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Abstract
Epistemic states of uncertainty play important roles in ethical and political theorizing.
Theories that appeal to a “veil of ignorance,” for example, analyze fairness or impar-
tiality in termsof certain states of ignorance. It is important, then, to scrutinize proposed
conceptions of ignorance and explore promising alternatives in such contexts. Here, I
study Lerner’s probabilistic egalitarian theorem in the setting of imprecise probabili-
ties. Lerner’s theorem assumes that a social planner tasked with distributing income
to individuals in a population is “completely ignorant” about which utility functions
belong to which individuals. Lerner models this ignorance with a certain uniform
probability distribution, and shows that, under certain further assumptions, income
should be equally distributed. Much of the criticism of the relevance of Lerner’s result
centers on the representation of ignorance involved. Imprecise probabilities provide
a general framework for reasoning about various forms of uncertainty including, in
particular, ignorance. To what extent can Lerner’s conclusion be maintained in this
setting?

Keywords Distributive justice · Egalitarianism · Imprecise probabilities · Lerner’s
theorem · Uncertainty · Utilitarianism · Veil of ignorance

1 Introduction

The veil of ignorance is an important theoretical construction for moral and political
philosophy. For Rawls, just arrangements of social institutions and general principles
that govern them are those that members of a society would choose under a hypothet-
ical state of ignorance about the citizens’ individual social and economic standing,
their abilities, etc. (1971). The idea is that such ignorance insulates choice from bias
and unfair tailoring of policies to special interests. Similarly, in making his case for
utilitarianism, Harsanyi assumes that an agent choosing between social systems with-
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out knowing his or her position in them is making a moral value judgment. On the
question of the just distribution of income, he writes, “a value judgment on the dis-
tribution of income would show the required impersonality to the highest degree if
the person who made this judgment had to choose a particular income distribution in
complete ignorance of what his own relative position (and the position of those near to
his heart) would be within the system chosen” (1953, pp. 434–435, emphasis mine).
“This,” Harsanyi reflects later, “is my own version of the concept of the ‘original
position”’ (1975, p. 598).

Prior to either Harsanyi’s or Rawls’s invocation of some sort of original position,
Abba Lerner appealed to something of a conceptual forerunner of the veil of ignorance
in the setting of an interesting theoremconcerning distributive justice (1946).1 Suppose
that there is a fixed sum of money to be distributed to individuals in a population.
Importantly, Lerner stipulates, the distribution must be chosen under ignorance as
to who has which utility function. Given Lerner’s particular formulation of ignorance
and assumptions about individual and social welfare, the equal distributionmaximizes
expected social welfare. If the goal is tomaximize expected social welfare, then Lerner
provides an argument for an egalitarian distribution of income.

Ignorance in the intended setting, according to Lerner, amounts to it being equally
likely, for any two people in the population, that one person possesses a given utility
function as that the other possesses it. Ignorance, in other words, is represented as
all matchings of utility functions to individuals being equally probable. Harsanyi
conceives of ignorance along similar lines. Continuing the passage quoted earlier,
Harsanyi claims that an agent would choose an income distribution “in complete
ignorance” of his own relative position in society “if he had exactly the same chance
of obtaining the first position (corresponding to the highest income) or the second or the
third, etc., up to the last position (corresponding to the lowest income) available within
that scheme” (1953, p. 435, emphasis mine). This way of thinking about ignorance
has been regarded with a good deal of skepticism in general—being in essence an
application of the principle of indifference—and, as McManus et al. note, in the
context of Lerner’s theorem in particular: “Of particular interest in the past has been
Lerner’s assumption of complete ignorance about which individual has which utility
function, and his jump from that assumption to the hypothesis that each possible
matching is equally likely” (1972, p. 494). About the relevant probabilities, Graaff,
for example, writes, “There is no justification for assuming them equal. From absolute
ignorance we can derive nothing but absolute ignorance” (1967, p. 100 fn). Similarly,
Little, remarking on Lerner’s theorem, claims, “From complete ignorance nothing but
complete ignorance can follow” (2002, p. 59).

How should we model ignorance in Lerner’s intended setting? Here, I consider
Lerner’s theorem in the setting of imprecise probabilities (IP). By the lights of many,
IP allows for a more general and compelling representation of uncertainty and of
“complete ignorance” in particular than standard probability models do (e.g., Keynes
1921; Good 1952; Levi 1974; Walley 1991; Kaplan 1996; Joyce 2011; Hájek and
Smithson 2012; Weatherson 2015; Stewart and Ojea Quintana 2018; Hill 2019). So it

1 Paul Samuelson recasts Lerner’s theorem as an argument appealing more explicitly to a sort of veil of
ignorance (1964, pp. 175–176). There are, of course, antecedent uses of related ideas. For some of this
historical background, see, for example, (Freeman 2019, § 1).
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is interesting and natural, it would seem, to consider arguments that appeal to some
version of the veil of ignorance or related ideas—as in Lerner’s theorem—in this
more general setting. This allows us to perform a robustness check of sorts. Lerner’s
particular representation of ignorance, the equi-probability assumption, constitutes a
sticking point in the appreciation of his theorem, as we have just seen. To what extent
does his conclusion depend on this assumption? Some robustness analysis has been
performed, with theorems that establish the equal distribution of income as optimal
according to themaximin rule for decisions under ignorance (Theorem 2). But this rule
is extremely conservative, moves decidedly away from the maximization of expected
utility, and is susceptible to certain intuitive counterexamples (e.g., Luce and Raiffa
1957, pp. 279–280).

