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Abstract
Some find it plausible that a sufficiently long duration of torture is worse than any
duration of mild headaches. Similarly, it has been claimed that a million humans living
great lives is better than any number of worm-like creatures feeling a few seconds of
pleasure each. Some have related bad things to good things along the same lines. For
example, one may hold that a future in which a sufficient number of beings experience
a lifetime of torture is bad, regardless of what else that future contains, whileminor bad
things, such as slight unpleasantness, can always be counterbalanced by enough good
things. Among the most common objections to such ideas are sequence arguments.
But sequence arguments are usually formulated in classical logic. One might therefore
wonder if they work if we instead adopt many-valued logic. I show that, in a common
many-valued logical framework, the answer depends on which versions of transitivity
are used as premises. We get valid sequence arguments if we grant any of several
strong forms of transitivity of ‘is at least as bad as’ and a notion of completeness. Other,
weaker forms of transitivity lead to invalid sequence arguments. The plausibility of the
premises is largely set aside here, but I tentatively note that almost all of the forms of
transitivity that lead to valid sequence arguments seem intuitively problematic. Still,
a few moderately strong forms of transitivity that might be acceptable lead to valid
sequence arguments, althoughweaker statements of the initial value claims avoid these
arguments at least to some extent.

Keywords Axiology · Superiority · Inferiority · Spectrum argument · Continuum
argument · Non-Archimedean

1 Introduction

Some find it plausible that there are values that cannot be counterbalanced by other
values; for example, that a sufficiently large amount of torture is worse than any
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amount of mild headaches.1 An example concerning positive value is provided by
Lemos (1993, p. 487) who finds it better that a million people live excellent lives than
that any number of worm-like creatures each feel a few seconds of pleasure.2 One can
relate bad things to good things along the same lines. For example, some authors seem
sympathetic to the following idea: some horrible things such as a sufficiently large
finite number of humans experiencing a lifetime of torment cannot be counterbalanced
by various good things, regardless of the amount of those good things, while trivially
bad things can always be counterbalanced by sufficiently many good things.3

These ideas are important for policy-making and the allocation of healthcare
resources (Voorhoeve 2015). For example, should limited public funds be spent on
treatingmany peoplewithmild illnesses or a fewwith theworst health conditions? The
ideas are also important for the impossibility theorems in population ethics (Carlson
2015; Thomas 2018).

I deal with some of the most common objections to such ideas, namely a group of
similar objections called sequence arguments (or spectrum or continuum arguments),
which have been much studied.4 I will explain them in detail later, but the following
is a sketch of a sequence argument against the view that a sufficiently large amount of
torture isworse than any amount ofmild headaches:There is a sequenceof intermediate
bads between torture and mild headache such as the following: torture, a terrible
disease, a less serious disease, severe headache, moderate headache, mild headache.
Spelt-out sequence arguments includemore bads so that adjacent bads aremore similar
to each other. If a sufficiently large amount of torture is worse than any amount of
mild headaches, there is a bad in the sequence such that this relation holds between
it and its successor; for example, a sufficiently large amount of severe headaches is
worse than any amount of moderate headaches. It is implausible, the argument goes,
that this holds between adjacent bads in the sequence, which are so similar. Hence,
the plausibility of the original view of torture versus mild headaches is undermined.

The main sequence arguments are formulated in classical logic, which assumes
there are only two truth values, true and false, and that every declarative sentence is
either true or false. I investigate whether sequence arguments are convincing if one
instead uses many-valued logics; that is, logics with more than two truth values. More
specifically, I focus on the validity of sequence arguments that use many-valued logic,
and largely leave the plausibility of the premises for future research.

The truth values in many-valued logic are sometimes called truth degrees, and I
assume, as is common, that they are numbers between 0 and 1, where 0 is falsest and
1 is truest. For example, in some many-valued logics, a sentence can be true to degree
0.85.

It has been suggested that one can reply to sequence arguments by appealing to
vagueness, and that one of the options is a theory of vagueness involving degrees of

1 E.g., Carlson (2000, pp. 246–247). For discussion, see, e.g., Norcross (1997) and Schönherr (2018).
2 For more historical references, see Arrhenius (2005, p. 97).
3 Such authors include Mayerfeld (1999, pp. 176–180), Brülde (2010, p. 577), Hedenius (1955, pp. 100–
102), and Erik Carlson (e-mail to the author, Oct. 1, 2019).
4 Early sequence arguments were formulated by Temkin (1996), Norcross (1997), and Rachels (1998).
More recent work has been done by, e.g., Temkin (2012), Arrhenius and Rabinowicz (2015), Handfield and
Rabinowicz (2018), Nebel (2018), Pummer (2018), and Jensen (2020).
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truth (Qizilbash 2005) or many-valued logic (Knapp 2007).5 But the treatments of the
topic have been brief, and in contrast to these works, I do not appeal to vagueness. I
focus on the logic, and I leave it open whether vagueness has any role to play.

There are several reasons why it is worthwhile to investigate many-valued logic and
sequence arguments.6 Broadly speaking, many-valued logic seems at least as suitable
for use in value theory as does two-valued (e.g., classical) logic, regardless of sequence
arguments, but many-valued logic also has particular strengths when it comes to such
arguments. More specifically, many-valued logic allows for gradual changes in the
phenomenon at hand to be mirrored by gradual changes in degrees of truth.7 For
example, if someone who is going bald loses one more hair, it can become slightly
truer that the person is bald. Similarly, slight changes in evaluatively relevant features
can be mirrored by slight changes in the truth degree of value statements about that
phenomenon. A related advantage of using many-valued logic in value theory is that
it allows for a nuanced, precise repertoire of positions. For example, one can assign a
truth value such as 0.76 to a view in value theory.

There are long-standing questions about how to understand or interpret degrees of
truth, what they mean and what they are (e.g., Gottwald 2001, p. 4; Bradley 2009,
p. 208; Smith 2008, Sect. 5.1). And there are many proposed answers (e.g., Smets
and Magrez 1987; Paris 2000; Smith 2008, p. 211; Cintula et al. 2017, Sect. 9). The
answers do not affect the main results of this paper so I leave these questions open, and
I do not defend or presuppose any one answer to these questions. Still, as background,
I will now give a glimpse of how one might and might not understand degrees of
truth. Authors such as Hájek (1998, pp. 2, 4) and Dubois and Prade (2001) distinguish
truth degrees from probabilities (and I follow their lead here). If one assumes that
possession of properties comes in degrees, one can identify degrees of truth with
degrees of property possession. As Smith (2008, p. 211) puts it, “if Bob’s degree
of baldness is 0.3, then ‘Bob is bald’ is 0.3 true.” We would deal with betterness
or worseness rather than baldness, but the story could be similar: the holding of the
relation of worseness between two items can come in degrees. Another option is to
understand the truth degree an agent would give to a sentence as the ease with which
the agent can accept the sentence (Paris 1997).

In Sect. 2, I explain the views to which sequence arguments are objections, and in
Sect. 3, I describe previous sequence arguments. Then we turn to many-valued logic
and sequence arguments. In Sect. 4, I present different approaches to sequence argu-
ments using many-valued logic, and I motivate my strategy. I then describe my logical
framework (Sect. 5). In Sects. 6 and 7, I consider premises in sequence arguments.
Finally, Sect. 8 contains my formal results about sequence arguments, and Sect. 9
concludes.

5 There is also a literature on many-valued logic and the sorites paradox (Paoli 2019), which has some
resemblance to sequence arguments (Temkin 1996; Pummer 2018, Sect. 3; Asgeirsson 2019).
6 See Paoli (2003, forthcoming) for defences of many-valued logic, and Smith (2008) for a defence of
degrees of truth. For writings favourable to many-valued logic, see, e.g., Behounek (2006), Hájek (2007)
and Novák and Perfilieva (2011). For objections to many-valued logic, see Paoli (2003, pp. 367–368) and
Smith (2008) and the sources cited there.
7 A similar point is made by Paoli (2003, pp. 364–365) in relation to the sorites paradox.
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2 The views targeted by sequence arguments

The ideas targeted by sequence arguments can and have been specified in different
ways. My focus is on the view that there are bad things which are inferior to other bad
things, where ‘inferior to’ is defined as follows:

Inferiority: An object b is inferior to another object b′ if and only if there is a number
m such that m b-objects are worse than any number of b′-objects.8

There are different ways to specify what a bad b and m b-objects are, and what ‘worse
than’ refers to. I will give a few examples, but the following specifications do not
matter for my results: An object b could be an experience with a given unpleasantness
that lasts for one second, andm b-objects couldmeanm such experiences. In general, I
think ofm b-objects asm objects of the same type as b. And ‘wemight think of objects
of the same type as being identical in all value-relevant respects,’ as Arrhenius and
Rabinowicz (2015, p. 232) say. The term ‘worse,’ could refer to the value of outcomes
or something being worse for an individual.

Although I focus on inferiority between bads,my points in this paper are equally rel-
evant to the analogous superiority relation between goods,9 and to the aforementioned
views that relate bads to goods along the same lines.

3 Previous sequence arguments in more detail

In general terms, sequence arguments assume a finite sequence of goods g1, . . . , gn

or bads b1, . . . , bn , where n is a positive integer. The bad b1 could, for example, be
torture, and bn could be someminor bad such as mild discomfort. Sequence arguments
typically assume transitivity and sometimes completeness of a relation such as ‘is at
least as good as.’10 The classical notion of transitivity of ‘is at least as bad as,’ which
I denote �, is that for all a, b and c, a � b and b � c together imply a � c. And a
standard, classical statement of completeness of � is that for all a and b, either a � b
or b � a.

An example of a clear sequence argument that assumes classical logic is provided
by Arrhenius and Rabinowicz (2015, p. 241).11 It is perhaps the argument in the
literature that is most similar to the sequence arguments I formulate, and it goes as
follows: If ‘is at least as bad as’ is complete and transitive, and if b1 is inferior to bn ,
then the sequence contains a bad bi that is inferior to the bad bi+1 that immediately
follows it. If the sequence is chosen such that each item is only marginally better than
the preceding item, it is implausible or counterintuitive that bi would be inferior to the
only marginally better bi+1. Since this is a consequence of the assumption that b1 is
inferior to bn , the plausibility of this assumption is undermined.

8 I draw on the formulation of weak superiority by Arrhenius and Rabinowicz (2015, p. 232).
9 I define superiority as follows: A good g is superior to another good g′ if and only if there is a number m
such that m g-objects are better than any number of g′-objects (cf. Arrhenius and Rabinowicz 2015, p. 232).
10 E.g., Norcross (1997), Arrhenius and Rabinowicz (2015) and Handfield and Rabinowicz (2018).
11 Their argument is about goods, but I rephrase it so that it is about bads because I focus on bads. Arrhenius
has confirmed in conversation that they had classical logic in mind when they formulated their argument.
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It is an open question whether it is a problem if there is inferiority or superiority
between adjacent items in a sequence.12 I set the question aside and assume that it is
desirable to avoid inferiority and superiority between adjacent items.

