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Abstract
The core idea of social constructivism in mathematics is that mathematical entities 
are social constructs that exist in virtue of social practices, similar to more familiar 
social entities like institutions and money. Julian C. Cole has presented an institu-
tional version of social constructivism about mathematics based on John Searle’s 
theory of the construction of the social reality. In this paper, I consider what merits 
social constructivism has and examine how well Cole’s institutional account meets 
the challenge of accounting for the characteristic features of mathematics, especially 
objectivity and applicability. I propose that in general social constructivism shows 
promise as an ontology of mathematics, because the view can agree with mathe-
matical practice and it offers a way of understanding how mathematical entities can 
be real without conflicting with a scientific picture of reality. However, I argue that 
Cole’s specific theory does not provide an adequate social constructivist account of 
mathematics. His institutional account fails to sufficiently explain the objectivity 
and applicability of mathematics, because the explanations are weakened and lim-
ited by the three-level theoretical model underlying Cole’s account of the construc-
tion of mathematical reality and by the use of the Searlean institutional framework. 
The shortcomings of Cole’s theory give reason to suspect that the Searlean frame-
work is not an optimal way to defend the view that mathematical reality is socially 
constructed.
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1  Introduction

One central question in the philosophy of mathematics is the question of the nature 
of mathematical objects and their existence. To illustrate with an example, let’s 
define two numbers: let n be the largest prime number smaller than 101010 , and let m 
be the largest prime number. As anyone familiar with ordinary mathematics may tell 
you, there is a clear difference between these two numbers: n exists, but m does not. 
This may be enough said on the matter for a working mathematician, but if she is in 
a philosophical mood, some questions may arise: Does n really exist? Obviously, it 
does not exist in the same way as the paper it is written on. On the other hand, if n 
does not exist at all, why does it differ from m in the sense mentioned above? From 
considering the specific example, she may be led to ponder a more general question: 
What kinds of entities are the things talked about in mathematics?

In this paper, I consider a view that answers this question differently than tradi-
tional philosophical views of mathematics, namely, I consider mathematical social 
constructivism as a metaphysical theory about what mathematical reality is like.1 
The core idea of social constructivism is that mathematical entities are social con-
structs that exist in virtue of social practices, similar to more familiar social entities 
like institutions, money, and the like. I examine one form of social constructivism in 
detail: Cole’s (2013, 2015) institutional theory of the social construction of math-
ematical reality.2 Cole bases his account on John Searle’s theory of social construc-
tion and defends the view that mathematical reality is a product of imposing func-
tion onto reality and that its existence depends on collective recognition. My aim 
in this paper is to consider what merits social constructivism has and to examine 
how well the institutional account meets the challenges facing social constructivist 
accounts of mathematics.

I begin in section two by exploring some differences between social constructiv-
ism about mathematics and constructive mathematics in order to clear up possible 
confusion arising from using the term ‘constructivism’. In section three, I explore 
how mathematical practice motivates a social constructivist view of mathematics 
and describe the details of Cole’s institutional theory. I also examine in what way 
Cole’s social constructivism is a realist view. In section four, I consider some merits 
of mathematical social constructivism and present a new argument in favor of the 
view. The success of the argument depends on the ability of the social constructivist 
view to account for the characteristic features of mathematics. In section five, I iden-
tify two particular features that present a significant challenge for social construc-
tivism—objectivity and applicability—and examine how well Cole’s institutional 
theory accounts for them. I argue that Cole’s theory fails to sufficiently explain the 
objectivity and applicability of mathematics because the explanations are weakened 

1  Mathematical reality can consist of either objects or structures, but I will here leave this ambiguous 
and talk about entities, using it as an inclusive term. Cole uses the similarly inclusive term ‘facet of real-
ity’.
2  Other prominent proponents of social constructivism about mathematics are Ernest (1998) and Hersh 
(1997).
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and limited by the three-level theoretical model underlying Cole’s account of the 
construction of mathematical reality and by the Searlean framework he uses. To 
conclude, I suggest that the institutional social ontology Cole uses is not an optimal 
way to defend the view that mathematical reality is socially constructed.

2 � How mathematical social constructivism differs from constructive 
mathematics

Despite sharing the name constructivism, mathematical social constructivism differs 
in significant ways from the more familiar constructivism in mathematics, namely, 
constructive mathematics. Constructive mathematics is characterized by a strict 
requirement of constructability and provability. The statement “there is x” is inter-
preted in constructive mathematics as “we can construct x,” and the statement “p is 
true” as “we can give a proof for p.” These requirements have far-reaching impli-
cations for the methodology of mathematics: the law of excluded middle does not 
hold in constructive mathematics, and instead of classical logic, intuitionistic logic 
is used. (See Bridges & Palmgren, 2018).

There are different forms of constructive mathematics, from constructive recur-
sive mathematics to constructive type theory, but philosophically, the most influen-
tial version is L.E.J. Brouwer’s intuitionism. Brouwer sees mathematical entities as 
languageless mental creations arising from the perception of the passage of time. 
The basic intuition of mathematics is the distinctness of two moments, which cre-
ates natural numbers when repeated indefinitely. Brouwer understood the truth of 
a mathematical statement as having a mental construction of the statement’s proof. 
Brouwer’s intuitionism is an attempt to provide an epistemological and ontological 
foundation for mathematics in the form of mental constructions. (Iemhoff, 2019). 
Here we find the first difference: social constructivism does not aim to give a foun-
dation to mathematics but rather explicates the nature of mathematical existence 
from a wider ontological perspective.

The second and main difference between social constructivism and constructive 
mathematics is in their relation to mathematical practice. Constructive mathematics 
is fundamentally a view about how mathematics should be practiced; it states how 
logical connectives should be interpreted, what methods of proof are permissible, 
and which principles are acceptable. In contrast, mathematical social constructivism 
does not pose restrictions on how mathematicians should do mathematics, what enti-
ties are permissible, or how mathematical entities should be defined while proving 
theorems. Cole (2015, p. 1103) argues that social constructivism is neutral concern-
ing the dispute between constructive and classical mathematics. What this neutral-
ity amounts to can be specified by making the distinction between different aspects 
of constructive mathematics: Brouwerian ontological constructivism, which asserts 
that mathematical entities are mental constructs, and epistemological constructiv-
ism, which is a view about the proper methodology of mathematics, namely intui-
tionistic logic (Bridges & Palmgren, 2018). Social constructivism is neutral con-
cerning epistemological constructivism; it is compatible with constructive as well as 
with classical methodology. But since social constructivism is a metaphysical thesis 
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about the nature of mathematical reality, it is evidently not ontologically neutral. 
However, it should be noted that social constructivism makes a claim about the met-
aphysical nature of mathematical entities but does not take a stand on which entities 
exist. Because of the permissiveness regarding methodologies, social constructivism 
allows for different ontological inventories of mathematical reality. For example, a 
social constructivist who works with intuitionistic methods might agree with Brou-
wer’s intuitionistic ontology about what entities there are but disagree about what 
they are like metaphysically. In this latter sense, social constructivism is a rival for 
Brouwerian ontological constructivism.

