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Abstract
Theories of truth approximation in terms of truthlikeness (or verisimilitude) almost 
always deal with (non-probabilistically) approaching deterministic truths, either 
actual or nomic. This paper deals first with approaching a probabilistic nomic truth, 
viz. a true probability distribution. It assumes a multinomial probabilistic context, 
hence with a lawlike true, but usually unknown, probability distribution. We will 
first show that this true multinomial distribution can be approached by Carnapian 
inductive probabilities. Next we will deal with the corresponding deterministic 
nomic truth, that is, the set of conceptually possible outcomes with a positive true 
probability. We will introduce Hintikkian inductive probabilities, based on a prior 
distribution over the relevant deterministic nomic theories and on conditional Car-
napian inductive probabilities, and first show that they enable again probabilistic 
approximation of the true distribution. Finally, we will show, in terms of a kind of 
success theorem, based on Niiniluoto’s estimated distance from the truth, in what 
sense Hintikkian inductive probabilities enable the probabilistic approximation of 
the relevant deterministic nomic truth. In sum, the (realist) truth approximation per-
spective on Carnapian and Hintikkian inductive probabilities leads to the unification 
of the inductive probability field and the field of truth approximation.
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1 Introduction

Theories of truth approximation in terms of truthlikeness (or verisimilitude) almost 
always deal with (non-probabilistically) approaching deterministic truths, either 
actual or nomic, and have a Popperian background. E.g. Graham Oddie’s Likeness 
to truth (1986) and Ilkka Niiniluoto’s Truthlikeness (1987) focus on deterministic 
actual truths. My own From Instrumentalism to Constructive Realism (Kuipers, 
2000) and Nomic truth approximation revisited (Kuipers, 2019) deal almost exclu-
sively with (qualitatively) approaching deterministic nomic truths, based on the 
hypothetico-deductive method.

This paper deals first with approaching a probabilistic nomic truth, viz. a true 
probability distribution. It assumes a multinomial probabilistic context, hence with 
a lawlike true, but usually unknown, distribution. Approaching this true multinomial 
distribution can naturally be based on Carnapian inductive logic or inductive prob-
ability theory (Kuipers, 1978). Assume e.g. random sampling with replacement in 
an urn with colored balls. The primary problem of truthlikeness, or verisimilitude, 
is the logical problem of finding an optimal definition. In the present context this 
amounts to an optimal definition of the distance between any (multinomial) prob-
ability distribution and the, presumably unknown, true distribution. There are some 
plausible standard measures. However, the epistemic problem of verisimilitude is at 
least as interesting: what is a plausible distribution to start with, and how to update it 
in the light of empirical evidence such that convergence to the true distribution, that 
is, truth approximation, takes place. It will be shown that Carnap-systems, starting 
from equal probabilities, converge in an inductive probabilistic way to the corre-
sponding true probabilities, i.e. the true multinomial distribution (or the probabilis-
tic nomic truth).

Next we will introduce Hintikkian inductive probabilities, based on a prior dis-
tribution over the relevant deterministic nomic theories (a kind of constituents) and 
on conditional Carnapian inductive probabilities, and show that they enable again 
probabilistic approximation of the true multinomial distribution. Hintikkian systems 
add to this the inductive probabilistic convergence to the true constituent, i.e., the 
deterministic nomic truth about which conceptual possibilities are nomically pos-
sible, here specified as those which have a positive true probability. However, on 
second thoughts it is problematic to call this a genuine form of truth approximation. 
It turns out to be more plausible to take into account Niiniluoto’s notion of estimated 
distance to the truth, which can be based on the Hintikkian probabilities. Hence, if 
applied in the random sampling context, both Carnapian and Hintikkian types of 
systems can be reconstructed as inductively approaching a probabilistic nomic truth 
and, in the Hintikka-case, in addition as inductively approaching a deterministic 
nomic truth in terms of a decreasing estimated distance from the truth.

Some more background may be useful. The focus in this paper is, like in Kuipers 
(2000, 2019), on nomic truths, that is, truths dealing with which conceptual pos-
sibilities are nomically, e.g. physically or biologically, possible and which ones are 
not, the nomic (im-)possibilities, for short. A deterministic nomic truth just states 
which conceptual possibilities are nomically possible. A probabilistic nomic truth 
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is in fact more detailed. It states the objective probabilities (if applicable) of the 
conceptual possibilities, non-zero for the nomic possibilities and zero for the nomic 
impossibilities. Objective probabilities are conceived of as objective dispositions 
or tendencies of a device to generate outcomes of which the relative frequencies 
have limits corresponding to these objective probability values. (Note that we do 
not deal with the logical possibility of nomic possibilities with zero probability.) In 
sum, nomic truths describe lawlike behavior of some kind or another. Since we will 
exclusively deal with nomic truths, deterministic or probabilistic, we will not always 
insert ‘nomic’ where it would be appropriate.

Now there are at least three options for nomic truth approximation:

Option 1. Non-probabilistically approaching a deterministic nomic truth.
Option 2. Probabilistically approaching a probabilistic nomic truth.
Option 3. Probabilistically approaching a deterministic nomic truth.

As suggested before, Option 1 has been the primary focus of research explicitly 
dealing with truth approximation. As reflected in the title, this paper deals primarily 
with Options 2 and 3, using inductive probabilities, but we will need some aspects 
of Option 1, in the rest of this introduction and in Sects. 4 and 6. For the logically 
possible fourth option, i.e. non-probabilistically approaching a probabilistic nomic 
truth, we see no meaningful interpretation.

As far as Kuipers (2000, 2019) are concerned, Option 1 deals primarily with 
qualitative (basic, refined, and stratified) ways of approximation of a determinis-
tic nomic truth. A consequence of the basic definition of closer to the truth in this 
approach will play a recurrent role in this paper. The definition itself is given in 
terms of sets of conceptual possibilities (X, Y), and amounts to a (set-theoretically) 
decreasing symmetric difference with the set T of nomic possibilities:

It is important to note that in the context of nomic deterministic truth approxima-
tion, theories X and Y amount to the (maximal) claims X = T and Y = T, respectively. 
Of course, these claims are mutually incompatible. Following the terminology of 
Niiniluoto (1987), the definition is restricted to complete answers to the cognitive 
problem which subset of conceptual possibilities corresponds to the true one, i.e. T. 
Hence, in the case that for example Y is a subset of X, the claim of Y does not entail 
that of X, as one might think, the two claims are incompatible.12

Y is Δ−closer to T(= set of nomic possibilities)than X iff YΔT ⊂ XΔT

1 In Kuipers (2019) we deal with incomplete answers by introducing ‘two-sided’ theories.
2 To be sure, the definition of ‘Δ-closer to’ enables a variant of the so-called ‘child’s play objection’ 
(Oddie, 2016). It amounts to the case that if we know that X ∩ T = � then it is easy to come Δ-closer 
to the truth, viz. by taking any subset Y of X, even though the claim of Y is not entailed by that of X. 
However, knowing that X ∩ T = � is in the context of nomic truth approximation quite a strong and not a 
realistic assumption, for just one counterexample, leading to T − X = � , is not at all enough. This is quite 
different from the situation in case of factual truth approximation, where we assume that T = {t}, with t as 
the actual world t. Here, coming to know a false consequence of X and hence t ∉ X it is enough to come 
Δ-closer to the truth by taking a subset of X.
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Together with a corresponding definition of ‘more successful’ it is possible to 
prove the crucial (basic) success theorem. It states that a theory which is Δ-closer to 
the nomic truth than another is always at least as successful and in fact, under some 
plausible conditions, more successful in the long run. The idea of something like a 
success theorem in other cases will play a guiding role in the paper.

In Sect.  2 we will introduce, for a ‘multinomial context’, the true multinomial 
distribution (the probabilistic nomic truth) and candidate probability distributions 
(probabilistic nomic theories) for approaching it (Option 2), and prove a restricted 
success theorem. Section 3 studies the extent to which the true multinomial distribu-
tion can be approached by Carnapian inductive probabilities. Section 4 deals with 
the basics of deterministic nomic truth and deterministic nomic theories approach-
ing it (Option 1). In Sect. 5 we introduce Hintikkian inductive probabilities, based 
on a prior distribution over the relevant deterministic theories and conditional Car-
napian inductive probabilities, enabling again probabilistic approximation of the 
true multinomial distribution (Option 2). In Sect.  6 we show, based on a kind of 
success theorem, in what sense Hintikkian inductive probabilities enable the proba-
bilistic approximation of a deterministic nomic truth (Option 3), viz. in terms of 
Niiniluoto’s estimated distance from the truth. Section 7 presents some concluding 
remarks.

Carnap- and Hintikka-systems of inductive probabilities were the crucial focus 
of my dissertation (Kuipers, 1978). After more than 40 years, I begin to understand 
that it can best be seen in light of approaching probabilistic nomic truths, that is, 
of approaching the relevant true probability distribution. This, evidently, realist per-
spective3 leads to the unification of the two research fields, that is, the inductive 
probability field and the field of truth approximation. As a matter of fact, I consider 
all approaches to a true probability distribution, and therefore all (perhaps frequency 
interpreted) inferential statistics also to be approaches to the truth.