After rehearsing the basics of the framework and stating a general version of
Lerner’s theorem due to Sen in Sect. 2, I introduce and motivate IP as a framework for
representing and reasoning about uncertainty in Sects. 3 and 4. The primary conceptual
move is to employ IP theory tomodel ignorance in the context of ethical arguments that
exploit ignorance, e.g., veil of ignorance arguments or, in the case at hand, Lerner’s
theorem.2 A crucial issue here is that there are several candidate decision criteria for
IP, each of which can claim to generalize expected utility maximization. As a result,
the admissibility of the egalitarian distribution is a more subtle issue than in the stan-
dard setting. In the IP setting, we find that, from the assumption of total ignorance,
we do not automatically arrive at egalitarianism, partially vindicating those skeptical
of Lerner’s “jump” from complete ignorance to equal probability. It depends, in part,
on the IP generalization of expected utility that we adopt. But, pace Little and Graaff,
it is not true that we arrive at nothing from total ignorance. Even for the most extreme
form of ignorance in the IP setting, what we arrive at depends, again, on the decision
rule that we adopt. The admissibility of the equal distribution is fairly robust for IP
decision rules under complete ignorance (Observation 1).Moreover, certain properties
of social welfare that admit some ethical motivation entail the unique admissibility
of the equal distribution under complete ignorance for some decision criteria (Obser-
vation 2). On the other hand, certain intuitively very unjust distributions are likewise
admissible for some of the decision rules considered (Example 1). To the extent one
finds the relevant IP decision theory compelling, this calls into question the inference
from a distribution’s choiceworthiness under ignorance to its status as fair or just.

2 For related uses of IP theory, see (e.g., Levi 1977; Gajdos and Kandil 2008). Debates about appropriate
epistemic states (e.g., Buchak 2017; Stefánsson 2019) and decision-theoretic principles (e.g., Kurtulmuş
2012;Liang2017;Gustafsson 2018) behind the veil remain active. Stefánsson (2019), for example, considers
ambiguity averse preferences behind the veil, and finds such preferences support a form of egalitarianism.
Liang (2017), to take another example, employs cumulative prospect theory and finds an optimal form
of inequality. In contrast, the present paper considers a range of (purportedly normative) IP choice rules,
focuses on Lerner’s theorem rather than Rawls’s theory, makes no central appeal to objective probabilities,
and seems to reach relatively more equivocal conclusions about the extent to which a form of egalitarianism
is or is not vindicated.
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2 (Sen’s version of) Lerner’s theorem

In presenting Lerner’s theorem, I follow Sen’s more general version (1973). Sen’s
version of the theorem generalizes away from the assumption that social welfare is
additive or even separable, which already responds to certain objections to Lerner’s
original formulation (Friedman 1947). We assume that there is a group N of individ-
uals, i = 1, . . . , n. We also assume that there is a collection of n utility functions,
U 1, . . . ,Un .3 It is unknown—and this is the crucial point—which utility function is
associated with which individual. Let y be any income vector (y1, . . . , yn), with yi
denoting the income of individual i . Let z be a vector of equal incomes, zi = z j
for all i, j ∈ N . A function of n arguments is called symmetric if the value of the
function is constant under permutations of the arguments. For real vectors, we say
y = (y1, . . . , yn) ≥ y′ = (y′

1, . . . , y
′
n) if yi ≥ y′

i for all i ∈ N . A function f is
increasing if y ≥ y′ implies f (y) ≥ f (y′). A function f : S → R defined on a con-
vex subset of a real vector space is called concave if for all x, y ∈ S and all λ ∈ [0, 1],
f (λx + (1−λ)y) ≥ λ f (x)+ (1−λ) f (y). Standardly, concavity of individual utility
is taken to reflect the rate at which the marginal utility of income decreases and, in
the context of decisions under uncertainty, risk aversion. Concavity of a social welfare
function, on the other hand, reflects a form of inequality aversion. The assumptions
for Sen’s generalization of Lerner’s theorem are as follows.

(A.1) (Total Income Fixity). There is a fixed sum y∗ to be distributed:
∑n

i=1 yi = y∗.
(A.2) (Concavity of the Group Welfare Function). Social welfare W , an increasing

and symmetric function of individual utilities, is concave.
(A.3) (Concavity of Individual Welfare Functions). Individual welfare functions are

concave.
(A.4) (Equi-probability). For each j , p j

i = p j
m , for all i,m ∈ N .

