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Abstract
Predictive processing theories are increasingly popular in philosophy of mind; such 
process theories often gain support from the Free Energy Principle (FEP)—a nor-
mative principle for adaptive self-organized systems. Yet there is a current and much 
discussed debate about conflicting philosophical interpretations of FEP, e.g., repre-
sentational versus non-representational. Here we argue that these different interpre-
tations depend on implicit assumptions about what qualifies (or fails to qualify) as 
representational. We deploy the Free Energy Principle (FEP) instrumentally to dis-
tinguish four main notions of representation, which focus on organizational, struc-
tural, content-related and functional aspects, respectively.  The various ways that 
these different aspects matter in arriving at representational or non-representational 
interpretations of the Free Energy Principle are discussed. We also discuss how the 
Free Energy Principle may be seen as a unified view where terms that tradition-
ally belong to different ontologies—e.g., notions of model and expectation versus 
notions of autopoiesis and synchronization—can be harmonized. However, rather 
than attempting to settle the representationalist versus non-representationalist debate 
and reveal something about what representations are simpliciter, this paper demon-
strates how the Free Energy Principle may be used to reveal something about those 
partaking in the debate; namely, what our hidden assumptions about what represen-
tations are—assumptions that act as sometimes antithetical starting points in this 
persistent philosophical debate.
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‘A Hand Mirror’ (1860).

1 Introduction

There is growing consensus in computational and systems neuroscience around the 
idea that the brain is a predictive machine, which uses internal (generative) models 
to continuously generate predictions in the service of perception, action and learn-
ing. One theory that is centred around this idea and which is rapidly acquiring prom-
inence—especially within the field of philosophy of mind and cognitive science—
is predictive processing (PP) (Clark, 2013; Hohwy, 2013, 2020). The Free Energy 
Principle (FEP), a normative proposal, extends PP, providing it with a fundamental 
principle of adaptive self-organization (Hohwy, 2020). FEP and related predictive 
processing are rapidly acquiring prominence outside of neuroscience, especially 
within the field of philosophy of mind (Clark, 2013; Hohwy, 2013, 2020). Despite 
this fact, some of FEP’s fundamental implications for epistemology and philosophy 
of mind remain widely debated. Perhaps the most prominent discussion concerns the 
representational or non-representational nature of FEP, with various proposals that 
FEP supports internalist (Hohwy, 2013; Kiefer & Hohwy, 2017), action-oriented 
(Clark, 2013, 2016), or enactivist and non-representationalist claims (Bruineberg 
et al., 2016; Gallagher & Allen, 2016; Kirchhoff et al. 2018; Kirchhoff and Robert-
son 2018).

Whether or not living organisms have (or need) internal representations is an old 
and fiercely debated topic (Merleau-Ponty, 1945; Ryle, 1949; Dreyfus, 1979; Newell 
& Simon, 1972; Fodor, 1975; Gibson, 1979; Thelen & Smith, 1994, Clark, 1998; 
Ramsey, 2007). Such debate is reiterated within the predictive processing view, from 
a more specific and mechanistic angle, i.e., assuming that FEP is a good model of 
living organisms, does it entail the notion of internal representation or not? Given 
that FEP has been implemented in a family of computational models that are by 
definition fully observable, it may seem paradoxical that it has been interpreted in 
so many ways. This is less surprising if one considers that FEP unites notions that 
are generally considered antithetical—most notably, the notion of internal (genera-
tive) model (von Helmholtz, 1866), which is usually associated with representation-
alist theories, and the notion of autopoiesis (Maturana & Varela, 1980), which is 
usually associated with non-representational enactive approaches. Can FEP help us 
advance, or even resolve, the long-lasting debate on internal representation in phi-
losophy of mind?

Here, we will argue that, even if FEP cannot solve this debate, it can play an 
invaluable role in revealing our hidden assumptions about the very notion of rep-
resentation and to create some common ground to discuss and negotiate them. 
Our general strategy here is to use FEP for the conceptual clarification of differ-
ent notions of representation: we work backwards from either representational or 
non-representational interpretations of FEP’s constructs to the various notions of 
representation that motivate those interpretations. It will emerge from our analysis 
that FEP has been (or can be) used to implement various kinds of computational 
models, which satisfy the requirements of certain theories of representation. Hence, 
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the question of whether or not FEP entails representations depends on what notion 
of representation one uses in the first place.

