describes is certainly helpful in overcoming opac-
ity. But the fact that there is this method doesn’t show that the simulations are not 
opaque to begin with. One reason is that the method is computationally very expen-
sive. For many simulation runs that each result in a specific outcome, several other 
runs are needed to trace “close” counterfactual scenarios—this in order to obtain a 
sufficient basis to run further inferences. But if the method is computationally costly, 
then it is not easily used. A second reason is that the power of the method is limited. 
For one thing, most often, the method will only enable a scientist to run inferences 
about counterfactual scenarios in a qualitative way. For instance, the scientist will 
be able to infer that precipitation increases if a certain other parameter is increased. 
But very often, quantitative predictions are of interest, and this qualitative reasoning 
will not allow for sufficiently precise inferences. For another thing, as described, the 
method is restricted to the consideration of changes within the model. But what is 
also needed for a fuller understanding is the ability to run inferences about scenarios 
in which e.g. the hardware doesn’t work as intended or the implementation of the 
method is changed. Of course, the method could be expanded to cover such counter-
factuals, but the consequence would be that things get even more expensive.

The objections we’ve just considered assume that the agent can run further com-
puter simulations to increase their understanding of why the results have arisen. It 
may be responded that we must not appeal to further work that computer simulations 
can do if we discuss the opacity of simulations. Our topic is the relationship between 
humans and simulations, and this requires that we keep the relata separate. It would 
seem strange to shift computer simulations to the side of ourselves, as it were, and 
to allow that humans use them as tools, when we consider this relation—or so goes 
the response. This response has some plausibility, but it’s not clear whether it is 
fully adequate. In Sect. 3.2, we have allowed that scientists check a simulation pro-
gram by running it for verification, so why not allow that scientists run the pro-
gram to improve their understanding? The deeper issue in the background is how 
we understand ourselves in relation to machines. As suggested by Clark and Chal-
mers (1998) or Humphreys (2004), the view that humans alone are the epistemic 
subjects may have become outdated or inappropriate; today, coupled systems that 
include machines may be the relevant agents. This issue cannot be resolved in this 
paper; nor can we discuss what exactly opacity means if the agent is allowed to be a 
coupled system. For this reason, I have to leave open whether the objections can be 
countered using this response. This is unproblematic because I have offered different 
reasons to reject the objections.

4.2 � A new explication of opacity

I can now condense my suggestions into an explication of opacity. The general idea 
is that some X is opaque if, and only if, it’s difficult, if not impossible, to know and 
to understand why the outcomes of X arise. This idea can be applied to all methods 
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(cf. Kaminski et al., 2018, p. 258), so I’ll define the opacity of methods. Doing so 
is an added value because opacity may be a concern about other methods too (e.g., 
accelerator experiments in particle physics).

I assume that each method produces outcomes that can be cast in terms of prop-
ositions. For instance, for experiments, the outcomes specify what is observed or 
measured about the system on which the experiment is done. Since a method allows 
for many applications that each have a specific outcome, I first define what it means 
that a specific application of a method is opaque, and then generalize to the method. 
When doing so, I need not assume that all applications of an opaque method are 
opaque. This is a plus because a simulation program could (in some instances) be 
run on a set of initial conditions for which an analytic solution is available; in such 
a case, understanding the outcome would not be so difficult, because the solution 
would facilitate reasoning on counterfactual scenarios.

A question that the explication still has to answer is to whom the outcomes of 
applying a method are difficult to know and understand. A natural proposal refers 
to the following situation: Scientists have constructed a setting in which the method 
can be applied (e.g., they have built up an experiment, programmed a computer sim-
ulation, etc.) and applied the method for the first time. In the case of a simulation, 
this means that they know the variables, the model that is implemented, and details 
about the implementation. If they nevertheless have difficulties knowing and under-
standing why the outcomes have arisen, there is opacity. Thus, let us say that we 
are interested in the difficulty for average scientists in the default situation. Since 
the level of competence of this group of scientists is very high, the difficulties with 
epistemic access extend to other groups, notably including laypeople. Even scien-
tists who know and understand to some extent why the outcome has arisen have 
acquired this knowledge and understanding only with difficulty. What we have to 
exclude though is a scenario in which average scientists in the default setting have 
significantly improved their understanding of the simulation and the underlying 
model, perhaps by running the simulation very often. But scientists who have done 
this have hardly any motivation to fulfill the primary goal of a simulation, viz. to 
learn the outcome for a specific initial condition.16