Here, p j
i is the probability that agent i has utility function U j . One way to think

about assumption A.4 is that a social planner tasked with deciding the distribution of
income uses the uniform probability distribution over the possible matchings of utility
functions to individuals.

For any income distribution y, let ỹ be a permutation of y such that ỹ j is the
income of the individual with the j th utility function. There are n! ways of assign-
ing n utility functions to n individuals. For each such assignment k, there is a
particular permutation vector ỹ(k) reflecting a particular assignment of utility func-
tions to individuals (or, maybe more carefully, a matching of incomes with utility
functions). So for any income vector y, the n! possible social welfare values are
given by F(ỹ(k)), k = 1, . . . , n!, where F is the reduced or compound function
F(ỹ(k)1, . . . , ỹ(k)n) = W (U 1(ỹ(k)1), . . . ,Un(ỹ(k)n)) for all y and all k (exploiting
the symmetry of W to order profiles by the utility function index). A social planner
facing the income distribution problem would know, for any given assignment k, that
ỹ j is the income going to the person with utility function U j , but not know which
individual in the population possesses that utility function. In general, the expectation

3 Sen notes that the proofs to follow can be extended to cover larger, finite collections of utility functions.
Following Sen, I will use “utility” and “welfare” interchangeably for individuals.
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Table 1 A problem with
maximin

s1 s2 s3 . . . s100

o1 10−7 1060 1060 . . . 1060

o2 10−6 10−6 10−6 . . . 10−6

of social welfare is

Ep(y) =
n!∑

k=1

F(ỹ(k))p(k) (1)

for some probability p. Under assumption A.4, expected social welfare is given by

E(y) = 1

n!
n!∑

k=1

F(ỹ(k)). (2)

We can now state (Sen’s version of) Lerner’s theorem.

Theorem 1 Given (A.1), (A.2), (A.3), and (A.4), expected social welfare is maximized
by z, the equal distribution of income.

As mentioned above, many find A.4 to be unmotivated as a representation of igno-
rance about who has which utility function. One attempt to respond to these concerns
is to eschew equating ignorance with any probabilistic judgment whatsoever and to
appeal to some decision theoretic alternative to expected utility theory. In particular,
versions of a theorem to the effect that the equal distribution is a maximin strategy
have been proved, demonstrating that Lerner’s conclusion is not as dependent on A.4
as it might initially appear (Sen 1969; McManus et al. 1972; Sen 1973). The maximin
policy is to maximize the minimum possible level of social welfare, where the pos-
sibilities are the assignments of utility functions to individuals. Dispensing with A.4,
Sen makes two further assumptions (1973, Theorem 2).4

(A5) (Shared Set of Welfare Functions). For any individual i and any utility function
j , it is possible that i has j .

(A6) (Bounded IndividualUtilityFunctions). Each functionU j is bounded frombelow.

Theorem 2 Given (A.1), (A.2), (A.3), (A.5), and (A.6), the equal distribution z is the
maximin strategy for social welfare.

As McManus et al. put it, “the worrisome hypothesis of equal probability is not nec-
essary for Lerner’s conclusion” (1972, p. 494).

However, maximin is itself of questionable normative status. For example, that o2
and not o1 is the maximin solution in the decision problem in Table 1 gives some
pause about the general appeal of the rule for decisions under uncertainty (Cf. Luce
and Raiffa 1957, pp. 279–280). Option o1’s payoff from state 2 on can be increased
arbitrarily and option o2’s payoff can be decreased to any positive number (provided

4 As Sen observes, assumption A.6 is stronger than he needs. The same is true for the generalizations below.
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o1’s payoff in s1 is still lower) without altering maximin’s verdict. Notice, however,
that the force of this objection depends heavily on measurability assumptions about
utilities. Still, with no probabilistic assessments of the states whatsoever, it is, at the
very least, extremely difficult to evaluate such choices.

3 Complete ignorance

The theory of imprecise probabilities has at its disposal the representation of a form
of ignorance more severe than any that admits representation when it is assumed that
probability judgments are numerically precise. There are a number of IP frameworks,
but I will work with arbitrary sets of probability functions. In this framework, an
agent’s credal state is represented by a set P of probability functions rather than a single
probability function. In his review of Walley’s treatise on IP, Wasserman takes note
of this “nice feature”: “A nice feature about [IP] is that there exists a transformation-
invariant expression of ignorance, a holy grail in Bayesian statistics. To represent
ignorance, we use the set P of all probabilities” (1993, p. 701).5 Many advocates of
IP have found the set of all probabilities to be an eminently natural representation
of complete ignorance. Isaac Levi, for example, calls such a state “probabilistically
ignorant in the extreme sense” (1977). Since no probability distribution is ruled out,
P = P reflects no information about the relevant possibilities.

