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Abstract
According to the PCCP thesis, the probability of a conditional A → C is the con-
ditional probability P(C|A). This claim is undermined by Lewis’ triviality results, 
which purport to show that apart from trivial cases, PCCP is not true. In the pre-
sent article we show that the only rational, “Dutch Book-resistant” extension of the 
agent’s beliefs concerning non-conditional sentences A and C to the conditional 
A → C is by assuming that P(A → C) = P(C|A) (i.e., in accord with PCCP). In other 
cases a diachronic Dutch Book against the agent can be constructed. There is a ten-
sion between our findings and Lewis’ results, which needs to be explained. There-
fore, we present a probability space which corresponds in a natural way to the dia-
chronic Dutch Book—and which allows the conditional A → C to be interpreted as 
an event in a mathematically sound way. It also allows to formalize the notion of 
conditionalizing A → C on ¬C which plays a crucial role in Lewis’ proof. Our con-
clusion is that Lewis’ proof is circular, so it cannot be considered to be a sound argu-
ment against PCCP.

In both scientific discourse and natural language communication, when thinking 
about history and in everyday situations we are confronted with conditionals such 
as If it is even, then it is a six (when commenting on a die roll) or If Reagan worked 
for the KGB, I’ll never find out (Lewis, 1986, p. 155) or If I had drunk my morning 
coffee, I would not have headache. Estimating or computing the probabilities of such 
claims is a notorious problem. In particular, a much-discussed issue is whether the 
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probability of a conditional sentence equals conditional probability (in the appropri-
ate probability space). This is Adams’ definition: the probability of a conditional 
P(A → C) is P(C|A) (Adams, 1965, 1970, 1975, 1998).1 We shall use the standard 
acronym PCCP for this thesis.2

This solution is simple, attractive and coherent with our intuitions in many cases. 
The intuitive probability of the conditional If it is even, then it is a six is 1/3 (for a 
fair die), which is exactly the conditional probability P(It is a six|It is even).3 How-
ever, it is far from obvious that the rule according to which the probability of the 
conditional is conditional probability should be accepted in full generality, and there 
is intense discussion going on. Lewis’ triviality results (Lewis, 1976) (which pur-
port to show that this equality holds in very special cases only) are very important 
for this discussion as they indicate that the problem has a fundamental character. In 
a nutshell, they suggest that it is not possible to give a sound formal argument for 
PCCP (apart from trivial cases), which—in Lewis’ words—leads to absurd results.4

In the present article we propose an original solution to this problem. Our start-
ing point is the construction of a diachronic Dutch Book for the conditional A → C. 
We analyze the betting behavior of a rational agent whose beliefs are expressed in 
a propositional language that—apart from the Boolean connectives—also contains 
conditionals. This agent ascribes credence to their beliefs, and a minimal condition 
for the agent being rational is the coherence of their beliefs (in particular their cre-
dence assignments).5 In particular, this means that a Dutch Book cannot be con-
structed against a rational agent. We will use the term “DB-resistant” for such a sys-
tem of beliefs.

3 What is the probability that I throw a six if I throw an even number, if not the probability that if I throw 
an even number, it will be a six? (van Fraassen, 1976, p. 273).
4 An extensive discussion of the PCCP problem (indicating, for instance, its importance for decision the-
ory) can be found in  Hajek (2011, 2012). Hajek also presents elegant generalizations of Lewis’ results. 
Hajek and Hall (1994) discuss several versions of PCCP, in particular they discuss Lewis’ arguments, 
present strengthening of triviality results and argue that PCCP cannot be uphold as a general rule. See 
also Fitelson (2015) for version of a triviality result.
5 We shall use the term “credence” to make clear that it need not be a formally defined probability func-
tion. The formal counterpart (i.e. a genuine probability function on a space) is defined later.

1 In Adams (1965) the term “assertability” is used. However, we will not discuss the problem of the rela-
tionship between assertability, credence, probability etc.
2 It is important to stress Stalnaker’s contribution (Stalnaker, 1968): indeed, PCCP is also called „Stal-
naker’s Thesis”. Stalnaker formulated his thesis in terms of conditional degrees of belief, while Adams 
originally formulated his claims in terms of assertability, and for simple conditionals only, i.e. A → C, 
with A, C Boolean sentences (i.e. not containing the conditional operator). Adams even claimed that his 
approach does not extend to compound conditionals: “we should regard the inapplicability of probability 
to compounds of conditionals as a fundamental limitation of probability, on a par with the inapplicabil-
ity of truth to simple conditionals” (Adams, 1975, p. 35). However, in its full generality, Stalnaker’s the-
sis applies also to compound conditionals. Khoo and Santorio (2018) give a comprehensive discussion, 
Stalnaker (2009) gives an non-technical presentation in a broad philosophical context.
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The role of Dutch Book analysis for the rationality of agents was stressed in 
Lewis (1999) and we accept his point of view (see also footnote 18).6 This is a fairly 
standard approach when considering beliefs expressed as ordinary Boolean sen-
tences, i.e. without the conditional. In this paper we propose an extension of this 
approach to language that also contains conditionals. This will allow the following 
questions to be answered:

1. What is the coherent, DB-resistant extension of these beliefs to the conditional 
sentence A → C—assuming that the agent has a coherent, DB-resistant system of 
beliefs concerning the Boolean part of their language? Namely, what credence 
should be assigned to A → C, given P(A), P(C) and P(A∧C)?

2. What is the appropriate (and, if possible, the simplest) probability space S* = (Ω*, 
Σ*, P*) which allows the DB-resistant probability of the conditional A → C to be 
computed in a formally sound way and which provides a mathematical underpin-
ning for our DB results?

3. How should we interpret Lewis’ triviality proof in the light of our findings? Is it 
true that (apart from trivial cases) there is no sound mathematical argument in 
favor of PCCP?7

Providing answers to these questions will give a strong argument in favor of 
PCCP, in particular by identifying some weaknesses in Lewis’ original reasoning 
(Lewis, 1976).8 To make the presentation of our arguments lucid and illustrative, we 
use a simple urn example (a counterpart of the example from Edgington (1995) or 
Kaufmann (2004)). The numerical calculations are therefore very simple, but with-
out loss of generality they exhibit the crucial phenomena and illustrate the problem-
atic aspects of the intuitive, informal argumentation. The general formal construc-
tion is given in the “Appendix”.

The structure of the paper is as follows:
In Sect. 1, An introductory example, we show how to define a diachronic Dutch 

Book against an agent who has inconsistent beliefs about the credence of the con-
ditional. Accordingly, we show that the DB-resistant credence of the conditional 
A → C is given as conditional probability P(C|A). We show this without (yet) invok-
ing any formally defined probability space.

In Sect.  2, The integration of partial information, we examine the paradoxical 
consequences of a straightforward application of the Law of Total Probability to 

6 We believe that the incoherence in the agents’ views can be identified by Dutch Book arguments, and 
that this incoherence reveals irrationality. However, there is a lively discussion going on—for exam-
ple concerning the pragmatic aspects, or the problem whether there is an intimate connection between 
beliefs and bets. Discussing these general status of Dutch Book arguments exceeds the scope of the pre-
sent study.
7 In short: if it was true that in the light of a Dutch Book argument PCCP must be true—what should we 
do with Lewis’ triviality results?
8 The title of the paper deserves a short comment: the Dutch Book argument we present is not directly 
aimed at any of Lewis’ theses, but rather against the rule (DB-LTP-C) used by Lewis in his proof as step 
(11)—see Sect. 3.



9188 Synthese (2021) 199:9185–9217

1 3

conditionals (a real-life example is also presented). The Law of Total Probability 
is an elementary result in probability theory, but it is a very subtle question how it 
works for conditional sentences.

In Sect. 3, Lewis’ reasoning, we give an analysis of Lewis’ triviality proof from 
Lewis (1976) and identify the problematic assumptions in this proof.

In Sect. 4, The space S*, we define in a mathematically sound way the probability 
space S* = (Ω*, Σ*, P*), which allows an independent mathematical underpinning 
to be given for the obtained results. In particular, it allows the probability of the con-
ditional P*(A → C) to be computed in a mathematically sound way—so that it coin-
cides with the DB-resistant value for bets that is obtained with the aid of the analysis 
of optimal betting behavior. This explains the source of the misunderstandings and 
identifies the proper version of the Law of Total Probability for conditionals.

In Sect. 5, Lewis’ dilemma in S*, we analyze two possible interpretations of con-
ditionalizing the conditional A → C on B (i.e. of P(A → C|B)). We show that neither 
of these interpretations allows two of Lewis’ essential assumptions to hold simulta-
neously in the properly defined probability space. The constructed space S* = (Ω*, 
Σ*, P*) allows to explain where Lewis’ assumptions are problematic.

We conclude with a short Summary.
In the “Appendix” we present the general construction of a diachronic Dutch 

Book for the conditional A → C.

1  An introductory example

Consider an urn containing 100 White balls, 80 Green balls and 20 Red balls, all of 
which are equally likely to be drawn (in short: 100 W, 80G, 20R).9 This is modeled 
in a natural way by the sample space S = (Ω, Σ, P), in which:

Ω = {W, R, G};
P(W) = 100/200 = 0.5;
P(G) = 80/200 = 0.4;
P(R) = 20/200 = 0.1.