Although social constructivism and ontological constructivism share the idea of 
mathematical entities being constructions, the kind of constructing in social con-
structivism is different from the explicit construction required by constructive math-
ematics. Regardless of what does the constructing—whether it is the mind of an 
individual mathematician or an algorithm3—the construction in constructive math-
ematics is done within the theory. In social constructivism, it functions on another 
level. The idea is that entities postulated in mathematical theories depend on prac-
tices for their existence, but they need not be explicitly defined in the theory. Thus, 
the third difference is that instead of the concrete construction of objects in construc-
tive mathematics, mathematical entities in social constructivism are constructed in 
the sense that they are intended or unintended products of mathematical social prac-
tices (see Haslanger, 1995, p. 97).

3 � Julian Cole’s institutional account of mathematics

3.1 � Motivation from the ontological puzzle

Motivation for accepting social constructivism about mathematics comes from the 
practice of doing mathematics. Cole (2009) describes a puzzle arising from math-
ematical practice, which points toward the need for a new metaphysical interpreta-
tion of mathematics. On the one hand, mathematicians frequently make existential 
statements and refer to mathematical entities. There is also a clear sense of discov-
ery in the experience of studying mathematics; mathematical entities seem to have 
objective features we can determine and by which we can even be surprised. On the 
other hand, new mathematical entities are freely postulated in the course of solving 
problems. Postulation is a creative act, constrained only by the needs of the problem 
to be solved and the requirement of coherency.

Cole (2009) notes that mathematicians have the authority to both make ontologi-
cal commitments to existing entities and freely and creatively postulate new entities. 
These are legitimate practices of working mathematicians that should not be ques-
tioned from an outside perspective. The trouble is that our traditional metaphysical 

3  According to Brouwer, mathematical objects are constructed in the mind of an individual mathemati-
cian—or the Creating Subject as an idealized mind (Iemhoff, 2019). In modern computational interpreta-
tions of constructive mathematics, objects are constructed by algorithms (Bridges & Palmgren, 2018).
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interpretations of mathematics do not manage to adequately account for both aspects 
of mathematical practice.

If taken seriously, the ontological commitments made in the practice of math-
ematics point toward a platonist (or robustly realist) ontology.4 But, as Cole (2009) 
argues, the freedom to creatively postulate new entities runs into problems with a 
platonist ontology. From the perspective of the working mathematician, “postula-
tion is guided by the problem to be solved and a need for coherence” (Cole, 2009, p. 
591). However, in a platonist interpretation of mathematical theories, the postulated 
entities should capture a mathematical reality that exists entirely independently of 
the mathematical activities. This places further constraints on mathematical innova-
tion and curtails mathematicians’ freedom.5 It would also be “an unnerving happen-
stance” if the postulated entities were to correspond to those existing in the Platonic 
realm (Cole, 2009, p. 591), because, due to the challenges of gaining epistemologi-
cal access6 to it, it is difficult to see how postulation could be guided by the Platonic 
realm.

The practice of creatively postulating new entities agrees well with fictionalism 
and other nominalist ontologies as well as with intuitionistic ontology. Creating new 
entities is not a problem if the entities in question are not real or if they are consid-
ered to be nothing but mental creations in the first place. But these metaphysical 
alternatives invalidate the ontological commitments made in the practice of math-
ematics and fail to account for the sense of discovery in mathematics.

Yet another option is to look for the subject matter of mathematics in the natural 
world, but empiricism runs into trouble with both aspects of practice. The natural 
world is not vast enough to substantiate all the ontological commitments made in 
modern mathematics, and limiting the subject matter of mathematics to the fea-
tures of the physical world would significantly restrict the possibility of creative 
postulation.

The puzzle that Cole presents is this:

The freedom and authority that mathematicians feel they enjoy to creatively 
postulate mathematical entities do not accord well with realist or Platonist 
interpretations of mathematical theories. Yet, the intellectual ease with which 
mathematicians ontologically commit themselves to mathematical entities 
does not accord well with fictionalist or modal nominalist interpretations of 
mathematical theories. (Cole, 2009, p. 593; emphasis in original)

4  In this paper, I use ‘platonism’ to cover a range of metaphysical views that see mathematical entities as 
non-spatiotemporal, acausal entities existing entirely independently of mathematical activities; in addi-
tion to realism about objects such as numbers, these views include versions of set-theoretic realism and 
ante-rem structuralism. Maddy (2011) calls this type of view Robust Realism.
5  Unless we are willing to accept an extremely large universe of mathematical entities, with possibly 
multiple different and conflicting universes of sets to ensure that whatever we postulate corresponds to 
a pre-existing entity. An example of this kind of view is the full-blooded platonism of Balaguer (1995).
6  This is the much-discussed Benacerraf–Field epistemological challenge. See, e.g., Nutting (2020) for a 
clear formulation of the arguments.
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According to Cole (2009, p. 607), the only plausible solution to this puzzle is a met-
aphysical view that sees mathematical entities as real but dependent on practices. 
Cole (2008, 2009) calls his position practice-dependent realism. Practice-depend-
ent, because mathematical facets of reality depend on practices for their existence; 
without humans and their practices of counting, calculating, formulating theories, 
and proving theorems, there would be no mathematical objects. Realism, because 
despite their dependence on practices, the objects and structures studied in math-
ematics are taken to genuinely exist and to have objective features (Cole, 2008, p. 
121, 2009, p. 600).

The point is to say that mathematical facets of reality are real in the same way 
that universities and money and other familiar parts of social reality are real; they 
are not independent of human activity but are genuine aspects of reality neverthe-
less.7 I see this as the core idea of mathematical social constructivism. But we need 
a detailed account to explain exactly how mathematical reality depends on practices. 
How can something real come into being just by us humans acting in certain ways? 
Further, how can the results be as objective as mathematics is taken to be?

Cole (2013, 2015) gives such an account, which is based on John Searle’s theory 
of the construction of social reality. Before going into the details of Cole’s account 
of mathematics, I present a brief overview of Searle’s theory.

3.2 � Searle’s theory of how social reality is constructed

According to Searle’s (1995, 2010) theory, the basis of social reality is the ability 
to impose functions on objects and people. Some functions are based on physical 
features; for example, a stump of a tree can be given the function of a chair because 
its physical features make it suitable for sitting. But there are other functions that 
objects and people can perform that have little to do with physical features and are 
instead based on a collectively recognized status; these are called status functions 
(Searle, 2010, p. 7). A piece of paper can perform the function of money only in vir-
tue of having a status as, say, a 10-euro bill. Status functions carry deontic powers: 
rights, responsibilities, duties, permissions, obligations, and so on (Searle, 2010, pp. 
8–9). Because the piece of paper has the status function of money, I have the right to 
exchange the bill for a meal in a restaurant.

Status functions are imposed differently than physical functions, such as function-
ing as a chair. Imposing a physical function onto reality typically requires causally 
manipulating the environment in some way, such as sawing a tree stump to make it 
level and suitable for sitting, but imposing a status function requires merely collec-
tively recognizing and representing the relevant object or person as having a certain 
status. According to Searle (2010, p. 13), status functions are created by making 
“Status Function Declarations,” which are collective representational acts that have 
the same logical form as a certain type of speech acts called declarations. The cen-
tral feature of declarations is their ability to bring a state of affairs into existence just 

7  It should be noted that a position like this requires a realist attitude regarding social entities in general. 
I discuss the issue of realism more in Sect. 3.5.
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by declaring that the state of affairs exists (Searle, 2010, p. 12). Paradigm examples 
of declarations include “I pronounce you married” and “I appoint you chairperson”; 
a marriage is formed, and an individual becomes the chairperson just by saying 
these words in the right conditions. Status functions are created similarly; for exam-
ple, in a card game, a joker gets the status of a missing card if the players declare, 
“this is now the queen of diamonds,” and recognize it as such with the appropriate 
deontic powers.