To be sure, much of what is presented in this paper is not new. The goal of the 
paper is a systematic presentation of what systems of inductive probability of Car-
napian and Hintikkian style can offer from the perspective of probabilistic truth 
approximation, in particular the epistemological problem. This leads to the search 
for relevant success theorems: does ‘closer to the truth’ entail ‘more successful-
ness’? In addition, besides presenting some well-known evidence-based logical (or 
internal or ‘with certainty’) conditional, stepwise and limit results, we will study, 
assuming an underlying multinomial experiment, the objective (or external and, a 
number of times, ‘with probability 1’) conditional, stepwise and limit behavior of 
such systems. In both cases, some well-known theorems of arithmetic and probabil-
ity theory will be used.

Both types of results show that it is perfectly possible to combine the inductive 
probabilistic and the truth approximation perspective, both in the logical and the 
objective sense. This is contrary to what was (and still is?) believed in empiricist, 

3 The realist perspective is here understood in the sense of ‘constructive realism’ (Kuipers, 2000). Con-
cepts, e.g. as represented by Q-predicates, see below, are at least partly man-made and hence the result-
ing truths do not only depend on the way the world is but are also conceptually relative.
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Carnapian circles and realist, Popperian circles. In fact this paper extends the claim 
in Kuipers (2000) that in the context of deterministic theories the inductive instru-
mentalist methodology is perfectly compatible with the realist truth approximation 
perspective. In both cases holds that even ‘inductivists’ who are reluctant to sub-
scribe to the truth approximation perspective are in practice approaching the truth in 
certain contexts, that is, whether they like it or not.

We conclude this section with some clarifications regarding the specific relation 
of this paper to other work.

There are many ways how to estimate the bias of a multinomial experiment, for 
example random sampling with replacement, a wheel of fortune or roulette, statisti-
cally, e.g. by (Bayesian) Dirichlet distributions or frequentist means. It is plausible 
that these statistical methods can be rephrased and further articulated in terms of 
inductive probabilities and (increasing) verisimilitude. For example, Festa (1993) 
showed the equivalence of certain Dirichlet distributions and (generalized) Car-
nap-systems and studied optimization of the latter from the truth approximation 
perspective.

As stated before, here we restrict our attention to the study of the inductive meth-
ods of Carnap and Hintikka from the perspective of truth approximation. Whereas 
standard statistical methods seem to go straight to their target, whether or not called 
‘the truth’, the two inductive methods were designed to learn, with a self-chosen 
speed, from experience in a systematic and conceptually transparent way, without 
(Carnap) or with (Hintikka) some objective target, the truth, in mind. Whereas Car-
nap focused on one-step prediction probabilities, Hintikka focused on, using Car-
nap-systems, probabilities for generalizations. The surplus value of such inductive 
systems in particular when seen in the truth approximation perspective is that they 
articulate leading intuitions of layman and scientists, in particular other than statisti-
cians, and hence they enable conceptually transparent communication.

As said, Roberto Festa (1993, Part III) studied already (generalized) Carnap-
systems from the perspective of truth approximation, but his focus was not on the 
(logical or objective) limit behavior, but on the logical and epistemic ‘problem op 
optimality’. That is, the logically and epistemically optimal choices of parameters, 
the former in view of the objective probabilities [in fact a generalization of Carnap 
(1952, Section 2)] and the latter in view of the background knowledge.

As is well known, Hintikka (1966) introduced stratified systems of inductive 
probability, based on Carnap-systems, leaving room for generalizations, and he 
assumed a particular prior distribution over generalizations. He focused on, among 
other things, the logical limit behavior of such systems, leading to ‘with certainty 
results’: like Carnap-systems, the ‘special values’ converge to the relative frequency, 
and the probability of the strongest generalization compatible with the evidence con-
verges to 1, assuming that this strongest generalization remains constant.

In his monumental book on truthlikeness, Niiniluoto (1987) focused, regarding 
the epistemic problem of verisimilitude, primarily on the momentary ‘evidence-
based’ probabilistic estimation of the distance of a deterministic theory from the 
deterministic truth, based on a quantitative distance measure between theories. 
However, in Sect. 9.5 on the estimation problem for (deterministic, monadic) gener-
alizations, where the relevant truth is a deterministic generalization, he includes also 
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the logical (with certainty) limit behavior of the estimated distance from the truth, 
along the lines of Hintikka.

As suggested before, besides incorporating ‘with certainty’ results, we concen-
trate on the objective conditional, stepwise and limit behavior of such systems, fre-
quently, not ‘with certainty’, but ‘with probability 1’.

As before indicated, we will use the phrases ‘the probabilistic (nomic) truth’ and 
‘the true (multinomial) (probability) distribution’ interchangeably.

2  The probabilistic nomic truth and probabilistic nomic theories 
approaching it

This section deals with Option 2, probabilistically approaching a probabilistic nomic 
truth. In the whole paper we assume a specific context of application: a multino-
mial context, that is, an experimental device enabling successive experiments with a 
finite set of conceptually possible, observable, outcomes, where the successive out-
comes of the experiment are probabilistically independent and have a fixed prob-
ability. Random sampling with replacement in an urn with colored balls is a typical 
example of a multinomial context. Think also of a possibly biased wheel of fortune 
or roulette. It is important to note that in this paper all possible outcomes are sup-
posed to be observable. Our theorems are not claimed to apply to theoretical, non-
observable, outcomes.

We will use the following terminology and notation:
K is the set or universe4 of a finite number k (≥ 2) of conceptually possible (ele-

mentary) outcomes: K =
{
Q1, Q2,… , Qk

}
 . The ‘Q-predicates’ are mutually exclu-

sive and together exhaustive. The probabilistic nomic (pn-)truth is the true probabil-
ity distribution: t =

{
t1, t2,… tk

}
, 0 ≤ ti ≤ 1,Σti = 1 . A (probabilistic nomic) 

pn-theory is any k-tuple x =
{
x1, x2,… xk

}
 , such that 0 ≤ xi < 1, i.e. x ∈ [0, 1)k , 

and Σxi = 1 , with the claim x = t . The set of conceptually possible pn-theories is 
F =df

�
x
���x ∈ [0, 1)k,

∑
xi = 1

�
 . Note that the claim of a pn-theory is a complete 

answer to the cognitive problem: “Which distribution is the true one?” Of course, 
besides the true one, all other pn-theories are false, however close they may be to the 
true one. Moreover, they are mutually incompatible and, in a generalized sense, of 
equal logical strength.

As a matter of fact, all results to be reported are dealing with the limit behav-
ior of |xi – ti|, or some variant, for any single Qi, where xi is based on the avail-
able prior knowledge and evidence. So, we do not really need any overall distance 
function between distributions. In the literature several sophisticated distance 
functions are discussed. However, the most simple and plausible distance func-
tions between pn-theories fitting to our primary results are the city-block distance 
d1(x, y) = dfΣ

||xi − yi
|| and the Euclidean distance d2(x, y) =df (Σ

(
xi − yi

)2
)1∕2 . Both 

lead to plausible definitions of “pn-theory y is closera to the pn-truth t than pn-theory 

4 In probability theory this set is usually called the sample space.
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x ” iff da(y, t) < da(x, t) , with a = 1 or 2. An even stronger (more demanding) defini-
tion than both is “ y is closer3 to the pn-truth t than x ” iff ∀i |yi − ti| ≤|xi − ti| and ‘<’ 
holds at least once.

For quantitative evidence we will use the following notations.

• en reports the ordered outcomes of the first n experiments,
• ni(en), or simply ni, indicates the number of Qi-occurrences; note that ni is a ran-

dom variable.

We will soon turn to the updating of pn-theories, but first we will introduce one 
comparative result for two fixed pn-theories, viz. a kind of success theorem, that is, 
about the comparative limit behavior of two pn-theories to be expected due to the 
limit behavior of the corresponding relative frequency. We will use the following 
restricted definitions:

Definition y is relative to Qi closer to the pn-truth than x iff |ti − yi| <|ti − xi| or, 
equivalently: (ti − yi)2 < (ti − xi)2, i.e. a smaller distance from the true probability of 
Qi.

Definition y is relative to Qi in en more successful than x iff |ni/n − yi| <|ni/n − xi| or, 
equivalently: (ni/n − yi)2 < (ni/n − xi)2, i.e. a smaller distance from the observed rela-
tive frequency of Qi.

Theorem 1 (Restricted Expected (Probabilistic-)Success Theorem)

y is relative to Qi closer to the pn-truth than x if and only if it may be expected 
that en is such that y is relative to Qi more successful than x.

For the proof, see the “Appendix”. Note the ‘if’-side. It may seem surprising, 
for a success theorem normally is restricted to the ‘only if’-side: closer to the truth 
entails more success. See e.g. Theorem 5, below. However, Theorem 1 deals with 
‘expected success’.

Of course, there is a plausible generalization of this theorem based on the very 
strong definition of ‘closer to’, i.e. ‘closer3 to’, and a similarly strong version of 
‘more successful’, i. e. both starting with “for all Qi ….”.