Σ is the σ-field, which consists of all subsets of Ω, i.e. Σ =  2Ω. We will make 
use of this sample space S = (Ω, Σ, P) throughout this paper.10 The corresponding 
language is formed from three atomic sentences: W, G, R. In this case, we restrict 
ourselves to one particular conditional: ¬W → G. This means that in our language 
we have the Boolean combinations of W, G, R and ¬W → G.11

11 We do not discuss compound conditionals in this paper. In general, sentences from our language are 
in italics, and other objects (like elementary events, balls etc.) are not. So, W stands for the sentence “The 
ball is White”, and W is the corresponding event in the probability space.

9 In Edgington (1995) and Kaufmann (2004), there are non-Red balls, and Red balls which might or 
might not have a black spot. We have White and Red balls, and instead of Red spotted balls we have 
Green balls. We think that this makes the example simpler.
10 This level of generality is sufficient to exhibit the relevant phenomena. In particular the fact that the 
set of Green balls is included in the set of non-White balls does not matter.
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We are interested in the probability of the conditional:

(*) If the ball is non-White, it is Green. (i.e. ¬W → G).

None of the 8 events in S = (Ω, Σ, P) is a counterpart of ¬W → G.12 So, if we want 
to define the probability of ¬W → G in the mathematically standard way, we need to 
construct an appropriate probability space. Before we do this, we will find the DB-
resistant credence of ¬W → G by means of a Dutch Book analysis.

1.1  Some general assumptions

In order to discuss the rational probability assignment made by the agent, we first 
formulate some minimal assumptions concerning the agent’s decisions, their under-
standing of the notion of credence, and their interpretation of the conditionals.

1. The bets accepted by the rational agent

The standard way of identifying the subjective probability of a sentence is by ana-
lyzing the bets the agent considers to be fair.13 We use the symbol  PDB for the cre-
dence function of the agent. This function leads from the set of sentences in the lan-
guage of the agent into the interval [0, 1].14 At this stage we do not yet assume that 
 PDB is a probability function (on some probability space), but we will show later that 
it does indeed have a formal counterpart.

The betting behavior of the rational agent has the following properties:

1.1. If the agent thinks that  PDB(A) = x, then they consider both selling and buying 
bets on A for $x to be fair:

(a) The Bookmaker sells the bet on A for $x, i.e. they get $x from the agent. If A 
happens to be true, the Bookmaker pays $1 to the agent (so in this case the agent’s 
win is $(1 − x)). If A is false, the Bookmaker keeps the $x.

(b) The Bookmaker buys the bet on A from the agent for x, i.e. he pays $x to the 
agent. If A happens to be true, the agent pays $1 to the Bookmaker, i.e. the agent’s 
loss is $(1 − x). If A is false, the agent keeps the $x.

12 In the probability space S = (Ω, Σ, P) there are three elementary events in Ω. The σ-field Σ is simply 
the power set of Ω so it contains  23 = 8 events.
13 For a presentation of this view see Easwaran (2011a, b).
14 In the paper we use the notation for probabilities of sentences, i.e. we write, for instance, P(¬W∧G) 
and not P(Wc ∩G), which would be typical of standard textbooks on probability theory (as events are 
sets). But the standard way of formulating the problem of probabilities of conditionals is in terms of 
probabilities of sentences. Moreover, it is natural to think of the system of beliefs of the agents in terms 
of sentences and probability/credence assignments made by the agent on these sentences. However, we 
also give an analysis in terms of standard probability spaces in which the sentences (including the condi-
tionals) have their counterparts as events.
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1.2 If the agent considers a bet to be fair, they are willing to repeat it an arbitrary 
number of times and to make n bets simultaneously (i.e. to buy/sell for $nx a bet 
where the win is $n).

2. The credence function PDB

The agent’s beliefs concerning atomic sentences are modeled in the sample prob-
ability space S = (Ω, Σ, P). We know that if the function  PDB violated the rules of 
probability, it would be possible to construct a Dutch Book against the agent, i.e. a 
series of bets, each of which the agent considers to be fair but which inevitably lead 
to the agent’s loss.15

So, for Boolean sentences A and C (i.e. formed from atomic sentences with the 
use of only ¬, ∧, ∨ but not the conditional →), the rational agent’s credence function 
 PDB is exactly the probability function P, i.e.:

2.1  PDB(A) = P(A).

Of course, because it is a probability function that is defined on the Boolean part 
of the language,  PDB has the following properties:

2.2  PDB(A) = 1 −  PDB(¬A).
2.3  PDB

A(C) = P
DB(A∧C)

P
DB(A)

.

Here  PDB
A(.) is the credence function which results from a belief revision by con-

ditionalizing on a sentence A (i.e. the agent assumes that A is true and modifies the 
belief system appropriately).16

3. Interpretation of the conditional A → C

The agent has the conditional → in their language, so we have to give an outline of 
how the conditional is interpreted. Of course, A → C is not identified with the mate-
rial implication (i.e. with the Boolean sentence ¬A∨C).

3.1 In order to make and settle bets on conditionals, the agent has to assume that 
there are circumstances in which the conditional is considered to be true, and there 
are also circumstances in which the conditional is considered to be false. This means 
that the notion of truth conditions for A → C is accepted.

3.2 The agent believes that if both A and C are true, then the conditional A → C is 
true.

3.3 The agent believes that if A is true but C is false, then the conditional A → C 
is false.

15 See for instance Hajek (2009) or Vineberg (2016) for general presentation.
16 This is a standard conditionalization rule. For discussion of what happens if the agent violates this 
rule, see for instance Rescorla (2020) and the extensive bibliography within.
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3.4 The agent believes that if A is false, then the conditional A → C is neither true 
nor false.17

3.5 If  PDB(A → C) = x, then the agent considers the bet on A → C for $x to be fair 
(cf. 1.1), but assumes that it will be cancelled if A turns out to be false (in this case 
the $x is refunded to the buyer of the bet).

These three groups of assumptions each have a different character:
Assumptions (1.1–1.2) describe the decisions that the agent make after ascribing 

credence to sentences from the language. In particular, there is no risk aversion (and 
no propensity to risk) and the agent is always ready to engage in actions (bets) which 
have a non-negative expectancy.

Assumptions (2.1–2.3) have a practical character: the agent knows that if their 
credence function  PDB violates these assumptions, it will be possible to construct a 
(synchronic or diachronic) Dutch Book against them. In terms of the practical char-
acter of these assumptions, we mean not the real financial loss18 but the fact that the 
agent can identify the desired properties of the function  PDB by simply analyzing the 
safe values of bets which give a coherent, DB-resistant system of beliefs. This argu-
ment is independent of the formal construction of any probability space.

Assumptions (3.1–3.4) clarify the understanding of the conditional (in particular, 
of the truth conditions of the conditionals). They might be viewed as general postu-
lates which are independent of any previous probability considerations.

Assumption 3.5 is the consequence of 3.1–3.4 and the assumptions regarding fair 
bets.

1.2  A diachronic Dutch Book for the conditional ¬W → G

What credence should our agent assign to the conditional ¬W → G? Namely, what is 
the DB-resistant value of  PDB(¬W → G)? We strongly believe that the proper answer 
(for the urn containing 100  W, 80G, 20R) is 0.8, as 80% of the non-White balls 
are Green. However, the argumentation should be based only on the assumptions 
1.1–3.5 and proceeds by defining a Dutch Book against the agent, who accepts a dif-
ferent value.

So, assume that the agent believes the opposite:

18 “Note also that the point of any Dutch book argument is not that it would be imprudent to run the risk 
that some sneaky Dutchman will come and drain your pockets. After all, there aren’t so many sneaky 
Dutchmen around; and anyway, if ever you see one coming, you can refuse to do business with him. 
Rather, the point is that if you are vulnerable to a Dutch book, whether synchronic or diachronic, that 
means that you have two contradictory opinions about the expected value of the very same transaction. 
To hold contradictory opinions may or may not be risky, but it is in any case irrational”. Lewis (1999, 
pp. 404–405).

17 There is a tradition dating back at least to De Finetti by which conditionals with a false antecedent are 
analyzed by assuming an additional logical value in the model. [Douven (2016) gives an analysis; for 
formal results of the trivalent approach to conditionals, see for instance Égre et al. (2019)]. We do not 
discuss this matter here.
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PDB(¬W → G) ≠ 0.8.

We will show that this leads to disaster, i.e. to a diachronic Dutch Book against 
the agent. In this case, assume that

PDB(¬W → G) = 0.875,

i.e. that the agent considers $0.875 to be a fair price for a standard bet on 
(¬W → G). The number 0.875 is chosen to make the calculations convenient, but the 
reasoning is similar for any value of 0.8 < p < 1.19

We assume that in the course of events, the agent and the bookmaker agree that 
it is possible to update their knowledge (assumption 2.3) and to place new bets after 
this update; of course, they agree on the present status of the bet.

We play the role of the Bookmaker; of course, we will only buy/sell bets which 
are considered fair by the agent. The game consists of drawing a ball from the urn. 
Before we draw, we make the following bets:

Bet(W). We buy from the agent the bet that the ball is White for $0.5.20

Bet(¬W → G). We sell 10 bets on ¬W → G for $0.875 each.21

The agent accepts the bets as they consider them to be fair and coherent with their 
credence assignments (assumptions 1.1 and 1.2).