The rest of the cards also have status functions without the players needing to 
create them by constantly declaring the values of the cards during play. Searle’s 
explanation for this is that some status function declarations remain in force for an 
extended period of time. Searle (2010, p. 13) calls these standing declarations and 
equates them with constitutive rules of the form “X counts as Y in context C.” Con-
stitutive rules are those that not only regulate a certain activity but also create the 
possibility of the activity in the first place. For example, the rules of chess are con-
stitutive of the game because without following the rules, the activity of moving 
black and white pieces on a board would not be a game of chess (Searle, 1995, pp. 
27–28). The constitutive rule “X counts as Y in context C” can be thought of as an 
implicit and continuing declaration that a status function Y exists: the piece of paper 
in my wallet keeps being money because of the constitutive rules regarding euros. 
Alternatively, constitutive rules can be thought of as creating the conditions for the 
creation of status functions in specific cases: the constitutive rule of checkmates in 
chess does not create checkmates but rather makes it the case that in a specific game 
of chess, moving the bishop to a certain square can count as checkmate. (Searle is 
not entirely clear on this matter; see Tsohatzidis, 2010). Either way, systems of con-
stitutive rules or standing declarations are crucial for the continuing existence of 
status functions. For Searle (2010, p. 10), a human institution is a system of consti-
tutive rules, and so, Searle calls institutional all parts of reality that depend on con-
stitutive rules for their existence: money, corporations, marriages, card games, and 
other aspects of social reality.

To sum up, Searle’s (2010) central claim is that all institutional reality is created 
and maintained in existence by the mechanism of status function declarations and 
collective recognition. The idea of Cole’s mathematical social constructivism is that 
mathematical reality is part of institutional reality and is constructed in a similar 
way; mathematical objects and domains are products of systems of standing decla-
rations, and they maintain their existence by collective recognition (Cole, 2015, p. 
1111).

3.3 � Surrogate objects

Cole adds to Searle’s theory a third kind of function that we impose onto reality, 
which he calls surrogacy functions (Cole, 2015) or representational functions (Cole, 
2013). Surrogacy functions are imposed onto reality to aid in representational activi-
ties like inquiring, reasoning, finding truths, etc. These activities become easier 
when their subject matter is treated as an object with properties and relations. Thus, 
as Cole (2015, p. 1110) says, “when the subject matter of certain representational 
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activities is not standardly treated as an object in our representations, we frequently 
engage in those activities using an alternative system of representation in which it is 
treated as an object.” Cole calls these surrogate objects.

One example of a surrogate object given by Cole (2015, p. 1109, 2013, pp. 
11–12) is a border, for instance between countries. Parts of land that are collectively 
recognized as territories of countries carry various deontic powers. When moving 
from one country to another, there is a transition in deontic powers; different laws 
take effect. These transitions are practically important in many ways, so in order 
to aid in representational activities concerning them, we treat a transition of this 
kind as an object with its own features: we treat it as a border, with features such 
as length, location, and—in many cases—a date of creation. Borders are surrogate 
objects that mark where the transition in deontic powers carried by countries takes 
place, and as surrogate objects borders do not have deontic powers on their own.8 
Yet the border is a socially constructed entity that exists in virtue of us collectively 
recognizing that it is there.

As borders are typically seen as prime examples of status functions (e.g. Searle, 
1995, pp. 39–40), it is important to note that the same entity can serve different func-
tions in different contexts.9 Cole emphasizes that borders serve as surrogate objects 
in the context of representational activities—when we talk, reason, and inquire 
about the transition between different parts of land. The surrogacy functions are the 
core functions of borders, for they account for why the entities were constructed (see 
Cole, 2015, p. 1108). But in the context of social practices like customs or border 
checks, the border entity serves a status function and involves deontic powers.

Surrogacy functions are also served by entities that do not carry deontic powers, 
or do so only minimally, like possible worlds, fictional characters, and—crucially for 
our purposes—mathematical entities such as natural numbers (Cole, 2015, p. 1110). 
Before examining what it means for mathematical facets of reality to be surrogate 
objects, two observations should be made about Cole’s (2015, pp. 1110–1111) view 
of surrogate objects in general. First, surrogate objects are institutional entities; they 
owe their existence to systems of standing declarations that govern particular activi-
ties, and they are real because we collectively recognize them to be. In this regard, 
surrogacy functions and status functions are alike. Second, in order to serve their 
functions and aid us in representational activities, surrogacy objects must have prop-
erties and relations that reflect the features of the facets of reality for which they 
are surrogates. This requirement illustrates the key difference between surrogacy 

8  Similarly, Cole regards positions in organizations as surrogate objects, and thus not carriers of deontic 
powers, because he differentiates between the person who has a certain status in the organization and the 
position in the relational structure of the organization (see Cole, 2013, pp. 12–13). The president of the 
U.S. has deontic powers and is a clear example of someone performing a status function. On the other 
hand, in itself, the president’s position in the U.S government does not have deontic powers; for instance, 
no laws can be vetoed in the situation when no one occupies the position.
9  This context-relativity applies already to the distinction between physical and status functions, as evi-
denced by Searle’s formula “X counts as Y in context C.” In the context of playing with different paper 
airplanes, a 10-euro bill is constructing material and serves a physical function, but in the context of buy-
ing a cup of coffee, the same object counts as money and serves a status function.
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and status functions: they are imposed for different purposes. Status functions are 
imposed to improve and enrich our social interactions, whereas surrogacy functions 
are imposed to facilitate our knowledge and reasoning.

3.4 � Institutional account of mathematical reality

The central thesis of Cole’s social constructivism is:

mathematical reality is the product of our collectively imposing function onto 
reality, where the functions in question are surrogacy functions with respect to 
(logically) possible systems of objects. (Cole, 2015, p. 1102)

To clarify the thesis, I take a closer look at how natural numbers are constructed 
in Cole’s theory.10 According to Cole (2015, p. 1102), the social construction of 
mathematical reality originates from everyday operations like counting. First, natu-
ral numbers were introduced as tools to assist us in our dealings with small collec-
tions of concrete things. The idea is that a number, for example three, is imposed to 
aid in representing things like how many children someone has or how many fish 
we should catch to feed everyone in the family and so forth. The number three is 
not the same as the number of children or the number of fish, but it functions as a 
surrogate for the common feature that these collections have. However, this kind 
of construction only gets us as far as very small finite numbers and, as Cole says, 
“eventually, our predecessors recognized that they wished to use natural numbers to 
perform their RFs [representational/surrogacy functions] with respect to all (exter-
nally) possible finite collections” (Cole, 2013, p. 29, emphasis in original). The 
notion of logically possible systems of objects is introduced; concrete collections are 
of some definite finite cardinality, but it is possible—logically, not concretely—to 
always add to a collection, with no upper limit put on the size. To put it differently, 
any possible system of finite cardinalities forms an ω-sequence, meaning that it has 
a first member, a second member, and so forth, but no last member (Cole, 2015, 
p. 1118). We need to be able to represent this, so we extend our system of natural 
numbers to serve surrogacy functions with respect to all logically possible collec-
tions, not merely the sizes of concrete collections. Doing so, we have constructed 
the entire sequence of natural numbers, and since we collectively recognize them, 
natural numbers exist as institutional entities.