3  Probabilistic nomic truth approximation by Carnapian inductive 
probabilities

This section deals with a Carnapian way of realizing Option 2 (probabilistically 
approaching a probabilistic nomic truth). As before: given is a device enabling 
successive experiments where the successive outcomes of the experiment are 
probabilistically independent and have a fixed probability. Hence, a multinomial 
device with nomological or nomic behavior, i.e. with a set K of a finite number 
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k(≥ 2) of possible (observable) outcomes Q1, Q2, … Qk, with true probabilities 
t1, t2,… tk(0 ≤ ti ≤ 1,Σti = 1) . Recall that en reports the ordered outcomes of the 
first n experiments, and ni the number of Qi-occurrences. The Carnapian ‘charac-
teristic value’ or ‘prediction function’ pC(Qi|en), i.e. the probability that Qi will be 
the outcome of the next experiment, i.e. after en, is defined as the weighted mean of 
the relative frequency (ni/n) and the logical or initial probability (1/k), i.e. the initial 
probabilistic nomic (pn-)theory:

pC
(
Qi|en

)
=

n

n+𝜆

ni

n
+

𝜆

n+𝜆

1

k
=

ni+𝜆∕k

n+𝜆
, with real - valued 𝜆, 0 < 𝜆 < ∞(1C) 

Informally we may say that this Carnapian value is an inductive probability in the 
sense that it will gradually approach the true (nomic) probability ti of Qi, since the 
relative frequency (ni/n) will do so and its weight (n/(n + λ)) will approach 1 at the 
cost of the weight of the initial probability (1/k). The smaller the parameter λ the 
faster this convergence will take place. In sum: this ‘Carnap-system’ is here a per-
fect means of approaching (k) ‘probabilistic nomic truths’, by gradually learning 
from experience in a probabilistic way, i.e. Option 2. Note that just taking the rela-
tive frequency, the so-called straight rule, is also a form of learning from experience, 
a jumping form. However, apart from technical probability problems, you then 
exclude every conceptual possibility you have not yet observed, by assigning zero 
probability, which is not very open minded, to say the least.

The informal claim that the prediction function (1C) goes to the pn-truth ti when 
n goes to ∞, still needs a precise definition and corresponding theorem. Let Probt 
indicate the probability according to the probabilistic truth t =df< t1, t2,… tk >.

Theorem 2 Carnap-systems converge to the probabilistic nomic truth

Informally, the Carnapian updating of the initial pn-theory approaches the pn-
truth with probability 1.

Formally:

Theorem 2 is, in more or less detail, well-known in the literature. For the proof, 
based on the strong law of large numbers, see the “Appendix”.

Although the theorem is a kind of condition sine qua non for calling Carnapian 
updating in the multinomial context truth approximation, there is a more specific 
intuition associated with truth approximation: ‘later’ Carnapian pn-theories are, as a 
rule, closer to the true probability (the pn-truth) than ‘earlier’ ones, that is, as a rule, 
there is stepwise approximation. However, this is not precisely what we can prove. 
Recall that ti is the true probability of Qi and hence the limit of ni/n as n goes to ∞. 
Let pCt(Qi|en) indicate nti+�∕k

n+�
 , to be called the Carnapian precursor of the pn-truth. 

The Carnapian precursor at time n is the probability of the next event that would be 
assigned by the ‘λ-rule’ (1C) if the observed frequency would coincide with the true 

Probt( lim
n→∞

pC
(
Qi|en

)
= ti) = 1, i.e.Probt[∀𝜀>0∃N≥0∀n≥N||pC(Qien)−ti

|| < 𝜀] = 1,

i.e.Probt

[
∀
𝜀>0∃N≥0∀n≥N

||||
ni + 𝜆∕k

n + 𝜆

− ti
|||| < 𝜀)

]
= 1
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probability. As is easy to check, the precursor trivially approaches the pn-truth step-
wise. What we can prove is (Theorem 3) that for every significance level ε > 0 and 
for sufficiently many trials the probability that ‘later’ Carnapian pn-theories deviate 
ε-significantly from the Carnapian precursor of the pn-truth is smaller than that this 
happens for ‘earlier’ ones. We will call this the ‘decreasing significant 
deviation’-theorem.

We do not exclude that it is even possible to prove that in the long run there is, 
at least more often than not, stepwise approximation to the precursor of the pn-truth 
and, as said already, this precursor goes stepwise to the pn-truth. If it is possible to 
prove the suggested conjecture, we might be inclined to conclude, by asymptotic 
reasoning, that in the long run ‘later’ Carnapian pn-theories are at least more often 
than not closer to the pn-truth than ‘earlier’ ones, and that the failures become fewer 
as n increases. However, being closer to the corresponding precursor does not guar-
antee being closer to the true value, even though that precursor is closer to the true 
value.5

Theorem  3 Decreasing significant deviation. For every significance level ε > 0 
holds, for sufficiently large n, that the probability that the nth Carnapian prediction 
deviates from the nth Carnapian pn-truth-precursor ε-significantly is larger than the 
probability that the (n + 1)th Carnapian prediction deviates ε-significantly from the 
(n + 1)th Carnapian pn-truth-precursor.

where pC
(
Qi|en

)
=

n

n+�

ni

n
+

�

n+�

1

k
=

ni+�∕k

n+�
, the Carnapian value, and  

pCt
(
Qi|en

)
=

nti+�∕k

n+�
 , the Carnapian precursor of the pn-truth, and ti is the limit of 

ni/n as n tends to infinity (it is assumed that this limit exists, and that ni/n has a bino-
mial distribution with mean ti and variance ti(1 − ti)).

An easy to prove consequence is that this not only holds for the next experiment 
but even more so for a number of new experiments:

Corollary 3.1 For every significance level ε > 0 and m > 0 holds, for sufficiently 
large n, that the probability that the nth Carnapian prediction deviates from the nth 
Carnapian pn-truth-precursor ε-significantly is larger than the probability that the 
(n + m)th Carnapian prediction deviates ε-significantly from the (n + m)th Carna-
pian pn-truth-precursor.

∀
𝜀>0∃N≥1∀n≥NProbt(||pC(Qi

||en+1 )−pCt(Qi
||en+1 )|| > 𝜀) < Probt(

||pC(Qi
||en )−pCt(Qi

||en )|| > 𝜀)

∀𝜀 > 0 ∃N ≥ 1 ∀n ≥ N ∀m ≥ 1 ∶

Probt(
||pC(Qi

||en+m)−pCt(Qi|en+m)| > 𝜀) < Probt
(||pC(Qi

||en
)
−pCt

(
Qi|en

)| > 𝜀)

5 For a counterexample to the suggested conjecture see the “Appendix”, between the proofs of Theo-
rem 2 and 3.
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There is even a lower bound (lb) to the relevant difference in Theorem 3, which 
makes (the decreasing significant deviation) Theorem 3 and Corollary 3.1 even more 
compelling.

Corollary 3.2 There is a well-defined lower bound pertaining to Theorem 3

where lbi(n) is a positive lower bound, depending on n, whose value is stated in the 
proof.

For the proofs of Theorem 3 and the corollaries, see the “Appendix”.
One might think that a stronger form of Theorem  3 must be provable, that is, 

that there is always stepwise approximation of the true probability, but the proof of 
Theorem 3 makes clear that this stronger claim does not hold. However, in terms of 
expected values the intuition is perfectly true.

Theorem  4 In a Carnap-system the expected value of the distance |pC(Qi|en) − ti| 
goes stepwise to 0 (or is and remains 0 when ti is 1/k).

For the proof, see the “Appendix”. Direct consequences of this theorem are 
that the expected value of the city-block (total) distance Σ|pC(Qi|en) −  ti| from the 
truth and the expected value of the Euclidean (total) distance from the truth, i.e. 
(Σ(pC(Qi|en) −  ti)2)1/2, go also stepwise to zero.

So much for Carnap-systems illustrating Option 2: Probabilistically approaching 
a probabilistic nomic truth.

4  The deterministic nomic truth and deterministic nomic theories 
approaching it

4.1  Deterministic nomic theories, qualitative evidence, and their relation

This section deals, among other things, with Option 1, non-probabilistically 
approaching a deterministic nomic truth. In the previous sections we studied a mul-
tinomial context in terms of probabilities, the probabilistic level. We could also have 
started with the deterministic level as follows. Given is a quasi-multinomial con-
text: an experimental device enabling successive experiments with a finite set of 
conceptually possible elementary outcomes, i.e. K = {Q1, Q2,.…Qk}. Let T indicate 
the (unknown) subset of nomically (e.g. physically) possible (observable) outcomes 
(∅ ≠ T ⊆ K).

∀𝜀 > 0 ∃N ≥ 1 ∀n ≥ N ∃lbi(n) > 0

Probt−

(||pC(Qi
||en

)
−pCt

(
Qi|en

)| > 𝜀)−Probt−
(||pC(Qi

||en+1)−pCt(Qi|en+1)| > 𝜀) > lbi(n),
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A deterministic theory HV, for ∅ ≠ V ⊆ K, claims that for a specified subset V 
V = T holds.6 HV is the multinomial analogue of a so-called ‘(monadic) constituent’, 
which claims that in a given universe of objects precisely the ‘Q-predicates’ in V 
are exemplified. Deterministic theories are deterministic just because they are non-
probabilistic statements, being true or false. Of course, HT is the true determinis-
tic theory, i.e. the deterministic truth. Note that the claim V = T of theory HV is a 
complete answer to the cognitive problem: “Which conceptually possible outcomes 
have positive probability?” Hence, these theories are mutually incompatible and, in 
a generalized sense, of equal logical strength.