One further preliminary note before I specify my explication: Understanding, 
which figures centrally in my explication, comes in degrees (see Baumberger, 
2019). This is presupposed by ordinary talk, for instance, when we speak of bet-
ter or deeper understanding. Note also that the abilities that have been taken as 
central for understanding (following Hills) may be possessed to various degrees. 
For instance, an agent may be able to run some, but not all of the required infer-
ences (see Hills, 2016, pp. 4–7 for a detailed discussion of the degrees of under-
standing why). But if understanding, and thus a central component in the explica-
tion is gradable, so should be the explicatum. There are indeed good reasons to 
think that opacity is gradable, at least in its second ordinary language sense, that 
is, qua being difficult to understand. I’ll thus define a gradable notion of opacity 

16  Knowledge of the variables, the model assumptions, and the implementation form part of a broader 
objectual understanding of the simulation. But this broad understanding is not our focus here.
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(as does San Pedro forthcoming; but he stays closer to Humphreys’s original defi-
nition). Using this gradable notion, we can naturally introduce an ungradable one 
by saying that something is opaque full stop if, and only if, it is more opaque than 
a contextually fixed standard.

Here then is my explication of opacity:

1.	 The application of a method is opaque to the extent to which it is difficult for aver-
age scientists in the default setting to know and to understand why the outcome 
has arisen.

2.	 A method is opaque to the extent to which its typical applications are opaque.

A few comments are in order to explain this proposal.
First, the explication mentions both knowledge of why p and understanding 

why p. It is very plausible to think that the latter is not included in the former. 
Some authors, notably Kvanvig (2003, pp. 197–200), Pritchard (2010, p. 13), and 
Hills (2016, pp. 11–18), have likewise argued that understanding why p does not 
imply knowing why p. In the explication, I remain on the safe side if I include 
both knowledge and understanding why p.

Second, the degree to which a method resists knowledge may differ from the 
degree to which it resists understanding; in those cases, the degree to which 
knowing and understanding why p is difficult is meant to identify the degree to 
which the joint task constituted by knowing and understanding why p is difficult. 
The idea here is that knowledge and understanding form a package and that we 
are talking about the difficulty of obtaining the whole package. In most cases, 
understanding why p is more demanding and more of a concern.

Third, the proposal does not presuppose any specific account of knowledge and 
understanding (or of explanatory understanding, more precisely, see, e.g., Baum-
berger 2011, pp. 70–71). This is as it should be, because the ordinary language 
term “opaque” is naturally explained in terms of knowledge and understand-
ing and because a philosophical clarification should not depend on a particular 
account of (for instance) understanding. Above, I have used Hills’s account of 
understanding why p to show that computer simulations are opaque. What was 
crucial for my argument that computer simulations are opaque was the assump-
tion that understanding why p requires the ability to run inferences that lead 
from slight modifications q* of q to modifications p* of p and back. This sort of 
requirement is not unique to Hills; it is also required by (e.g.) Grimm (2006, pp. 
532–533). Independent of a philosophical account, it is very plausible to say that 
it’s difficult to understand why the outcomes of a simulation are such and such.

Fourth, the typical applications of a method are restricted to the intended appli-
cations. The latter vary with respect to (e.g.) initial conditions and parameter val-
ues, but for both types of choices there are natural measures; for instance, a Leb-
esgue measure for a realistic range of parameter values. Typicality then excludes 
applications with a high symmetry that often have zero Lebesgue measure.

My explication of opacity has several advantages over Durán and Formanek’s 
proposal.
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It is, first, broader than theirs. Their opacity contributes to opacity in my sense, 
but mine runs deeper. This is because unsurveyability makes explanations and 
understanding related to the computational level very difficult, but, according to my 
proposal, opacity is not just constituted by unsurveyability; rather, the core is that 
scientists do not understand why the results arise. As shown with the super-scientist 
Susan above, a scientist who can check all the computations in a computer simula-
tion may nevertheless be at loss to tell why the results arise. Further, my proposal 
takes the physical and representational levels to be important as well. Consequently, 
good understanding of a simulation on either level may help to overcome opacity. 
That my proposal is broader in this sense is a plus because it covers more of the 
epistemological concerns that we may have about computer simulations.

Second, my explication is compatible with the idea that there are various aspects 
to opacity (this is a central claim by Kaminski et al., 2018). Since the possible expla-
nations of why the outcome has arisen can be situated on different levels, the levels 
can be taken to define several aspects of opacity. Likewise, my explication can make 
sense of Imbert’s (2017) idea that there are various sources of opacity.