We start the game, i.e. a ball is drawn. The first step is to identify whether the ball 
is White or not: this will settle Bet(W). Importantly, at this moment we only check 
whether it is White or not! If it is White, we finish the game and take our money, as 
we have won Bet(W). But if it is not White, we make another bet before we check 
whether it is Red or Green!22

So, these are our actions:

If the ball is White:

• The agent loses Bet(W) and has to pay $1 (i.e. the agent’s loss is $0.5);

19 For 0 < p < 0.8, the reasoning has a symmetric character: instead of selling bets, we buy bets and vice 
versa. The construction of the Dutch Book depends on the concrete value of p, but the scheme is the 
same. In the “Appendix” we present the general construction.
20 We pay $0.5. If the drawn ball is W, we win, i.e. the agent has to pay 1$. If the drawn ball is not W, 
we lose, and the agent keeps the $0.5.
21 We get $0.875 for each bet on ¬W → G from the agent. We keep the money (10x$0.875) if ¬W → G is 
not true, and we pay $10 if ¬W → G is true.
22 Edgington’s and Kaufmann’s example of non-Red balls and Red balls with or without a black spot 
(see footnote 9) are perhaps more illustrative in this respect: we already see that the ball is Red, but we 
still have to check whether it has a black spot or not. Our process of gaining new knowledge extends in 
time.
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• Bet(¬W → G) is cancelled and $8.75 (i.e. 10x$0.875) is given back to the agent 
(Assumption 3.5).

If the ball is non-White:

• The agent wins Bet(W) and keeps (i.e. wins) $0.5.
• We do not yet have knowledge about the outcome of Bet(¬W → G) as the color of 

the non-White ball is not yet known.

At exactly this moment, we propose Bet(R), i.e. the bet that the ball is Red. Both 
we and the agent have updated our beliefs, conditionalizing on ¬W (according to 
Assumption 2.3.). So now we use the credence function  PDB

¬W. The agent knows 
that the fair bet value on R (given it is ¬W) is 0.2, as.

PDB
¬W(R) = P

DB(¬W∧R)

P
DB(¬W)

 = P(¬W∧R)

P(¬W)
 = 0.2 (according to Assumptions 2.1 and 2.3).

A bet is now made:

Bet(R). We sell 10 bets that the ball in question is Red for $0.2 each.23

After the bet we check the color of the non-White ball. Of course, being non-White, 
the ball is either Green or Red.

If the ball is Green:

• The agent wins Bet(¬W → G)—so wins 10 x (1−$0.875) = $1.25.
• The agent loses Bet(R)—so loses 10x$0.2 = $2.

If the ball is Red:

• The agent loses Bet(¬W → G)—so loses 10 x $0.875 = $8.75.
• The agent wins Bet(R)—so wins 10 x $0.8 = $8.

The agent’s wins and losses in these three cases are summarized in the table:

Bet(W) Bet(¬W → G) Bet(R) The outcome

W − $0.5 0
(the bet was cancelled)

0
(the bet has not been 

placed)

− $0.5

G + $0.5 + $1.25 − $2 − $0.25
R + $0.5 − $8.75 + $8 − $0.25

23 We get 10x$0.2 = $2 from the agent. We keep the 10x$0.2 = $2 if the ball is Red and have to pay 
10x$1 to the agent if the ball is not Red (the agent wins $8 in this case).
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Regardless of the result (i.e. the color of the drawn ball), the agent loses. 
This is the consequence of assuming that  PDB(¬W → G) ≠ 0.8, i.e. that 
 PDB(¬W → G) ≠ P(G|¬W). This reasoning shows that it is rational to assume the 
proper “betting credence” of the conditional ¬W → G to be  PDB(¬W → G) = 0.8. 
Of course, this is a general rule: it is not a numerical artifact related to some spe-
cial properties of the particular values 0.8, 0.875 etc.

Importantly, we assumed that the agent’s beliefs concerning the Boolean frag-
ment of the language are coherent, which means that no “Boolean Dutch Book” 
can be constructed. Nevertheless, a diachronic DB can be constructed against a 
system of beliefs to which the conditional sentence in question is added and in 
which the agent assumes that  PDB(¬W → G) ≠ P(G|¬W). This is the source of the 
incoherence and the agent’s misfortune.

It is also important to observe that we have constructed the Dutch Book in 
question based on the internal relationships between the agent’s beliefs: we 
need not examine whether they are adequate in any sense to the empirical sit-
uation. This is a general feature of the Dutch Book construction. Even if the 
agent believes that regardless of the content of the urn the probabilities are 
always  PDB(W) = 1/3;  PDB(R) = 1/3;  PDB(G) = 1/3;  PDB

¬W(G) = ½;  PDB
¬W(R) = ½; 

 PDB(¬W → G) = ½, it will not be possible to construct a Dutch Book (even if it is 
highly probable that the Bookmaker wins the bets in the long run by making use 
of the law of large numbers). It is the incoherence in the agent’s beliefs (i.e. the 
fact that the agent believes that  PDB(¬W → G) ≠ P(G|¬W)) which leads to the dia-
chronic Dutch Book and an inevitable loss.

At this stage we have not yet used any formal model (semantics) for proba-
bilities of conditionals. The Dutch Book reasoning has a very intuitive charac-
ter: informally speaking, it identifies the rational betting behavior, but does not 
explain the mathematical (theoretical) reasons. Nevertheless it: (i) gives an ele-
mentary argument in favor of PCCP; (ii) helps to identify the problematic places 
in Lewis’ reasoning; and (iii) provides an important boundary condition: the to-
be-constructed probabilistic model must not lead to a Dutch Book disaster!

2  The integration of partial information

The findings from the previous section can be summarized as follows:

the only way to expand the agent’s belief system in a DB-resistant way to 
include the conditional ¬W → G is by assigning:

PDB(¬W → G) = P(G|¬W).

This formula can also be written in the form:

PDB(¬W → G) =  PDB
¬W(G).
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To justify this claim, we made use only of some non-controversial assumptions 
concerning the agent’s “betting behavior”. We will use our findings in the discus-
sion concerning Lewis’ triviality results, which—according to Lewis—prove that 
the PCCP principle, i.e.

P(A → C) =  PA(C) = P(C|A).

can be formally justified only in very special cases, namely in trivial24 probability 
spaces in which at most 4 values of probabilities of events are assumed.25 Our sam-
ple space S = (Ω, Σ, P) obviously is not such a special case, but the DB-resistant val-
ues of  PDB for conditionals obey the PCCP principle. Lewis’ theorem suggests that 
this result cannot be given a proper mathematical formalization and justification, so 
a feeling of incoherence arises which needs to be explained.

To clearly exhibit the problematic assumptions in Lewis’ reasoning, we will 
modify our example. Consider an additional feature of the balls in our sample space 
(apart from their color): some of them are Heavy (H) and some are Light (L).26 In 
this case, assume that

(a) there are 20 White, 60 Green and 20 Red balls in the “Heavy subspace”;
(b) there are 80 White and 20 Green balls in the “Light subspace”.

Assume that our agent has the following partial information (concerning the 
Heavy and Light subspaces) at their disposal:

(i) They know the values  PDB(H) and  PDB(L), i.e. the chances of drawing a Heavy/
Light ball.

(ii) They know the values  PDB
H(Y) and  PDB

L(Y) of every Boolean sentence Y.

Is this knowledge sufficient to compute  PDB(Y)? The Law of Total Probability (an 
elementary theorem in probability theory) states that:

(LTP) P(Y) = P(Y|H) P(H) + P(Y|L) P(L) =  PH(Y) P(H) +  PL(Y) P(L),

for any event Y and complementary events H, L in the probability space.

24 “If a probability function never assigns positive probability to more than two incompatible alterna-
tives, and hence is at most four-valued, then we may call it a trivial probability function” (Lewis 1976, 
p. 302).
25 Lewis does not claim that the genuine probability of, for instance, If it is Even, it is a Six (for a fair 
die), is 1/6. Rather he purports to show that it is highly problematic to justify such probability claims as 
reasoning that appears to be sound leads to absurd results.
26 This means that in our language there are six sentences that represent all 6 combinations of properties: 
Heavy White, Heavy Green, Heavy Red, Light White, Light Green, Light Red.
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So, the version for  PDB is straightforward:

(DB-LTP)  PDB(Y) =  PDB
H(Y)  PDB(H) +  PDB

L(Y)  PDB(L).27

The agent can use this formula to integrate their partial knowledge concerning 
the proper values of  PDB in the subspaces H and L in order to obtain the proper 
value of  PDB in the whole space. Another way of putting it is that someone who is a 
DB-resistant Y-player in the Heavy and Light subspaces will become a DB-resistant 
Y-player in the whole urn just by using LTP. Undoubtedly this method works for all 
Boolean sentences. A natural question is whether the same can be done with the 
conditional ¬W → G.

Assume now that the agent has the following information:

 (i) they know the proper (DB-resistant) values  PDB(H),  PDB(L);
 (ii) they know the proper (DB-resistant) values  PDB

H(¬W → G) and  PDB
L(¬W → G).

The analogue of (DB-LTP) is obtained by substituting ¬W → G for Y and has the 
form:

(DB-LTP-C)  PDB(¬W → G) =  PDB
H(¬W → G)  PDB(H) +  PDB

L(¬W → G)  PDB(L).