To sum up, natural numbers are surrogate objects that are constructed to repre-
sent logical possibilities about finite cardinalities. Not only natural numbers, but 
in Cole’s theory, all mathematical facets of reality are surrogates (Cole, 2015, p. 
1111). They were constructed to represent various logical possibilities, and they 
exist because we collectively recognize that they do. Because mathematical enti-
ties are institutional, they are abstract entities in at least the minimal sense that they 
are not concrete, spatially located entities. Furthermore, despite being institutional 
entities, Cole argues that mathematical facets of reality are (1) robust, meaning that 

10  This is an attempt to expand and elucidate the story told by Cole (2013, 2015).
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their existence is not accidental; (2) non-arbitrary because they have features that are 
strongly constrained by their core functions; and (3) objective in the sense of seman-
tic objectivity. I will return to these arguments in more detail in section five, when 
I examine how well Cole’s institutional theory succeeds as a social constructivist 
account of mathematics.

3.5 � Answering an objection: how is this realism?

Let me address an obvious objection to Cole’s account of mathematical reality and 
social constructivism in general: How can this be realism? In Cole’s view, math-
ematical objects are surrogate objects and ontologically dependent on their being 
collectively recognized. This points strongly toward an antirealist ontology. Yet Cole 
calls his previous social constructivist view realism, albeit practice-dependent real-
ism, and his institutional theory holds that mathematical facets of reality genuinely 
exist. How is this possible?

This is accomplished by uncoupling two conditions, which usually go strictly 
hand in hand. Typically, ontological realism concerning X is a combination of 
two claims: (1) X exists, and (2) X is mind-independent (or independent of human 
thought, beliefs, and practices). Cole takes only the existence claim and leaves out 
the independence claim. His account of mathematical reality is realist in the sense 
that it affirms the existence of abstract mathematical entities. As such, it is a form 
of what Linnebo (2018) calls object realism, without being platonism. Platonism 
adds to object realism the claim of independence, which is often understood through 
an analogy between mathematical entities and physical objects: “Just as electrons 
and planets exist independently of us, so do numbers and sets.” (Linnebo, 2018, sec. 
4.1). Mathematical social constructivism rejects this analogy, along with the ten-
dency to conflate being real with being independent that is common to platonism 
and the viewpoint of natural science. In its understanding of realism, mathemati-
cal social constructivism aligns more with social ontology, where the key point is 
that things that are practice-dependent can nevertheless be real. The problem with 
maintaining that realism requires independence is that it also leaves out a plethora 
of things that are treated as real in both sciences and everyday life. If a thing—an 
object, a phenomenon, a process—can only be real if it is independent of human 
practices, we must conclude that things like money, states, governments, thoughts, 
emotions, etc. are not real, and this is not something a realist-leaning social con-
structivist is willing to do.

Because Cole’s social constructivism is a form of object realism, it stands 
opposed to nominalism, the view that mathematical entities do not exist. While 
Cole’s theory of mathematical entities being surrogate objects has some common-
alities with antirealist views like instrumentalism or fictionalism, a crucial reason to 
hold that Cole’s social constructivism is indeed a form of realism is that even though 
mathematical entities are introduced as tools to serve representational purposes, they 
take on a life of their own in some sense. On one hand, after being introduced, math-
ematical entities are shared between mathematicians and studied as external objects. 
In other words: “Once created and communicated, mathematical objects are there. 
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They detach from their originator and become part of human culture.” (Hersh, 1997, 
p. 16, emphasis in original). On the other hand, mathematical entities detach from 
the purpose of their introduction. As Cole (2013, p. 27) says, “having introduced 
such domains, we became interested in them, and began to investigate them, inde-
pendently of their RFs [representational/surrogacy functions].”

Importantly, a social constructivist like Cole does not attempt to reduce math-
ematical entities to subjective mental features or to physical things, but takes them 
to be entities in their own right. What is studied in mathematics is the mathemati-
cal entities as themselves, as abstract institutional entities, not the facets of reality 
they represent. As a consequence, the terms used in mathematical theories are not 
merely shorthand for something else, but they can be taken literally. This differenti-
ates social constructivism from many forms of nominalism, such as Hartry Field’s 
fictionalism or modal structuralism, which require a reconstruction of mathematical 
language to avoid ontological commitments to mathematical objects.11 In contrast, 
social constructivism has no problem with taking mathematical language at face 
value, nor with ontologically committing to mathematical entities, albeit in a differ-
ent sense than platonism. Regarding ontological realism, we can then say that math-
ematical social constructivism is not quite realism in the typical sense but not anti-
realism, either.12 As it affirms the existence of mathematical entities but denies their 
independence of human activity, social constructivism occupies the middle ground 
between nominalism and platonism.

Cole’s account of mathematics is not only realist in the ontological sense, but also 
in a semantic sense.13 Cole (2015, p. 1103) states: “throughout, I assume that the 
majority of classical mathematical statements have objective truth values.” Addition-
ally, the true mathematical statements are taken to be truths about existing entities. 
Cole’s view is thus a moderate14 form of truth-value realism, which is the view that 
mathematical statements have objective, non-vacuous truth values independently of 
the conventions or knowledge of the mathematicians (see Linnebo, 2018; Shapiro, 
1994). Assuming truth-value realism has the benefit of supporting the legitimacy of 

11  The problem is that if there are no mathematical objects (and assuming standard semantics), a state-
ment such as “there are infinitely many primes” comes out as false, which goes against mathematical 
practice. To resolve this discrepancy, Field adds a fictional operator to the language, which transforms 
the false statement into “in arithmetic, there are infinitely many primes,” which is true. Modal structural-
ism does the same by reinterpreting mathematics in terms of modal logic and translating mathematical 
statements into hypothetical statements about possible structures. (See Bueno, 2020).
12  Tellingly, proponents of mathematical social constructivism locate their views on different sides of the 
realism-antirealism divide. Ernest (1998, p. 261), who sees mathematical entities as cultural or concep-
tual objects, describes social constructivism as nominalism. Reuben Hersh, who uses the term ‘social-
cultural-historical object’ for mathematical entities, thinks they are “real as can be” (1997, p. 72). And, 
as emphasized, Julian Cole takes the realist side.
13  I want to thank an anonymous reviewer for prompting me to discuss this sense of realism in more 
detail.
14  I add the qualifier ‘moderate’, because rather than assuming that every mathematical statement has an 
objective truth value, Cole talks of the majority of statements. For instance, Cole’s formulation leaves it 
open whether unsettled and independent questions like the continuum hypothesis have determinate truth-
values.
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classical methods, such as the use of classical logic or non-constructive proofs and 
axioms, even when platonism as a defense of the use of these methods is rejected.