I follow the same basic route of granting completeness and transitivity for the sake
of argument, and I will see whether sequence arguments of this kind work if we
assume many-valued logic. Hence, our premises will mainly be many-valued versions
of completeness and transitivity.

There are other types of sequence arguments, but I set them aside. For example,
arguments without transitivity can be found in Nebel (2018) and Pummer (2018, Sect.
3), and they are quite different from the arguments I focus on. Arrhenius and Rabi-
nowicz (2015, p. 241) present a sequence argument without assuming completeness,
which has a weaker conclusion than their argument above that uses completeness.
Other examples are the sequence arguments by Handfield and Rabinowicz (2018),
which allow indeterminacy or incommensurability.

4 Approaches to sequence arguments usingmany-valued logic

There are many choices to make when working with many-valued logic and sequence
arguments. One choice is which logics to assume. There is a wide range of many-
valued logics with different sets of truth values, notions of logical consequence, and
connectives for ‘and,’ ‘or,’ ‘implies,’ etc. (e.g., Gottwald 2001). Another choice is
which premises to use in the sequence arguments. There are, for instance, several
different versions of completeness and transitivity in many-valued logic that could be
used as premises.

In this section, I outline two broad approaches to these choices, and I motivate my
strategy. Then, in Sect. 5, I describe the logics I choose to use (essentially, the most
common and simplest logics). Thereafter I turn to the versions of completeness and
transitivity to be used as premises.

It is not clear which of the following two approaches is best, and hence I will use
both approaches, one at a time. But I will emphasise the second approach more due
to some of its advantages, which I will mention shortly.

The first approach is to start with one or more specific many-valued logics, with
certain quantifiers and logical connectives. From the quantifiers and connectives in a
logic, we can get versions of transitivity and completeness. For example, in the family
L of Łukasiewicz logics I will work with, we can state transitivity of the many-valued
relation � using the quantifier ∀ (for all), the conjunction ∧ and the implication →
as ∀a∀b∀c((a � b ∧ b � c) → a � c). Then we can consider sequence arguments
with that formula as a premise. An advantage of this approach is that we start with a
systematically constructed logic, where quantifiers and connectives ideally correspond
to the natural language expressions ‘for all,’ ‘and,’ ‘or,’ ‘implies,’ etc. in a reasonable
way, and where connectives may be definable in terms of one another in a standard,
intuitive way (see, e.g., Smith 2012). Regarding this first approach, I will use L in

12 See, e.g., Carlson (2000), Binmore and Voorhoeve (2003), Rabinowicz (2003), Arrhenius (2005, p. 108),
Arrhenius and Rabinowicz (2005, p. 138, 2015, p. 238), Norcross (2009, pp. 85–88), and Klocksiem (2016).
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one technical result. Łukasiewicz logic is ‘the most intensely researched many-valued
logic,’ according to Hähnle (2001, p. 323).

The second approach is to place conditions such as transitivity and completeness
on many-valued relations such as �, without first selecting specific many-valued
logics such as those in L. For example, if we let � � denote the truth value of
a statement, a reasonable transitivity condition might be that for all a, b and c,
min(�a � b�, �b � c�) ≤ �a � c�. This is how versions of transitivity and com-
pleteness are often formulated in the literature on infinite-valued (fuzzy) preference
relations (e.g., Dasgupta and Deb 2001). We can treat such transitivity and complete-
ness conditions as meta-level restrictions, and we can reason in our metalanguage
about, for example, what follows from them. An advantage of this approach is that we
can easily work with a wider range of potentially interesting transitivity and complete-
ness conditions, regardless of whether and how they could be stated as formulas using
the connectives in specific logics such as those in L. A related advantage of this second
approach is that it lends itself well to drawing general conclusions about many-valued
logic and sequence arguments. A third advantage is that we bracket, at least at the
present stage of inquiry, the big topic of which many-valued versions of connectives,
such as conjunction, are suitable. Instead, we focus on value relations such as � and
their formal properties (e.g., the transitivity conditions that may hold for �). Since
this paper is fundamentally about questions in value theory, the properties of value
relations seem more crucial than the choice of logical connectives.

Along the lines of the second approach, I will state a few basic, common properties
of a many-valued logic, and use the symbol ‘M’ to represent the family of logics
with those properties. I then consider ten versions of transitivity and several notions
of completeness. In the end, I formulate and prove technical results about sequence
arguments for all logics in the family M.13

When using the second approach, there are questions about how to formulate, select
and assess the plausibility of the transitivity and completeness conditions that are to
be used as premises in the sequence arguments. An idea in the literature is that one can
make intuitive judgements about, for example, whether a transitivity condition is too
restrictive (e.g., Dasgupta and Deb 1996, p. 307). But perhaps this requires a clearer
statement of what it means that it is true to degree, say, 1

3 that a is worse than b,14

which is a question I leave open. So, to provide a more complete treatment that does
not hinge on picking out plausible transitivity and completeness conditions based on
an account of the degrees of truth of value statements, I allow, for the sake of argument,
that someone who wants to formulate a sequence argument is free to use a range of
transitivity and completeness conditions. And I present results about the validity of
sequence arguments for this range of options.

13 I am grateful to a reviewer for suggesting essentially this approach.
14 Thanks to a reviewer for pressing this point.
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5 Our logical framework

I use many-sorted many-valued first-order logics at the object level. At this level, we
have, for example, many-valued predicates such as �, connectives such as ∧, and
quantifiers such as ∀. I use sorted logics for convenience because we are dealing with
three sorts of things: numbers, which I have represented by m, bads such as b, and
quantities of bads such as m b-objects. At the meta level, I use classical logic and
induction. For example, I use classical logic when I use proof by contradiction, and
when I assume that it is either true to degree 1 that b is inferior to b′ or it is not true
to degree 1 that b is inferior to b′.

Our formal object-level language L is 3-sorted and contains the sorts σZ+ , σB

and σQ , which, intuitively, are about positive integers, bads, and quantities of bads,
respectively. Each sort will be associated with a domain: σZ+ , σB , and σQ will be
associated with the domains Dσ

Z+ , DσB , and DσQ , respectively (I will sometimes
simply call the domains Z+, B, and Q). We can think of Dσ

Z+ as the set {1, 2, 3, . . .},
DσB as the set of bads {b1, . . . , bn}, and DσQ as containing the element 7 b1-objects,
the element 4 b2-objects, and so on for all combinations of numbers in Dσ

Z+ and
bads in DσB . Each sort has a set of variables: VZ+ = {k, m, n, k′, m′, n′, . . .}, VB =
{b, b′, b′′, . . .} andVQ = {q, q ′, q ′′, . . .}. Similarly, the sorts have the sets of individual
constants CZ+ , CB and CQ , respectively. L includes the binary relation symbols ≺, �
and ∼ of type 〈σQ, σQ〉. The intended readings of ≺, � and ∼ are ‘is worse than,’ ‘is
at least as bad as’ and ‘is equally bad as,’ respectively. Because the relation symbols
are of type 〈σQ, σQ〉, the relations named by them will be relations between elements
of the domain DσQ ; for example (roughly speaking), 7 b1-objects ≺ 4 b2-objects. L
also contains the binary function symbol f of type 〈σQ, σZ+ , σB〉. The symbol f will
be associated with a function that, due to the type of f , takes an element of Dσ

Z+
and an element of DσB as inputs and outputs an element of DσQ . We can think of the
function named by f as simply taking a number and a bad as inputs and giving us a
quantity of a bad such as 7 b1-objects as output.

The set of truth values will be either of the following: A finite set of equidistant
rational numbers between 0 and 1, always including 0 and 1; that is,

Wp :=
{

i

p − 1
: 0 ≤ i ≤ p − 1

}

for an integer p ≥ 2, where := is definitional equality. For example, W4 ={
0, 1

3 ,
2
3 , 1

}
. Or the infinite set of all real numbers between 0 and 1, including 0

and 1; that is,

W∞ := [0, 1]

(Gottwald 2017). ‘W’ represents any ofWp or W∞.
I will use the perhaps most basic notion of models and logical consequence in

many-valued logic. A conclusion is a logical consequence of the premises if and only
if (iff) the conclusion is true to degree 1 whenever all premises are true to degree
1. We can find this notion of consequence in several important many-valued logics
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(Gottwald 2001, pp. 180, 249, 267, 291, 313, 386). As usual in first-order logic, the
truth value of a sentence depends on the interpretation of the language which involves
a structure that corresponds to the language (Conradie and Goranko 2015, ch. 4).
More exactly, in many-sorted many-valued first-order logic, a structure S (containing
domains, relations and functions) for a language J consists of the following:

– for each sort σ in J , a domain Dσ in S;
– for each constant symbol c in J of sort σ , an element cS in Dσ ;
– for each predicate symbol P in J of type 〈σ1, . . . , σn〉, a relation PS on Dσ1 ×

. . .×Dσn (i.e., amapping PS associating a truth valuewith each tuple 〈d1, . . . , dn〉
where di ∈ Dσi for i = 1, . . . , n);

– for each function symbol f inJ of type 〈σ0, . . . , σn〉, a function f S : Dσ1 × . . .×
Dσn → Dσ0

(cf. Hájek 1998, Sect. 5.5; Manzano 1993; Gottwald 2001, pp. 22, 27; Lucas 2019).15

The truth value of a sentence A in S is denoted �A�S . We say that S is a model of A
and write S � A iff �A�S = 1. For a set of sentences �, S is a model of � and we
write S � � iff �B�S = 1 for each B ∈ �. We say that A is a logical consequence of
� and write � � A iff S � � implies S � A for all S. That is, � � A iff every model
of � is a model of A. Finally, A is logically valid and we write � A iff S � A for all
S (see Gottwald 2001, §3, 249).

I am going to define the universal quantifier ∀ and the existential quantifier ∃ in the
seemingly most common way in many-valued logic (e.g., Gottwald 2001, pp. 26, 28,
250, 308; Urquhart 2001, p. 274; Malinowski 2007, pp. 49, 51; Bergmann 2008, ch.
14; Smith 2008, p. 65). In this way, ∀ and ∃ work as generalisations of the perhaps
most common versions of conjunction and disjunction (respectively) in many-valued
logic (e.g., Smith 2008, pp. 65, 67, 70).16 I define ∀ and ∃ in this standard way with
the minor modification that the variable and domain are of a sort. In the following
definitions, xσ is a variable of sort σ , and H is a well-formed formula with at most
one free variable xσ :

�∀xσ H�S := inf
{
�H [xσ /d]�S : dS ∈ Dσ

}
;

�∃xσ H�S := sup
{
�H [xσ /d]�S : dS ∈ Dσ

}
.