We define the (qualitative) Δ-distance between deterministic theo-
ries HV and HW, D(HV, HW), as the symmetric difference between V and W: 
D
(
HV ,HW

)
=df (V −W) ∪ (W − V) =df VΔW . Now it is plausible to define “HW is 

Δ-closer to the true deterministic theory T than HV” by the condition WΔT ⊂ VΔT.
Later on, in the context of Hintikka-systems, we will introduce what we call a 

‘probabilified-deterministic’ theory: a prior distribution over the relevant determin-
istic theories: for a non-empty subset V of K we then have p(HV) = p(V = T) such that 
0 ≤ p(HV) < 1 and Σp(HV) = 1.

Recall that en reports the ordered sequence of outcomes of the first n experiments. 
Let R(en) = Rn report the set of realized or exemplified outcomes in the first n experi-
ments, hence, Rn ⊆ T. Rn is called the qualitative evidence. Under plausible assump-
tions, Rn ‘increases’. More precisely, if outcomes are correctly registered, Rn neces-
sarily is a subset of T and it can only expand: Rn ⊆ Rn+m. Moreover, in a genuine 
multinomial context, Rn goes to T when n goes to ∞, see Theorem 6 below.

As is easy to check, HRn+m
 is at least as Δ-close to HT as HRn

 . Consequently, if Rn 
is a proper subset of Rn+m, HRn+m

 is relative to HRn
 a case of non-probabilistic approx-

imation of the deterministic nomic truth, i.e. Option 1. However, these theories are 
not very interesting, they are just ad hoc constructions.

Similarly, truth approximation can also be guaranteed by revision of a determinis-
tic theory in the following way (Kuipers, 2019, Ch. 15): HV∪Rn

 is at least as Δ-close 
to HT as HV, which is due to Rn being a subset of T. However, such revisions are also 
rather ad hoc.

We define “HW is relative to Rn at least as successful as HV” iff (Rn ∩ V) ⊆  
(Rn ∩ W). Note that this is equivalent to Rn − W ⊆ Rn − V, that is, all counterexamples 
of HW are counterexamples of HV. In my work on the approximation of deterministic 
(nomic) truths, notably (Kuipers, 2000, 2019), the so-called success theorem is a 
kind of backbone. The following (easy to prove) theorem is a special case7:

Theorem 5 (Deterministic Success Theorem)

If HW is Δ-closer to HT than HV then HW is always at least as successful as HV 
and (under genuine multinomial conditions) more successful in the long run.

6 In the terminology of Kuipers (2019) this is a maximal claim.
7 To be precise, it neglects evidence in terms of empirical laws induced on the basis of Rn (Kuipers, 
2000, Ch. 7; 2019, Ch. 2).
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Quantitative versions of the comparative deterministic notions ‘Δ-closer to’ and 
‘at least as successful’ can easily be given (Kuipers, 2019, Ch. 5).

The aim to prove something like Theorem 5 for probabilistically approaching a 
deterministic nomic truth, Option 3, will play a guiding role in Sect. 6.

4.2  Some relations between deterministic and probabilistic levels

To clarify the relevant notions, we will specify some of the relations between the 
deterministic and the probabilistic level. Here we assume throughout a genuine mul-
tinomial context, i.e. the successive outcomes of the experiment are probabilistically 
independent and have a fixed probability.

Recall:

We will assume that there are no nomically possible outcomes with zero prob-
ability, i.e. Qi ∈ T iff ti > 0 , and T =

{
Qi|ti > 0

}
.

Given a probabilistic theory x , then H
�(x) , with 𝜋(x) =df

{
Qi|xi > 0

}
 , is of course 

the corresponding deterministic theory. In particular, π(t) = T. Note that a determin-
istic theory corresponds to numerous probabilistic theories (it is a one-many rela-
tion). In some formal detail:

It is interesting to note that π−1 leads to a partition of F. Hence it is impossible 
that for some V and W “π−1(HW) is Δ-closer to π−1(HT) than π−1(HV)” holds, even if 
HW is Δ-closer to HT than HV.

Regarding evidence, recall:
Qualitative evidence: Rn: the set of realized or exemplified outcomes in the first n 

experiments: hence, Rn ⊆ T.
Quantitative evidence: en reports the ordered outcomes of the first n experiments, 

ni the number of Qi-occurrences.
Of course, we have the following relation: Rn = R(en) = df {Qi|ni > 0}. As already 

noted, assuming ni > 0 entails ti > 0, then R(en) goes to T when n goes to ∞, see The-
orem 6 below.

Set of deterministic theories ∶ H = {HV �� ⊂ V ⊆ K} The deterministic truth ∶ HT

Set of probabilistic theories ∶ F =df {x�x ∈ [0, 1]k,
∑

xi = 1} The probabilistic truth: t

𝜋 ∶ F → H projection function ∶ 𝜋(x
−
) =df {Qi|xi > 0}

𝜋
−1 ∶ H → ℘(F) − {�} reproduction function ∶ 𝜋

−1
(
HV

)
=df {x− ∈ F |𝜋(x

−
) = V}

where ℘(F) is the powerset of F
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5  Hintikkian updating of a probabilified deterministic theory 
and its corresponding probabilistic theory, based on conditional 
Carnapian updating

This section deals primarily with a first attempt to realize Option 3, probabilistically 
approaching a deterministic nomic truth, a problematic Hintikkian way, but in the 
same go also with a clear case of Option 2, probabilistically approaching a probabil-
istic nomic truth, the, conditional, Hintikkian way.

5.1  Hintikka‑systems

In (Kuipers, 1978) I introduced so-called Hintikka-systems of inductive probability, 
a generalization of the kind of systems that Hintikka (1966) introduced earlier.

We assume a multinomial context. We will call a probability distribution over 
the possible deterministic theories ‘Probabilified-Deterministic’ (PD-) theory. We 
start with assuming a Prior PD-theory: let V be a non-empty subset of K, then 
p(HV) = p(V = T), such that 0 ≤ p(HV) ≤ 1 and   Σp

(
HV

)
= 1 .

A plausible special kind of prior distribution is that only size matters: 
p(HV) = p(HW) = p(Hv) if |V| =|W|= v. Originally Hintikka introduced a still more 
specific prior distribution which is here not relevant.

To complete Hintikka-systems, we introduce conditional Carnapian values (con-
ditional C-values, see (1C), Sect. 3), assuming, ∅ ≠ V ⊆ K, R(en) ⊆ V and Qi ∈ V:

Note that, restricted to Qi ∈ V, they sum up to 1.
Again we have the similar special case for the parameter that only size matters: 

λV = λ|V|= λv. In this case we have at least two interesting special subcases:

1) λv = λ; this was generally assumed by Hintikka.
2) λv = vρ, 0 < ρ < ∞; this holds in so-called special H-systems8 (Kuipers, 1978).

By applying Bayes’ theorem, the combination of a prior PD-theory and con-
ditional C-values naturally leads to the corresponding Posterior PD-theory: 
p
(
HV |en

)
= p

(
HV

)
pC

(
en|HV

)
∕p

(
en
)
 , where p

�
en
�
=
∑

W⊇R(en)
p
�
HW

�
pC

�
en�HW

�
.

Here, pC(en|HV) is of course to be calculated with the product rule applied to the 
successive conditional C-values. Note that the summation of p(en) needs only to take 
supersets of R(en) into account, because pC(en|HW) is of course 0 otherwise.

The combination of the posterior PD-theory and the relevant conditional C-val-
ues, leads to a corresponding probabilistic theory: the Posterior probabilistic theory 
(of Hintikka- or H-values):pH

(
Qi|en

)
= ΣV⊇R(en)p

(
HV |en

)
pC

(
Qi|HV&en

)
.

pC(Qi|HV&en) =
ni + 𝜆V∕v

n + 𝜆V

(|V| = v;0 < 𝜆V < ∞)

8 They turn out to be equivalent to a prima facie totally different kind of so-called Niiniluoto-Hintikka-
systems.
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5.2  Limit behavior of H‑systems

In the present context, the limit behaviors of p(HV|en) and pH(Qi|en) of H-systems 
are of course the crucial questions. In the following we do not make any special case 
assumption. There are three theorems of which the third is a trivial consequence of 
the second (Theorem 7) and Theorem 2.

We begin with a general theorem that is also important for the next section.

Theorem 6 In a multinomial context all nomic possibilities are realized, with prob-
ability 1

R(en) approaches T
(
R
(
en
)
→ T

)
 (stepwise) with probability 1 for n → ∞.

Formally: Probt[limn→∞(R
(
en
)
= T)] = 1, i.e. Probt[∃N≥0∀n≥N(R

(
en
)
= T)] = 1.

The formal proof is in the “Appendix”.
This theorem is in fact well-known: in a binomial case both outcomes will, with 

probability 1, show up sooner or later because they have a positive probability. The 
trivial consequence, stated in the theorem, is that this also holds in the multinomial 
case for all nomically possible (observable) outcomes are assumed to have positive 
probability; of course, they show up one at a time (i.e. stepwise).