(The “C” in (DB-LTP-C) is for “conditional”). In our example, the proper 
(i.e. DB-resistant) values in the subspaces are:  PDB

H(¬W → G) = 0.75 and 
 PDB

L(¬W → G) = 1.28 We also have  PDB(H) =  PDB(L) = 0.5. Applying the formula 
(DB-LTP-C) gives:

PDB(¬W → G) = 0.75 × 0.5 + 1 × 0.5 = 0.875

which is wrong! We have already shown in Sect.  1 that taking this value leads 
to a Dutch Book against the agent, and that the proper DB-resistant value is 
 PDB(¬W → G) = 0.8.

Importantly, we started with the proper (DB-resistant) values for  PDB
H(¬W → G), 

 PDB(H),  PDB
L(¬W → G) and  PDB(L). Then we applied (DB-LTP-C) and obtained 

absurd results! This means that the Law of Total Probability holds for Boolean 
sentences (which is not surprising, as this is elementary probability theory), but its 
counterpart (DB-LTP-C) does not hold for the conditional ¬W → G. Using the game 
metaphor, we can say that LTP is a golden rule for people who know good “Heavy 
subspace / Light subspace” strategies that can be used to plan the strategy for the 

27 To justify it, we only need to use (a) assumption 2.1, i.e.  PDB(Y) = P(Y) for any Boolean sentence Y; 
(b) assumption 2.3, i.e.  PDB

A(B) = P
DB(A∧B)

P
DB(A)

.
28 The reasoning which justifies these claims has exactly the same structure as the reasoning which 
allows the proper value of  PDB(¬W → G) to be identified. This is also intuitive: 75% of the non-White 
Heavy balls are Green, and 100% of the non-White Light balls are Green.
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whole urn; however, this works for Boolean sentences only! Importantly, in Sect. 5 
we shall see that LTP-C in this misleading form is involved in Lewis’ reasoning.

Remark: We will obtain the proper value of  PDB(¬W → G) using a different “infor-
mation integration formula” for subspaces H and L:

(DB-LTP-C*)  PDB(¬W → G) =  PDB
H(¬W → G)  PDB

H(¬W) +  PDB
L(¬W → G)  PDB

L(¬W).

Indeed:

PDB
H(¬W) = P(¬W|H) = 20/100 = 0.2;

PDB
L(¬W) = P(¬W|L) = 80/100 = 0.8.

After substituting these values to the formula (DB-LTP-C*), we obtain:

PDB(¬W → G) = 0.2 × 1 + 0.8 × 0.75 = 0.8

This is not a coincidence but a general phenomenon. We present a proof of (DB-
LTP-C*). To begin with, it is a simple exercise to check that:

P(G∣¬W) =  PH(G∣¬W) P(H∣¬W) +  PL(G∣¬W) P(L∣¬W)

where P is a standard probability function, P(.∣.) is conditional probability,  PH 
and  PL are conditionalized probability measures.29 We use this formula to justify 
(DB-LTP-C*).

We have already justified the claim, that the proper, DB-resistant value 
 PDB(¬W → G) is P(G∣¬W). The DB-argument is general, and it applies to any prob-
ability measure, in particular to  PDB

H(¬W → G) and  PDB
L(¬W → G). We also know, 

that for Boolean sentences X,  PDB(X) = P(X) (this applies to  PH and  PL as well). So, 
if we substitute:

PDB(¬W → G) for P(G∣¬W);
PDB

H(¬W → G) for  PH(G∣¬W);
PDB

H(¬W) for P(H∣¬W);
PDB

L(¬W → G) for  PL(G∣¬W);
PDB

L(¬W) for P(L∣¬W);

29 Indeed, this is a special case of a general formula: take a partition {C1, …,Cn} and let  Pi be the respec-
tive conditionalized probability measures, i.e.  Pi(A) = P(A|Ci), for i = 1,…,n. Then P(G|¬W) =  P1(G|¬W)
P1(C1|¬W) + … +  Pn(G|¬W)Pn(Cn|¬W).
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in the formula above, we obtain the required:

(DB-LTP-C*)  PDB(¬W → G) =  PDB
H(¬W → G)PDB

H(¬W) +  PDB
L(¬W → G)

PDB
L(¬W).30

Is vaccination effective? To illustrate the misleading intuitions which suggest the 
wrong formula (DB-LTP-C), consider a population in which people are:

 (i) type A or B (this might, for instance, be some genetic feature);
 (ii) either Sick or not (S / ¬S);
 (iii) either vaccinated or not (V / ¬V).

We are interested in the effectiveness of vaccination, i.e. in the probability of a 
vaccinated person not getting sick. This means that we are interested in the probabil-
ity of the conditional If someone has been vaccinated, they won’t get sick:

(VAC) V → ¬S.

Our task is to evaluate P(V → ¬S) on the basis of empirical data collected within 
two subpopulations A and B. Experts working in subpopulations A and B know 
that DB is a good way of producing coherent systems of beliefs, so they use it to 
estimate  PA(V → ¬S) and  PB(V → ¬S). Their findings are as follows:

In subpopulation A:  PA(V → ¬S) = 1 (as 100% of the vaccinated A-people did not 
get sick).

In subpopulation B:  PB(V → ¬S) = 0.5 (as 50% of the vaccinated B-people did not 
get sick).

In this case, assume that the number of A-people and B-people is equal, i.e. 
P(A) = P(B) = 0.5. If we use the (DB-LTP-C) formula to estimate the probability of 
V → ¬S, i.e. P(V → ¬S) in the whole population, the result is:

P(V → ¬S) =  PA(V → ¬S) x P(A) +  PB(V → ¬S) x P(B) = 1 × 0.5 + 0.5 × 0.5 = 0.75.

This is not a reasonable result as it gives the (usually false!) value 0.75 in radi-
cally different situations. For instance:

30 It might happen that (DB-LTP-C) and (DB-LTP-C*) coincide: for instance in the trivial case, when 
 PDB(H) =  PDB(¬W|H) and  PDB(L) =  PDB(¬W|L). In such cases, the formula (DB-LTP-C) gives good 
results. However, it cannot be safely used as a general rule. We owe this comment to the anonymous 
referee, and we also thank for pressing us to give a clear mathematical justification of the formula (DB-
LTP-C*).
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Situation 1: There are 100 A-people and 100 B-people, but there are only 2 vacci-
nated A-people, and neither of them are sick (so indeed  PA(V → ¬S) = 1); there are 
98 vaccinated B-people, and 49 of them are not sick (so indeed  PB(V → ¬S) = 0.5). In 
this case there are 100 vaccinated people, and 51 of them are not sick. So, P(V → ¬S) 
does not equal 0.75 but is much lower (51/100 = 0.51).

Situation 2: There are 98 vaccinated A-people (none of them are sick, so indeed 
 PA(V → ¬S) = 1) and 2 vaccinated B-people (1 of them is not sick, so indeed 
 PB(V → ¬S) = 0.5). In this case P(V → ¬S) does not equal 0.75 but is much higher 
(99/100 = 0.99).

P(V → ¬S) is computed by means of the Law of Total Probability as a weighted sum. 
But (DB-LTP-C) uses the wrong weights, i.e. the relative size of the samples.31 The 
proper weights should be the relative frequency of the vaccinations in the sub-
populations—exactly as in the true formula (DB-LTP-C*).

3  Lewis’ reasoning

Let us recall an important fragment of Lewis’ argumentation from Lewis (1976):

“(7) P(A → C∣B) = P(C∣AB), if P(AB) is positive.
[…]
we have:
(8) P(A → C) = P(C∣A)
By (7), taking B as C or as C and simplifying the right-hand side, we have:
(9) P(A → C∣C) = P(C∣A C) = 1
(10) P(A → C∣C) = P(C∣A C) = 0
For any sentence D, we have the familiar expansion by case:
(11) P(D) = P(D∣C) x P(C) + P(D∣C ) xP(C).

In particular take D as (A → C). Then we may substitute (8), (9), and (10) into 
(11) to obtain:

(12) P(C∣A) = 1 × P(C) + 0 × P(C) = P(C)” (Lewis, 1976, p. 300)

Lewis describes this result as “absurdity, but not quite a contradiction” (Lewis, 
1976, p. 300).

In our terminology, Lewis divides the set of possible events into two (virtual) 
subspaces C and ¬C. Then, in steps (9) and (10) of his reasoning, he claims that:

31 This reminds of to Simpson’s paradox in statistics, where seemingly compelling reasoning concerning 
the presence of a trend in different groups leads to false results when these groups are combined (“amal-
gamated”).
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 (i) in subspace C:  PC(A → C) = 1;
 (ii) in subspace ¬C:  P¬C(A → C) = 0.

In step (12), in order to compute the total probability of the conditional A → C, 
Lewis uses formula (11), which is an exact counterpart of the formula (DB-LTP-C). 
But we have already seen that this formula is wrong: depending on the division of 
the sample space into subspaces, it leads to inconsistent results.

To give an illustration of the weak point in Lewis’ reasoning, we show its exact 
counterparts in our vaccination and urn examples. The first seems to be more intui-
tive, while the second allows to perform exact numerical calculations.