{
�H [xσ /d]�S : dS ∈ Dσ

}
is the set of truth values of H gotten when, for every dS

in the domain Dσ , each free occurrence of xσ in H is replaced with the constant d
that names dS . Given a set S, inf {S} is the infimum (greatest lower bound) of S. For
example, let S be a subset of R. If inf{S} exists, it is the largest r ∈ R such that for
all s ∈ S, r ≤ s. Similarly, sup{S} is the supremum (least upper bound) of S. I will

15 For the purpose of this paper, we want to avoid the complications that arise when there is an element in
a domain that is not named by any constant symbol in the language. Similarly, we want to avoid that the
symbols and the elements do not match in the sense that, for example, the constant symbol ‘b2’ names the
element b4. To avoid these complications, I hereafter assume that each element in each domain is named
by the corresponding constant symbol so that, for example, the symbol ‘b2’ names the element b2.
16 More exactly, ∀ and ∃ are generalisations of themin-conjunction∧ and themax-disjunction∨ (described
in Table 1 below).
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Table 1 Propositional connectives of Łukasiewicz logic (L)

Connective Definition Truth function

A → B �A → B� = min(1, 1 − �A� + �B�)

¬A �¬A� = 1 − �A�

A ∨ B (A → B) → B �A ∨ B� = max(�A�, �B�)

A ∧ B ¬(¬A ∨ ¬B) �A ∧ B� = min(�A�, �B�)

A � B ¬A → B �A � B� = min
(
1, �A� + �B�

)
A & B ¬(A → ¬B) �A & B� = max(0, �A� + �B� − 1)

A ↔ B (A → B) ∧ (B → A) �A ↔ B� = 1 − |�A� − �B�|

not consider other definitions of the quantifiers in this paper because that would give
us several different notions of inferiority (because inferiority contains universal and
existential quantification) and more versions of transitivity and completeness (which
contain universal quantification). We will already deal with many different logics
and ten versions of transitivity, so we will have to leave an investigation of sequence
arguments with different versions of the quantifiers for another time.

To save on notation, I will omit S and S when it is clear from the context what is
meant and, for example, write � � instead of � �S . And I will typically use the same
notation for variables, constants, and objects in the domain; for example, k, m and n
for variables of sort σZ+ , constants in CZ+ , and objects in the domain Z

+.
I use the notation ‘M’ for the family of all logics with W , �, ∀ and ∃, as defined

above. ‘Mp’ and ‘M∞’ represent such families of logics with the sets of truth values
Wp and W∞, respectively.

‘L’ denotes the family of Łukasiewicz logics I deal with. L has any of the sets of
truth values W , and the notions of �, ∀ and ∃ are as in M. So L falls within M. But L
has specific propositional connectives, while it is unspecified which connectives the
logics in M have.

Łukasiewicz logic is oftenpresented as having available twodisjunction connectives
∨ and �, and two conjunction connectives ∧ and & (Hájek 1998, pp. 65, 67; Gottwald
2001, pp. 179–181, 2017; Metcalfe et al. 2009, p. 146; Marra 2013). The connectives
of L are listed in Table 1. I omit some parentheses when writing formulas. As usual,
negation has preference over disjunction and conjunction, which have preference over
implication and biconditional. For example, I write ((¬A) ∧ B) → (C ∨ D) as
¬A ∧ B → C ∨ D. In the truth function for ↔, | | is absolute value.

Let me give a few remarks on how to understand some of the connectives in Table 1.
I start by mentioning the similarity between the Łukasiewicz implication → and
classical material implication, which we can denote →C. Essentially, each of A → B
and A →C B is true iff B is at least as true as A (see Smets and Magrez 1987). More
precisely, A → B is completely true (true to degree 1) iff B is at least as true as A;
and A →C B is true iff A is false while B is true, both A and B are false, or both A
and B are true. When A is truer than B, which in the classical case means that A is
true and B is false, A →C B is false. The situation is similar for → because when A
is completely true and B is completely false (true to degree 0), A → B is completely
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false. More generally, when A is truer than B, A → B is less than completely true but
also sensitive to how much truer A is than B in that A → B is less true the truer A is
compared to B.

The connectives →, ¬ and � are interdefinable as implication, negation and
disjunction are in classical logic (Cignoli et al. 2000, pp. 78–79). And there is a
standard duality between � and & as they are related via De Morgan laws such as
� ¬(A & B) ↔ ¬A � ¬B, which we can read as saying that ‘not both A and B’ has
the same truth value as ‘either not A or not B’ (Gottwald 2001, pp. 181,184).

The disjunction A ∨ B is true (to degree 1) if and only if at least one of A and B is
true (to degree 1), which is a property one might want at least one of the disjunction
connectives to have. And there is a duality via De Morgan laws between ∨ and ∧
(Gottwald 2001, p. 184).

There are other many-valued versions of the connectives, besides those in Table 1.
For L and other many-valued logics, there are questions about which, if any, versions
of the connectives are suitable for modelling natural language sentences containing
‘if . . ., then,’ ‘not,’ ‘or,’ or ‘and.’ And there are lists of desired properties of the
connectives.17 I will not try to make progress on these issues in this paper. I will now
merely briefly reply to a couple of objections about connectives in many-valued logic,
including those in L, in order to motivate the use of many-valued logic and L.

A common objection is that ‘A and not A’ should get truth value 0, but �A∧¬A� =
0.5 if �A� = 0.5.18 For example, let A represent the sentence ‘Ann is bald,’ and suppose
that it is half-true. If we use ∧ for ‘and’ and ¬ for ‘not,’ then ‘Ann is bald and Ann is
not bald’ becomes half-true. But one might believe that such a contradiction should be
completely false. Also, the disjunction � and the conjunction & might seem to behave
strangely in some cases. For example, let A still represent ‘Ann is bald,’ and let B
represent ‘Bob is bald.’ If �A� = �B� = 0.5, then �A � B� = 1, which may sound too
high, and �A & B� = 0, which may seem too low. In other words, when it is half-true
that Ann is bald and half-true that Bob is bald, it becomes completely true that Ann
or Bob is bald, and completely false that Ann and Bob are bald, which might seem
dubious.

I mention two replies to these objections. First, regarding A ∧ ¬A, there are other
forms of the lawof contradictionwhich one can accept even if one rejects that �A∧¬A�
is always 0 (Rescher 1969, pp. 143–148). Second, one can argue that sometimes ∧ is
a suitable formalisation of ‘and’ while in other cases & is appropriate; for example,
that ‘A and not A’ should be formalised as A & ¬A, which always has truth value 0
(Fermüller 2011, pp. 200–201). An analogous claim can be made about ∨ and � as
alternative formalisations of ‘or.’19 For example, Paoli (forthcoming) argues that clas-
sical logic is ambiguous and collapses a distinction between two types of connectives.
Classical disjunction, conjunction and implication can each be disambiguated in two
kinds of ways; for example, classical disjunction can be disambiguated as ∨ or �, and

17 For more on these matters, see Gottwald (2001, pp. 5–6, 63–106, 391) and Smith (2008, pp. 67–70.)
18 See Fermüller (2011, pp. 199–200) and Smith (2017) which contains further references.
19 Thanks to Erik Carlson for bringing up in an e-mail to the author that interpreting ‘and’ as ∧ is more
plausible in some situations while interpreting ‘and’ as & seems more appropriate when ‘A and B’ is a
contradiction. Carlson made a similar point about �.
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classical conjunction can be disambiguated as ∧ or & (a formula may contain all of
∨, �, ∧ and &).

I use classical logic and induction at the meta level for two reasons: First, it is
common to do so (Williamson 1994, p. 130; Gottwald 2001, pp. 6–7; Chakraborty
and Dutta 2010, p. 1889; Dutta and Chakraborty 2016, p. 238). Second, the object
and meta levels are about different matters. It seems reasonable that value statements
such as ‘a is worse than b’ can have more than two truth values. But classical logic
and induction may be suitable for whether a sentence has a given truth value or not,
which kinds of proofs to accept, etc. In the metalanguage, I use ‘⇒’ for implication in
classical logic, and I have classical logic in mind when I write ‘implies,’ ‘if . . ., then,’
‘iff,’ ‘for all,’ ‘there is,’ etc. Even though I assume classical logic at the meta level,
my sequence arguments are different from the classical sequence arguments in the
literature. One difference is that the classical arguments assume that value statements
such as ‘a is better than b’ does not have an intermediate truth value such as 1

2 , while
I allow such truth values.

6 Many-valued relations and completeness

In this section and the next, I deal with the premises in sequence arguments that
use many-valued logic. I try to provide a range of options to someone who would
like to present a sequence argument. Still, to focus my investigation on the sequence
arguments that seemmost interesting, I set a few options aside. So there are transitivity
and completeness conditions in the literature that I will not attempt to use as premises
in sequence arguments. In this section, I first say which value relations may be used
in our sequence arguments, and then I quickly grant a few uncontroversial premises. I
then turn to the use of completeness conditions as premises in sequence arguments. I
list several such conditions from the literature, including the most common ones, and
I assume that someone formulating a sequence argument may use all of these except
one.

I grant that someone formulating a sequence argument is free to use all of the
relations �, ≺ and ∼. One might find ≺ and ∼ conceptually clearer than �, and
therefore avoid � or define � in terms of ≺ and ∼.20 Or one might find it more
parsimonious to take� as primitive and define ≺ and∼ in terms of� (Hansson 2001,
p. 322).

It is uncontroversial that any bad thing is equally bad as itself, at least as bad as itself,
and not worse than itself. In other words,∼ and� are reflexive and≺ is irreflexive. For
a many-valued binary relation R, these properties are commonly defined as follows:21

Reflexivity := for all a, �a Ra� = 1;
Irreflexivity := for all a, �a Ra� = 0.

20 Thanks to a reviewer for bringing up this matter.
21 E.g., see Ovchinnikov and Roubens (1991, p. 319) and Moretti, Öztürk, and Tsoukiàs (2016, p. 52). For
other versions of reflexivity, see Dubois and Prade (1980, p. 73) and Dutta and Chakraborty (2015, p. 101).
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A sequence argument may contain the premises that ∼ and � are reflexive and that
≺ is irreflexive, in the senses just defined, although these premises will only have a
minor role in this paper.22

The most common definitions of completeness of the single relation � seem to be

Completeness (C�) := for all a, b, �a � b� + �b � a� ≥ 1;
Strong completeness := for all a, b,max(�a � b�, �b � a�) = 1

(Barrett and Pattanaik 1989, pp. 238–239; Llamazares 2005, p. 479; Fono and Andjiga
2007, p. 668). I will look at sequence arguments with C� as a premise, but not strong
completeness because it is too restrictive given that it rules out both a � b and b � a
having intermediate truth values between 0 and 1. To get a feel for C�, note that C�
is equivalent to the following formula in L having truth value 1: ∀a∀b(a � b �b � a).
This formula reads ‘for all a and b, a � b or b � a,’ which is simply a standard
statement of completeness of �.

Instead of dealing only with �, one can formulate notions of completeness as
connections between two or more of the relations �, ≺ and ∼. I will now list a couple
of such notions that I grant as premises in sequence arguments. The first such condition
is

F := for all a, b, �a ≺ b� = 1 − �b � a�

(e.g., Banerjee 1994; Barrett and Pattanaik 1989, pp. 238–239; Llamazares 2005,
p. 480). One can motivate F as follows: If negation has the truth function it has in L,
which is seemingly the most common truth function for negation, one can read F as
saying that a ≺ b is as true as not b � a. Or one can think of F as saying that the
truth value of a ≺ b and the truth value of b � a together exhaust the range of truth
(they sum to 1, which represents maximal truth).