Note that this theorem reports a kind of objective probabilistically based approxi-
mation of the deterministic truth HT associated with T, that is, a kind of Option 3: 
(objective) probabilistic approximation of a deterministic truth.9

The next theorem is also crucial:

Theorem 7 Hintikka-systems converge to the deterministic truth with probability 1

In an H-system the posterior probability of HV gradually (but not necessarily 
stepwise) approaches 1 with probability 1 when HV is the deterministic truth, and it 
may suddenly fall down to 0 or gradually approach 0 otherwise.

Briefly, if n → ∞ then, with probability 1, p
(
HV |en

)
→ 1 if V = T, otherwise → 0 

(the latter as soon as R
(
en
)
− V ≠ �, if T − V ≠ � , or gradually, if V ⊃ T).

Formally, Probt[limn→∞ p
(
HT |en

)
= 1] = 1 , i.e. Probt[∀𝜀>0∃N≥0∀n≥N ||p(HT

||en) − 1| < 𝜀] = 1 , 
and, for V ≠ T , Probt[limn→∞ p

(
HV |en

)
= 0] = 1 , i.e. Probt[∀𝜀>0∃N≥0∀n≥Np

(
HV |en

)
< 𝜀] = 1 

(where in the latter case p(HV|en) drops to 0 as soon as R
(
en
)
− V ≠ �, if T − V ≠ � , 

or gradually, if V ⊃ T).

For the proof, see the “Appendix”. It is important to know that the proof of Theo-
rem 7 is strongly based on Theorem 6 (R(en) → T (stepwise) with probability 1 for 
n → ∞).

9 Note that, in view of Theorem 6, revision HV∗en
=df HV∪R(en)

   goes with probability 1 to HV⋃T.
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At first sight, Theorem 7 again seems to state a straightforward case of probabilis-
tic approximation of a deterministic truth, i.e. Option 3. However, in the next section 
we will start with questioning this qualification.

Theorem 8 Hintikka-systems converge to the probabilistic truth with probability 1

The posterior probability Qi approaches the true probability of Qi with probabil-
ity 1

Formally, Probt(limn→∞ pH
(
Qi|en

)
= ti) = 1 , i.e. 

.
Theorem 8 directly follows from Theorem 7 and the fact that pC(Qi|HT&en) → ti, 

which is an adapted version of Theorem  2, i.e. applied to conditional C-systems. 
Theorem  8 states a case of gradual probabilistic approximation of a probabilistic 
truth, again a clear case of realizing Option 2, the, conditional, Hintikkian way. 
We leave the question whether it is possible to prove something like (the decreas-
ing significant deviation) Theorem 3, like in the case of Carnap-systems, for further 
research.

6  Option 3: Probabilistically approaching a deterministic truth

This section deals with a second, more adequate, attempt to realize Option 3, proba-
bilistically approaching a deterministic nomic truth, to be called the Hintikka-Niini-
luoto way. Recall that Theorem 7 states: if n → ∞ then p(HV|en) → 1 if V = T, other-
wise → 0, the latter suddenly as soon as R(en) − V ≠ ∅, if T − V ≠ ∅, or gradually, if 
V ⊃ T. The cases V = T and V ⊃ T are defensibly described as cases of truth approxi-
mation. However, in the third case, when T − V ≠ ∅, p(HV|en) will sooner or later 
suddenly fall down from some positive value to 0, viz. when R(en) becomes such 
that R(en) − V ≠ ∅, that is, as soon as a counterexample to HV appears. This goes 
against the basic intuition that though the probability of a hypothesis may well be 
confronted with this fate, it is problematic from the point of view of verisimilitude. 
For the falsified hypothesis, more generally, any false hypothesis may well be close 
to the truth. This is one of the main reasons for Popper’s claim that probability and 
verisimilitude are quite different concepts.

This is also the reason why the following tentative probabilistic success theo-
rem is problematic. Let us consider conditional Carnap-systems and call HW more 
successful relative to en than HV iff pC(en|HW) > pC(en|HV). Assuming that λ is con-
stant, it is now easy to prove that if T ⊂ W ⊂ V, and hence HW is Δ-closer to HT than 
HV, then HT is always more successful than HW, and HW is always more success-
ful than HV. The crucial point is that, in calculating pC(en|HX) for X = T, W and V, 
respectively, the numerators of the corresponding C-values, i.e. ni + λ/t, ni + λ/w, and 
ni + λ/v, are decreasing, due to t < w < v, while their denominators are the same, viz. 
n + λ. However, this does not work out nicely for other cases of HW being Δ-closer 

Probt[∀𝜀>0∃N≥0∀n≥N||pH(Qi
||en)−ti| < 𝜀] = 1
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to HT than HV, for if T − W ≠ ∅ we may have T − R(en) ≠ ∅, in which case we get 0 
probability for pC(en|HW) and hence the likelihood is no longer a sophisticated meas-
ure of the success of HW.

Note that an attractive point of the present definition of ‘more successful’ in the 
context of the tentative success theorem is that it is not laden with the notion of 
nomic truth, let alone nomic truthlikeness. This feature is typical for success theo-
rems, like Theorem  5, in the context of non-probabilistic approximation of deter-
ministic truths. Unfortunately, we did not find a probabilistic definition of ‘more 
successful’ that is independent of a truthlikeness definition, but nevertheless ena-
bling some kind of probabilistic success theorem.

However, apart from this ladenness problem, we can get a very nice kind of suc-
cess theorem in terms of Ilkka Niiniluoto’s (1987) notion of ‘estimated distance 
from the truth’. For this purpose we need a distance function between subsets of K. 
Let d(V, W) be a real-valued normalized metric, i.e. a distance function satisfying 
the standard conditions: 0 ≤ d(V, W) ≤ 1, d(V, W) = 0 iff V = W, d(V, W) = d(W, V), and 
d(V, W) ≤ d(V, X) + d(X, W). A plausible metric in the present case is the size dis-
tance, i.e. the normalized size of the symmetric difference: dΔ(V,W) = df |VΔW|/|K|. 
Whatever d is, we assume that if HW is Δ-closer to HT than HV (i.e. if WΔT ⊂ VΔT 
then d(V, T) ≥ d(W, T)), which is trivially the case for the suggested quantitative ver-
sion of the symmetric distance, dΔ.

We need the following definitions.

1. HW is d-closer to HT than HV iff d(W, T) < d(V, T).
2. E s t i m a t e d  D i s t a n c e  f r o m  t h e  T r u t h  

(
HV |en

)
=

EDT
�
HV �en

�
=

∑
XR(en)

p
�
HX�en

�
d(V ,X).

3. HW is estimated to be d-closer to the truth than HV in view of en: 
EDT(HW|en) < EDT(HV|en).

Note that the last notion is via EDT not only probabilistic but also substantially 
laden with the notion of nomic truth, and even with a specific version of the idea of 
nomic truthlikeness, viz. in terms of a distance function from, in particular, the pos-
sible nomic truth.

Note also that Theorem 7 (if n → ∞ then, with probability 1, p(HV|en) → 1 if V = T, 
otherwise → 0) has now an immediate corollary.

Corollary 7.1 EDT
(
V|en

)
 converges with probability 1 to d(V, T)

Formally: Probt[limn→�
EDT

(
V|en

)
= d(V , T)] = 1,

i.e. Probt[∀𝜀>0∃N≥0∀n≥N|EDT(V|en) − d(V , T)| < 𝜀] = 1.

Recall that the proof of Theorem 7 is strongly based on Theorem 6 (R(en) → T, 
with probability 1), which is based on the true distribution Probt.
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Theorem  9 Deterministic-Probabilistic Quasi-Success Theorem (DPQ-Success 
Theorem)

If HW is d-closer to the deterministic truth HT than HV (by assumption entailed 
by ‘Δ-closer to’) then with probability 1 HW will in the long run be estimated to be 
d-closer to the truth than HV ((EDT(HW|en) < EDT(HV|en) ).

Formally:

 if d(W, T) < d(V, T)then Probt [limn →∞ (EDT(HW|en) < EDT(HV|en) )] = 1,

i.e. Probt[∀𝜀>0∃N≥0∀n≥N
(
EDT

(
HV |en

)
− EDT

(
HW |en

))
> 𝜀] = 1.

For the proof of Theorem 9, see the “Appendix”. It is strongly based on Corollary 
7.1.

Our claim is that this DPQ-Success Theorem may be seen as the core of genuine 
probabilistic approximation of the deterministic truth  (HT) in the present context, 
viz. by decreasing (probabilistic) EDT, i.e. Option 3, the Hintikka-Niiniluoto way. 
The reasoning behind this claim is an adapted version of the reasoning behind the 
claim that the deterministic success theorem (Theorem 5) is the core of determinis-
tic truth approximation by increasing empirical success (e.g. Kuipers, 2019, p. 57):

• Assuming that HW is at a certain moment estimated to be d-closer to the truth 
HT than HV, propose and test the ‘probabilistic empirical progress (PEP-)hypoth-
esis’: HW (is and) remains (at least in the long run) estimated to be d-closer to the 
truth than HV.