The vaccination example. Let us divide the population in the vaccination exam-
ple into the subpopulations of healthy people (i.e. ¬S) and sick people (i.e. S). 
Undoubtedly

P¬S(V → ¬S) = 1;
PS(V → ¬S) = 0.

Integrating these results with the use of Lewis’ formula (i.e. DB-LTP-C) can give 
wrong results (see Sect. 2).

The urn example. We divide the urn into subspaces of Green and non-Green balls:

Subspace G: 80G;
Subspace ¬G: 100 W, 20R.

The probability of choosing subspace G is  PDB(G) = 80/200 = 0.4; for subspace 
¬G this is  PDB(¬G) = 120/200 = 0.6.

The diachronic Dutch Book reasoning within the subspaces G and ¬G shows that:

PDB
G(¬W → G) = 1;

PDB
¬G (¬W → G) = 0.32

After applying the formula (DB-LTP-C):

PDB(¬W → G) =  PDB
G(¬W → G)  PDB(G) +  PDB

¬G(¬W → G)  PDB(¬G)

we obtain the wrong value:

PDB(¬W → G) =  PDB(G) = 0.4 (instead of 0.8).

32 This is absolutely obvious even without any Dutch Book analysis: if there are only Green balls, you 
can bet all your money on ¬W → G. Similarly, if there are no Green balls, you should not bet anything on 
¬W → G!



9201

1 3

Synthese (2021) 199:9185–9217 

PDB(¬W → G) depends therefore on the division into subspaces: (i) for our H/L 
division from Sect. 2, we obtain 0.875; (ii) for Lewis’ division G/¬G, we obtain 
0.4; (iii) for the division R/¬R, we obtain 0.9.

Observe also that if we apply the formula (DB-LTP-C*) we get:

PDB(¬W → G) =  PDB
G(¬W → G)  P¬W(G) +  PDB

¬G(¬W → G)  P¬W(¬G)
 = 1 × 0.8 + 0 × 0.2 = 0.8,

i.e. the proper result.
So far, we have arrived at the following conclusions.

Observation 1. The possibility of producing a Dutch Book against the agent arises 
when their systems of beliefs are incoherent. If the agent’s credence function 
 PDB for the Boolean part of the language is modeled within the probability space 
S = (Ω,Σ,P), the only coherent (i.e. DB-resistant) way of expanding it to the condi-
tional A → C is by setting  PDB(A → C) =  PDB

A(C) = P(C|A).

Observation 2. The integration of the partial information concerning the proper 
(sic!), i.e. DB-resistant values, of  PDB

H(¬W → G) and  PDB
L(¬W → G), by means of 

the formula (DB-LTP-C) gives the wrong value of  PDB(¬W → G). We have shown 
that in the general case:

PDB(¬W → G) ≠  PDB
H(¬W → G)  PDB(H) +  PDB

L(¬W → G)  PDB(L).

As a consequence, this opens the way to constructing a diachronic DB against 
the agent. This means that the straightforward, “mechanical” generalization of the 
Law of Total Probability does not work for conditionals.

Observation 3. The reasoning we analyzed is based on the misleading formula (DB-
LTP-C) and leads to a contradiction: we obtain different values for  PDB(¬W → G) 
depending on the division of the sample space. But this reasoning is similar to 
Lewis’ argumentation. So, this suggests that it is based on implausible assumptions. 
We think that the source of the problems are as follows:

1. Lewis did not specify any probability space on which the conditional A → C is 
interpreted as an event.

2. Lewis does not explain what the term P(A → C|B) really means, but the assump-
tion that P(A → C|¬C) = 0 is crucial in his reasoning.

This is why our aim in the next section is to construct a probability space 
S* = (Ω*,Σ*,P*) in which the conditional ¬W → G is interpreted as an event, so that 
P*(¬W → G) is a mathematically well-defined term. This will allow us to understand 
(i) why the Law of Total Probability in the form (DB-LTP-C) fails and how it should 
be applied properly; (ii) whether it is justified to assume that P*(¬W → G|¬G) = 0.
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4  The space S*

The Dutch Book-resistant value for  PDB(A → C) is P(C|A). This formula works, 
but why? Can we consider  PDB(A → C) to be a genuine probability, or is it just 
some real number that only accidentally coincides with P(C|A) and has nothing to 
do with any genuine probabilistic structure? What are the reasons for the failure 
of the generalization of LTP for  PDB?

We want to understand the logical structure of the problem, i.e. we want to 
describe the situation in a mathematically sound model. The model should give a 
mathematical underpinning for the formula  PDB(A → C) = P(C|A) so that we can 
apply standard mathematical theorems (in particular LTP) to  PDB. This means 
that we need to construct a probability space S* = (Ω*, Σ*, P*) in which the con-
ditional A → C will have an interpretation as an event so that P*(A → C) is a well-
behaved probability function. In the following presentation, we keep matters as 
simple as possible.

Undoubtedly, the to-be-constructed probability space S* = (Ω*, Σ*, P*) has to 
fulfill some requirements:

• S* = (Ω*, Σ*, P*) is associated with the sample space S = (Ω, Σ, P), which 
models the Boolean fragment of the agent’s beliefs. S* = (Ω*, Σ*, P*) should 
allow the Boolean sentences to be interpreted, and the probabilities from the 
sample space S = (Ω, Σ, P) should be preserved in S* = (Ω*, Σ*, P*).

• The conditional ¬W → G should have a representation as an event, i.e. a sub-
set [¬W → G] ⊆ Ω*. To avoid confusion, we will use square brackets to dis-
tinguish sentences from their counterparts (events) in the probability space 
S*. But this means that any elementary event ω* ∈ Ω* is either the element of 
[¬W → G] or its complement, i.e. it confirms or disconfirms the conditional 
¬W → G. The construction is therefore based on the assumption that there are 
circumstances in which ¬W → G is true (false), i.e. we accept the notion of 
truth conditions for conditionals (assumptions 3.1–3.4).

• As it is convenient to think of probabilities of conditionals in terms of bets, it 
is natural to describe their truth conditions in terms of game scenarios (which 
lead to either a win or a loss). The games have a dynamic character, i.e. there 
is always some unfolding scenario, and bets are placed at appropriate moments 
of the game. S* should therefore model this fact and naturally correspond to 
the gambling situation.

Imagine that we start the “conditional game” for ¬W → G: the rules are fixed 
(and conform to assumptions 3.2–3.5), the appropriate bets are made, and we 
draw the first ball. Obviously, if the first ball is Green or Red, the conditional 
¬W → G is decided. If the first ball is White, ¬W → G is undecided, and we have 
to draw a ball again. This process is repeated until either R or G appears, at which 
point the conditional is shown to be true or false.

So, the scenarios confirming the conditional ¬W → G are:
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• G, WG, WWG, WWWG, …

And the scenarios disconfirming the conditional ¬W → G are:

• R, WR, WWR, WWWR, …

We will use  WnG (resp.  WnR) to denote the sequence consisting of n White balls 
followed by a Green ball (resp. a Red ball). These scenarios are natural candidates 
for elementary events in S*.

4.1  Formal definition of S* = (Ω*, Σ*, P*)33

We start with our toy-example sample space S = (Ω, Σ, P), in which Ω = {W,G,R} 
with P(G) = p, P(R) = q, P(W) = r. The conditional in question is ¬W → G. The asso-
ciated probability space S* = (Ω*,Σ*,P*) is defined in the following way:

Ω* = {WnG,  WnR: n ∈ ℕ};
Σ* =  2Ω* (i.e. the power set of Ω*);
P*(WnG) = rnp (for n ∈ ℕ);
P*(WnR) = rnq (for n ∈ ℕ).

In S* = (Ω*,Σ*,P*), elementary events are not balls but sequences of balls (intui-
tively speaking, to “draw” an event from Ω* is to draw a “game scenario”). The 
stipulations P*(WnG) = rnp and P*(WnR) = rnq are straightforward.

Ω* is a countable set, so for any set A ⊆ Ω* we set:

P*(A) = 
∑

�∈A P
∗(�).

So, P* is indeed a probability function properly defined on the σ-field Σ*.
We can interpret the sentences from our language (i.e. the Boolean sentences 

and the conditional ¬W → G) in the probability space S* = (Ω*,Σ*,P*) as events, 
i.e. subsets of Ω*. In particular, ¬W → G has its counterpart [¬W → G] ⊆ Ω*, which 
consists of scenarios confirming the conditional:

[¬W → G] = {WnG: n ∈ ℕ}.
Of course

P*([¬W → G]) = 
∑∞

n=0
prn = p

1−r
 = p

p+q
,

i.e.

P*([¬W → G]) = P(G|¬W) =  PDB(¬W → G)

33 The construction of this space is based on the construction given in Wójtowicz and Wójtowicz (2019, 
2021). However, we give independent motivations and do not use the Markov chains formalism.
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where P is the probability from the sample space S = (Ω, Σ, P).34 This means that the 
probability P* models the DB-resistant value  PDB.35

4.2  The probability of Boolean sentences in S*

The space S* = (Ω*, Σ*, P*) is designed to offer interpretations for Boolean sen-
tences and the conditional ¬W → G from our language.36 To give an interpretation 
of a given sentence α is to define the set [α] ⊆ Ω*. This means that for any event 
ω* ∈ Ω* we have to decide whether ω* ∈ [α], i.e. whether it makes the given sen-
tence α true or false.