F is equivalent to the following formula in L having truth value 1:

FL := ∀a∀b(a ≺ b ↔ ¬b � a).

For any relation R, ¬a Rb means ¬(a Rb).
One may want a notion of completeness for only ≺ and ∼, in which case the

following might be used (Van de Walle, De Baets, and Kerre 1998, pp. 116–117):23

Trichotomy := for all a, b, �a ≺ b� + �b ≺ a� + �a ∼ b� = 1.

As with F , one can think of trichotomy as saying that the truth values of a ≺ b, b ≺ a,
and a ∼ b together exhaust the range of truth values (since they sum to 1).

Whether reflexivity of ∼ and �, irreflexivity of ≺, C�, F , FL and trichotomy
are ultimately plausible is beyond the scope of this paper. I assume for the sake of
argument that someone who wants to formulate a sequence argument is free to use
them as premises.

22 I thank Rupert McCallum and a reviewer for suggesting that I take ∼ to be reflexive.
23 Thanks to a reviewer for suggesting the use of a trichotomy.
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Table 2 Versions of transitivity from the literature on fuzzy preference relations

T1 Probabilistic-sum transitivity If 0 < a Rb and 0 < bRc, then a Rb + bRc −
a Rb · bRc ≤ a Rc

T2 Max-transitivity If 0 < a Rb and 0 < bRc, then
max(a Rb, bRc) ≤ a Rc

T3 Weighted mean transitivity If 0 < a Rb and 0 < bRc, then there
is λ ∈ (0, 1) such that λmax(a Rb, bRc)
+(1 − λ)min(a Rb, bRc) ≤ a Rc

T4 Min-transitivity min(a Rb, bRc) ≤ a Rc

T5 Product transitivity a Rb · bRc ≤ a Rc

T6 Sensitive transitivity If 0 < a Rb and 0 < bRc, then 0 < a Rc

T7 Weak min-transitivity If bRa ≤ a Rb and cRb ≤ bRc, then
min(a Rb, bRc) ≤ a Rc

T8 Δ-transitivity a Rb + bRc − 1 ≤ a Rc

T9 Multiplicative transitivity a Rb · bRc · cRa = a Rc · cRb · bRa

T10 Additive transitivity a Rb + bRc − 1
2 = a Rc

7 Transitivity of many-valued relations

There aremany versions of transitivity ofmany-valued relations. Ten of them are listed
in Table 2 (I have shortened some of the names).24 There are more but these ten cover
a fair bit of the ground, and I have tried to include those most relevant to sequence
arguments. I consider these forms of transitivity mainly because they figure in the
literature, to which I largely defer for conceptual discussion.25 Because the focus of
this paper is on the validity of sequence arguments, it is not necessary to consider the
interpretation of or motivation for the versions of transitivity, yet I will nonetheless
make some brief remarks about these matters.

In this section, R is a many-valued binary relation, the formulations of transitivity
are for all a, b and c in the domain, and _R_ is short for �_R_�.

Observation 1 T1 ⇒ T2 ⇒ T3 ⇒ T4 ⇒ T5 ⇒ T6.

Dasgupta and Deb (2001, p. 493) mention this observation and refer to sources for
proofs.

I will, in the next section, consider the validity of sequence arguments assuming
any of T1–T8, or restricted forms of these versions of transitivity, regardless of whether
these premises are plausible or not. Still, I will now provide some background and
comment briefly on the possible rationale for and plausibility of some of the more
important versions of transitivity. The purposes of this are to make the versions of
transitivitymore understandable, to explainwhy I set a couple of transitivity conditions
(T9 and T10) aside, to explain why it is worthwhile to consider the restricted versions
of transitivity, and to ultimately suggest directions for future research.

24 T1–T8 are listed by Dasgupta and Deb (2001, p. 493); T9 and T10 are from Tanino (1984, p. 119, 1990,
p. 175) and Herrera-Viedma et al. (2004, p. 101).
25 I thank a reviewer for this suggestion.
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Min-transitivity (T4) is perhaps the most widely used form of transitivity in many-
valued logic. It is equivalent to the following formula in L having truth value 1:
∀a∀b∀c(a Rb ∧ bRc → a Rc). This equivalence holds even if the implication in
the formula is not the Łukasiewicz implication in Table 1, as long as the implication
has the degree ranking property: �A → B� = 1 iff �A� ≤ �B�. It has been men-
tioned as a property that each implication operation should have, and the Łukasiewicz
implication has it (Gottwald 2001, pp. 97,181). The property can be seen as giving a
rationale for why most of the versions of transitivity above are formulated in terms of
≤.

But T4 has been criticised, for example, by Basu (1984, p. 215), who uses a coun-
terexample, and suggests a version similar to T3 as a fix. T4 has also been criticised for
being too restrictive, and the similar but weaker T7 has been proposed instead (e.g.,
Barrett and Pattanaik 1989, pp. 239–240; Dasgupta and Deb 2001, p. 499).

T8 is equivalent to the following formula in L having truth value 1: ∀a∀b∀c(a Rb
&bRc → a Rc). That is, just like T4 but with the conjunction& instead of∧. Similarly,
we can state T5 as a formula using the conjunction and implication in product logic
(Gottwald 2001, pp. 292, 308).

The following is indicative commentary on the plausibility of the versions of tran-
sitivity. Eight of these forms of transitivity of � or ≺ seem problematic as premises in
a sequence argument in our framework (T1–T6, T9 and T10). T10 would be unsuitable
so I will not consider it more, because if a Rb + bRc > 1.5, then a Rc > 1, which is
outside of our sets of truth values. T1–T6 and T9 would seemingly be intuitively prob-
lematic premises because of the following case (cf. Barrett and Pattanaik 1985, p. 78):
There are two bads b1 and b2. Hereafter, I write m b-objects as mb; for example, 5b1
is 5 b1-objects. Let R represent � or ≺. Suppose 100b1R100b2 and 100b2R101b1 are
at least 1

4 , which could be sensible if b1 and b2 are very different and neither appears
clearly at least as bad as or worse than the other. Each of T1–T4 implies 100b1R101b1
is at least 1

4 , T5 implies it is at least 1
16 , and T6 implies it is greater than 0. As long as

100b1R100b2 > 0 and 100b2R101b1 > 0, each of T1–T6 implies 100b1R101b1 > 0.
T9 has this implication if we plausibly assume 101b1R100b1 > 0 because the left-
hand side of T9 becomes greater than 0 so all numbers on the right-hand side must be
greater than 0. These implications seem problematic. 100b1R101b1 might plausibly
be 0 (and more plausibly less than 1

4 or 1
16 ) because, since b1 is something bad, fewer

b1-objects are not worse than or equally bad as more b1-objects but less bad.
The counterexamples against versions of transitivity I have just put forth (except

the technical point against T10) involve comparisons between different amounts of the
same type of bad (e.g., 100b1R101b1). One can claim that even if all versions of tran-
sitivity in Table 2 are implausible, they are stronger than needed; that is, that sequence
arguments only need weaker forms of transitivity as premises. More precisely, one
can claim that sequence arguments only need transitivity for different types of bads
such as b1, b2 and b3, and I have not presented any counterexamples to such weaker
forms of transitivity. One could weaken the forms of transitivity as in Table 3 so that
they only hold for different types of bads (m, n and k are positive integers, and that b,
b′ and b′′ are distinct means that b �= b′, b′ �= b′′ and b �= b′′).
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Table 3 Examples of restricted versions of transitivity

T r
5 Restricted product

transitivity
If b, b′ and b′′ are distinct, then mbRnb′ · nb′ Rkb′′ ≤
mbRkb′′

T r
6 Restricted sensi-

tive transitivity
If b, b′ and b′′ are distinct, then if 0 < mbRnb′ and
0 < nb′ Rkb′′, then 0 < mbRkb′′

To save space, I do not list all ten restricted versions of transitivity, but all versions in
Table 2 could be restricted in the analogous way. For any form of transitivity, I write r

when it is restricted to distinct b, b′ and b′′ as in T r
5 and T r

6 .
The following case suggests that at least T r

1 –T r
4 seem intuitively problematic: Sup-

pose mb1Rnb2 = nb2Rkb3 = w ∈ (0, 0.5). T r
1 –T r

4 each implies mb1Rkb3 ≥ w, but
it might plausibly be lower because if mb1Rnb2 and nb2Rkb3 are equally close to
false, it could perhaps be even closer to false that mb1Rkb3.

T9 and T r
9 are equalities, but T1–T8 and T r

1 –T r
8 are not. Because T9 and T r

9 are
equalities, they postulate an exceptionally stringent relationship among the truth values
of a Rb, bRc, cRa, etc. I therefore set T9 and T r

9 aside.
Overall, the seemingly most acceptable forms of transitivity we are left with are

T r
5 , T r

6 , T7, T r
7 , T8 and T r

8 . The others seem more problematic, and a few seem so
unsuitable that I hereafter set them aside (T9, T r

9 , T10 and T r
10).

8 Sequence arguments usingmany-valued logic

In this section, I consider sequence arguments assuming T1–T8 or T r
1 –T r

8 . I find that
either of T1–T5 or T r

1 –T r
5 results in a valid sequence argument against the claim that it

is true to degree 1 that the first object b1 in the sequence is inferior to the last object bn

(Theorem 1). So does T6 or T r
6 when the number of truth values is finite (Theorem 2),

but not when it is infinite (Theorem 3). Hence, one can avoid sequence arguments if
the number of truth values is infinite and merely T6 or T r

6 is granted. Alternatively,
someone sympathetic to inferiority can reply to these valid sequence arguments by
saying that it need not be true to degree 1 that b1 is inferior to bn . It may be true to a
high degree w less than 1. This reply does not help much if either of T1–T4 or T r

1 –T r
4

is granted because then there is a bi in the sequence such that it is true to at least
degree w that bi is inferior to its successor bi+1 (Theorem 4). But one can avoid this
upshot of sequence arguments if merely T5, T r

5 , T6 or T r
6 is granted because then it

can be true to a high degree w that b1 is inferior to bn without it being the case for any
object that it is true to at least degree w that it is inferior its successor (Theorem 5).
T7,T r

7 , T8 and T r
8 generally do not result in a valid sequence argument, even if it is

true to degree 1 that b1 is inferior to bn (Theorem 6), although T7 and T r
7 may do so

when there are only three truth values. I leave an investigation of the following kind
of sequence arguments for future research (I focus on stronger sequence arguments in
this paper): if we grant one of the seemingly acceptable premises T r

5 , T7 or T r
7 , and

if it is true to a high degree w less than 1 that b1 is inferior to bn , must there be a bi
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such that it is true to a counterintuitively high degree less than w that bi is inferior to
bi+1?26

I assume the family of logics M in all of my theorems and the technical result in
Appendix H. I assume the family of Łukasiewicz logics L in one technical result (in
Appendix E). For the definitions of M and L, see Sect. 5. When I speak of reflexiv-
ity, irreflexivity, F , C�, trichotomy, T1–T8 or T r

1 –T r
8 , I assume they are meta-level

conditions on the structures (as above, a structure is denoted S). For example, if T4
is assumed, we are considering only the class of structures in which T4 holds; the
structures that satisfy T4.