• Assuming that after ‘sufficient confirmation’ the PEP-hypothesis is accepted (for 
the time being), argue on the basis of DPQ-Success Theorem to what extent the 
‘truth approximation (TA-) hypothesis’, that is, HW is d-closer to the truth HT 
than HV, is the best explanation for this case of probabilistic empirical progress, 
i.e., that this is a case of probabilistic approximation of a deterministic truth.

• Abductively conclude (for the time being) that HW is d-closer to the truth HT than 
HV, i.e., that deterministic truth approximation has been achieved in a probabilis-
tic way.10

10 There is a quite different variant of Option 3, viz. approaching a ‘deterministic nomic truth’ in a 
probabilistic, more specifically, measure-theoretical way. Ch. 5 and Ch. 13 of (Kuipers, 2019) deal with 
it. Ch. 5 provides a quantitative, measure-theoretical version of basic, qualitative approximation of the 
(deterministic) nomic truth. Ch. 13, entitled “Empirical Progress and Nomic Truth Approximation by 
the ‘Hypothetico-Probabilistic Method’” builds on this. The crucial difference is that the latter assumes 
a deterministic context with a straightforward deterministic truth, that is, unlike the present paper, there 
is no underlying probability process that gives rise primarily to a probabilistic truth, and indirectly to a 
deterministic truth.
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7  Concluding remarks

In the introduction we distinguished three options:

Option 1. Non-probabilistically approaching a deterministic nomic truth.
Option 2. Probabilistically approaching a probabilistic nomic truth.
Option 3. Probabilistically approaching a deterministic nomic truth.

We may conclude that all three options make perfect sense in a multinomial con-
text. It is plausible to expect that this is also the case in other well-defined probabil-
istic contexts. It may well be enlightening to elaborate the options in some detail in 
one or more of these other contexts.

Hence, we may conclude that, as already anticipated by Festa (1993), the (real-
ist) truth approximation perspective on Carnap- and Hintikka-systems leads to the 
unification of the inductive probability field (formally, in their style) and the field of 
truth approximation.

The present paper leaves several questions for further research. Among others, 
there is the question whether the convergence to the probabilistic truth (Sect.  5, 
Theorem  8) of Hintikka-systems, like Theorem  3 in the case of Carnap-systems, 
may also be a matter of ‘decreasing significant deviation’. Moreover, in Sect. 6, we 
found a nice kind of success theorem in terms of Ilkka Niiniluoto’s (1987) notion of 
‘estimated distance from the truth’. However, that notion is laden with the notion of 
nomic truth. Is there a notion of ‘more successful’ that is not laden with that notion 
and nevertheless enables an interesting success theorem? Finally, there is the plausi-
ble connecting question whether the way in which Hintikka-systems realize Option 
3 can be conceived as an extension or concretization of qualitatively approaching the 
deterministic nomic truth, i.e. Option 1.

It may be illuminating to pay some attention to the well-known distinction 
between content and likeness definitions of verisimilitude/ truthlikeness, introduced 
by Sjoerd Zwart (2001) (see also Oddie, 2016) and, related, the distinction between 
theories with the same versus different logical strength. These distinctions were not 
yet relevant for the present paper for the following reasons. As said before, the paper 
is in fact restricted to, following the terminology of Niiniluoto (1987), truth approxi-
mation between complete answers to a cognitive problem, i.e. the problem which 
complete answer is the true one? As far as the logical problem of verisimilitude is 
concerned the first, in a sense elementary, question is e.g. which of two (conceptu-
ally) relevant propositional or monadic constituents is closer to the truth, i.e. the 
true constituent? Similarly, which of two relevant probability distributions is closer 
to the truth, i.e. the true distribution? In these terms and assuming a realist perspec-
tive we focussed on Carnap-systems in view of one cognitive problem, viz. which 
multinomial probability distribution is (closer to) the true one. Next we focussed 
on Hintikka-systems in view of two cognitive problems, the one mentioned, and the 
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cognitive problem of which (analogue of a monadic) constituent is (closer to) the 
true one. In many contexts there are plausible qualitative or quantitative answers to 
these logical questions, e.g. based on a plausible distance function between com-
plete answers, e.g. the city-block distance between distributions and the size dis-
tance between constituents.11

The compound, or, if you wish, ‘hard’ logical problem of verisimilitude, how-
ever, is how to extend solutions for complete answers to incomplete answers to the 
cognitive problem: e.g. sets (e.g. intervals) of probability distributions, disjunctions 
of constituents and the like. This compound logical problem is not touched upon in 
the present paper, neither for the cognitive problem of the true distribution, nor for 
that of the true constituent. However, the mentioned distinctions (content vs likeness 
definitions and equal vs different logical strength12), can and will certainly play an 
important role in research devoted to the two compound problems.

To be sure, our main concern was not the (elementary) logical but the elementary 
epistemic problem of verisimilitude, that is, more specifically: the comparative eval-
uation, on the basis of evidence, of complete answers to the two relevant cognitive 
problems with regard to the aim of truth approximation. Again, the extension to the 
two relevant compound epistemic problems, including the role of the two distinc-
tions, is an interesting challenge.

Appendix: Proofs of Theorems 1, 2, 3, 4, 6, 7, 9

Theorem 1 Restricted Expected (Probabilistic-)Success Theorem

y is relative to Qi closer to the pn-truth than x if and only if it may be expected 
that en is such that y is relative to Qi more successful than x.

Proof of  Theorem  1 In fact we are dealing with three binomial distributions, 
< xi, 1 − xi >,< yi, 1 − yi > and < ti, 1 − ti > , for which the probability that the 
first n experiments result in ni(en) = m according to e.g. < xi, 1 − xi >, i.e. 

p⟨xi,1−xi⟩(ni
�
en
�
= m) , equals 

(
n

m

)
xm
i

(
1 − xi

)n−m . Regarding the true distribution 

< ti, 1 − ti >  it is well-known that the mean, i.e. the expected value of the relative 
frequency, E(ni/n), equals ti and the variance, i.e. the expected value of the square of 
the distance of the relative frequency from the true probability, i.e. E((ni/n − ti)2), 

11 Of course, something like the distinction between content and likeness definitions could already be 
brought into play by the definition of ‘Δ-closer to’ between constituents, but the (more or less) standard 
definition of the distinction in terms of whether the logically stronger false theory is closer to the true 
one than the weaker theory, or vice versa, does of course not work for complete answers. In my view 
the distinction can best be made in terms of whether the definition of ‘Y is closer to T than X’ is merely 
a matter of set comparisons (as in the case ‘Δ-closer to’ and the corresponding size distance) or that it 
includes distance considerations between members of these sets. In Kuipers (2000 and 2019) I call this 
the distinction between the basic (or naïve!) and refined definitions.
12 In a generalized sense we may say that the relevant distributions and constituents, respectively, are of 
equal logical strength. Note that the relevant constituents are in fact propositional constituents, viz. con-
junctions of negated and un-negated positive probability claims with respect to all Q-predicates.
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equals  ti(1 − ti). Crucial for the theorem is the quasi-variance relative to xi, i.e. the 
expected value E((ni/n − xi)2), and similarly for yi.

The last step uses the variance and the fact that E(ni/n − ti) is of course 0 in view 
of the mean value.

Similarly we have:

Hence, E((ni/n − yi)2) < E((ni/n − xi)2) if and only if (ti − yi)2 < (ti − xi)2.□

Theorem 2 (Carnap-systems converge to the probabilistic nomic truth)

Informally, the Carnapian updating of the initial pn-theory approaches the pn-
truth with probability 1.

Formally: Probt(limn→∞ pC
(
Qi|en

)
= ti) = 1 , i.e.  Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N 

|pC(Qi|en) –  ti|< ε] = 1, i.e. Probt[∀𝜀>0∃N≥0∀n≥N| ni+𝜆∕kni+𝜆
−ti| < 𝜀)] = 1.

Proof of Theorem 2 The theorem follows directly from the fact that, step 1, the Car-
napian prediction function converges with certainty to the relative frequency ni

n
 , and, 

step 2, the strong law of large numbers,13 according to which the limit of the relative 
frequency of a series of independent experiments with a fixed probability equals the 
true probability with probability 1.

Formally: Step 1 limn→∞ pC
(
Qi|en

)
= limn→∞

ni+�∕k

ni+�
=

ni

n

i.e. ∀
𝜀>0∃N≥0∀n≥N||pC(Qi

||en)−ni∕n|(= |||
ni+𝜆/k

n+𝜆
−

ni

n

||| =
||||

𝜆

n+𝜆

(
1

k
−

ni

n

)|||| < 𝜀

Step 2 Probt
[
limn→∞

ni

n
= ti

]
= 1, , i.e. Probt[∀𝜀>0∃N≥0∀n≥N||ni∕n−ti|| < 𝜀] = 1.□

Counterexample to the suggested conjecture in the following claim (see Note 3 
before Theorem 3):

Being closer to the corresponding precursor does not guarantee being closer to 
the true value, even though that precursor is closer to the true value.

Recall the definitions of the Carnapian value and the Carnapian precursor:

E(
(
ni∕n − xi

)2
) = E((ni∕n − ti + ti − xi)

2)

= E((ni∕n − ti)
2) + 2(ti − xi)E(ni∕n − ti) + (ti − xi)

2

= ti(1 − ti) + (ti − xi)
2.