The primary concern about this proposal for representing ignorance has to do with
what is sometimes called belief inertia (Levi 1980; Vallinder 2018; Bradley 2019).
After his flattering remarks,Wasserman continues, “It is tempting to conclude that this
solves the problem of finding an objective prior for Bayesian inference. But a vacuous
prior gives a vacuous posterior, no matter how much data we obtain. So we cannot
represent ignorance after all, at least not in standard statistical problems [...] What a
shame that we cannot drink from the grail” (1993, p. 701). But belief inertia isn’t the
slightest problem for using this representation of ignorance to carry out an exercise
of making hypothetical choices behind the veil of ignorance.6 There is no concern to
learn or update our “initial” ignorance in this context.

LetP j
i be the set of probabilities assigned to individual i having utilityU

j . I propose
to consider replacing Lerner’s equi-probability assumption A.4 with the following
assumption.

(A.7) For each j , P j
i = [0, 1] for all i ∈ N .

One way to think about assumption A.7 is that a social planner responsible for the
choice of income distribution uses the same set of probability distributions over the

5 The relevant notion of transformation invariance amounts to the possibility of reparameterizing or
redescribing the space of possibilities without thereby having to alter the probabilities assigned to events,
an issue with which so-called objectivist methods struggle.
6 Levi thinks that his concept of confirmational commitment can help to cope with the problem of belief
inertia (1980, §13.2, §13.3). A confirmational commitment is a function from states of full belief or evidence
to sets of probabilities and can be rationally revised under some circumstances, including in the case of
ignorance. Such a theory of the revision of confirmational commitments would entail that being in a state
of complete ignorance at one point does not preclude an agent from making more informative probability
judgments in the future.
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possible utility functions—the set of all distributions—for each individual. A.7 imme-
diately implies that P j

i = P
j
m for all i,m ∈ N , in analogy to the equi-probability

assumption A.4. A.7 also implies A.5 since, for any utility function j and individual
i , P j

i includes positive values (even 1) for the possibility that j belongs to i , which
is not the case when it is not possible that i has j . On the one hand, A.7 is a very
weak assumption, too weak, one might think, to derive something like Lerner’s egal-
itarian conclusion from. On the other hand, A.7 would seem to be far less open to the
objections leveled against the equi-probability assumption, A.4, as a representation of
ignorance. However, Observations 1 and 2 below show that, together with the other
assumptions discussed, interesting content remains.

We have assumed a fixed, finite set of utility functions—in fact, of the same car-
dinality as the population (but see footnote 3). But there could be greater uncertainty
about the appropriate set of possible utility functions. A larger set of possible indi-
vidual utility functions would imply a larger set of possible assignments of utility
functions to individuals. So, we could be confronted with a state of what Levi calls
“modal ignorance” that is more severe than we have assumed (1977). (A smaller set of
possible assignments of utility functions to individuals is also possible—if the social
planner knows that one particular utility function belongs to a particular individual, for
example—and would be a less severe state of modal ignorance than we are assuming.)
In such a state of greater modal ignorance, we could still face probabilistic ignorance
regarding the relative likelihoods of the various assignments. While I will not pursue
this issue here, extending Lerner’s theorem to significantly greater states of modal
ignorance may provide for an even more severe and convincing robustness check on
Lerner’s egalitarian argument.7

4 Choice under IP

Part of the debate between Harsanyi and Rawls concerns, not only the form of igno-
rance faced, but the appropriate decision rule to use behind the veil of ignorance.Where
Harsanyi advocates the maximization of expected utility, making certain assumptions
of equi-probability, Rawls advocates a non-probabilistic rule, maximin, and denies the
legitimacy of informative probabilistic judgments about social standing.8 The mere
introduction of IP forms of ignorance—which are in a sense probabilistic without
necessarily being as precise as those Rawls objects to—does not settle the issue of
the appropriate decision criterion with which to pair such representations, even if we
retain a general commitment to the spirit of expected utility.

There are a number of candidates considered in the literature, each with a claim to
generalize expected utility maximization. Since this is a matter of some controversy,
and the subsequent analysis depends on it, let’s briefly review the primary proposals.
Let Y be a given set of options (for simplicity, I suppress reference to a state space

7 Cf. Thistle (2007, fn. 9) on this topic. Thistle demonstrates how Lerner’s theorem can be generalized in
various other ways.
8 The maximin principle Ralws favors differs from the one that is the subject of Theorem 2. Rawls’s rule
seeks to maximize the lot of the least well off individual in society. Put another way, social welfare, which
we aim to maximize, is identified with the status of the worst off individual.
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here). One of the more restrictive IP decision rules embodies some of the pessimism
of maximin (e.g., Gilboa and Schmeidler 1989). �-maximin restricts choice to the set

{

x ∈ Y : inf
p∈P EUp(x) ≥ inf

p∈P EUp(y) for all y ∈ Y

}

,

where EUp(x) is the p-expected U -utility of x . (In the context of Lerner’s theorem,
we drop the social welfare functionW from our notation and write Ep(x) as in Eq. 1.)
Another of the more restrictive IP decision rules is optimistic where �-maximin is
pessimistic. The �-maximax options of Y are given by the set

{

x ∈ Y : sup
p∈P

EUp(x) ≥ sup
p∈P

EUp(y) for all y ∈ Y

}

.