Recall that L is our formal language with three sorts and symbols ≺, f , etc. as
described in Sect. 5.

I use � for the notion of ‘is inferior to’ I work with in this section. � is an
abbreviation defined as follows:

b � b′ := ∃m∀n( f (m, b) ≺ f (n, b′)).

Informally, I read b � b′ as ‘there is a positive integer m such that m b-objects are
worse than any number (in Z

+) of b′-objects.’27 I abbreviate f (m, b) as mb, so we
can write b � b′ as ∃m∀n(mb ≺ nb′). When I say ‘is inferior to’ without mentioning
a truth degree, I mean that it is true to degree 1.

The first result is that, assuming M, F and that any of the transitivity conditions
T1–T5 or T r

1 –T r
5 holds for �, we get a valid sequence argument.

Theorem 1 In M, if F holds and any of T1–T5 or T r
1 –T r

5 holds for the relation �, then
in any finite sequence of objects in which the first object is inferior to the last object,
there is an object that is inferior to its successor.

Proof in Appendix A. In other words, Theorem 1 says that, assuming M, in every
structure S for L in which F holds and any of T1–T5 or T r

1 –T r
5 holds for �, and

in which there is a finite sequence b1, . . . , bn where S � b1 � bn , there is a bi

with i ∈ {1, . . . , n − 1} such that S � bi � bi+1. Theorem 1 is phrased as it is for
readability, and the other theorems are phrased similarly for the same reason, but all
could be stated in terms of S, �, �, etc. along the lines just indicated for Theorem 1.

Theorem 1 has the problem that at least T1–T5 and T r
1 –T r

4 seem problematic, or so
I suggested in Sect. 7. But this is a matter of intuition and debatable. Regardless, T r

5
might be acceptable, so we have a valid sequence argument with potentially acceptable
premises.

The forms of transitivity considered so far (T1–T5 and T r
1 –T r

5 ) are fairly strong.
The weaker T6 and T r

6 result in a valid sequence argument when the number of truth
values is finite, but not when it is infinite, as the next two theorems show.

Theorem 2 In Mp, if F holds and T6 or T r
6 holds for the relation �, then in any finite

sequence of objects in which the first object is inferior to the last object, there is an
object that is inferior to its successor.

26 See the remark at the end of Appendix F for more information.
27 Thanks to Graham Leigh regarding the formulation of �.
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Proof in Appendix B. Theorems 3, 4 and 6 below deal only with unrestricted forms
of transitivity because if the unrestricted form holds, so does the restricted form (i.e.,
for all i ∈ {1, 2, . . . , 10}, Ti ⇒ T r

i ).

Theorem 3 InM∞ there is a structure forL that satisfies F, C�, trichotomy, reflexivity
of the relations � and ∼, irreflexivity of the relation ≺, and T6 for �, ≺ and ∼, and
which contains a finite sequence of objects in which the first object is inferior to the
last object, but in which no object is inferior to its successor.

Proof in Appendix C. Theorem 3 shows that, assuming M∞, even if we grant quite
a large number of conditions such as trichotomy and T6 for all three value relations,
we can still avoid the purportedly unappealing implications of inferiority. Note that in
Theorems 1, 2 and 4 we want to rely on few, weak premises, while in Theorems 3, 5
and 6 we want to allow many, strong conditions.

Someone sympathetic to inferiority can reply to Theorems 1 and 2 by saying that it
need not be true to degree 1 that b1 is inferior to bn . It may be true to a high degree w

less than 1. But the next theorem (Theorem 4) shows that, given F and any of T1–T4
or T r

1 –T r
4 for �, if �b1 � bn� = w ∈ [0, 1], then there is a bi in the sequence such

that �bi � bi+1� ≥ w. So the upshot of the next theorem is that if one accepts the
assumptions in it, one does not avoid sequence arguments by claiming that it is merely
true to degree w ∈ [0, 1) that the first object is inferior to the last.
Theorem 4 In M, if F holds and any of T1–T4 or T r

1 –T r
4 holds for the relation �, then

for any w ∈ [0, 1], and in any finite sequence of objects in which it is true to degree w

that the first object is inferior to the last object, there is an object such that it is true
to at least degree w that it is inferior to its successor.

Proof in Appendix D.
InAppendix E, I explain howwe could proceed and get a result similar to Theorem4

if we were to use the first approach in Sect. 4 and start with a specific family of logics
such as L.

The next theorem shows that if we grant merely T5 or T6, then, as long as there are
at least 5 truth values, we can avoid sequence arguments in the following sense: it can
be true to degree w ∈ [ 34 , 1) that the first object is inferior to the last object without
there being any object such that it is true to at least degree w that it is inferior to its
successor.

Theorem 5 InM∞ andMp≥5, there is a structure forL that satisfies F, C�, trichotomy,
reflexivity of the relations � and ∼, irreflexivity of the relation ≺, and T5 and T6 for �,
≺ and ∼, and which contains a finite sequence of objects in which it is true to degree
w ∈ [ 34 , 1) that the first object is inferior to the last object, but in which there is no
object such that it is true to at least degree w that it is inferior to its successor.

Proof in Appendix F. The theorem says ‘[ 34 , 1)’ because when the set of truth values
is W5, 3

4 is the greatest truth value less than 1. When the number of truth values is
greater, we can let w be a greater number in [ 34 , 1).

The next and final theorem shows that T7 and T8 are generally not enough to get a
sequence argument (so neither are T r

7 and T r
8 ), even if it is true to degree 1 that the
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first object is inferior to the last. The theorem deals with T7 and T8 at the same time
for brevity and because one might try to use several transitivity conditions as premises
in one argument.

Theorem 6 InM∞ andMp≥4 there is a structure forL that satisfies F, C�, trichotomy,
reflexivity of the relations � and ∼, irreflexivity of the relation ≺, and T7 and T8 for
�, ≺ and ∼, and which contains a finite sequence of objects in which the first object
is inferior to the last object, but in which no object is inferior to its successor.

Proof in Appendix G. Theorem 6 is about when there are more than three truth values,
which I find more interesting than the case of only three truth values, but one can tell
from the proof that an almost identical structure satisfies T8 in M3. We can thereby
get a result like Theorem 6 in M3 about only T8 instead of both T7 and T8. I leave it
unanswered whether, assuming M3, T7 or T r

7 results in a valid sequence argument.
One may respond to Theorems 3, 5 and 6 , which show that one can avoid certain

sequence arguments, by saying that�,≺ and∼ have some counterintuitive properties
in those simple structures. A reason why one might find them counterintuitive is that
the truth values of the value statements are independent of the number of each type
of bad in most cases. One may want to see a more reasonable way of making value
comparisons that avoids sequence arguments. That is a fair point. The structures in
Theorems 3, 5 and 6 are very simple and merely meant to be sufficient for logical
purposes. In Appendix H, I present a more complex example structure with more
reasonable value comparisons. In the end, one might very well want a different and
perhaps even more complex way of making value comparisons. My aims with this
example structure are merely to point out a direction towards making reasonable value
comparisons which avoid at least some type of sequence argument and to illustrate
how one can confirm that such a way of making value comparisons does not violate
some reasonable conditions (I use reflexivity of ∼ and �, irreflexivity of ≺, F , C�
and T8 for � as examples of such conditions).

In this example structure, it is true to degree 0.7 that the first bad is inferior to the
last, but there is no bad such that it is true to at least degree 0.7 that it is inferior to its
successor. I assumeM∞, andmy structure contains the three bads b1, b2 and b3. �b1 �
b3� = 0.7, but �b1 � b2� = �b2 � b3� = 0.5. The truth degrees of value comparisons
depend on the quantities of the bads, which is one respect in which this structure is
more intuitive than those in the proofs of Theorems 3 and 6 . Value comparisons in
terms of ≺ have the following truth values: If m ≥ n, �mb1 ≺ nb3� = 1; that is, a
given number of b1-objects are definitely worse than fewer or the same number of
b3-objects. If m < n, then for any fixed m, �mb1 ≺ nb3� decreases and approaches a
limit, whichwe can callw, as n increases. This resembles existing ideas of diminishing
marginal value (e.g., Carlson 2000; Binmore and Voorhoeve 2003; Rabinowicz 2003),
but, importantly, the intuition is not that additional b3-objects contribute less and less
disvalue to the whole. Rather, the intuition is that for a given number m of b1-objects,
it is true to some degree w that m b1-objects are worse than any number of b3-objects.
And while it should become less true that m b1-objects are worse than n b3-objects
as n increases, it should always be true to at least degree w. For a higher fixed m,
the limit, which we can call w′, is higher (i.e., w < w′). The intuition is that for a
higher m, it is truer that m is a sufficient number of b1-objects for this collection of
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b1-objects to be worse than any number of b3-objects. As m and then n approach
infinity, �mb1 ≺ nb3� approaches 0.7; that is, �b1 � b3� = 0.7. Value comparisons
of b1-objects to b2-objects and of b2-objects to b3-objects work analogously, except
that the truth value 0.5 instead of 0.7 is approached.

9 Concluding remarks

My findings are partly good news and partly bad news for inferiority and similar views
such as those in Sects. 1 and 2. My findings are bad news in that we get valid sequence
arguments if we grant a form of completeness and any of several strong forms of
transitivity (T1–T4 or T r

1 –T r
4 ). The weaker forms of transitivity T5 and T r

5 result in
valid sequence arguments when it is true to degree 1 that the first object b1 in the
sequence is inferior to the last object bn , and so do the even weaker T6 and T r

6 when
it is true to degree 1 that b1 is inferior to bn and the number of truth values is finite.

However, my findings are good news in that one can readily formulate arguments
suggesting that all of the just mentioned forms of transitivity, except T r

5 and T r
6 , are

intuitively problematic. And even if T5, T r
5 , T6 and T r

6 are granted as premises, one can,
at least to some extent, avoid the purportedly unappealing implications of inferiority
by holding that it is merely true to some high degree less than 1 that b1 is inferior to bn .
Or if merely T6 and T r

6 are granted as premises, one can avoid sequence arguments by
holding that there are infinitely many truth values. The seemingly acceptable forms of
transitivityT7,T r

7 ,T8 andT r
8 are generally not enough to get a valid sequence argument.

If there are only three truth values, T7 and T r
7 may result in a valid sequence argument,

but I would prefer to use more than three truth values. The path to a convincing
sequence argument in our logical framework looks narrow.