The rest of this article is structured as follows. Section 2 briefly introduces FEP, 
its theoretical constructs and underlying assumptions. Section  3, after presenting 
some of the most representative interpretations of FEP in philosophy of mind, turns 
to look at how these interpretations highlight four distinct, yet overlapping, aspects 
of internal representations: organizational aspects (e.g., having some variable inside 
a system that is separated from that which it represents outside that system), struc-
tural aspects (e.g., having representational vehicles that are structurally similar to 
the state of affairs in the world that they stand in for), content-related aspects (e.g., 
having internal models that either encode environmental contingencies or sensori-
motor contingencies; specification or description of how the world is taken to be in 
turn analysed in terms of correctness or truth conditions) and functional role aspects 
(e.g., supporting vicarious use before or in the absence of external events) of inter-
nal variables of a model. Section 4 briefly considers the evolutionary importance of 
functional role aspects and how such considerations favour representational versus 
non-representational interpretations of FEP. Section 5 focuses on explicating some 
of the relationships that hold between the four aspects of representation. We con-
clude by highlighting the heuristic power of FEP to advance our understanding of 
the notion of internal representation.

2  The free energy principle (FEP): a short summary

The Free Energy Principle (FEP) is an integrative proposal on adaptive self-organiz-
ing systems that remain far from thermodynamic equilibrium (Friston, 2010, 2019). 
It starts from the premise that, in order to survive, living organisms that engage 
in reciprocal (action-perception) exchanges with their environment must do what 
they can in order to remain within a neighbourhood of viable (i.e., physiologically-
friendly) states which make up or comprise their phenotypes; an organism’s pheno-
type being relative to its adaptive, ecological niche (e.g., a fish should never go out 
of the water). An organism’s remaining within its neighbourhood of viable states 
means that it remains far from thermodynamic equilibrium. This idea is then cast 
in Bayesian terms, by assuming that the ecologically adaptive states constitute the 
priors of the agent (i.e., the states that an agent ‘prefers’ to visit become the states 
that it expects a priori to visit). Surviving then consists in ensuring that one keeps 
visiting the usual, non-surprising states despite environmental disturbances—where 
surprise is a measure of discrepancy between expected and actually occupied (i.e., 
observed) states. Hence, minimizing surprise or its long-term average (entropy) 
becomes a primary imperative for living organisms, as it permits them to counteract 
an otherwise unavoidable process of dispersion and loss of integrity (see Fig. 1).

However, minimizing surprise is challenging for a number of reasons, hence 
motivating a number of additional assumptions of FEP. First, the agent can only 
know about the (hidden) external states it encounters indirectly, via its sensations; 
hence it has to engage in (Bayesian) inference to infer the hidden states (von Helm-
holtz, 1866). In the same way, it can only indirectly modify the hidden states—by 
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acting—and even its adaptive courses of actions (or policies) need to be inferred 
(Friston, 2011). Second, to perform the inferential steps that support perception 
and action, the agent needs to learn (hierarchical) generative models that essen-
tially describe two things: what the agent expects a priori and how its sensations 
are generated based on externally postulated events and/or the agent’s actions. It is 
by inverting the generative model that posterior inferences about hidden states (and 
expected action outcomes) are generated. It is only in virtue of the finetuning of 
the generative model (i.e., learning occurring at both ontogenetic and phylogenetic 
timescales) so as to achieve a continued degree of fit between it and the causal and 
statistical structure of the environment that inferences generated via model inver-
sion allow the organism to bring about the conditions for its own existence. In other 
words, a generative model is entailed by both an organism’s continued existence 
and its environment-regulating behaviour (Friston, 2011, 2012). This follows the 
“good regulator” theorem (Conant & Ashby, 1970), or the fact that in order to con-
trol the environment, an agent has to have (or to be) a model of the environment.1 
Essentially, then, this requirement creates a separation between the agent’s genera-
tive model and the external dynamics (called generative process); we will discuss 
later the fact that this separation can be expressed using the statistical construct of 
Markov blankets.