E-admissibility, a more liberal rule, was proposed by Isaac Levi (1974). E-admissible
options maximize expected utility relative to some p ∈ P. That is, the E-admissible
options are those in the set

{
x ∈ Y : ∃p ∈ P ∀y ∈ Y EUp(x) ≥ EUp(y)

}
.

More liberal still,Maximality (Walley 1991) enjoins us to choose options undominated
in expectation, restricting choice to the set

{
x ∈ Y : ∀y ∈ Y ∃p ∈ P EUp(x) ≥ EUp(y)

}
.

Interval Dominance appeals to aweaker notion of avoiding dominated options. Admis-
sible options according to this rule are those in the set

{

x ∈ Y : sup
p∈P

EUp(x) ≥ inf
p∈P EUp(y) for all y ∈ Y

}

.

�-maximin, �-maximax, E-admissibility, Maximality, and Interval Dominance all
generalize expected utility maximization. When P = {p}, all rules amount to max-
imizing expected utility with respect to p. For other discussions of this rule set, see
for example (Troffaes 2007; Chandler 2014; Huntley et al. 2014). Troffaes establishes
that these decision rules stand in certain logical relations to each other generally, as
depicted in Fig. 1 (2007, Theorem 1). An arrow represents the fact that admissibility
according to one rule implies admissibility according to the rule the arrow points to.

Since E-admissibility is a rather permissive decision rule—Maximality and Inter-
val Dominance evenmore so—some have considered lexicographic choice procedures
that would narrow the class of admissible options further. One candidate often consid-
ered in this context is E-admissibility+�-maximin (abbreviated E+� in Fig. 1) (Levi
1986; Seidenfeld et al. 2012). This rule first restricts choice to E-admissible options,
and then applies �-maximin to the set of E-admissible options as a tie-breaking pro-
cedure. What are the logical relations between this rule and those considered above?
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Fig. 1 Relations among IP Decision Rules

While the admissibility of an option according to E-admissibility+�-maximin clearly
implies its E-admissibility, it is not true that it implies the option’s admissibility
according to �-maximin (e.g., Seidenfeld 2004, Example 1). The following example
demonstrates, among other things, that admissibility according to �-maximax does
not imply admissibility according to E-admissibility + �-maximin.

Example 1 Let N = {1, 2} and y∗ = $100. LetU 1(x) = x andU 2(x) = √
x . Both of

these utility functions are concave (on their domains). Define W (u1, u2) = u1 + u2,
where u j is the utility of the person with the j th utility function. ThatW is increasing,
symmetric, and concave is easily verified. For each j , let P j

i = [0, 1] for all i ∈ N .
Consider the distribution y = (99.75, 0.25). For some p ∈ P, Ep(y) ≈ 10.24, and
for another p′ ∈ P, Ep′(y) = 100.25. For the equal distribution z, Ep(z) ≈ 57.07 for
all p ∈ P. �
Two comments on Example 1 are in order. First, distribution y guarantees that z is
not a �-maximax option nor uniquely E-admissible.9 The point about �-maximax
suffices to establish the last claim of Observation 1 below. The point about the E-
admissibility of y motivates the search for suitable assumptions that allow us to be
more discriminating. Some such assumptions figure intoObservation 2 below. Second,
as mentioned just above, while y is a�-maximax option, it is not admissible according
to E-admissibility + �-maximin since z will eliminate it at the second (�-maximin)
stage. This helps us to further locate E-admissibility + �-maximin with respect to its
logical relations to the other decision criteria.

We can now state our first observation.

Observation 1 Given (A.1), (A.2), (A.3), (A.6), and (A.7), the equal distribution z is
admissible according to

1. �-maximin
2. E-admissibility
3. E-admissibility + �-maximin
4. Maximality
5. Interval Dominance.

However, z is not generally a �-maximax distribution.

Condition A.2 assumes that social welfare is concave. This is unnecessarily strong
for some of the subclaims of Observation 1. For the claim about �-maximin, for

9 Even more skewed allocations are optimal for other sets of utility functions. For U1 and U2′
defined by

U2′
(x) = x/2, for example, it is optimal to allocate everything to the individual with U1.
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instance, it suffices to assume that social welfare is quasi-concave.10 But I would
like to consider strengthening concavity or quasi-concavity to their strict versions for
two reasons. First, such a strengthening has been thought to have important ethical
ramifications for social welfare precisely because of its egalitarian nature. So it is
already of theoretical interest here. Second, one might regard Observation 1 as less
than a fully persuasive rational case for equal distribution. That z is admissible does not
at all require its ultimate selection.Many other, decidedly non-egalitarian distributions
may likewise be admissible. This is precisely the case in Example 1, where both the
equal distribution and the lopsided (99.75, 0.25) distribution are E-admissible. As a
result, the ethical upshot of Observation 1 is at most that z is permissible, not that
it is ethically mandatory. As we will see, the strengthening has further interesting
consequences in this respect.