We get themost convincing sequence argumentswhenwe use themoderately strong
forms of transitivity as premises. In particular, themost promising path to a convincing
sequence argument seems to be to use T r

5 as a premise; perhaps T7 or T r
7 could also be

used. To make a sequence argument in our framework convincing, a reasonable step
would be to argue extensively for the plausibility of using T r

5 (or perhaps T7 or T r
7 )

as a premise.28 Another reasonable step is to investigate, more thoroughly than I have
done, what constraints T r

5 , T7 and T r
7 put on the truth values of inferiority relationships

in sequences, including in long sequences, which could result in the following forms
of sequence arguments, which are weaker than the ones I have considered: If it is true
to degree, say, 0.95 that b1 is inferior to bn , even if there need not be any bi in the
sequence such that is true to at least degree 0.95 that bi is inferior to bi+1, perhaps
there must be a bi such that the truth value of that bi is inferior to bi+1 must be
counterintuitively high.29 Such forms of sequence arguments are yet to be explored.

Acknowledgements I am grateful for comments on earlier versions by Roger Crisp, Kaj Börge Hansen,
Francesco Paoli, Nils Sylvan andAlex Voorhoeve. I thank the ALOPHIS group at the University of Cagliari,
the LSE Choice Group, the PhD seminar in practical philosophy at StockholmUniversity, and Theron Pum-

28 E.g., an objection to the use of T r
5 or T r

7 could be that it is ad hoc to restrict transitivity conditions so
that they only hold for different types of bads. Thanks to Magnus Vinding for mentioning this.
29 See the first paragraph of Sect. 8 and the remark at the end of Appendix F.

123



10812 Synthese (2021) 199:10793–10825

mer for helpful discussion. My supervisors Gustaf Arrhenius and Krister Bykvist have kindly contributed
in many ways. The following people have been exceptionally helpful: Erik Carlson, Valentin Goranko,
Laurenz Hudetz, Graham Leigh, Rupert McCallum, Karl Nygren, Daniel Ramöller and Magnus Vinding.
Two anonymous reviewers gave very useful comments, and one of them was unusually generous and gave
many detailed, skilled comments. I am grateful for thoughts on an ancestor to this paper from Campbell
Brown, Jens Johansson, AnnaMahtani andWlodek Rabinowicz. Thanks to Gunnar Björnsson andMozaffar
Qizilbash for answering questions related to my research.

Funding Open access funding provided by Stockholm University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proof of Theorem 1

We can establish Theorem 1 using the following lemma and induction (cf. Arrhenius
and Rabinowicz 2015, p. 241):

Lemma 1 In M, if F holds and any of T1–T5 or T r
1 –T r

5 holds for the relation �, then
for any distinct objects b, b′ and b′′, if b is inferior to b′′, then b is inferior to b′ or b′
is inferior to b′′.

Proof Suppose b, b′ and b′′ are distinct. Let w1 := �b � b′� and w2 := �b′ � b′′�.
Suppose �b � b′′� = 1 but w1, w2 ∈ [0, 1). Pick ε ∈ (0, 1) such that w1 + ε < 1 and
w2 + ε < 1. Let y := w1 + ε and z := w2 + ε. Pick m such that �∀k(mb ≺ kb′′)� >

y + z − y · z. There is such an m because y + z − y · z < 1 and, by the assumption
�b � b′′� = 1 and the definitions of � and ∃, sup {

�∀k(mb ≺ kb′′)� : m ∈ Z
+} = 1.

To see that y + z − y · z < 1, note that 1 − (y + z − y · z) = (1 − y)(1 − z) > 0, so
y + z − y · z must be less than 1. By the definition of ∀, for all k,

(1) �mb ≺ kb′′� > y + z − y · z.

Pick n such that

(2) �mb ≺ nb′� < y.

There is such an n because �b � b′� = w1 < y and, by the definitions of �, ∃ and
∀, for all m there is an n such that �mb ≺ nb′� < y. Analogously, pick k such that

(3) �nb′ ≺ kb′′� < z.

By (1), (2), (3) and F ,

w3 := �kb′′ � nb′� = 1 − �nb′ ≺ kb′′� > 1 − z;
w4 := �nb′ � mb� = 1 − �mb ≺ nb′� > 1 − y;
w5 := �kb′′ � mb� = 1 − �mb ≺ kb′′� < 1 − (y + z − y · z).
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w3 ·w4 > (1− z)(1− y) = 1− (y + z − y · z) > w5, which contradicts T5 and T r
5 for

�, which imply w3 · w4 ≤ w5. By Observation 1, T1–T4 and T r
1 –T r

4 are contradicted
too. Assuming classical logic at the meta level, we have a proof by contradiction of
Lemma 1. ��
We use Lemma 1 in the following induction on the length of the sequence to establish
Theorem 1: Base step: The sequence contains two objects. If the first object is inferior
to the last object, the first object is inferior to its successor. Induction hypothesis:
When the length of the sequence is n objects (n ≥ 2), if the first object is inferior
to the last object, there is an object in the sequence that is inferior to its successor.
Induction step: The length is n + 1 objects. Suppose the first object is inferior to the
last object (object n + 1). If object n is inferior to object n + 1, an object is inferior
to its successor. If object n is not inferior to object n + 1, then, by Lemma 1, the first
object is inferior to object n. By the induction hypothesis, there is an object in the
sequence that is inferior to its successor.

B Proof of Theorem 2

We can establish the theorem by a lemma and induction. The induction is the same as
in Appendix A except that Lemma 2 is used so I omit the induction.

Lemma 2 In Mp, if F holds and T6 or T r
6 holds for the relation �, then for any distinct

objects b, b′ and b′′, if b is inferior to b′′, then b is inferior to b′ or b′ is inferior to b′′.

Proof Suppose b, b′ and b′′ are distinct and �b � b′′� = 1. �b � b′′� = 1 iff
sup{�∀k(mb ≺ kb′′)� : m ∈ Z

+} = 1 so because there are finitely many truth values,
there is an m such that �∀k(mb ≺ kb′′)� = 1 and, by the definition of ∀, such that
�mb ≺ kb′′� = 1 for all k. By F ,

(1) there is an m such that �kb′′ � mb� = 0 for all k.

Case 1. �b′ � b′′� < 1. Thus, for all n, there is a k such that �nb′ ≺ kb′′� < 1 and,
by F , such that �kb′′ � nb′� > 0. So, by (1), there is an m such that for any choice of
n, there is a k such that �kb′′ � nb′� > 0 and �kb′′ � mb� = 0. By T6 or T r

6 for �,
�nb′ � mb� = 0 and, by F , �mb ≺ nb′� = 1. So there is an m such that for any n,
�mb ≺ nb′� = 1; that is, �b � b′� = 1.

Case 2. �b � b′� < 1. Hence, for all m, there is an n such that �mb ≺ nb′� < 1
and, by F, such that �nb′ � mb� > 0. So, by (1), there is an m and an n such that
�nb′ � mb� > 0 and �kb′′ � mb� = 0 for all k. By T6 or T r

6 for �, �kb′′ � nb′� = 0
for all k; hence, by F , �nb′ ≺ kb′′� = 1 for all k. So �b′ � b′′� = 1. ��

C Proof of Theorem 3

Let S contain the domains Z+ = {1, 2, 3, . . .}, B = {b1, b2, b3} and Q = Z
+ × B,

and the function f : Z+ × B → Q, which is simply a bijection that maps each ordered
pair 〈m, b〉 in Z

+ × B to the same ordered pair 〈m, b〉 in Q. For all m, n ∈ Z
+ and

b ∈ B, let
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�mb1 ≺ nb3� = w;
�mb1 ∼ nb3� = �nb3 ∼ mb1� = �nb3 � mb1� = 1 − w;
�mb1 � nb3� = �mb1 � nb2� = �mb2 � nb3� = 1;
�nb3 ≺ mb1� = �nb2 ≺ mb1� = �nb3 ≺ mb2� = 0;
�mb1 ≺ nb2� = �mb2 ≺ nb3� = w′;
�nb2 � mb1� = �nb3 � mb2� = 1 − w′;
�mb1 ∼ nb2� = �nb2 ∼ mb1� = �mb2 ∼ nb3� = �nb3 ∼ mb2� = 1 − w′;
�mb ≺ nb� = 0;
�mb � nb� = �mb ∼ nb� = 1;

where w = 1 − 1
2m and w′ = 1

2 . For example, �mb1 ∼ nb3� = 1
2m .

That was the description of S. In S, b1 is inferior to b3 (i.e., S � b1 � b3) because
sup{�∀n(mb1 ≺ nb3)� : m ∈ Z

+} = 1. It is easy to confirm the following: there are
no other inferiority relationships, ≺ is irreflexive, � and ∼ are reflexive, and F , C�,
trichotomy, and T6 for �, ≺ and ∼ hold in S. Confirming T6 is the most complicated
task so let us do that here. To violate T6 for a relation R, we need the consequent
�a Rc� of T6 to not be greater than 0. In S, � and ∼ always map to truth values greater
than 0, so T6 holds for � and ∼. To violate T6 for ≺, both parts of the antecedent of T6
need to be greater than 0. We only get that with �mb1 ≺ nb2� and �nb2 ≺ kb3�, where
m, n, k ∈ Z

+, in the antecedent, in which case we get �mb1 ≺ kb3� in the consequent,
which is greater than 0, so T6 holds for ≺.

D Proof of Theorem 4

The Proof of Theorem 4 is similar to the Proof of Theorem 1 in Appendix A. We start
with the following lemma:

Lemma 3 In M, if F holds and any of T1–T4 or T r
1 –T r

4 holds for the relation �, then
for any w ∈ [0, 1] and any distinct objects b, b′ and b′′, if it is true to degree w that
b is inferior to b′′, then it is either true to at least degree w that b is inferior to b′ or
true to at least degree w that b′ is inferior to b′′.

Proof TheProof of Lemma3 is very similar to the Proof of Lemma1 inAppendixA, so
I mainly note the differences. Suppose �b � b′′� = w ∈ (0, 1] and w1, w2 ∈ [0, w).
Pick ε ∈ (0, 1) such that w1 + ε < w and w2 + ε < w. Let y := w1 + ε and
z := w2 + ε. Pick m such that �∀k(mb ≺ kb′′)� > max(y, z).30 (2) and (3) are the
same as in Appendix A, but (1) is different:

(1) �mb ≺ kb′′� > max(y, z).

30 I am grateful to a reviewer for pointing out how one can prove Theorem 4 similarly to how Theorem 1
was proved by, among other things, using max(y, z) instead of y + z − y · z.
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As in Appendix A, we get the following, where the only difference from Appendix A
is that here we have w5 < 1 − max(y, z):

w3 := �kb′′ � nb′� = 1 − �nb′ ≺ kb′′� > 1 − z;
w4 := �nb′ � mb� = 1 − �mb ≺ nb′� > 1 − y;
w5 := �kb′′ � mb� = 1 − �mb ≺ kb′′� < 1 − max(y, z).