One might wonder, how statements about institutional entities, which exist in 
virtue of our collective recognition, have truth values independently of us. But as 
Linnebo (2018) notes, the claim that mathematical statements have objective truth 
values need not be justified by appealing to the ontology of mathematical entities. 
Cole’s truth-value realism does not rest on the ontological nature of institutional 
mathematical entities, but on a feature of their core surrogacy functions: because 
surrogacy objects reflect the facets of reality for which they are surrogates, state-
ments about mathematical entities inherit their truth-values from statements about 
logically possible systems of objects. The question remains, whether appealing to 
the logical possibilities suffices to justify Cole’s truth-value realism, but I return to 
this question in section five. First, I take up the question: Why defend social con-
structivism about mathematical reality?

4 � The promise of social constructivist ontology for mathematics

Social constructivism about mathematics, like Cole’s institutional theory, has some 
promise as an ontology for mathematics. In this section, I identify two merits that 
support the view that mathematical objects are social constructions, one from the 
point of view of mathematical practice and the other from the point of view of a 
more general ontological picture. I then offer a new argument for social constructiv-
ism that combines these two viewpoints.

4.1 � Two merits of social constructivism

The first merit is that social constructivism can agree well with mathematical prac-
tice. Some reasons for this have already been discussed. To begin with, social con-
structivism as a philosophy of mathematics is not revisionist. Unlike constructive 
mathematics, it does not try to tell mathematicians what they should do or what 
methodologies to use. As I see it, the aim of social constructivism is to make sense 
of what mathematicians are doing when they talk about mathematical objects, what-
ever methods they are using. The metaphysical account of mathematical entities the 
view offers is compatible with different mathematical methodologies—both classi-
cal and constructive—and does not put restrictions on the choices a working math-
ematician can make.

Another reason is that social constructivism offers a solution to the ontological 
puzzle arising from practice. The view validates ontological commitments because 
mathematical entities genuinely exist as institutional entities, and it also validates 
creative postulation because mathematical entities are constructed. Social construc-
tivism can also validate the experience of discovering unknown features of math-
ematical entities. This is because socially constructed entities—unlike explicit con-
structions—can have features that are not known or anticipated when the entities 
are constructed. The idea of unintended or unknown features could become clearer 
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through an example of a more familiar social entity, the game of chess. It is a fea-
ture of the game that the quickest possible checkmate is the sequence of four moves 
called the Fool’s Mate. This feature is not stated in the rules that constitute the 
game nor is it apparent by knowing the rules alone, but rather, it has been discov-
ered through playing and analyzing the game. Since similar situations may occur for 
socially constructed mathematical entities, social constructivism can account for the 
sense of discovery that is part of the experience of doing mathematics.

Furthermore, case studies of actual mathematical practice lend support for the 
core idea of social constructivism—that mathematical entities exist in virtue of 
human activity yet are genuine aspects of reality—although not necessarily for the 
specifics of Cole’s institutional theory. Carter (2004) argues based on a case study 
from modern mathematics, K-theory, that new mathematical objects grow out of 
mathematical practice. For Carter (2004, p. 253), the case study shows that new 
objects are introduced by mathematicians in order to solve problems and they are 
constructed from already accepted objects by using accepted construction methods. 
Still, Carter claims, because we can successfully speak about mathematical objects, 
they are entitled to some kind of existence, and she views them as genuine objects.15 
Muntersbjorn (2003) proposes that mathematical objects are real but emergent phe-
nomena, and that they are neither created nor discovered, but cultivated. She gives 
evidence for this view with a historical case study of the development of calculus 
by showing how derivatives and integrals emerged from representational practices. 
Based on the case study, Muntersbjorn argues that new notational devices play a 
vital role in the emergence of mathematical objects: “Mathematical objects do not 
exist before the introduction of new mathematical symbols, but only come into exist-
ence after systems of signification capable of referring to them are codified via the 
mathematical community.” (2003, p. 173). Both case studies support the idea that 
mathematical entities are brought into reality by the activities of mathematicians, 
and this idea is also at the core of Cole’s social constructivism.

However, whether mathematical practice on its own is enough to draw conclu-
sions about the ontology of mathematics has been disputed. Some hold that it makes 
no difference to mathematics as it is actually practised whether mathematical entities 
are taken to exist or not (see e.g. Larvor, 2001; Maddy, 2011). Fortunately, agree-
ment with mathematical practice is not the only reason to defend social construc-
tivism about mathematics, for the view also has advantages from a more general 
ontological viewpoint.

The second merit of mathematical social constructivism is that it provides an 
ontology for mathematics that fits into an overall scientific worldview. To para-
phrase Searle (2010, p. 3), the aim is to answer this question: How can we reconcile 
a conception of the world as described by the sciences with what we think we know 

15  Carter (2004, p. 261) defines genuine objects, in contrast to fictions, as those for which the act of exhi-
bition can be distinguished from the act of definition. The way to exhibit mathematical objects can be to 
represent them with empirical objects, as in the case of a triangle, or to derive them from the methods of 
constructions, as in the case of K-groups. According to Carter, neither method of exhibition is the same 
as giving a definition for these objects.
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about the subject matter of mathematics? Social constructivism does this by offering 
a way to understand how mathematical entities can be real without postulating Pla-
tonic realms. Any kind of independently existing, acausal, and non-spatiotemporal 
mathematical world is a significant problem for a worldview that is informed by the 
sciences and is, broadly speaking, naturalistic. But claiming that mathematical enti-
ties are real in the same way that legal borders and money are real does not conflict 
with a scientific picture of the world, at least not anywhere close to the same degree 
that a platonist reality does.

What I mean by the scientific worldview is a kind of non-reductionist naturalism, 
the gist of which can be characterized by two claims16: First, the natural world we 
live in includes all kinds of phenomena from quarks to governments, and there are 
no separate realms of existence. Different sciences, from physics to biology and to 
social sciences study different aspects of the same reality. Second, more complex 
aspects of reality, including mental and social reality, are in some ways dependent 
on more basic aspects of reality and ultimately on physical entities. Note that, as the 
descriptor ‘non-reductionist’ indicates, the view holds that dependent entities can 
be genuinely real. The problem that platonism presents for this kind of naturalis-
tic worldview is created by the claim of independent existence rather than by the 
abstractness of mathematical entities. Hence, social constructivism poses no compa-
rable problem to naturalism. As Linnebo (2018) observes, many physicalists would 
accept non-physical objects such as corporations, laws, and poems, provided that 
they are suitably dependent on physical reality.

I take it that all kinds of human activities and culture, including the important and 
fruitful activity of doing mathematics, are continuations of simpler, evolutionarily 
developed skills and practices. Hence, these activities—and the products of these 
activities—belong to the same natural world inhabited by planets and trees and ele-
mentary particles. This is in line with Searle’s claim that his account of institutional 
reality is utterly naturalistic since he sees “the human ability to create money, prop-
erty, government, and marriage as an extension of more basic biological phenomena 
such as the ability of human beings to engage in cooperative behavior, and their 
innate capacity for linguistic symbolism” (Smith & Searle, 2003, p. 300). The real-
ity of social entities is continuous with the reality of physical entities, and since the 
situation is the same with socially constructed mathematical things, they are com-
patible with what the sciences tell us about reality.

4.2 � The argument from compatibility

These two merits can be combined into a single argument for social constructiv-
ism. This argument differs from two arguments given by Cole (2008, 2009) and 
reconstructed by Dieterle (2010) in her critique of Cole’s theory. I will first briefly 
describe and comment on these arguments and then present my own argument.