Let’s begin with the ethical motivation for strict concavity/quasi-concavity. The
following famous example is due to Diamond (1967), and was originally intended as
a criticism of Harsanyi’s utilitarianism.

Example 2 Let N = {1, 2} and suppose that we have to allocate a single unit of
an indivisible good. Consider the following two policies. The first policy allocates
the good to individual 1 for sure. The second policy is to randomize between the
allocations (1, 0) and (0, 1), eachwith equal probability of being selected. Suppose that
Ui (1) = 1,Ui (0) = 0. If the interests of individuals 1 and 2 are given equal weight,
then society will be indifferent between the two policies if the group welfare function
is linear in individual utilities.11 In defense of social indifference, one might say that
under either policy, a distribution results allocating the good to just one individual. In
criticism of social indifference, one might say that the second policy gives individual
2 a “fair shake” while the first policy does not (1967, p. 766). The crucial distinction
here is about concern for outcomes alone versus concern for procedure. �

On the basis of the sort of fairness consideration displayed by the second reaction to
Diamond’s example—which might be viewed as a concern for equality of opportu-
nity in one sense—Epstein and Segal construct a theory of social choice that relaxes
expected utility at the social level and imposes a strict preference for randomization
in scenarios like the one in Example 2 (1992). Their social preferences are strictly
quasi-concave. (In particular, their theory entails that the .50 − .50 randomization
is preferred to randomizing with any other probabilities in Example 2.)12 We must

10 A function f : S → R defined on a convex subset of a real vector space is called quasi-concave if for
all x, y ∈ S and all λ ∈ [0, 1], f (λx + (1 − λ)y) ≥ min{ f (x), f (y)}. And f is strictly quasi-concave if
for all x �= y and λ ∈ (0, 1), f (λx + (1 − λ)y) > min{ f (x), f (y)}.
11 Let δi , i = 1, 2 be the (degenerate) lotteries allocating the good to 1 and 2, respectively, with certainty.
VonNeumann andMorgenstern’s independence axiom implies that δ1 = λδ1+(1−λ)δ1 ∼ λδ2+(1−λ)δ1
for λ ∈ [0, 1], since δ1 ∼ δ2.
12 As Sen points out in his debate with Harsanyi, to take Example 2 as motivation for violating indepen-
dence in every case is hasty (1977, pp. 297–298). At most, it motivates thinking that independence should
sometimes be violated, not that it should always be. Imposing strict concavity on social welfare, then,
requires further justification. I won’t pursue that issue here. I introduce the strict versions for the sake of the
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note again that the force of Example 2 depends on both measurability and (strong)
comparability assumptions about utilities.

In our setting, concavity and quasi-concavity reflect a social aversion to inequality
in the distribution of utilities. Their strict versions reflect a stronger form of such
aversion and rule out more options as inadmissible for social choice, as the following
observation attests. However, most of the IP rules under consideration fail to secure
the unique admissibility of the equal distribution in general—that is, for many sets of
utility functions about which a social planner could be uncertain, z will not be uniquely
admissible according to most of the rules under consideration.

Observation 2 Given (A.1), (A.3), (A.6), (A.7) and modifying (A.2) so that social
welfare is strictly quasi-concave (resp. strictly concave), the equal distribution z is
uniquely admissible according to �-maximin (resp. E-admissibility + �-maximin).
However, z generally fails to be uniquely admissible according to �-maximax, E-
admissibility, Maximality, and Interval Dominance.

We see clearly here how, in general, the case for Lerner’s egalitarianism depends
delicately on the IP generalization of expected utility that we adopt. One strategy, not
pursued here, is to find ways to discriminate among the various IP decision criteria in
terms of normative attractiveness. Seidenfeld (2004) and Troffaes (2007), for example,
both discuss this possibility, eachfinding an advantage for E-admissibility. Levi (1980)
defends the E-admissibility of an option as a necessary condition for its rational
selection, but thinks further tie-breaking criteria like a lexicographic application of
�-maximin as in the rule E-admissibility + �-maximin are matters of individual
discretion.

5 Discussion

Many ethical and political theories make crucial appeals to epistemic states of uncer-
tainty and ignorance. Appropriate representation of such states, then, is an important
issue in these contexts. This essay is a case study in applying the theory of impre-
cise probabilities in the general area of veil-of-ignorance-type arguments. Taking
for granted the philosophical premise of the relevance of ignorance for evaluating
issues impartially or fairly, we can perform a conceptual robustness check on Lerner’s
argument for the egalitarian income distribution by considering other, more plausible
representations of “complete ignorance.” There are two broad types of reactions one
might have to the foregoing analysis.