Note that min(w3, w4) > min(1− z, 1− y) = 1−max(y, z) > w5, which contradicts
T4 and T r

4 for�, which implymin(w3, w4) ≤ w5. ByObservation 1, T1–T3 and T r
1 –T r

3
are also contradicted. ��
We can then establish Theorem 4 by the following induction on the length of the
sequence, which is similar to the induction in Appendix A:31 Base step: The sequence
contains two objects. If it is true to degreew that the first object is inferior to the second,
it is true to degree w that the first is inferior to its successor. Induction hypothesis:
When the length of the sequence is n objects, if it is true to degree w that the first
object is inferior to the last object, there is an object in the sequence such that it is
true to at least degree w that it is inferior to its successor. Induction step: The length is
n + 1 objects. Suppose it is true to degree w that the first object is inferior to the last
object (object n + 1). If it is true to at least degree w that object n is inferior to object
n + 1, then there is an object such that it is true to at least degree w that it is inferior
to its successor. If it is not true to at least degree w that object n is inferior to object
n + 1, then, by Lemma 3, it is true to at least degree w that the first object is inferior
to object n. By the induction hypothesis, there is an object in the sequence such that
it is true to at least degree w that it is inferior to its successor.

E Using the first approach and starting from Łukasiewicz logic (L)

The purpose of this appendix is to illustrate a use of the first approach in Sect. 4 by
starting from L and its connectives. We do not need the content of this appendix for
the main results of this paper because we already have Theorem 4, which is a more
general result than what we get in this appendix.

Suppose that instead of starting our investigation of sequence arguments with
premises such as F and the versions of transitivity in Tables 2 and 3, we start with
notions of completeness and transitivity formulated using the connectives of L (see
Table 1), for example, the following (from Sects. 6 to 7):

FL := ∀q∀q ′(q ≺ q ′ ↔ ¬q ′ � q);
T L
4 := ∀q∀q ′∀q ′′(q � q ′ ∧ q ′ � q ′′ → q � q ′′).

We wonder what ramifications such premises have for inferiority among bads in
a sequence. To keep with the spirit of building from the connectives of L, we could
formulate

31 Thanks to Valentin Goranko for suggesting that one can do induction on the length of the sequence.
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I := ∀b∀b′∀b′′(b � b′′ → b � b′ ∨ b′ � b′′),

and then a lemma in L:

Lemma 4 FL, T L
4 � I .

The following is an outline of a Proof of Lemma 4: Suppose (1)�FL� = 1; (2)
�T L

4 � = 1; (3) �I � < 1. By the definition of ∀ and the semantics of the connectives, (1)
is equivalent to F , (2) is equivalent to T4, and (3) iff there are b, b′ and b′′ such that
�b � b′′� > max(�b � b′�, �b′ � b′′�). Let w := �b � b′′�, w1 := �b � b′� and
w2 := �b′ � b′′�, and then reason as in the Proof of Lemma 3 to get a contradiction.
Assuming classical logic at the meta level, we have a proof by contradiction of that
�FL� = 1 and �T L

4 � = 1 imply �I � = 1.
Because Lemma 4 is very similar to Lemma 3, we could use induction as in

Appendix D to get a result similar to Theorem 4, but with L instead of M and with T L
4

instead of T1–T4 and T r
1 –T r

4 . That is, we could conclude: In L, if FL and T L
4 hold (true

to degree 1), then for any w ∈ [0, 1], and in any finite sequence of objects in which it
is true to degree w that the first object is inferior to the last object, there is an object
such that it is true to at least degree w that it is inferior to its successor.

F Proof of Theorem 5

We need to show that for each of the infinite number of logics in the families M∞
and Mp≥5, there is at least one structure with the properties listed in Theorem 5. We
do that by letting each structure be the same as in Appendix C, except that here our
definitions of w and w′ are different from the definitions of w and w′ in Appendix C.
When the number p of truth values is finite and at least five (i.e.,Wp≥5), let w be the
greatest truth value less than 1, and let w′ be the greatest truth value less than w. For
example, when the set of truth values isW5 = {

0, 1
4 ,

2
4 ,

3
4 , 1

}
, w = 3

4 and w′ = 2
4 . In

other words, for Wp≥5, let

w = p − 2

p − 1
;

w′ = p − 3

p − 1
.

When the set of truth values is W∞, we can, for simplicity, let w = 9
10 and w′ = 8

10
just as forW11.

For Wp≥5, we have w ∈ [ 34 , 1) and w′ < w, which is all we need to use in most
of the proof (except when we confirm T5 and T6 for � and ∼). As in Appendix C, the
only non-trivial part of the proof is to confirm transitivity, so I omit the other parts of
the proof.

By confirming T5, we also confirm T6 because, by Observation 1, T5 ⇒ T6. T5
holds for≺ for essentially the same reason as T6 holds for≺ in Appendix C: to violate
T5, both of the factors on the left-hand side of T5 would need to be greater than 0, but
then we would get w′ · w′ ≤ w, which holds because w′ < w and w,w′ ∈ [0, 1].
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It remains to confirm T5 for � and ∼. I use the notation that R represents � and ∼,
m, n, k ∈ Z

+ and b, b′ ∈ B.
Case 1. �_bR_b� is the form of at least one of the factors in T5 or the right-hand

side of T5.

Subcase 1a. �mbRnb� · �nbRkb′� ≤ �mbRkb′�.
Subcase 1b. �mb′ Rnb� · �nbRkb� ≤ �mb′ Rkb�.
Subcase 1c. �mbRnb′� · �nb′ Rkb� ≤ �mbRkb�.

T5 holds in subcases 1a and 1b because for all w1, w2 ∈ [0, 1], w1 · w2 ≤ w2 and
w1 · w2 ≤ w1. T5 holds in subcase 1c because �mbRkb� = 1.

Case 2. �_bR_b� is not the form of any of the factors in T5 or the right-hand side
of T5. To violate T5, the right-hand side of T5 must be less than 1.

Subcase 2a. The right-hand side of T5 is 1 − w′. To violate T5, the left-hand side
of T5 would need to be greater than 1− w′, so both of the factors on the left-hand
side of T5 would need to be greater than 1 − w′; that is, both would need to be
1. But, except for �_bR_b�, only �mb1 � nb3�, �mb1 � nb2� and �mb2 � nb3�
equal 1, and the only combination of them that could be on the left-hand side of
T5 is �mb1 � nb2� · �nb2 � kb3�. But then we get �mb1 � kb3� = 1 on the
right-hand side of T5, so T5 holds.
Subcase 2b. The right-hand side of T5 is 1 − w.

The rest of the proof is about subcase 2b. There are three ways in which the right-hand
side of T5 can be 1 − w:

�mb1 ∼ nb2� · �nb2 ∼ kb3� ≤ �mb1 ∼ kb3�;
�mb3 ∼ nb2� · �nb2 ∼ kb1� ≤ �mb3 ∼ kb1�;
�mb3 � nb2� · �nb2 � kb1� ≤ �mb3 � kb1�.

We confirm that all three inequalities hold in our structures by noting that each of them
is equivalent to

(1 − w′)(1 − w′) ≤ 1 − w.

We replace w′ and w by our definitions of them to get

(
1 − p − 3

p − 1

) (
1 − p − 3

p − 1

)
≤ 1 − p − 2

p − 1
,

which simplifies to 5 ≤ p, which holds in our structures. That completes the proof.

Remark 1 How much lower than �b1 � b3� can �b1 � b2� and �b2 � b3� be?
Because of F , the key constraint is that for any m, n, k ∈ Z

+ and b, b′, b′′ ∈ B, we
need (1 − �nb′ ≺ kb′′�)(1 − �mb ≺ nb′�) ≤ 1 − �mb ≺ kb′′� to satisfy T5 for �.
For example, in our structure in M101 in which �b1 � b3� = w = 0.99, we need
w′ ≥ 0.9, and hence �b1 � b2� ≥ 0.9 and �b2 � b3� ≥ 0.9. In this example, it might
be a problem for inferiority that there is an object such that it is true to at least the
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perhaps counterintuitively high degree 0.9 that it is inferior to its successor. But the
structures in this appendix are simple and they have an unrealistically short sequence
containing only the three bads b1, b2 and b3, so this might not be a problemwith longer
sequences and more complex structures. As I essentially mentioned in the beginning
of Sect. 8, I leave the following related, interesting question for future research: given
different values of �b1 � bn� (e.g., 0.95), how low can the maximum value among
all �bi � bi+1� for i ∈ {1, . . . , n − 1} (and all �bi � bi−1� for i ∈ {2, . . . , n}) in a
finite sequence be, if the sequence might be long (e.g., b1, . . . , b20), the value relations
have intuitive properties (e.g., �mb4 ≺ nb12� varies intuitively as m and n vary; see
Appendix H), and we grant T r

5 (or T7 or T r
7 ) for the relations �, ≺ and ∼ as well as

the other premises that I have granted such as F and reflexivity of ∼? The greater this
maximum truth value must be, the stronger the sequence argument is.

G Proof of Theorem 6

Let the new structures have the same domains and function as in Appendix C, and let
R represent ≺ and �. For all m, n ∈ Z

+ and b, b′ ∈ B let

�mb1Rnb3� = 1;
�nb3Rmb1� = 0;
�mb1Rnb2� = �mb2Rnb3� = w;
�nb2Rmb1� = �nb3Rmb2� = 1 − w;

�mb ≺ nb� =
{
1 if m > n,

0 if m ≤ n;

�mb � nb� =
{
1 if m ≥ n,

0 if m < n;

�mb ∼ nb′� =
{
1 if m = n and b = b′,
0 otherwise;

where w ∈ (0.5, 1).
The only non-trivial task is to confirm that the transitivity conditions hold, so I omit

the rest of the proof.
T7 and T8 for ∼ hold because of the following: To violate T7 or T8 for ∼, we need

the form 〈mb ∼ nb′, nb′ ∼ kb′′, mb ∼ kb′′〉, where m, n, k ∈ Z
+; b, b′, b′′ ∈ B;

�mb ∼ nb′� > 0; and �nb′ ∼ kb′′� > 0. We only get this when m = n, b = b′, n = k
and b′ = b′′. But then T7 and T8 for ∼ hold because min(1, 1) ≤ 1 and 1+ 1− 1 ≤ 1.

T7 and T8 for R hold when the form _bR_b is on the left-hand side of the inequality
in the transitivity condition because to then get the form 〈a Rb, bRc, a Rc〉, we need
(i) 〈_bR_b, _bR_b′, _bR_b′〉 or (ii) 〈_b′ R_b, _bR_b, _b′ R_b〉. In either case, T7 and
T8 for R hold because of the following: If b �= b′, then the truth value that R maps
to is independent of m and n, and for any w1, w2 ∈ [0, 1], min(w1, w2) ≤ w2
and w1 + w2 − 1 ≤ w2. If b = b′, there is no difference between (i) and (ii); we
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get 〈mbRnb, nbRkb, mbRkb〉. To violate T7 or T8 for R, we need �mbRnb� > 0,
�nbRkb� > 0, and �mbRkb� < 1. So, to violate T7 or T8 for ≺, we need m > n,
n > k and m ≤ k, which is a contradiction. To violate T7 or T8 for �, we need m ≥ n,
n ≥ k and m < k, which is also a contradiction.