16  These claims are similar to the two conditions of adequacy Searle sets for his account of social reality 
(2010, pp. 3–4).
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The first is the Argument from Phenomenology, the same argument I called the 
ontological puzzle which, according to Dieterle (2010, p. 321), functions as motiva-
tion for adopting social constructivism but not as a direct argument in support of the 
position. The second is the Argument from Superfluousness, which aims to show 
that social constructivism is preferable to platonism (Dieterle, 2010, pp. 316–317). 
The gist of the argument is that platonism is explanatorily and justificationally super-
fluous; because of the problem of acausal entities influencing us, platonistic entities 
cannot perform some of the required explanatory work, and the remaining work can 
also be done by socially constructed mathematical entities. Platonistic entities are 
thus unnecessary and fall under Occam’s razor. Dieterle is skeptical of this argument 
for several reasons. First, she doubts that socially constructed entities are able to 
do the explanatory work required of platonistic entities, namely accounting for the 
characteristic features of mathematics. Second, she is not convinced that the influ-
ence challenge does not also apply to Cole’s theory since, in his view, mathematical 
entities are abstract. And third, she is suspicious of the use of Occam’s razor in this 
case because it may be similarly applied to socially constructed entities.

Let me quickly respond to Dieterle’s critiques. Concerning the first, I agree that 
a social constructivist view needs to account for characteristic features of mathe-
matics, and I will turn to this question in the next section. Regarding the influence 
challenges, I share Cole’s view that they do not present a significant problem for 
social constructivism since socially constructed mathematical entities can influence 
us through the practices that constitute them (e.g. Cole, 2008, p. 124). The main dif-
ficulty of gaining epistemological access to platonistic entities seems to be due to 
their independence, not their abstractness. This is supported by the observation that 
similar questions do not commonly arise in the case of presumably abstract entities 
that are human-created, such as symphonies, novels, or constitutions. And finally, 
like Dieterle, I do not find the use of Occam’s razor fully convincing in the case 
of mathematics. In particular, I doubt whether the razor is the best tool to decide 
between different realist views about mathematical ontology. If ontological par-
simony is taken as an important guiding principle for ontology, granting the vast 
domains of modern mathematics any kind of existence seems questionable.

Instead of focusing on ontological parsimony, I favor other guiding principles 
for ontology: (1) compatibility with experience, which in the case of mathematics 
means actual mathematical practice, and (2) compatibility with the results of empiri-
cal sciences, understood broadly and not restricted to natural sciences or physics.17 
The two principles mirror the merits identified above and function as premises for 
my argument for social constructivism in mathematics, which I dub the Argument 
from Compatibility. The new argument incorporates the crux of the Argument from 
Phenomenology and, in my view, gives a more convincing reason to prefer social 

17  Both principles are naturalistic in some sense. The first aligns with the basic idea of mathematical 
naturalism, defended by e.g. Penelope Maddy, by requiring that a philosophical account of mathemat-
ics should not conflict with mathematical practice. The second principle rests on a moderate form of 
naturalism that combines core notions from both ontological and methodological aspects of naturalism, 
namely that all entities are in some sense natural and the best ways to investigate the nature of reality are 
scientific methods.
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constructivism over platonism than the Argument from Superfluousness. Conse-
quently, I claim that the Argument from Compatibility makes a stronger case for 
social constructivism than the two arguments given by Cole. The outline of the argu-
ment is the following:

(1)	 The principle of compatibility with practice: Any philosophy of mathematics 
should agree with the actual practice of mathematics.

(2)	 The principle of compatibility with science: Any ontology should agree with 
what the empirical sciences (broadly conceived) tell us about the nature of real-
ity.

(3)	 The practice of mathematics has aspects that are explained by the view that 
there are mathematical entities: reference to entities, existential claims, sense 
of discovering objective features.

(4)	 Platonism and social constructivism account for (3). Other ontological views 
(nominalism, empiricism, etc.) do not, violating (1).

(5)	 Platonism postulates an independently existing realm of mathematical entities, 
that is acausal and non-spatiotemporal. This violates (2).

(6)	 Conclusion: social constructivism is preferable to other ontological views.

The difficult step in this argument is step (4). Specifically, the argument hinges 
on whether social constructivism can account for the characteristic features of math-
ematics. I will now turn to examining how Cole’s institutional account fares in this 
regard. Reference to entities and existential claims are taken care of by the claim 
that mathematical entities exist as institutional entities. Objectivity is the challeng-
ing feature for social constructivism, and it is not the only one.

5 � Challenges: objectivity and applicability

There are two major challenges facing mathematical social constructivism due to 
mathematics having characteristic features that other socially constructed facets of 
reality do not. As pointed out in the previous section, the first one is objectivity. 
Mathematics is widely regarded as the epitome of objective knowledge, and com-
pared to typical socially constructed entities, mathematical entities are (relatively) 
non-arbitrary. The second feature is applicability. As is well known, applying math-
ematics in the natural sciences is very effective, even unreasonably so.18 Because 
this is the case, mathematical reality appears to be connected to the features of the 
physical world in a way that other facets of social reality are not.

18  To borrow the famous titular phrase from Wigner (1960).
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If mathematical social constructivism is to be a viable philosophy of mathemat-
ics, the challenge is to explain these two characteristic features.19 In other words, we 
need to explain how and why mathematical entities differ from entities like virtual 
currencies or fictional characters. According to Cole (2015, p. 1110), both math-
ematical entities and fictional characters are surrogate objects and are constructed 
by the same mechanism. But fictional characters are highly arbitrary and not at all 
useful in explanations of physical phenomena, so there are significant differences in 
need of explanation.

5.1 � How Cole’s institutional theory explains objectivity and applicability

Cole’s explanation for the objectivity of mathematics relies on the distinction 
between ontological and semantic objectivity.20 Ontological objectivity has to do 
with the existence of entities; those entities that exist mind-independently are onto-
logically objective. Semantic objectivity has to do with claims and propositional 
content; objective claims are those that have a truth value independently of the atti-
tudes of those who assess them. Note that the semantic objectivity of statements 
is an important part of truth-value realism, although typically truth-value realism 
makes further and stronger claims.

According to Cole’s theory, mathematical entities are dependent on collective 
recognition, so they are not ontologically objective. However, Cole (2015, p. 1122) 
argues that mathematical claims are semantically objective. But as Dieterle (2010, 
p. 326) argues, this kind of objectivity is not yet enough because claims about other 
socially constructed entities are semantically objective too, and mathematics should 
be objective in a much stronger sense than, for example, claims about the features 
of gender constructs.21 To explain this discrepancy, Cole (2015, pp. 1121–1122) 
argues that the truth values of some semantically objective contents are constrained 