Third, exact inference using the generative models is usually intractable because 
it would require having knowledge and computational resources that are not availa-
ble to the agent; and hence the agent can only engage in approximate inference. The 
proposed approximate form of inference is called variational Bayesian inference 
and it rests on a number of assumptions that cannot be fully discussed here (Buck-
ley et al., 2017). Under these simplifying assumptions, Bayesian inference becomes 
mathematically analogous to the process of variational free energy minimization, 
as studied in statistical mechanics. Minimizing variational free energy is roughly 
analogous (more properly, an upper bound) to the original problem of minimizing 

1 The difference between having a model versus being a model may seem puzzling. In this context, 
"being" a model (as opposed to "having" a model) implies that some aspects of the statistical and causal 
structure of the external world are statistically harnessed (e.g., over evolutionary timescales) by the dis-
positional activity of the agent’s physiology and morphological structure, so that the features of an agent 
adaptively complement homeostatic- relevant aspects of the environment. One example is the fact that 
the visual system seems to include two streams, a dorsal and a ventral stream, which are specialized to 
process "where" versus "what" information (Ungerleider & Haxby, 1994). In Bayesian terms, this may 
correspond to the fact that the internal generative model supporting vision is factorized (i.e., segregated) 
into two processing streams, and this factorization mimics some "true" statistical independencies of the 
external world (i.e., the same object can be seen in different parts of the world; and the same part of the 
world can contain different objects). This factorization may be evolutionarily hard-wired, in such a way 
that an anatomical separation in the brain embodies (or "is", as opposed to "has") a model of statisti-
cal independencies in the world. The field of morphological computation offers some additional exam-
ples of how the body of living organisms is well adapted to (and in this interpretation, "is a model of") 
some important characteristics of the environment we live in, e.g., gravity. Body design can be lever-
aged to alleviate on even replace control demands, as in passive (brain- and control-less) walking robots 
(McGeer, 1990). For a recent experimental and computational demonstration of how a slime mould’s 
hierarchical network morphology may be seen as modelling its nutrient environment at fast timescales 
see Kramar and Alim (2021). See Sect. 3.2 on potential limitations of being (as opposed to having) a 
model.
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surprise but is tractable, based on the local information that the agent possesses. In 
variational inference, such information comprises the agent’s generative model G 
and the agent’s recognition density Q. The generative model includes two compo-
nents: a prior and likelihood. The former is a summated distribution of the agent’s 
expectations about environmental states while the latter is a conditional distribution 
specifying the agent’s expectations of how environmental states map onto sensory 
observations. The recognition density Q, also described sometimes as a recognition 
model, corresponds to the approximate posterior estimate of (i.e., a Bayesian ‘belief’ 
about) hidden causes of sensory states2; it is a conditional distribution specifying the 
probability of environmental states given sensory observations.

Note that FEP actually involves two distinct but complementary processes of 
free energy minimization: the first, variational free energy minimization, corre-
sponds to the optimization of perception and action, on the basis of present and past 

Fig. 1  Schematic of the reciprocal exchanges between an active inference agent (left) and the environ-
ment (right). Here states of the environment (hidden external states) are inferred via approximate pos-
terior estimates (internal states) conditioned upon the activity of an agent’s sensory receptors (sensory 
states). Internal states also infer the evolution of actuators (action states) so as to bring about the kinds of 
changes to external states that are consonant with the sensory states that an agent—given its phenotype—
expects to observe

2 It is important to note that “belief” as used in FEP is a technical term denoting a probability distribu-
tion. These probabilistic beliefs should not be confused with personal level beliefs of folk-psychology.
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information; the second, expected free energy minimization, supports the selection 
of action sequences (or policies), on the basis of future information—which by def-
inition cannot be observed but only predicted (hence the term “expected”). Here, 
the idea is that an active inference agent should preferentially select policies that 
are expected to minimize more free energy in the future. Interestingly, expected free 
energy can be decomposed into two factors; the former measuring how distant the 
agent is from its preferred states and the latter measuring the dispersion or entropy 
of its beliefs, respectively. In other words, FEP assumes that adaptive action selec-
tion must necessarily have two components: a utility-maximization (or pragmatic) 
and an uncertainty-reduction (or epistemic) part. This formulation is distinct from 
(and subsumes) classical utility-maximization schemes in decision theory and has 
important implications for understanding human and animal behaviour (Friston, 
Levin, et al., 2015; Pezzulo et al., 2016).