It remains to confirm T7 and T8 for R when nothing on the left-hand side
of T7 or T8 has the form _bR_b. In this case, to violate T7, both arguments of
the min function in T7 need to be at least w for the antecedent (bRa ≤ a Rb
and cRb ≤ bRc) of T7 to hold. The only combination of arguments which are
at least w with the form 〈a Rb, bRc〉 is 〈mb1Rnb2, nb2Rkb3〉. But then we get
min(�mb1Rnb2�, �nb2Rkb3�) ≤ �mb1Rkb3� = 1, which holds, so T7 for R is con-
firmed.

To violate T8, the left-hand side of the inequality in T8 must be greater than 0.
There are three such cases in which the terms on the left-hand side have the form
〈a Rb, bRc〉. In these cases, T8 implies the following for any m, n, k ∈ Z

+:

�mb1Rkb3� + �kb3Rnb2� − 1 ≤ �mb1Rnb2�, i.e., 1 + 1 − w − 1 ≤ w;
�nb2Rmb1� + �mb1Rkb3� − 1 ≤ �nb2Rkb3�, i.e., 1 − w + 1 − 1 ≤ w;
�mb1Rnb2� + �nb2Rkb3� − 1 ≤ �mb1Rkb3�, i.e., w + w − 1 ≤ 1.

These inequalities hold so T8 for R is confirmed. That concludes the proof.

Remark 2 T8 holds in a structure that is exactly like those described so far in this
appendix except that w = 1

2 . In that case, we would only use the three truth values in
W3 = {

0, 1
2 , 1

}
, so we would get a result like Theorem 6 in M3 about only T8.

H Amore intuitive structure

I assume M∞ and present a structure S in which it is true to degree 0.7 that the first
object is inferior to the last object, but in which there is no object such that it is true
to at least degree 0.7 that it is inferior to its successor. It is easy to confirm that ∼ and
� are reflexive, ≺ is irreflexive, and F and C� hold in S, so I omit those exercises.
I confirm the inferiority relationships and present a partial demonstration of that T8
holds for �.

S has the same domains and function as in Appendix C. Let R represent ≺ and �.
For all m, n ∈ Z

+, let
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�nb2Rmb1� = �nb3Rmb2� =
{
0 if m ≥ n,

0.5
(
1 + 1

m+1

) √
n−m√

n
if m < n;

�mb1Rnb2� = 1 − �nb2Rmb1�;
�mb2Rnb3� = 1 − �nb3Rmb2�;

�nb3Rmb1� =
{
0 if m ≥ n,

0.3
(
1 + 1

m+1

) √
n−m√

n
if m < n;

�mb1Rnb3� = 1 − �nb3Rmb1�;

and for b, b′ ∈ B, define �mb ≺ nb�, �mb � nb� and �mb ∼ nb′� as in Appendix G.
The following are explanatory comments on the two most important parts of the

structure, namely
(
1 + 1

m+1

)
and

√
n−m√

n
:Without

(
1 + 1

m+1

)
it would be equally true

that 1 b1-object is worse than any number of b3-objects as that 1 billion b1-objects are
worse than any number of b3-objects, which one might find counterintuitive. The part(
1 + 1

m+1

)
ensures that as the number m increases, it becomes truer that m b1-objects

are worse than any number of b3-objects, which seems intuitive. It also ensures that as
m approaches infinity, the truth value of that m b1-objects are worse than any number
of b3-objects approaches a limit (the limit is set by the number 0.3; the limit becomes

1−0.3). The part
√

n−m√
n

makes it so that for any given m, �mb1 ≺ nb3� decreases and

approaches a limit as n increases. Whether to use
√

n−m√
n

or the simpler n−m
n seems to

be inessential and simply a matter of what looks intuitive. All of this also applies to
comparisons of b1 to b2 and of b2 to b3, except that 0.5 is used instead of 0.3.

It is true to degree 0.7 that b1 is inferior to b3, but there is no object such that it is
true to at least degree 0.7 that it is inferior to an adjacent object in the sequence:

�b1 � b3� = lim
m→∞ lim

n→∞

(
1 − 0.3

(
1 + 1

m + 1

) √
n − m√

n

)
= 0.7;

�b1 � b2� = �b2 � b3� = lim
m→∞ lim

n→∞

(
1 − 0.5

(
1 + 1

m + 1

) √
n − m√

n

)
= 0.5;

�b3 � b1� = �b3 � b2� = �b2 � b1� = 0.

To confirm T8 for�, we need to confirm that for allm, n, k ∈ Z
+ and b, b′, b′′ ∈ B,

�mb � nb′� + �nb′ � kb′′� − 1 ≤ �mb � kb′′�. (H1)

There are many cases such as when b = b′ �= b′′ and m = k < n. I find that H1 holds
in all cases so that T8 of � holds in S. But it is a lengthy exercise to go through all
cases so I only confirm the six most difficult cases here:

Case 1 �mb1 � nb2� + �nb2 � kb3� − 1 ≤ �mb1 � kb3�, when m < n < k;
Case 2 �mb3 � nb1� + �nb1 � kb2� − 1 ≤ �mb3 � kb2�, when n < k < m;
Case 3 �mb2 � nb3� + �nb3 � kb1� − 1 ≤ �mb2 � kb1�, when k < m < n;
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Case 4 �mb1 � nb3� + �nb3 � kb2� − 1 ≤ �mb1 � kb2�, when m < k < n;
Case 5 �mb2 � nb1� + �nb1 � kb3� − 1 ≤ �mb2 � kb3�, when n < m < k;
Case 6 �mb3 � nb2� + �nb2 � kb1� − 1 ≤ �mb3 � kb1�, when k < n < m.

We can deal with cases 1, 2 and 3 at the same time because they are equivalent. For
example, case 1 becomes

0 ≤ 0.5

(
1 + 1

m + 1

) √
n − m√

n
+ 0.5

(
1 + 1

n + 1

) √
k − n√

k
− 0.3

(
1 + 1

m + 1

) √
k − m√

k
,

(H2)

where m < n < k. And case 2 becomes

0 ≤ 0.5

(
1 + 1

k + 1

) √
m − k√

m
− 0.3

(
1 + 1

n + 1

) √
m − n√

m
+ 0.5

(
1 + 1

n + 1

) √
k − n√

k
,

(H3)

where n < k < m. To notice that the two cases are equivalent, inH2 and itsm < n < k,
rename m to n, n to k, and k to m to get H3 and its n < k < m. The way to get from
case 2 to case 3 and from case 3 to case 1 is analogous. So we can confirm T8 of �
for cases 1, 2 and 3 by confirming it for case 2, which I will do by checking that H3
holds for all m, n, k ∈ Z

+ such that n < k < m.32

To minimise the right-hand side of H3 for any constant k ≥ 2, m should be as small
as possible and n should be as large as possible; that is, m = k +1 and n = k −1. The
reason is that when 1 ≤ n < k < m, and n, k and m are real numbers, the first-order
partial derivatives of the right-hand side of H3 with respect to m and n are positive
and negative, respectively.

The partial derivative of the right-hand side of H3 with respect to m is

0.25k(k + 2)

m
√

m(k + 1)
√

m − k
− 0.15n(n + 2)

m
√

m(n + 1)
√

m − n
. (H4)

To check that H4 is positive when 1 ≤ n < k < m, confirm the following inequality
for such n, k and m:

0.25k(k + 2)

m
√

m(k + 1)
√

m − k
>

0.15n(n + 2)

m
√

m(n + 1)
√

m − n
. (H5)

On both sides of H5, multiply by m
√

m, k + 1 and n + 1, and divide by 0.15 to get

5
3k(k + 2)(n + 1)√

m − k
>

n(n + 2)(k + 1)√
m − n

. (H6)

When 1 ≤ n < k < m, the following holds: The denominator on the left-hand side
of H6 is less than the denominator on the right-hand side, and after expanding the

32 Thanks to Magnus Vinding for explaining how one can check H3 and several of the other inequalities
below.
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products in the numerators, one can see that the numerator on the left-hand side is
greater than the numerator on the right-hand side. H5 is confirmed, so the partial
derivative of the right-hand side of H3 with respect to m is positive when 1 ≤ n <

k < m.
The partial derivative of the right-hand side of H3 with respect to n is

0.15
(
n2 + n + 2

) + 0.3m√
m

√
m − n(1 + n)2

− 0.25
(
n2 + n + 2

) + 0.5k√
k
√

k − n(1 + n)2
. (H7)

To confirm that H7 is less than 0 when 1 ≤ n < k < m, note that for such n, k and m,

0.15
(
n2 + n + 2

)
√

m
√

m − n(1 + n)2
<

0.25
(
n2 + n + 2

)
√

k
√

k − n(1 + n)2
(H8)

because 0.15 < 0.25 and k < m, and then confirm

0.3m√
m

√
m − n(1 + n)2

<
0.5k√

k
√

k − n(1 + n)2
, (H9)

which we can do by simplifying and rearranging H9 to

m√
m

√
m − n

<
5

3

k√
k
√

k − n
;

m (k − n) <

(
5

3

)2

k (m − n) ;
16

9
kn + kn <

16

9
km + mn.

This holds when 1 ≤ n < k < m because 16
9 kn < 16

9 km and kn < mn. So the
partial derivative of the right-hand side of H3 with respect to n is negative when
1 ≤ n < k < m.

In H3, replace m by k + 1 and n by k − 1 to get

0 ≤ 0.5

(
1 + 1

k + 1

)
1√

k + 1
− 0.3

(
1 + 1

k

) √
2√

k + 1
+ 0.5

(
1 + 1

k

)
1√
k
,

(H10)

where k ≥ 2. H10 holds for all k ≥ 2 because 0.3
√
2√

k+1
< 0.5√

k
for all k ≥ 2. Thus, H3

holds for all m, n, k ∈ Z
+ such that n < k < m. T8 for � for cases 1, 2 and 3 is

confirmed.
Cases 4, 5 and 6 can be treated all at once for the same reason as cases 1, 2 and

3. I will confirm T8 for � for cases 4, 5 and 6 by confirming the following inequality
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based on case 5:

0 ≤ 1 − 0.5

(
1 + 1

m + 1

) √
k − m√

k

− 0.5

(
1 + 1

n + 1

) √
m − n√

m
+ 0.3

(
1 + 1

n + 1

) √
k − n√

k
, (H11)

where n, k, m ∈ Z
+ and n < m < k. The partial derivative of the right-hand side

of H11 with respect to k is negative when n, m and k are real numbers, and 1 ≤ n <

m < k. So k should be as large as possible to minimise the right-hand side of H11.
The limit of the right-hand side of H11 as k goes to infinity is the right-hand side of

0 ≤ 1 − 0.5

(
1 + 1

m + 1

)
− 0.5

(
1 + 1

n + 1

) √
m − n√

m
+ 0.3

(
1 + 1

n + 1

)
.

(H12)

H12 holds for all n, m ∈ Z
+ such that n < m, as one can see by expanding the brackets

in H12 and simplifying. So T8 of � is confirmed for case 5 and thus also for cases 4
and 6.
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