19  Many also see timelessness and necessity as characteristic features of mathematics that need to be 
accounted for. I do not consider them as essential for an account of mathematics as the other two features 
I identify. The reason being that, if timelessness and necessity are understood as mathematical truths 
being true at every time and in every possible world, requiring mathematics to be timeless and neces-
sary is inherently at odds with the humanist view that mathematics is a historically developed product of 
human activity and ingenuity. This incompatibility is well illustrated by Dieterle (2010, p. 318, n. 14): 
“when we say mathematical truths are timeless, we mean that they were true before there were rational 
minds and will remain true even if, at some point in the future, there are no rational minds. It is dif-
ficult (if not impossible) to make sense of this if such truths depend on rational activities of humans.” 
The claim of the humanistically minded philosopher of mathematics is precisely that this does not make 
sense and mathematics is not in fact timeless. However, as an anonymous reviewer points out, this under-
standing is better called eternal than timeless, and unlike eternality, timelessness or atemporality could 
be compatible with the humanist view. Accordingly, Cole argues that institutional mathematical entities 
are amodal and atemporal existents, rather than necessary and eternal. This is because, in order to best 
serve their core functions, no temporal or modal restrictions are placed on them (Cole, 2015, p. 1111). 
The idea is that, after they have been introduced, the surrogacy functions mathematical entities serve can 
be imposed onto past reality retroactively, or onto the reality of any time or any possible world.
20  The distinction is based on Searle’s (2010, p. 18) similar distinction of different senses of objectivity.
21  As Dieterle points out, the aim of social constructivism about gender is precisely to show that state-
ments like “women are more nurturing than men” are not objective.
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to be what they are by the features of ontologically objective facets of reality, and 
other contents are unconstrained. Correspondingly, some socially constructed enti-
ties have non-arbitrary features and others only highly arbitrary ones, depending on 
how strongly they are constrained by their core functions and, if their functions are 
representational, the features of ontologically objective reality.

For example, the features of gender constructs and the true claims about them are 
not constrained by ontologically objective reality and are therefore liable to change. 
This is in contrast with mathematics: Cole (2015) argues that mathematical entities 
have non-arbitrary features and that mathematical content has semantic objectivity 
that is largely or entirely constrained because it represents features of ontologically 
objective facets of reality. For example, the statement “7 + 5 = 12” has the same truth 
value as “when collections of seven and five are combined, the result is a collection 
of twelve.” This claim directly represents how concrete collections work, which is 
ontologically objective (Cole, 2015, p. 1122). Thus, the explanation for the objective 
nature of mathematics is that mathematical constructs are constrained by ontologi-
cally objective parts of reality.

What about an explanation for the applicability of mathematics in natural sci-
ences? Cole does not provide one, but the explanation that can be given for this fea-
ture in Cole’s theory relies on the notion that mathematical entities are surrogates for 
other facets of reality. According to Cole (2015, pp. 1116–1119), surrogate objects 
must have properties that reflect the properties of the facets of reality for which they 
serve as surrogates. If mathematical entities are to serve their surrogacy functions 
well, they must reflect the features of the physical world. This is well illustrated by 
the case of natural numbers and basic arithmetic; because natural numbers represent 
quite directly how physical collections work, it is clear why they can be used effec-
tively in scientific and other explanations of physical phenomena.

5.2 � Why Cole’s theory falls short of meeting the challenges

Cole’s theory makes a decent attempt at giving explanations for objectivity and 
applicability, but I argue that it ultimately falls short of the mark. The explanations 
run into problems caused by the three-level theoretical model Cole sets up and the 
ambiguity of the crucial notion of possible systems of objects. Additionally, due to 
the Searlean framework, Cole’s institutional account fails to sufficiently address the 
different constraining factors that are relevant to explaining the particularities of 
mathematical social construction.

5.2.1 � Problems caused by the three‑level theoretical model

The way Cole (2015) explains the construction of mathematical reality hinges on 
a theoretical model, which, while not explicitly described and defended by Cole, 
becomes apparent on a close look at the theory. The model has three levels (see 
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Fig.  1).22 The first level consists of independently existing reality and features of 
the physical world, for example concrete collections. Logically possible systems of 
objects form the second level. On the third level are the institutional mathematical 
entities that serve as surrogates for the second-level entities, as the central thesis of 
Cole’s social constructivism states. The first-level entities and features are straight-
forward, and Cole gives a detailed, Searle-inspired account of the ontology of the 
third-level entities. But adding the level of possible systems of objects between these 
and failing to give a clear account of their ontology causes the theory to fail to ade-
quately explain the objectivity and applicability of mathematics.

Both explanations hinge on the notion of logically possible systems of objects 
because they are what constrains the objectivity of mathematics, and if there is a 
connection between mathematical reality and the physical world, it goes through 
the logical possibilities. Since the third-level mathematical entities are surrogate 
objects, they have the same degree of constraint as the second-level possibilities. 
This means that Cole’s truth-value realism depends on statements about logically 
possible objects being semantically objective in a strongly constrained way. Conse-
quently, in order to substantiate the claim that mathematical statements have objec-
tive truth values, Cole (2015, p. 1103) has to assume that “there are ontologically 
objective facts about what systems of objects are logically possible” and that our 
assessments of the relevant logical possibilities are made correct by features of inde-
pendent reality. The problem is that Cole does not justify this assumption, nor does 
he explain how ontologically objective reality actually fixes what the possibilities 
are.

The problem occurs especially in the case of entities that do not directly repre-
sent concrete things. The explanations given for the characteristic features of math-
ematics work in the case of natural numbers because their features are strongly con-
strained by a clear connection between the facts of ontologically objective reality 
and the constructed mathematical entities. For natural numbers, this connection 
“can be expressed by an abstraction principle” (Cole, 2013, p. 33). But Cole’s theory 
has trouble accounting for objectivity and applicability in more advanced mathemat-
ics since it is not clear at all how entities like symmetry groups or n-dimensional 
Euclidian spaces—or more precisely, the logical possibilities for which they are 
surrogates—are connected to and constrained by ontologically objective features of 
reality. For example, Cole says that “we collectively recognize the complex num-
bers to serve surrogacy functions with respect to all (logically) possible norm divi-
sion algebras over the reals that have dimension 2” (2015, p. 1111). How are “pos-
sible norm division algebras” connected to the first-level features of the physical 
world? The same kind of straightforward abstraction that works for natural numbers 
is not an option because this is not a case of representing concrete things. Still, a 
connection of some kind is presumably required since Cole assumes that some fea-
ture of independent reality fixes what systems of objects are logically possible. The 

22  In Cole (2013), the three levels are less explicit but are still present in the account. Cole (2013, p. 30) 
describes mathematical domains as serving RFs (i.e. surrogacy functions) with respect to possibilities of 
a relevant type.
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lack of an explanation for these kinds of connections is a shortcoming of the theory 
since many entities of advanced mathematics do, in fact, find applications in physi-
cal theories, some even in unexpected ways. For example, matrices are successfully 
applied to quantum physics (see Wigner, 1960), and the theorems of group theory 
can be used to predict the behavior of subatomic particles (see Maddy, 2011, p. 95).

Further complications arise from the fact that the example of complex numbers 
mentions the reals, which themselves are surrogate objects in Cole’s theory. One 
way to understand the situation is to take the imposing of surrogacy functions as 
iterative. That is, new mathematical entities (complex numbers) would be surro-
gates for the features of previously constructed surrogate objects (the field of real 
numbers). This seems a natural interpretation since mathematics builds on previous 
mathematics. In fact, Cole (2013, p. 27) makes the same point and states that it is 
useful to think that mathematical reality has been constructed in layers. However, 
the iterative interpretation exacerbates the problem of explaining the objectivity of 
mathematics. The objectivity of upper-layer mathematics is constrained by the fea-
tures of the lower layer, which consists of surrogate objects. But because these are 
not ontologically objective entities, how can facts about what is possible for them be 
ontologically objective, as the theory requires?