E
((

ni∕n − yi
)2)

= ti
(
1 − ti

)
+
(
ti − yi

)2
.

pC
(
Qi|en

)
=

ni + �∕k

n + �

= pi pCt
(
Qi|en

)
=

nti + �∕k

n + �

= ci

13 See e.g. Feller (19683), section VIII.4.
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Let en+1 be such that ni(en+1) = ni(en) = ni, hence, the (n + 1)th trial does not result 
in  Qi, then

Let 1/k < ti. The question is whether it is possible to construe a case, with k, ti, and 
λ, such that for all n there is a ni resulting in four values in the following order in the 
[0, 1] interval:

For in this case pi’ is further from the truth than pi but closer to ci’ than pi is to ci.

Proof Note first that ci and ci’ trivially are in the open interval (1/k, ti) and that 
ci < ci’, hence the (n + 1)th precursor is closer to ti than the nth. Note also that pi’ < pi 
trivially holds. Hence, what further is needed is that pi < ti and ci’ < pi’, which 
together amounts to:

For k = 2, ti = ¾, and � = 100 the condition amounts to 3n
4
+

3

4
< ni <

3n

4
+ 25. 

Choosing ni equal to 3n
4
+ 1 , if that is an integer, and, if not, as the nearest integer 

above it, will do for all n. Note that we did not need to assume that ni/n is smaller 
than ti.

For ti < 1/k a similar construction is of course possible. For ti = 1/k the claim is 
evidently not valid.□

Theorem  3 Decreasing significant deviation. For every significance level ε > 0 
holds, for sufficiently large n, that the probability that the nth Carnapian prediction 
deviates from the nth Carnapian pn-truth-precursor ε-significantly is larger than the 
probability that the (n + 1)th Carnapian prediction deviates ε-significantly from the 
(n + 1)th Carnapian pn-truth-precursor.

where pC
(
Qi|en

)
=

n

n+�

ni

n
+

�

n+�

1

k
=

ni+�∕k

n+�
, the Carnapian value, and  

pCt
(
Qi|en

)
=

nti+�∕k

n+�
, the Carnapian precursor of the pn-truth, and ti is the limit of 

ni/n as n tends to infinity (it is assumed that this limit exists, and that ni/n has a bino-
mial distribution with mean ti and variance ti(1 − ti)).

pC
(
Qi|en+1

)
=

ni + �∕k

n + 1 + �

= p�
i

pCt
(
Qi|en+1

)
=

(n + 1)ti + �∕k

n + 1 + �

= c�
i

0 − − −
1

k
− − − ci − − − −c

�

i
− − − −p

�

i
− − − pi − − − ti − − − − − −1

ni + 𝜆∕k

n + 𝜆

< ti <
ni

n + 1
or, equivalently, (n + 1)ti < ni < (n + 𝜆)ti − 𝜆∕k

∀𝜀 > 0 ∃N ≥ 1 ∀n ≥ N ∶ Probt−
(|pC(Qi|en+1)−pCt(Qi|en+1)| > 𝜀)

< Probt−
(|pC

(
Qi|en

)
−pCt

(
Qi|en

)| > 𝜀)
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Proof of Theorem 3 Note first that 
(
pC

(
Qi|en

)
− pCt

(
Qi|en

))
=

ni−nti

n+�
=

n
(

ni

n
−ti

)

n+�
 . The 

mean is of course 0 and the variance is 
(

n

n+�

)2

 times the variance of ni
n
 , which is 

ti
(
1 − ti

)
 , hence 

(
n

n+�

)2

ti
(
1 − ti

)
 . However, we may also note that 

(
pC

(
Qi|en

)
− pCt

(
Qi|en

))
=

n
(

ni

n
−ti

)

n+�
 goes to 

(
ni

n
− ti

)
 for n going to ∞, with mean 0 

and variance ti
(
1 − ti

)
.]

Note now that, for mutually independent random variables Xj, j = 1,2,…,n, each 
with mean µ and standard deviation σ, the Central Limit Theorem (Feller 19683, 
Section X.1) states that

is normally distributed with mean 0 and standard deviation 1 (ℵ(0, 1))  in the limit of 
large n. Hence, if the Xj are binomially distributed, with Xj = 1 for a ‘head’ and Xj = 0 
for a ‘tail’, and 

n∑
j=1

Xj = ni , then we know that asymptotically

n
i
−nt

i√
nt

i(1 −ti)
 = 

n

�
ni

n
−t

i

�
√

nt
i(1 −ti)

  and hence, see above n(pC(Qi�en)−pCt(Qi�en))√
nti(1−ti)

 has the normal 

distribution ℵ(0, 1).
Hence, for large n, and for � > 0,

Define

so that Probt(�pC
�
Qi�en

�
− pCt

�
Qi�en

�� > 𝜀) ∼
2√
2𝜋

∞∫√
n

ti(1−ti)
𝜀

dx e−x
2∕2,

where the factor of 2 arises because both tails of the distribution have now been 
included. Therefore

which is positive, thus proving Theorem 3.□

∑n

j=1
Xj − n�

�

√
n

Probt

⎛⎜⎜⎝

�
n

ti
�
1 − ti

�pC
�
Qi�en

�
− pCt

�
Qi�en

�
) > 𝜂

⎞⎟⎟⎠
∼

1√
2𝜋

∞

∫
𝜂

dxe−x
2∕2.

� =

√
ti
(
1 − ti

)
n

�,

(∗)Probt(�(pC
�
Qi�en

�
− pCt

�
Qi�en

�� > 𝜀) − Probt(�(pC
�
Qi�en+1

�
− pCt

�
Qi�en+1

�� > 𝜀)

∼

�
2

𝜋

�
n+1

ti (1−ti)
𝜀

∫√
n

ti(1−ti)
𝜀

dx e−x
2∕2

,
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Corollary 3.1 For every significance level ε > 0 and m > 0 holds, for sufficiently 
large n, that the probability that the nth Carnapian prediction deviates from the nth 
Carnapian pn-truth-precursor ε-significantly is larger than the probability that the 
(n + m)th Carnapian prediction deviates ε-significantly from the (n + m)th Carna-
pian pn-truth-precursor.

Proof of Corollary 3.1 It follows directly by concatenating the result of the theorem.□

Corollary 3.2 There is a well-defined lower bound pertaining to Theorem 3

where lbi(n) is a positive lower bound, depending on n, whose value is stated in 
the proof.

Proof of Corollary 3.2 Such a lower bound on the relevant difference (*) in the proof 
of Theorem 3 can be obtained by minorizing the exponential in the integrand.

For large n,

□

∀𝜀 > 0 ∃N ≥ 1 ∀n ≥ N ∀m ≥ 1 ∶

Probt−

(|pC(Qi|en+m)−pCt(Qi|en+m)| > 𝜀

)
< Probt−

(||pC(Qi
||en)−pCt

(
Qi|en

)| > 𝜀

)

∀𝜀 > 0 ∃N ≥ 1 ∀n ≥ N ∃lbi(n) > 0

Probt(|pC
(
Qi|en

)
−pCt

(
Qi|en

)| > 𝜀)−Probt(|pC
(
Qi|en+1

)
−pCt

(
Qi|en+1

)| > 𝜀) > lbi(n),

(∗)Probt(�(pC
�
Qi�en

�
− pCt

�
Qi�en

�� > 𝜀) − Probt(�(pC
�
Qi�en+1

�
− pCt

�
Qi�en+1

�� > 𝜀)

∼

�
2

𝜋

�
n+1

ti(1−ti)
𝜀

∫√
n

ti(1−ti)
𝜀

dx e−x
2∕2

>

�
2

𝜋

exp

�
−

(n + 1)𝜀2

2ti
�
1 − ti

�
�

�
n+1

ti (1−ti)
𝜀

∫�
n

ti (1−ti)
𝜀

dx

=

�
2

𝜋

exp

�
−

(n + 1)𝜀2

2ti
�
1 − ti

�
�

𝜀�
ti
�
1 − ti

�
�√

n + 1 −
√
n
�

=

�
2

𝜋

exp

�
−

(n + 1)𝜀2

2ti
�
1 − ti

�
�

𝜀�
ti
�
1 − ti

�
1√

n + 1 +
√
n

>
1√
2𝜋

exp

�
−

(n + 1)𝜀2

2ti
�
1 − ti

�
�

𝜀�
(n + 1)ti

�
1 − ti

� .
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Theorem  4 In a Carnap-system the expected value of the distance |pC(Qi|en) − ti| 
goes stepwise to 0 (or is and remains 0 when ti is 1/k).

Proof of  Theorem  4 Note that ni is a random variable with binomial expectation 
value E(ni) = nti and hence

Therefore:

1) If ti < 1/k, E
(

ni+𝜆∕k

n+𝜆
− ti

)
=

nti+𝜆∕k

n+𝜆
−

ti(n+𝜆)

n+𝜆
=

(1∕k−ti)𝜆

n+𝜆
>

(1∕k−ti)𝜆

n+1+𝜆
→ 0.

  That is, the expected value of the relevant distance is monotone decreasingly 
approaching 0.