FEP has a number of implications from theoretical and neurobiological per-
spectives. From a theoretical perspective, it suggests that the agent’s imperative to 
survive (and avoid dispersion) can be mapped into the imperative of minimizing 
free energy; this formulation may work equally well at different levels of biologi-
cal organization, from simple life forms (Friston, 2013; Friston, Levin, et al., 2015) 
to complex animals like ourselves and can even be applied to symbiotic associa-
tions (Sims, 2020), extended societies, and ecosystems (Clark, 2016; Ramstead et al. 
2017). The aspect of FEP that has attracted more attention is the fact that perception, 
learning, and action all do the same thing—minimize free energy—but yet in differ-
ent ways. Perception has a mind-to-world direction of fit: it operates by modifying 
internal states to make them more compatible with what is sensed. Learning has a 
mind-to-world direction of fit, too, but it operates at a different timescale from per-
ception, by finessing the (parameters of the) agent’s generative model rather than its 
current internal states. Finally, action has a world-to-mind direction of fit: it operates 
by modifying the external world to make it more compatible with what is expected. 
Hence, all aspects of adaptive self-organizing systems as described by FEP conjoin 
to minimize free energy.

Put in another way, active inference agents are “self-evidencing” (Hohwy, 2016). 
This is to say that because minimizing free energy over time is equivalent to max-
imizing Bayesian model evidence or “self-evidence” (Friston, 2013), in engaging 
in long term active inference agents seek out or generate those sensory states that 
“maximize the lower bound on the evidence for an implicit model of how their sen-
sory samples were generated” (Friston, 2013 p. 2). As such, active inference agents 
author evidence for their own continued existence via free energy minimizing model 
optimization.

Finally, another remarkable aspect of free energy minimization is that it boils 
down to three basic (gradient descent) updates—for state estimation, action and pre-
cision3—that are consistent with known mechanistic features of brains and corre-
spond to processes of perception, action selection and gain-modulation (attention in 

3 Precision is a technical term that denotes the inverse of the variance of a probability distribution (e.g., 
Gaussian).
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perceptual domains and affordance in action domains), respectively. This means that 
one can use the normative principle of FEP to realize a “process theory” of cogni-
tion that has biological face validity and makes a number of important empirical 
predictions (Friston et al., 2016a).4 PP is one such process theory.

In sum, the FEP is an integrative proposal on adaptive self-organizing systems 
that suggests living organisms manage to survive by forming internal generative 
models of the causes of their sensations and using them to minimize a measure of 
(roughly) surprise—or in other words, to ensure that they remain in the ecologically 
“adaptive” states that they should inhabit. The FEP is based on a number of assump-
tions—e.g., the fact that perception, action and learning minimize free energy—and 
it introduces a number of theoretical and mathematical constructs—e.g., the notions 
of generative model, generative process, priors, prediction errors and Markov blan-
kets (see below)—which have attracted attention in philosophy of mind but have 
also been interpreted in different and sometimes antithetical (e.g., representational 
or non-representational) ways.

Below we review some of the most prominent philosophical interpretations of 
FEP, and in particular in relation to (strong and weak) representational versus non-
representational arguments. We will argue that the different interpretations of FEP 
start from different meta-theoretical assumptions of what a representation is (or 
does), and the relative importance of its organisational, structural, content-related 
or functional aspects—which we will use as the axes of our review and conceptual 
analysis below.

3  What the philosophical debate on FEP says in relation 
to organisational, structural, content‑related, and functional 
aspects of representations

Philosophical discussions—or “representation wars” (Clark, 2015; Downey, 2018; 
Williams, 2018)—about FEP have typically been focused on four main aspects of 
the notion of representation: organisational, structural, content-related or func-
tional. These criteria overlap to some extent but are a useful starting point to organ-
ize a systematic review. Below we briefly summarize some of the most important 
arguments advanced in relation to these four topics, in both representational and 
non-representational camps.5

4 A process theory is a theory that attempts to explain what a system does and hence ‘how’ a particular 
phenomenon comes about. This may be contrasted to a normative principle which describes what a sys-
tem should do and hence ‘why’ a more general phenomenon should arise given certain assumptions. In 
the case of the FEP, this latter description takes the form the objective function of variational free energy 
(see Schwartenbeck et  al., 2013). Because Free energy minimization over the long run approximates 
Bayesian inference, and because Bayesian inference is intrinsically normative, prescribing optimal belief 
update, FEP gains the status of a normative principle (Hohwy, 2020).
5 There is a lot more that can be said about how the four aspects that we cover relate to various analyses 
of representations in the wider philosophical literature. Given limited space, however, we can only refer 
the interested reader to the work of both (Ramsey, 2007) and (Shea, 2018).
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3.1  Focusing on organisational aspects of representation