First, onemight take the present study as good news for egalitarianism. Observation
1 shows that Lerner’s conclusion regarding the optimality of the egalitarian income
distribution is, in a particular sense, robust to variation between certain important rep-
resentations of ignorance. We need not assume “the worrisome hypothesis of equal
probability” to reach the admissibility of the equal distribution of income, but nei-
ther need we move to totally non-probabilistic decision rules and representations of

Footnote 12 continued
argument: some people have advocated them and they allow us to establish Lerner’s conclusion for certain
decision rules.
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ignorance either as Theorem 2 does. Even the extremely weak A.7 suffices for the
admissibility of the equal distribution for most rules. However, for some IP choice
rules, admissibility is quite a weak notion. In general, it is much weaker than optimal-
ity according to a weak order, for example. It is worth noting, as Observation 2 does,
that the unique admissibility of the equal distribution can be secured without moving
away from the assumption of complete ignorance. This conclusion now depends both
on ethical assumptions about social welfare and on the IP decision rule that we adopt.
But perhaps the ethical assumptions and decision rules that secure uniqueness can be
motivated.13

Second, one might take the present study as bad news for Lerner’s argument. While
Observation 1 shows that the equal distribution is admissible, it is not uniquely admis-
sible in general. In Example 1, for instance, severely skewed income distributions are
also admissible according to several of the generalizations of expected utility under
consideration, and for other sets of utility functions, completely skewed distributions
will be admissible. Pre-theoretic fairness-based considerations to reject a completely
skewed income distribution may militate against an analysis of fairness in terms of
admissibility under ignorance. That is, such observations may well incline some to
reject the general decision-making under IP-ignorance approach to evaluating issues
of distributive justice—or even the more general philosophical premise mentioned at
the beginning of this section that gives ignorance a distinguished role in evaluating
issues of impartiality and fairness. And while Observation 2 demonstrates that the
unique admissibility of the equal distribution can be secured under certain assump-
tions about social welfare for certain IP decision rules, for most of the rules under
consideration, the equal distribution is not uniquely admissible even relative to the
stronger egalitarian assumptions about social welfare made in the observation. The
vindication of Lerner’s argument, on such views, awaits vindication of some set of
assumptions that imply that the equal distribution is uniquely admissible.

This second sort of reaction, in objecting to the admissibility of completely and
severely skewed distributions, makes appeal to a mild procedure-independent notion
of fairness. By contrast, pure procedural justice makes no such appeal, defining any
distribution resulting from a fair procedure as just—like any holdings resulting from a
fair gamble. Still other notions of procedural justice do appeal to independent standards
of fairness (e.g., Rawls 1971, §14). If the IP statement of Lerner’s problem is the more
appropriate or compelling representation of choice under complete ignorance, one
consequence of the critique voiced in the second reaction would seem to be either
that unfair distributions can result from this type of fair procedure—compare well-

13 Such justifications for IP decision rules have important consequences for ethics more generally, outside
of veil of ignorance settings. For example, the problem of cluelessness for consequentialist moral theories is
essentially that we are usually very uncertain about the knock on effects and longterm consequences of our
actions, making the moral assessment of actions much more difficult than is often appreciated. Mogensen
(2020) investigates the issue from the perspective of IP, arguing that his favored rule—Maximality—is
unable to support the positions of longtermists and effective altruists unless the depth of our uncertainty
is downplayed. As explained above, Maximality is a particularly permissive rule, and, as Observation
2 shows, less permissive rules can lead to decidedly less equivocal conclusions—perhaps even to more
ethically attractive ones—even in the face of complete ignorance.
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conducted legal trials that reach a wrong verdict—or that choice under ignorance is
not a fair procedure.14
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Appendix

Since W is symmetric, we can set F(ỹ) = W (U 1(ỹ1), ...,Un(ỹn)) for any given
permutation ỹ of y. Properties of individual and social welfare, then, imply certain
properties of the reduced function F . For example, in the proof ofObservation 2 below,
we use the fact that, when W is assumed to be increasing and strictly quasi-concave
and theU j are concave, F is itself strictly quasi-concave. I sketch the argument for this
particular claim here because the reasoning can be extended to analogous propositions
appealed to below.

So suppose thatW is increasing and strictly quasi-concave and that individual utility
is concave. The first inequality below uses the facts that the U j are concave and W is
increasing, the second, the fact that W is strictly quasi-concave.

F(λ(ỹ1, ..., ỹn) + (1 − λ)(x̃1, ..., x̃n)) = F(λỹ1 + (1 − λ)x̃1, ..., λỹn + (1 − λ)x̃n)

= W (U 1(λỹ1 + (1 − λ)x̃1), ...,Un(λỹn + (1 − λ)x̃n))

≥ W (λU 1(ỹ1) + (1 − λ)U 1(x̃1), ..., λU 1(ỹn) + (1 − λ)U 1(x̃n))

= W (λ(U 1(ỹ1), ...,Un(ỹn)) + (1 − λ)(U 1(x̃1), ...,Un(x̃n)))

> min{W (U 1(ỹ1), ...,Un(ỹn)),W (U 1(x̃1), ...,Un(x̃n))}
= min{F(ỹ1, ..., ỹn), F(x̃1, ..., x̃n)}

This establishes that F is strictly quasi-concave.