2) If ti > 1/k, similarly, but now monotone increasingly approaching 0.
3) If ti = 1/k, the expected value of the distance is constant, viz. 0.□

Theorem 6 In a multinomial context all nomic possibilities are realized, with prob-
ability 1

R(en) approaches T (R(en) → T) (stepwise) with probability 1 for n → ∞

Formally: Probt[limn→∞(R(en) = T)] = 1, i.e.Probt[∃N≥0∀n≥N(R(en) = T)] = 1.

Proof of Theorem 6 From Step 2 in the proof of Theorem 2 (based on the strong law 
of large numbers), we get:

for all i Probt [limn→∞ ni
n
  = ti] = 1, i.e. ∀i Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N |ni/n 

– ti|< ε] = 1
Let I(T) indicate {i|ti > 0} = {i|Qi ∈ T} and let t* indicate the smallest non-zero ti, 

i.e. min{ti| i ∈ I(T)}.
Then we may conclude:

Hence, since p(A&B) = 1 if p(A) = 1 = p(B),
Probt ∀i ∈ I(T) [limn→∞ > ni

n
 > 0] = 1, i.e. Probt [∀i ∈ I(T)∃N ≥ 0 ∀n ≥ N > ni

n
 > 0] = 1.

Hence, since ni/n > 0 entails ni > 0, which entails Qi in R(en),

That the members of T show up one at a time (stepwise) is trivial.□

E

(
ni + �∕k

n + �

)
=

E(ni) + �∕k

n + �

=
nti + �∕k

n + �

∀i∈I(T)Probt[ lim
n→∞

>

ni

n
> 0] = 1, i.e.∀i∈I(T)Probt[∃N≥0∀n≥N >

ni

n
> 0] = 1,

the latter via ∀i∈I(T)Probt[∀𝜀∈(0, t∗) ∃N≥0∀n≥N(
ni

n
> ti − 𝜀)] = 1.

Probt[ lim
n→∞

(R(en) = T] = 1, i.e.Probt[∃N≥0∀n≥NR(en) = T] = 1,

the latter via Probt

[
∃N≥0∀n≥N∀i∈I(T) >

ni

n
> 0

]
= 1.
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Theorem 7 Hintikka-systems converge to the deterministic truth with probability 1

In an H-system the posterior probability of HV gradually (but not necessarily 
stepwise) approaches 1 with probability 1 when HV is the deterministic truth, and it 
may suddenly fall down to 0 or gradually approach 0 otherwise.

Briefly, if n → ∞ then, with probability 1, p(HV|en) → 1 if V = T, otherwise → 0 
(the latter as soon as R(en) − V ≠ ∅, if T − V ≠ ∅, or gradually, if V ⊃ T).

Formally, Probt [limn → ∞ p(HT|en) = 1] = 1, i.e. Probt[∀𝜀>0∃N≥0∀n≥N|p
(
HT |en

)
−1| < 𝜀] = 1, and, for V ≠ T, Probt [limn → ∞ p(HV|en) = 0] = 1, i.e. Probt [∀ε > 0 
∃N ≥ 0 ∀n ≥ N p(HV|en) < ε] = 1 (where in the latter case p(HV|en) drops to 0 as soon as 
R(en) − V ≠ ∅, if T − V ≠ ∅, or gradually, if V ⊃ T).

Proof of  Theorem  7 In order to prove this theorem we first prove two lemmas 
(adapted from T3, p. 57 and T8, p. 81, resp. in Kuipers, 1978). Assuming  HV as 
condition, then for all non-empty proper subsets S of V (∅ ⊂ S ⊂ V) any infinite 
sequence of outcomes within the infinite product  S∞ amounts to the truth of a uni-
versal generalization. Notation: |V|= v, |S|= s.

Lemma 1 In a (conditional) Carnap-system genuine universal generalizations get 
probability 0 (with certainty), i.e. pC(S∞|HV) = limm→∞pC(Sm|HV) = 0 for ∅ ⊂ S ⊂ V 
(and hence 0 < s < v).

Proof of  Lemma 1 It follows from the Carnapian value pC(Qi|HV&en) =  (ni + λV/
v)/(n + λV) (0 < λV < ∞) that pC

�
S�HV&en

�
= (nS + s�V∕v)∕(n + �V ) (nS =df

∑
Qi∈S

ni) 
and hence by the product rule that

There is a well-known theorem (Knopp, 1956, p. 96) that (*) tends to 0, with cer-
tainty, if m → ∞, i.e. limm→∞ pC(Sm|HV) = 0, iff 

∞∑
n=0

(1 − s∕v)�V∕
�
n + �V

�
= ∞ , 

which is true for 0 < λV < ∞, for the sum is comparable to Σ 1/n.

Lemma 2 Universal convergence (with certainty) in a Hintikka-system

Let R(en) = R, |R|= r > 0, then p(HR|en) → 1 if n → ∞ and R remains con-
stant, in the sense that, with certainty, limm→∞ p(HR|enRm) = 1 and for R ⊂ V ⊆ K, 

(∗) pC
(
Sm|HV

)
=

m−1∏
n=0

(
n + s�V∕v

)
∕
(
n + �V

)
=

m−1∏
n=0

{
1 − (1 − s∕v)�V∕

(
n + �V

)}
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p(HV|en) → 0 if n → ∞ and R remains constant, in the sense that, with certainty, 
limm→∞ p(HV|enRm) = 0, provided p(HR) > 0.

Proof of Lemma 2 Note first that

(1) p
(
HR|enRm

)
= p

(
HR

)
pC

(
en|HR

)
pC

(
Rm|HR&en

)
∕p

(
enR

m
)

  and similarly
(2) p

(
HV |enRm

)
= p

(
HV

)
pC

(
en|HV

)
pC

(
Rm|HV&en

)
∕ p

(
enR

m
)
for R ⊂ V ⊆ K

  Moreover, we have
(3) p

(
enR

m
)
= p

(
HR

)
pC

(
en|HR

)
pC

(
Rm|HR&en

)
+ ΣR⊂V⊆Kp

(
HV

)
pC

(
en|HV

)
pC

(
Rm|HV&en

)

From Lemma 1 and

we get that limm→∞ pC(Rm|HR&en) = 1 and limm→∞ pC
(
Rm|HV&en

)
= 0 for 

V ⊃ R. Hence, using (1), (2), and (3), we get p(HR|enRm) → 1 if m → ∞, i.e. 
limm→∞ p(HR|enRm) = 1. That p(HV|enRm) → 0 if m → ∞ for all v > r, i.e. limm→∞ 
p(HV|enRm) = 0, follows now from the fact that they are all non-negative and that 
their sum equals 1 − p(HR|enRm).

Now Theorem 7 directly follows from Lemma 2 and Theorem 6. The latter guar-
antees with probability 1 that from a certain stage on R remains constant, viz. T.□

Theorem  9 Deterministic-Probabilistic Quasi-Success Theorem (DPQ-Success 
Theorem)

If HW is d-closer to the deterministic truth HT than HV (by assumption entailed 
by ‘Δ-closer to’) then with probability 1 HW will in the long run be estimated to be 
d-closer to the truth than HV ((EDT(HW|en) < EDT(HV|en)).

Formally: if d(W, T) < d(V, T) then Probt[limn→∞

(
EDT

(
HW |en

)
< EDT

(
HV |en

))
] = 1,

i.e. Probt[∀𝜀>0∃N≥0∀n≥N(EDT(HV |en) − EDT(HW |en)) > 𝜀] = 1 .

Proof of Theorem 9 From Corollary 7.1, we get:

(1) Probt[limn→∞ EDT
(
V|en

)
= d(V , T)] = 1 and Probt[limn→∞ EDT

(
W|en

)
= d(W, T)] = 1

  From (1) we get, using p(A&B) = 1 if p(A) = p(B) = 1,

  

Probt[limn→∞EDT
(
V|en

)
= d(V , T) and limn→∞EDT

(
W|en

)
= d(W, T)] = 1

≡
Probt[∀𝜀>0∃N≥0∀n≥N |EDT

(
V|en

)
− d(V , T)| < 𝜀 and ∀

𝜀>0∃N≥0∀n≥N |EDT
(
W|en

)
− d(W, T)| < 𝜀] = 1

≡
(2) Probt[∀𝜀>0∃N≥0∀n≥N |EDT

(
V|en

)
− d(V , T)| < 𝜀 and |EDT(W|en

)
− d(W, T)| < 𝜀] = 1 

  Assume d(W, T) < d(V, T), hence d(V, T) − d(W, T) = df 3D > 0. Hence, from 
(2):

pC
(
R|HV&en

)
= (n + r�V∕v)∕(n + �V ) pC(V − R|HV&en) = (v − r)�V∕v(n + �V )
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(3) Probt[∀𝜀∶D>𝜀>0∃N≥0∀n≥N |EDT
(
V|en

)
− d(V , T)| < 𝜀 < D and |EDT(W|en

)
− d(W, T)| < 𝜀 < D] = 1

  As is easily seen by representation on an axis,

  we may now conclude
(4) Probt[∀𝜀∶D>𝜀>0∃N≥0∀n≥N(EDT(HV |en) − EDT(HW |en) > 𝜀] = 1

In sum, if d(W, T) < d(V, T) then with probability 1 EDT(HW|en) < EDT(HV|en) for 
n → ∞, i.e. Probt [limn →∞ (EDT(HW|en) < EDT(HV|en)] = 1.□
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