Consider α = The ball is Green. Which of the elementary events ω* ∈ Ω*, i.e. 
sequences  WnG and  WnR, make α true? We start the game, and obviously we claim 
that α is true (“We win the game”) when we see a Green ball as the first ball. We 
lose when we see a Red or White ball as the first ball. And the fact that later—per-
haps after drawing 50 White balls—a Green ball might appear does not matter: we 
are not taking about the conditional If it is non-White, it is Green but the simple 
sentence The ball is Green. So:

[The ball is Green] = {G};
and P*([G]) = r0p = p.

So, the event [The ball is Green] contains only one sequence of length 1 consist-
ing of one Green ball (as elementary events in Ω* are sequences)! Similarly:

[The ball is Red] = {R}
and P*([R]) = r0q = q.

Now consider The ball is White. Obviously, we win when we see a White ball and 
lose when we see a Green or Red ball. So, the truthmakers for The ball is White are 
sequences beginning with W:

[The ball is White] = {WnG,  WnR: n > 0}

34 Similarly: [¬W → R] = {WnR: n ∈ ℕ }; P*([¬W → R]) = 
∑∞

n=0
qrn = q

1−r
 = q

p+q
 i.e. P*([¬W → R]) =  

 PDB(¬W → R) = P(R|¬W). So, P(R|¬W) = 1 – P(G|¬W).
35 The argumentation might also be based on the Bernoulli-Stalnaker space (Kaufmann, 2004, 2005, 
2009, 2015; van Fraassen 1976), which is slightly more complex, but leads to similar formal results. A 
feature of such models is that they are construed, generally speaking, in terms of certain relationships 
between possible worlds – and an important inspiration is Stalnaker’s idea of closest or most similar 
world (Stalnaker, 1968). Also McGee’s model from (1985) is based directly on Stalnaker’s idea of selec-
tion function (on possible worlds); in McGee’s model the probability of the conditional in question is 
computed by using probability distribution on such selection functions. Khoo and Santorio (2018) give 
a comprehensive discussion of Stalnaker’s thesis and triviality results. (We thank the anonymous referee 
for the suggestions).
36 It is associated with the particular conditional ¬W → G, but the construction for other conditionals (for 
instance ¬G → R) is similar.
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and P*([W]) = r.

This means that

P*([G]) = p = P(G);
P*([R]) = q = P(R);
P*([W]) = r = P(W).

The probabilities of the simple sentences W, G, R are preserved in S* = (Ω*, Σ*, 
P*), as required.

4.3  Heavy and light balls

In order to give an analysis of Lewis’ reasoning, we divided the urn in our example 
into Heavy and Light balls. So, assume the division of the space S = (Ω, Σ, P) into 
subsets H and L (which, in the general case, we assume to be independent of the 
division W, G, R). It is convenient to think of our sample space as consisting of 
six events, HG, HR, HW, LG, LR, LW, corresponding to six types of balls: Heavy 
Green, Heavy Red etc. The sample space  SHL = (ΩHL, ΣHL,  PHL) is specified as 
follows:

ΩHL = {HG, HR, HW, LG, LR, LW} (i.e. there are 6 elementary events);
ΣHL = 2ΩHL.

For notational convenience, we shall use the following symbols:

pH =  PHL(HG); qH =  PHL(HR); rH =  PHL(HW); pL =  PHL(LG); qL =  PHL(LR); 
rL =  PHL(LW).37

We shall also use the obvious symbols W, G, R, H, L for White, Green, and 
Red (regardless of weight) and Heavy and Light (regardless of color), and we set 
p = pH + pL; q = qH + qL; r = rH + rL.38

With this sample space  SHL = (ΩHL, ΣHL,  PHL) we shall associate a probability 
space S* = (Ω*, Σ*, P*)39 which should also allow the situation to be modeled when 
the additional property (the weight of the balls) is taken into account.

S* = (Ω*, Σ*, P*) is specified in the following way:

37 In our toy example from Sect.  1, the concrete numerical values are pH = 0.3; qH = 0.1; rH = 0.1; 
pL = 0.1; qL = 0; rL = 0.4.
38 Of course, (1) P(G) = P(HG) + P(LG) = pH + pL = p; (2) P(R) = P(HR) + P(LR) = qH + qL = q; (3) P(W)  
= P(HW) + P(LW) = rH + rL = r; (4) P(H) = P(HG) + P(HR) + P(HW) = pH + qH + rH; (5) P(L) = P(LG) +  
P(LR) + P(LW) = pL + qL + rL.
39 In the remaining part of the chapter, S* stands for the space in which the balls also have weight, not 
only color.
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Ω* = {Wn(HG),  Wn(LG),Wn(HR),  Wn(LR): n ∈ ℕ};
Σ* =  2Ω*.

Wn(HG) is the sequence consisting of n White balls (regardless of weight) and 
one Heavy Green ball, similarly for  Wn(HR) etc. The probabilities of the elementary 
events are given as follows:

P*(Wn(HG)) = rnpH (for n ∈ ℕ);
P*(Wn(LG)) = rnpL (for n ∈ ℕ);
P*(Wn(HR)) = rnqH (for n ∈ ℕ);
P*(Wn(HG)) = rnqL (for n ∈ ℕ).

Obviously, [¬W → G] = {WnG: n ∈ ℕ }, where the White balls and the Green ball 
might be Heavy or Light, and.

P*([¬W → G]) = 
∑∞

n=0
prn = p

1−r
 = p

p+q
.

As before, we can interpret the sentences W, R and G in S* and ascribe probabili-
ties to them. The probabilities of the corresponding events are:

P*([W]) =  PHL(W) = r;
P*([G]) =  PHL(G) = p;
P*([R]) =  PHL(R) = q.

Similarly, we win the bet on The ball is Heavy if we draw a Heavy ball (regardless 
of what happens later). So, The ball is Heavy is interpreted as the set of sequences 
starting with a heavy ball (of any color):

[H] = [The ball is Heavy] = {HR, HG, (HW)Wn(HG), (HW)Wn(LG), (HW)Wn(HR), 
(HW)Wn(LR):n ∈ ℕ}.40

After a short computation we have

P*([H]) = pH + qH + rH =  PHL(H).

The same applies to [L] = [The ball is Light]; its probability is P*([L]) = pL + qL + 
rL =  PHL(L).

40 (HW)Wn(HG) is the sequence consisting of a Heavy White ball followed by n White balls and one 
Heavy Green ball, similarly for (HW)Wn(LG) etc.
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This means that the probabilities of the Boolean part of the language have been 
preserved in the new space S* (associated with  SH,L) as required.41

4.4  The law of total probability in S*

According to LTP, for any event Y:

P(Y) =  PH(Y) P(H) +  PL(Y) P(L)

where  PH(.) and  PL(.) are the probability measures obtained by standard condi-
tionalization on H and L, i.e. P(.|H) and P(.|L).

In Sect. 2 we showed that in the general case it is not true that.

(DB-LTP-C)  PDB(¬W → G) =  PDB
H(¬W → G)  PDB(H) +  PDB

L(¬W → G)  PDB(L)

even if the inputs are DB-resistant probabilities for ¬W → G in the subspaces H 
and L. However, it is always true that.

(LTP)* P*([¬W → G]) = P*[H]([¬W → G]) P*([H]) + P*[L]([¬W → G]) P*([L])

as it is a simple application of a mathematical theorem (LTP) in the space S*.

As S* models the values for  PDB in the proper way, observe that the following 
equalities hold:

PDB(¬W → G) = P*([¬W → G]);
PDB(H) = P*([H]);
PDB(L) = P*([L].)

So, it cannot be the case that (in addition to these three equalities) the following 
two equalities also hold in the general case:

PDB
H(¬W → G) = P*[H]([¬W → G]);

PDB
L(¬W → G) = P*[L]([¬W → G]).

41 Observe that the space S can be “immersed” into S* by treating elementary events as sequences of 
length 1. It is important to note that one of essential differences between S and S* consists in the fact, 
that in the in space S, the two events:

 • The first element of the sequence is H;
 • All elements of the sequence are H;

 coincide – but this phenomenon does not, in general, take place in S*, as there might be sequences 
beginning with H, but not consisting entirely of H balls.
 It will be helpful to remember this fact when analyzing the argumentation in Sect. 5.
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Indeed, if they both were true, then the formula (DB-LTP-C) would also hold, 
which is not the general case. In the next section we will see how this affects Lewis’ 
reasoning.

5  Lewis’ dilemma in S*

Let us examine once again the crucial steps in Lewis’ reasoning:

(6) P(A → C) = P(C∣A)42

(7) P(A → C∣B) = P(C∣AB)
(9) P(A → C∣C) = 1
(10) P(A → C∣C) = 0
(11) P(D) = P(D∣C) x P(C) + P(D∣C ) x P(C).

Under these assumptions, Lewis’ corollary is that P(C∣A) = P(C), which he con-
siders to be absurd.

A straightforward application of (7) to the conditional A → C and the condition 
¬C gives  P¬C(A → C) =  P¬C(C∣A), which is obviously 0. If we apply it to our condi-
tional ¬W → G, we obtain the result  P¬G(¬W → G) = 0. But we have shown in Sect. 2 
that if we assume.