The FEP rests on the idea that agents need to be separated from the rest of the envi-
ronment, see Fig. 1. One can formalize this idea using the construct of a Markov 
blanket (Pearl, 1988).6 While originally used in the context of graph theory to 
describe any set of random variables with a conditional dependent structure, in 
the context of FEP, the Markov blanket formalism is deployed to mathematically 
describe the boundaries of self-organized systems and their dynamic exchanges with 
the environment (Friston 2019; Wiese & Friston, 2021).7 These system-environment 
interaction dynamics are specified in terms of four kinds of states and their rela-
tions: internal states of the agent, external states of the environment, and action and 
sensory states that mediate the reciprocal exchanges between internal and external 
states. Crucially, internal and external states cannot influence each other directly, 
but only via action and sensory states—which hence form a “blanket” that separates 
them. It is under this condition, when the agent’s internal states are separated (or 
statistically independent) from external states, that the former appear to be a model 
of or infer the latter, and vice versa (Parr et al., 2020).

Take a cell for example. When applying the Markov blanket formalism to such 
a system its intracellular states may be cast as playing the role of internal states. 
Internal states influence and are influenced by external dynamics in virtue of the 
states of the mediating cell membrane (here, playing the role of intermediate states 
of the Markov blanket). It is the environmentally coupled activity of the states that 
are cast as the system’s Markov blanket (e.g., cell membrane) which allow the cell 
to maintain its integrity in the face of environmental disturbances, while remaining 
separated (in statistical terms) from its environment.8

This organizational requirement—the fact that FEP requires internal states (i.e., 
states that encode the recognition model) that are statistically separated from the 
external reality—motivates one of the most prominent representational interpre-
tations of FEP: the internalist view of Hohwy (2013, 2017) and Kiefer & Hohwy 
(2017). This view, in short, holds that because the internal states are segregated 
from the “external” world via the Markov blanket, and because the brain’s activity 
may be cast as internal states, the brain must infer and represent what it does not 
have direct access to. Given that it is sensory evidence rather than the causes of that 
sensory evidence that the brain has access to, the thought is that it is only by infer-
ring (explaining) the unfolding sensory states that the brain can infer the states of 

6 The notion of conditional independence of inner states from external states partitioned by a Markov 
blanket may be understood in terms of information gain; knowledge of the sensory and motor states is 
sufficient for predicting the behaviour of internal states of a system. And as such, there is no additional 
information about internal state behaviour that would be gained from knowledge of external states.
7 See Bruineberg et al. (2020) regarding the current debate on whether or not Markov blankets—what 
they suggest calling ‘Friston Blankets’—are best understood instrumentally or ontologically.
8 It is important to note that the Markov blanket formalism is scale-free. As such, Markov blankets may 
be placed both at the level of subordinate systems ‘inside’ a superordinate agent and at the level of super-
ordinate systems (e.g., systems of multiple agents or agent-niche systems) to which a subordinate agent 
belongs (see Palacios et al., 2020; Kirchhoff et al., 2018; Ramstead et al., 2017).
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the hidden causes of those sensory states. This speaks of an inferential seclusion of 
the recognition model Q, where there is an “evidentiary boundary” between inter-
nal states (the recognition model) on one side, and environmental causes of sen-
sory states on the other (Hohwy, 2016). Importantly, the location of this evidentiary 
boundary, Hohwy argues, “determines what is part of the representing mind and 
what is part of the represented world” (2016, p. 268). In other words, because the 
causal structure of the hidden environment must be inferred, perception and cogni-
tion are localized processes that are realized strictly by the activity of the central 
nervous system.

However, philosophers of the ecological-enactivist persuasion have approached 
the Markov blanket structural formalism in a manner that suggests a non-represen-
tational view of FEP (Bruineberg et  al., 2016). They begin by noting that, falling 
out of the very notion of coupling, any two coupled systems must be separated by 
a Markov blanket (i.e., the notion of coupling requires at least two organizationally 
distinguished systems). The fact that partitioning of two coupled systems (e.g., the 
agent and its environment) can be described by deploying the Markov blanket for-
malism does not, however, necessarily imply that the behaviour of those systems is 
best explained by inferences generated by an internal model, the structure of which 
represents that which it is a model of. Bruineberg et  al. suggest that the relation-
ship between two such coupled and statistically partitioned systems is more parsi-
moniously understood in terms of their achieving high (relative) mutual information 
via the non-representational process of generalized synchrony (Huygens, 1673)—of 
the same kind that occurs between two coupled pendulums.9 Despite the fact that 
one can formally describe each pendulum as a model of the other, actively infer-
ring the other’s behaviour, the question for the enactive-ecological views remains 
whether or not there is any added explanatory benefit of describing such inference 
(that falls out of the structural partitioning of Markov blankets) in representational 
terms (Kirchhoff et al. 2018). The alternative is framing the organizational separa-
tion that a Markov blanket introduces within dynamical systems theory—something 
that attempts to dispense altogether with representational constructs (Kelso, 1995; 
Port & van Gelder, 1995).