This question highlights the issue of “passing the buck” underlying Cole’s the-
ory; the question of whether mathematics is about something ontologically objective 
or not is just shifted from concerning the third-level mathematical entities to being 
about the second-level logical possibilities. Either we have to claim that the relevant 
logical possibilities are as they are independently of us, or we have to accept that 
the logically possible systems are partly or entirely constructed by us and are thus 
not ontologically objective. Taking the first option, as Cole seems to, amounts to 
essentially endorsing platonism about logical possibilities. This leads to an uneasy 
combination of positions: holding that entities like real and complex numbers are 
constructed by us yet what is logically possible for these entities is independent of 
us. On the other hand, taking the second option removes the basis for Cole’s expla-
nations for objectivity and applicability. If the logically possible systems of objects 
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Fig. 1   The three-level model of the construction of mathematical reality
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are constructed by us in a partly or largely unconstrained way, the objectivity of 
mathematics would be severely weakened, and the connection to the physical world, 
which accounts for applicability, would be severed.

In sum, Cole’s three-level model creates problems that cause his institutional 
theory to fall short of meeting the challenges facing social constructivism. The the-
ory either collapses into platonism regarding possible systems of objects or fails to 
account for characteristic features of mathematics.

5.2.2 � The Searlean framework behind the shortcomings

The examination of objectivity and applicability shows that the constraints placed 
on the construction of mathematical entities do the bulk of the work in accounting 
for the characteristic features of mathematics in Cole’s institutional theory. As I see 
it, appealing to the constraints attempts to answer the question: What makes math-
ematicians collectively recognize and bring into existence entities that are distinctly 
mathematical, meaning that they can be applicable and facts about them are objec-
tive? Cole’s answer is that in order to serve their core functions as surrogate objects, 
the features of mathematical entities are constrained to a high degree by the features 
of the logically possible systems they represent. But as the problems caused by the 
three-level model show, relying only on the constraints placed by the core functions 
of mathematical entities does not give a sufficient answer to this question.

The significant role played by the constraints suggests that the problems Cole’s 
theory has explaining the characteristic features of mathematics could be resolved 
by elaborating on other factors constraining social construction of mathematical 
entities. This could be approached in two ways: First, by considering what else con-
strains the features of mathematical entities, aside from the other aspects of reality 
they represent, and second, by looking at what convinces mathematicians to accept 
certain entities. In social constructivism, these aspects are tied together: what math-
ematical entities exist depends on the collective recognition of mathematicians, but 
the entities that mathematicians come to recognize typically are the ones whose 
features are strongly constrained. Regarding the first aspect, the features of math-
ematical entities can be constrained not just by what they represent but what they 
allow. Natural candidates for these kinds of constraining factors include an ability to 
solve problems or settle open questions, ability to expand the domains or open new 
areas of study, and fruitfulness in application either in science or in other areas of 
mathematics. Regarding the second aspect, the most important factors are proofs; 
the best way to convince mathematicians to accept an entity is to give a proof of 
its existence using already accepted entities and principles. It should be noted that 
these other constraining factors, like having a proof, are not strictly speaking neces-
sary conditions for a certain mathematical entity to be constructed. Rather, the pres-
ence of constraining factors corresponds to the extent to which the entity in question 
has non-arbitrary and applicable features and to how objective our knowledge of the 
entity is.

Consequently, paying more attention to these factors could be of considerable 
help to a social constructivist in the task of accounting for the characteristic fea-
tures of mathematics. Yet, in his institutional account of mathematics, Cole remains 
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mostly silent on other possible constraining factors than the representational ones. I 
propose that this is due to the Searlean framework Cole bases his theory on. Focus-
ing primarily on representations and failing to sufficiently address other constraining 
factors seems to be inherited from Searle’s theory.

Searle’s (2010) central claim is that all institutional reality is created and main-
tained in existence by the mechanism of status function declarations and collective 
recognition. But, as Tsohatzidis (2010) observes, some institutional facts cannot be 
created just by making declarations: I cannot go on strike just by saying “I go on 
strike” or—as also Searle (1995, p. 55) admits—I cannot make a touchdown just 
by saying “I’m now making a touchdown.” Factors other than declarations are also 
involved in the creation of these institutional facts. However, they easily go over-
looked in the Searlean framework, since Searle’s central claim implies that declara-
tion and collective recognition alone are enough to bring something into existence.

The same problem carries over to Cole’s institutional account of mathematics 
and leaves it vulnerable to an objection that can be made against a view that math-
ematical entities are socially constructed: “Surely, the existence and the features of 
mathematical entities cannot be just a matter of what leading mathematicians decide 
in a conference.” The objection rests on the fact that this is not how mathematics 
develops in practice. Yet the Searlean framework leads us to believe that this would 
be sufficient; mathematicians could create a new entity just by declaring and collec-
tively recognizing that it exists and has certain features, and nothing more would be 
needed. As it overlooks other factors in play, the institutional account has difficulty 
in properly responding to the objection.

More importantly, the Searlean framework contributes to the shortcomings of 
Cole’s explanations for objectivity and applicability by steering the focus away from 
other kinds of constraining factors that are relevant for an account of mathemat-
ics, and detrimentally limiting the theory’s ability to explain the particularities of 
mathematical social construction. This is not to say that the institutional approach is 
utterly unable of overcoming the shortcomings by supplementing the theory, but it 
seems that the theoretical tools needed to explain the characteristic features of math-
ematics are not the ones provided by Searle’s theory. The shortcomings of the insti-
tutional account of mathematics, along with the lack of tools the Searlean frame-
work offers to overcome them, give reason to suspect that the Searlean framework 
is not an optimal social ontology for the purposes of defending mathematical social 
constructivism.

6 � Conclusion

To conclude, I have proposed that a view that sees mathematical entities as socially 
constructed has some promise as an ontology of mathematics. Social constructivism 
offers a way to understand how mathematical entities can be real without postulating 
any Platonic realms and conflicting with a scientific picture of reality. Furthermore, 
the view can agree well with mathematical practice: it is not revisionist, and it gives 
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a solution to the ontological puzzle by validating both existential claims and creative 
postulation done in the course of doing mathematics.

But for social constructivism to be a viable ontology of mathematics, it needs to 
overcome the challenge of explaining the characteristic features of mathematics. I 
have argued that the institutional theory of mathematical reality defended by Julian 
Cole fails to sufficiently account for the objectivity and applicability of mathemat-
ics. The explanations for these features run into problems caused by an underlying 
three-level theoretical model and ambiguity of the crucial notion of possible systems 
of objects. Moreover, basing the theory on the Searlean framework results in over-
looking other relevant factors constraining mathematical social construction than 
representational ones, which limits the theory’s ability to explain the particularities 
of mathematical social construction.

As a result, Cole’s institutional account fails to deliver on the promise of social 
constructivism about mathematics. Because the theory does not sufficiently account 
for characteristic features of mathematics, the Argument from Compatibility I pre-
sented in support of mathematical social constructivism does not fully apply to 
Cole’s institutional version. The shortcomings of Cole’s theory give reason to sus-
pect that the Searlean framework he works with is not an optimal social ontology for 
the purposes of mathematical social constructivism.
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