As a third advantage, my proposal has broader scope in that it applies to all meth-
ods. Durán and Formanek’s proposal, by contrast, is restricted to justifications. 
But some methods do not justify their outcomes. For instance, an experiment does 
not justify its outcome (what may need justification is that a certain proposition is 
indeed part of the outcome).

Finally, it’s also an advantage that my proposal is closer to ordinary language. At 
least sometimes when researchers talk about opacity, they use the term in the sense 
known from ordinary language, for instance, when Di Paolo et al. (2000, p. 497) say, 
of the opacity of simulations: “[I]t is not immediately obvious what is going on or 
why.”

5 � Conclusions

Although computer simulations are often claimed to be opaque, it’s not entirely 
clear what exactly the opacity of simulation amounts to. In this paper, I have argued 
that Humphreys’s pioneering account of opacity is a bit narrow since it concentrates 
on the huge number of computational steps. I have thus proposed a more compre-
hensive notion of opacity by starting with the ordinary language meaning of opacity, 
viz., that something resists epistemic access. Appeal to ordinary language is fully 
legitimate at this point because scientists and philosophers are likely to slide back to 
the ordinary meaning of the term.

To make sense of this option, I had to explain which type of knowledge and 
which type of understanding are relevant to opacity. According to my proposal, a 
method is opaque to the extent to which it is difficult to know and understand why 
the outcomes of the method arise. The question of why the outcomes arise is a very 
natural one, given that simulations have the primary goal of obtaining the outcome 
as information about a model. Drawing on Hills’s account of understanding why p, 
I have argued that what makes simulations opaque is this: we cannot run inferences 
about slight modifications to the setting of the simulation and to its outcome.
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A worry may be that the concept of understanding is too vague to help to clarify 
opacity. It may also be feared that the various authors I’ve drawn on (e.g., Baum-
berger, Hills and Lenhard) ultimately hold incompatible views about understanding. 
However, the recent literature on understanding has clarified that there are different 
varieties of understanding. For instance, it is pretty uncontroversial that objectual 
and explanatory understanding can be distinguished. What we crucially need for the 
purposes of this paper is a notion of explanatory understanding that goes beyond 
mere knowledge of explanations; this is not completely uncontroversial (see Baum-
berger et al., 2017, end of Sect. 4.2 for an overview), but many authors would agree. 
The views that Baumberger, Hills, and Lenhard adopt are fully compatible. While 
Baumberger (2019) is concerned with objectual understanding, Hills focuses on 
explanatory understanding. Baumberger’s point that understanding comes in degrees 
is admitted by Hills. Lenhard’s (2006) primary aim is to propose a notion of prag-
matic understanding that is compatible with opacity, but different from more tradi-
tional ideas about understanding.

My proposed account has several virtues, or so I have argued. It can be applied 
to all kinds of scientific methods, including, for instance, machine learning. In this 
context, it’s promising that my account fits extremely well what Burrell (2016, p. 1) 
says about the opacity of machine learning:

[The machine learning algorithms] are opaque in the sense that if one is a 
recipient of the output of the algorithm (the classification decision), rarely 
does one have any concrete sense of how or why a particular classification has 
been arrived at from inputs.

Since the proposed notion of opacity is gradable, it can make sense of the claim 
that machine learning is even more opaque than computer simulation (see Symons 
& Alvarado, 2016 for work that discusses opacity in relation to big data). To what 
extent this claim is in fact true is an important topic for future research (see Boge 
and Grünke forthcoming for pioneering work in this direction).

What is more important than the conceptual question of what exactly we should 
mean by “opacity” is an analysis of the epistemic problems that computer simula-
tions raise. In this regard, my paper has drawn attention to the fact that it’s very 
difficult to explain and to understand why the outcomes of a specific computer simu-
lation arise. Lack of this kind of epistemic access to simulations hampers the work 
researchers may hope to carry out with simulations. Understanding why a certain 
outcome has arisen can help during the verification of simulations, for instance, to 
locate a bug. Further, if scientists understand how an outcome has arisen in a simu-
lation, they may transfer this understanding to the target system and its behavior.17 
Thus, the kind of understanding that is covered under the proposed explication of 
opacity is important for making scientific progress.

17  This is  presumably a reason why Evans et  al. (2013) discuss the understanding of simulation out-
comes in a handbook on social simulations.
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