PDB
¬G(¬W → G) = 0;

PDB
G(¬W → G) = 1

then “integrating” this information in the form suggested by formula (11) leads to 
wrong results: in our example we get  PDB(¬W → G) = 0.4, which is not DB-resistant 
(and which shows that our beliefs are inconsistent).

There seems to be tension between our findings and the assumptions on which 
Lewis’ proof is based. After having introduced the space S*, we have tools to offer a 
better description of the situation.

We think that the key to understanding the problematic steps of Lewis’ proof is 
identifying what P(A → C∣B) really means: we do not know in which probability 
space the function P is defined and which events correspond to sentences A → C and 
B. In our example, we are interested in the probability of the conditional ¬W → G 
under the condition H (and its special case when we substitute ¬G for H). The prob-
ability space S* is suited to formalizing the notion of probability of ¬W → G in a 
coherent (DB-resistant) way. So, we will analyze the possible interpretations of con-
ditionalizing the conditional ¬W → G on H within S*. Two of them are most natural:

42 To be exact, Lewis assumes that  PX(A → C) =  PX(C  | A) for any event X, on which P is conditional-
ized. This is of course a much stronger assumption than just assuming (6) with respect to the given prob-
ability measure P!
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First interpretation. Conditionalizing ¬W → G on H within S* means consider-
ing only games which are played entirely within the Heavy subspace, i.e., formally, 
sequences consisting entirely of Heavy balls. This means that we think only of 
sequences of the form (HW)n(HG) and (HW)n(HR). Similarly, conditionalizing on L 
means considering only sequences consisting entirely of Light balls.

However, in S* = (Ω*, Σ*, P*) there are not only “pure Heavy” and “pure Light” 
sequences but also mixed sequences (i.e. in which both Heavy and Light balls 
occur). Consequently, the universe Ω* is in the general case divided into three sub-
sets, which we shall denote by [Heavy], [Light], [Mixed].43 In this case, the Law of 
Total Probability in S* has the form:

P*([¬W → G]) = P*[Heavy]([ ¬W → G]) P*([Heavy]) + P*[Light]([ ¬W → G]) P*([Light])  
+ P*[Mixed]([ ¬W → G]) P*([Mixed]).

To make our reasoning analogous to Lewis’ reasoning, we substitute ¬G for H (i.e. 
[Heavy] = [non-Green]; [Light] = [Green]). In this case, when “translated” to our 
example, steps (10) and (11) have the following form:

(10-1) P*([¬W → G]|[non-Green]) = 0;
(11-1) P*([¬W → G]) = P*[non-Green]([¬W → G]) P*([non-Green]) + P*[Green]([¬W  
→ G]) P*([Green]).

(10-1) is true. Indeed, [non-Green] is the set of sequences consisting of non-
Green balls only, i.e. [non-Green] = {WnR: n ∈ ℕ }. Obviously, within this subspace 
the probability of the conditional ¬W → G is 0.

But Ω* is not the union of the two subsets [Green] and [non-Green]. Indeed,

[Green] = {G};
[non-Green] = {WnR: n ∈ ℕ};
which means that we leave out all sequences of the form:
{WnG: n > 0}.

For this reason, (11-1) is not a proper application of the Law of Total Probability. 
The term P*[Mixed]([¬W → G]) P*([Mixed]) is missing!

The only way to save both the assumptions (10-1) and (11-1) in Lewis’ proof is to 
assume that the division of Ω* into [Green] and [non-Green] is a genuine division. 
This means that there are no mixed sequences in the universe Ω*, i.e. no sequences 
of the form  WnG. But this is only possible when there are no White balls, which 
makes the conditional ¬W → G uninteresting.44

43 Importantly, apart from trivial cases, [Heavy] is not the set [H] in space S* specified in Sect.  4.3. 
Similarly [Light] is not [L] as [H] and [L] are the sets of sequences beginning with a Heavy/Light ball.
44 All balls are non-White. So, ¬W is true of all balls, and the conditional ¬W → G really means The ball 
is Green.
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Second interpretation. The second possibility is that conditionalizing on H within 
S* means considering only sequences beginning with a Heavy ball. Similarly, con-
ditionalizing on L within S* means considering only sequences beginning with a 
Light ball. Indeed, this is the interpretation we used in Sect. 4.3.

In this case, we have a genuine division of Ω* into two disjointed subsets [H] and 
[L], and the Law of Total Probability holds:

(LTP)* P*([¬W → G]) = P*[H]([¬W → G]) P*([H]) + P*[L]([¬W → G]) P*([L]).

Under this interpretation, after substituting ¬G for H in our example, steps (10) 
and (11) will take the form:

(10-2) P*([¬W → G]|[¬G]) = 0;
(11-2) P*([¬W → G]) = P*[¬G]([¬W → G]) P*([¬G]) + P*[G]([¬W → G]) P*([G]).

(11-2) is a proper application of (LTP*) (now the division of Ω* into [G] and 
[¬G] is a genuine division) but in this case (10-2) is not true. Indeed, for arbitrary H 
with positive probability:

P*([¬W → G]|[H]) = P*([¬W→G]∩[H])

P*([H])
 = pH

(pH+qH+rH )
 + rH

(pH+qH+rH )

p

(p+q)
.

As H was arbitrary, we can substitute H = ¬G. Obviously, in this case, 
pH = p¬G = P(G∧¬G) = 0: the chance of finding a ball that is both Green and non-
Green is obviously 0, so the first term pH

(pH+qH+rH )
= 0.45

However, the number rH = r¬G is the probability of finding a ball which is both 
White and non-Green, but this simply amounts to being a White ball and definitely 
need not be 0! So, the part rH

(pH+qH+rH )

p

(p+q)
 need not be 0 at all. This means that:

P*([¬W → G]|[¬G]) = rH

(pH+qH+rH )

p

(p+q)
 ≠ 0.46

We can only save the equality (10-2) by assuming that rH = 0, i.e. that there are 
no White balls, i.e. that Ω* = {G,R}. And, as before, this makes the conditional 
¬W → G not interesting.

45 In our toy example with 100W, 80G, 20R, we have p¬G = 0; q¬G = 0.1; r¬G = 0.4; pG = 0.5; qG = 0; 
rG = 0, which gives the probability P*([¬W → G]|[¬G]) = 0.64.
46 Apart from the computations in S* = (Ω*, Σ*, P*), there is a simple intuitive argument that 
P*([¬W → G]|[¬G]) need not be 0: this corresponds to the chance of winning the ¬W → G game under 
the assumption that the first ball was not Green. It is obviously not zero: the first ball might be White 
and of course you can still win the game!
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We have discussed two possible interpretations of conditionalizing the condi-
tional ¬W → G on ¬G within the space S*.47 We have also shown that in each of 
these interpretations, at least one of Lewis’ assumptions is not satisfied: either the 
formula (11) fails (as the division in question is not a genuine division of Ω*), or 
assumption (10) fails (as the probability in question is not equal 0). The only way 
to save the proof is by assuming, that there are no White balls in the urn—which 
makes the conditional uninteresting. Anyway, the triviality proof falls apart.

Finally, observe that in our argumentation there is no need to use nested condition-
als, as all expressions of the form P*([A → B]|[C]) (for instance P*([¬W → G]|[¬G])) 
have a mathematically proper interpretation in the probability space. This means in 
particular, that conditionalization of the sentence A → B by C (with A, B, C Boolean) 
can be mathematically captured in a direct way, without the need to examine the 
right-nested conditional C → (A → B). Therefore, as no nested conditionals are used, 
the problem of the status of the (probabilistic) Import–Export Principle (IE) does 
not arise in the direct form at all.

However, it is natural to think of right-nested conditionals in this context, as 
there are interesting connections between PCCP and IE in the context of triviality 
results. Fitelson (2015) gives an overview of a general form of the triviality results 
and points out that triviality results can be justified within a rather uncontroversial 
(background) theory with a form of Import–Export principle added.

The probabilistic Import–Export Principle in the general case need not hold 
in the Bernoulli-Stalnaker model. However, it holds in the causal random vari-
able model in Kaufmann (2009), and in McGee’s model: indeed, McGee assumes 
the probabilistic version of the Import–Export Principle as axiom (C7) (McGee, 
1989, p. 504).48 An important paper discussing the status of IE is (McGee, 1985) 
(the Reagan-Anderson examples), a vivid discussion followed, see for instance 
Arlo-Costa (2001) or the recent Mandelkern (2020a) (where the Import–Export 

47 To achieve this aim, we examined two partitions in S*:
 Partition A: S* is divided into [H] and [L], i.e.: (1) [H] = sequences beginning with H; (2) 

[L] = sequences beginning with L.
 Partition B: S* is divided into [Heavy], [Light], [Mixed], i.e.: (1) [Heavy] = sequences consisting 

entirely of Heavy balls; (2) [Light] = sequences consisting entirely of Light balls; (3) [Mixed] = mixed 
sequences.