Yet there is a potential problem with this interpretation when it comes to account-
ing for the performance of counterfactual inference, something that is required for 
planning under FEP. Counterfactual inference requires engaging models that have 
some temporal depth, hence going beyond the immediate coupling to predict the 
consequences of future courses of actions or policies and—most importantly—
selecting amongst them. Counterfactual inference provides sophisticated active 
inference agents (i.e., those with temporally deep models) with a higher degree of 
autonomy and disengagement from the current situation, which is necessary for 
adaptive action selection, beyond what synchronized pendulums can do (i.e., pen-
dulums can synchronize, but they cannot select which pendulum they want to syn-
chronize with). Furthermore, and importantly, during counterfactual inference (e.g., 

9 For a criticism of Bruineberg et  al.’s dynamical interpretation of inference, see Colombo & Wright 
(2018).
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planning) the generative model is used to generate possible future observations—
and the possibility to engage vicariously with “what is not present” has been consid-
ered a hallmark of representation at least since Piaget (1954); we will return to this 
point in Sect. 3.3.

Does counterfactual inference require recourse to representational states? If the 
answer is affirmative, then it seems that coupled generalized synchrony stops short 
of accounting for the behaviour of the kinds of adaptive self-organizing systems that 
are the targeted explanandum of FEP (we will return to representational interpreta-
tions of counterfactual inference in Sect. 3.4). On the other hand, if a non-represen-
tational account of counterfactual inference—or something that similarly explains 
adaptive action selection—is available, then something other than counterfactual 
inference must motivate a representationalist perspective on FEP.

An example of ecological-enactive (non-representational) approach to coun-
terfactual inference is the theory of “adaptive active inference” of Kirchhoff et al. 
(2018). Adaptive active inference is the ability of adaptive self-organizing systems 
to selectively behave in response to environmental perturbation, actively seeking out 
the conditions that are compatible with their continued existence. Adaptive active 
inference is distinct from mere active inference (e.g., generalized synchrony of pen-
dulums)—in that it requires agents to engage generative models with some amount 
temporal (i.e., counterfactual) depth, allowing for future-oriented selection over dif-
ferent courses of action. It is expected free energy minimization that is predicted to 
accompany particular action outcomes which drives future-oriented action selection. 
If something like Kirchhoff et al.’s account is tenable, then neither general consid-
erations regarding organizational aspects nor more specific considerations regarding 
adaptive action selection seem to provide a sustainable motivation for a representa-
tionalist view of FEP. This being said, just how the kind of future-oriented posterior 
beliefs that drive adaptive active inference are accounted for without recourse to rep-
resentation is not made explicit by these authors; if counterfactual inference is adap-
tive active inference, the task of explaining how the former can come about without 
the use of representations has just been pushed back onto adaptive active inference. 
Thus, the jury is still out on whether adaptive active inference lends itself to a non-
representational account of future oriented action selection. Let us now turn to the 
structural aspects of FEP.10

3.2  Focusing on structural aspects of FEP

Rather than focusing on organizational aspects of FEP (e.g., the statistical separation 
described by Markov blanket formalism) one may instead focus on structural aspects 
of FEP. When adopting this perspective, the question to be addressed is whether 
generative models are structurally similar to their targets, or accurate descriptions of 
external reality, or whether models needn’t be accurate but merely adequate enough 
(i.e., satisficing) to leverage for adaptive behavioural control.