Proof of Observation 1

Proof We prove the items in order.

14 Thanks to Jean Baccelli, Michael Nielsen, and Ignacio Ojea Quintana for valuable feedback on earlier
drafts of the paper. Thanks to members of the audience at the Memorial Conference in Honor of Isaac
Levi at Columbia University in September 2019 and two anonymous referees for comments that helped to
significantly improve the paper. This research was supported by a generous global priorities research grant
from Longview Philanthropy.
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1. The equal distribution z is an average of ỹ(k), k = 1, ..., n!. By the quasi-concavity
of social welfare (implied by the stronger A.2),

F(z) ≥ min
k

F(ỹ(k)). (3)

Since z is invariant under permutations, we obtain

min
k

F(z̃(k)) ≥ min
k

F(ỹ(k)). (4)

By A.7, for any y, there is a p ∈ P such that p(argmin F(ỹ(k))) = 1.15 Hence,
Ep(y) = mink F(ỹ(k)). And for any other p ∈ P, Ep(y) is a convex combination
with terms at least as great as mink F(ỹ(k)). So,

inf
p∈P Ep(z) ≥ inf

p∈P Ep(y). (5)

It follows that z is a �-maximin solution.16

2. That z is E-admissible follows from Theorem 1. In particular, A.7 requires that
an equi-probability distribution as dictated by A.4 is in P, guaranteeing the E-
admissibility of z.

3. Immediate from the preceding two claims (Observation 1.1 and 1.2).
4. Any distribution that is E-admissible is of course undominated in expectation

(Fig. 1). Another way to see the Maximality claim in our setting is that, by A.7,
for every distribution y, there is a p ∈ P such that p(argmin F(ỹ(k)) = 1. Then,
Ep(z) = F(z) ≥ Ep(y) = mink F(ỹ(k)) by (3). So, z is admissible according to
Maximality.

5. Again, this follows immediately from the foregoing and Fig. 1, but we can show the
claim more directly. Since supp∈P Ep(z) ≥ inf p∈P Ep(z), it follows immediately
from (5) that, for all y,

sup
p∈P

Ep(z) ≥ inf
p∈P Ep(y).

Finally, Example 1 suffices to establish that z is not generally a �-maximax solution.��

Proof of Observation 2

Proof The assumptions that individual utilities are concave (A.3) and thatW is increas-
ing and strictly quasi-concave (modified A.2) imply that F is a strictly quasi-concave
function. This, in turn, allows us to promote the inequality in (3) to a strict one for any

15 Cf. McManus et al. (1972, p. 495, fn. 8).
16 A general relationship between �-maximin and maximin options obtains under the assumption of com-
plete ignorance in the IP sense (e.g., Berger 1985, p. 216).
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y �= z.

F(z) > min
k

F(ỹ(k))

Accordingly, (4) can be strengthened to

min
k

F(z̃(k)) > min
k

F(ỹ(k)),

and (5) to

inf
p∈P Ep(z) > inf

p∈P Ep(y).

This establishes the unique admissibility of z according to �-maximin.
Assuming now that social welfare is strictly concave (which implies that it is strictly

quasi-concave), we have that z is E-admissible by Observation 1.2. The unique admis-
sibility of z according to E-admissibility+ �-maximin follows immediately from this
fact and z’s unique admissibility according to �-maximin, established just above.

For the claim about the rules for which z is not generally uniquely admissible,
by Fig. 1, it suffices to show that, under the stated assumptions, z is not uniquely
admissible according to �-maximax for some set of utility functions consistent with
the assumptions. From this, it follows that z is not uniquely admissible according
to the other rules downstream in the figure. To that end, consider again Example
1. Recall n = 2, U 1(x) = x and U 2(x) = √

x . Both U 1 and U 2 are concave.
But now suppose that W (u1, u2) =

√
u1 + u2. As defined, W is an increasing (for

these utility functions—we could define W piecewise to preserve its being increas-
ing for negative numbers), symmetric, and strictly concave function of individual
welfare levels. To see this, note that addition is an increasing and concave function
of individual welfare levels and that the square root operation is an increasing and
strictly concave function. By an argument analogous to the one at the beginning of the
Appendix, the composition of those functions, W , is then an increasing and strictly
concave function of individual welfare levels. Moreover, W is invariant under per-
mutations of its arguments and thus symmetric. Now, consider again the distribution
y = (99.75, 0.25). Since P

1
1 = [0, 1], Ep(y) = √

99.75 + 0.251/2 ≈ 10.02 for
some p ∈ P. However, for all p ∈ P, Ep(z) = √

50 + 501/2 ≈ 7.55. Hence, it is
not the case that supp∈P Ep(z) ≥ supp∈P Ep(x) for all possible distributions x . In
other words, z is not admissible according to �-maximax—but (99.75, 0.25) is—and,
consequently, not uniquely admissible according to E-admissibility, Maximality, or
Interval Dominance. ��
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