 Depending on whether we choose Partition A or Partition B, The Law of Total Probability will have 
different forms. After substituting ¬G for H, we could see, that in either of these two forms, at least one 
of Lewis’ assumptions is violated.
48 The formula for P(A → (B → C)) in the Bernoulli-Stalnaker model is P*(A → (B → C)) = P(BC|A) + P(
¬B|A)P(CB). So it is very different from McGee’s formula, i.e.  PIE*(A → (B → C)) = P(C|AB) (they coin-
cide only in special cases). The Bernoulli-Stalnaker formula gives counterintuitive results in some cases, 
consider the sentence If the match is wet, then if you strike it, it will light (Kaufmann, 2005). For this 
particular sentence, the IE Principle seems natural. However, there are also many examples in which the 
Import–Export principle is highly counterintuitive, such examples are presented for instance in Mandelk-
ern (2020a, b). Khoo and Mandelkern (2019) discuss the problem in the context of natural languages and 
argue that natural language intuitions in favor of IE are really intuitions in favor of a related, but slightly 
different principle (which they call Sentential Import–Export, and which is expressed in terms of identity 
of sets of possible worlds modeling propositions). So, there is no reason to accept the IE principle as a 
general rule. We are grateful to the anonymous referee for the recommendation to discuss the IE princi-
ple in this context and also for the bibliographic suggestions.
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principle in the context of the interpretation of the conjunction is discussed) or 
Mandelkern (2020b) (the paper discusses the role of the Import–Export principle 
in the context of the law of identity, identifying in particular diverging intuitions 
concerning IE for indicative and subjunctive condidionals). These papers focus 
on the Import–Export Principle as a logical rule, not on the probabilistic version.

Nevertheless, our reasoning is conducted in a way which does not involve 
nested conditionals, which makes it independent form the problem of the status 
of IE.

6  Summary

1. The diachronic Dutch Book makes it possible to show that if the agents want to 
extend their system of beliefs (originally modeled within the sample space S = (Ω, 
Σ, P)) so as to include also the conditional A → C, then the only DB-resistant 
extension is by setting  PDB(A → C) = P(C|A), i.e. in accordance with PCCP. (At 
this stage we do not have a model or semantics for the conditional—but have 
identified the proper value of the confidence level.)

2. We are confronted with Lewis’ triviality results, which purport to show that math-
ematical arguments against PCCP can be formulated. Or, put differently: that formu-
lating a mathematical model for probabilities of conditionals leads to absurd results.

3. The straightforward generalization of the Law of Total Probability (LTP) to con-
ditionals has the form (DB-LTP-C) and is an exact counterpart of Lewis’ formula 
(11) from his proof. But this formula does not work: after we divide the sample 
space into two disjointed events, H, L, and use the proper values of  PDB

H(A → C); 
 PDB

L(A → C); P(H) and P(L), we obtain diverse wrong results, depending on the 
division H/L. This is important as Lewis’ proof uses conditionalization on C and 
¬C, which leads to the wrong value of  PDB(A → C). The proper formula has the form 
(DB-LTP-C*). We have justified this conclusion using only a Dutch Book analysis 
without even mentioning any formally defined probability space.

4. For a given probability sample space S = (Ω, Σ, P) and the given conditional 
A → C, we have constructed the probability space S* = (Ω*, Σ*, P*), which is nat-
urally associated with S = (Ω, Σ, P), such that:

a. The conditional A → C is interpreted as an event [A → C] ⊆ Ω*;
b. Ω* naturally corresponds to possible scenarios that set the truth value of the 

conditional A → C;
c. The probabilities of the Boolean sentences from the sample space S = (Ω, Σ, P) 

are preserved in S* = (Ω*, Σ*, P*).
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We have shown that P*([A → C]) =  PDB(A → C). This means that we can treat the 
credence assignments as a mathematically well-defined object. We can in particular 
analyze the assumptions of Lewis’ Triviality proof within S* = (Ω*, Σ*, P*).49

5. Lewis’ argument against PCCP rests on two crucial assumptions: (i) 
 P¬C(A → C) = 0; (ii) a version of the Law of Total Probability. It turns out that—
apart from very special situations—at most one of them can be true.

6. We have shown that under one of the possible interpretations of the term 
P(A → C∣B), the Law of Total Probability does not have Lewis’ form

P(A → C) = P(A → C∣C) P(C) + P(A → C∣¬C) P(¬C)

so assumption (11) in Lewis’ proof does not hold.

7. We have shown that under the second interpretation (which is more natural in the 
space S* = (Ω*,Σ*,P*)), the Law of Total Probability has the form

(LTP)* P*([¬W → G]) = P*[G]([¬W → G]) P*([G]) + P*[¬G]([¬W → G]) P*([¬G])

which means that Lewis’ assumption (11) holds. However, in this case it is not 
true that P*[¬G]([¬W → G]) = 0. This means that Lewis’ crucial assumption (10), i.e. 
P(A → C∣¬C) = 0, does not hold.

8. Under both discussed interpretations of conditionalizing the conditional A → C 
on ¬C, P(A → C∣¬C) has both properties which are crucial for Lewis’ proof only if 
we assume that the probability space Ω is trivial, i.e. when Ω = {A,C}. This means, 
that Lewis’ proof does not prove this fact, but rather presupposes it—therefore it is 
circular.

The presented analysis of Lewis’ Triviality proofs invoking the probability space S* 
does not directly use Dutch Book. However, Dutch Book reasoning has two impor-
tant roles to play in our argumentation: (1) it gives a simple, pedestrian argument for 
PCCP; (2) it shows that using Lewis’ version of LTP (i.e. (DB-LTP-C), which cor-
responds directly to assumption (11) in Lewis’ reasoning) will lead to wrong results 
(and losing against the Bookmaker). This shows that something is wrong with this 
formula—and the mathematical explanation is provided by the probabilistic model. 

49 The idea of “lifting” the sample space S to a new “S*-like” space is not new: indeed, van Fraas-
sen’s idea of the Bernoulli-Stalnaker space is based on such a sequential construction [see van Fraas-
sen (1976), Kaufmann (2004, 2005, 2009. 2015)]. In Bacon (2015) a mathematically very interesting 
construction of a similar kind is presented. (However, it uses sequences of worlds of length α < ω1, i.e. 
transfinite sequences of any countable length). Wójtowicz and Wójtowicz (2019) present a simpler model 
based on the theory of Markov chains, in which all the sequences are finite—this is essentially the model 
presented in this paper. In these models, PCCP (in the suitable formal formulation) holds. In Wójtowicz 
and Wójtowicz (2021) a model for right-nested conditionals is presented.
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In this sense DB shows what boundary conditions have to be met in the model for 
probabilities of conditionals.

Appendix: Dutch Book for the conditional A → C

Consider the conditional A → C. We assume that the Boolean beliefs of the agent are 
modeled within a sample probability space S = (Ω, Σ, P), and that P(A) > 0. This is 
sufficient to show that the DB-resistant credence of A → C is P(C|A). Assume that:

P(AC) = p;
P(A¬C) = q;

(we write A¬C instead of A∧¬C). Obviously:

P(A) = P(AC) + P(A¬C) = p + q.

Also, by definition:

P(C|A) = P(AC)/P(A) = p

p+q

P(¬C|A) = P(A¬C)/P(A) = q

p+q

Set r = 1 − P(A) = 1 − (p + q).

Assume that the agent believes that the credence of A → C is p* > p

p+q
 (i.e. the agent 

overestimates the credence). The diachronic Dutch Book is defined as follows:

1. The bookmaker buys a Bet(¬A) on ¬A for r.
2. The bookmaker sells N bets Bet(A → C) on A → C for p*. (The number N is speci-

fied later).
3. The event in question occurs (for instance a ball is drawn).
4. If ¬A is true than the agent loses Bet(¬A) and therefore loses 1 − r. Bet(A → C) 

has been cancelled. This is the end of the DB-game, and the final outcome is the 
agent’s loss 1 − r.

5. If A is true then (before it is checked whether C is true) the bookmaker sells N 
bets on ¬C (i.e. Bet(¬C)) for q

p+q
 each.

6. Now it is checked whether C or ¬C is true.
7. If C is true, than the agent

a. wins Bet(A → C) and therefore wins N(1 − p*)
b. loses Bet(¬C) and therefore loses N p

p+q
.

8. If ¬C is true than the agent

a. loses Bet(A → C) and therefore loses Np*
b. wins Bet(¬C) and therefore wins N q

p+q
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The agent’s wins and losses in these three cases are summarized in the table (which 
corresponds to the table for our example in Sect. 1.2):

Bet(¬A) Bet(A → C) Bet(¬C) The total outcome

¬A − (1 − r) 0
(the bet was cancelled)

0
(the bet has not been 

proposed at all)

− (1 − r)

AC r N(1 − p*) − N q

p+q
r + N(1 − p* − q

p+q
)

A¬C r − Np*  + N p

p+q
r + N( p

p+q
 − p*)

Obviously, − (1 − r) < 0, so if ¬A occurs (and the Bet(A → C) is cancelled) the 
agent loses.

Of course 1 − q

p+q
=

p

p+q
 . This means, that the outcomes in the cases AC and A¬C 

are equal, i.e.:
r + N(1 − p* − q

p+q
) = r + N( p

p+q
 − p*).

N should be a number big enough to make these outcomes negative, i.e. such that 
r + N( p

p+q
 − p*) < 0.50

This is true, if r < N(p* − p

p+q
 ), i.e. if N > r

p∗−
p

p+q

.

As the agent is willing to buy/sell an arbitrary number N of bets considered to be 
fair, the bookmaker can construct a Dutch Book.

For the case p* < p

p+q
 (i.e. the agent underestimates the credence of the condi-

tional A → C) the construction is symmetrical.
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