10 We are indebted to an anonymous reviewer for pushing us to clarify these points.
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As discussed above, one aspect of FEP that lends itself to representational inter-
pretations is the fact that active inference distinguishes between internal states and 
external states—and it is tempting to assume that internal states are about (or struc-
turally similar to) external states. One can dissect the mechanisms of active infer-
ence in more detail to ascertain which ones are, or are not, structurally similar to 
environmental dynamics. Recall, active inference agents have two probability den-
sities: the agent’s internal generative model (generative density G) and the current 
estimate of the value of the hidden variables (recognition density Q). In princi-
ple, one can consider either (or both) of these densities as having representational 
aspects. For example, the generative density includes a prior term that describes 
the agent’s preferences over observations and the recognition density encodes the 
posterior probability, or the agent’s current best-guess of the causes its sensations, 
which is continuously updated during inference, and corresponds to what we have 
previously called the internal states of the Markov blanket. It is tempting to inter-
pret these probability densities G and/or Q as the agent’s representations of desired 
and estimated hidden states, respectively (Hohwy, 2013; Kiefer & Hohwy, 2017; 
Clark, 2016; Gladziejewski, 2016; Williams, 2018). This idea would link to a long 
tradition of identifying cognition with the usage of small-scale models or cognitive 
maps (Craik, 1943; Tolman, 1948)—where an internal representation is a vehicle 
that stands for, or represents, something different from it (possibly, some entity in 
the external environment).

Furthermore, one can argue that the generative model needs to have some struc-
tural resemblance with the generative process, in order to be useful for control 
purposes (Gladziejewski, 2016; Kiefer & Hohwy, 2017; Williams, 2018). In other 
words, without some form of structural and exploitable resemblance between con-
troller and controlled system (independent of the actual correspondence between 
internal and external states), control would fail. Finally, predictions and prediction 
error signals could be considered as mental states with specific reference to external 
entities and their truth conditions. Successful predictions would therefore indicate a 
good representation of what is out there, whereas prediction error would indicate a 
misrepresentation that needs to be fixed by revising one’s beliefs or by acting.11

There are however some counterarguments to the above representational interpre-
tation. One line of argument is that one of the formal constructs required in active 
inference—specifically the generative density G—has been systematically misunder-
stood; and when understood correctly, it would turn out to be non-representational 

11 Kiefer and Hohwy (2017) suggest that the Kullback–Leibler (KL) divergence can be understood as 
a measure of misrepresentation. The KL divergence is a method of averaging over all the log ratios in 
probability vectors that lets one mathematically compare one probability distribution to a reference prob-
ability distribution. Optimally, one minimizes the KL divergence from the reference distribution. They 
suggest taking the KL divergence between the generative model’s posterior distribution and the causal 
structure of the world as an internal proxy for the objective notion of misrepresentation (mismatch 
between the generative model and the world). See Kirchhoff and Robertson (2018) however who propose 
that the KL-divergence between prior and true posterior can be cast as a measure of relative entropy, 
which—over multiple timesteps—turns out to be a measure of covariance. This potentially blocks Kiefer 
& Hohwy’s move from KL-divergence to structural (mis)representation.
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(Ramstead et al., 2019). The authors suggest that generative models do not meet the 
requirements of structural representations, where some internal structure replicates 
some structure of the generative process. This being said, if one applies the same 
criterion, then the recognition density Q would however have properties ascribed to 
structural representations, as they need to have some “exploitable structural resem-
blance” with their targets in order to be leveraged for adaptive behavioural control 
(Ramstead et al., 2019). Indeed, the Q density would need to encode information (a 
posterior belief of states, including control states from which actions are selected) 
that is both exploitable for action guidance and shares structural features with envi-
ronmental states. Interestingly, the authors go on to argue that this process of form-
ing exploitable structural representations (i.e., posterior beliefs) would nonetheless 
have an enactive flavour, as it is not a passive perceptual inference but enabled by 
active inference.12

Another line of argument is that internal states in FEP would fail to accurately 
(at least to some degree) capture the structure of its target, the possibility of which 
some consider an important prerequisite for representation (Kiefer & Hohwy, 
2017).” In some cases, accurate control requires internal states to systematically mis-
represent what is out there (Bruineberg et al., 2016). For example, consider that an 
active inference agent’s preferences are encoded as prior beliefs over future observa-
tions. Performing a goal-directed action requires agents to have a prior expectation 
that some goal state is met; that is, to misrepresent its actual state (note that other 
similar misrepresentations may be required for adaptive control, in addition to the 
aforementioned priors). In other words, under certain circumstances, the traditional 
requirements of representational systems (e.g., maintaining an accurate estimate of 
the external milieu) conflict with the control demands of FEP; one example is the 
fact that (for technical reasons) FEP agents need to maintain a sort of optimism bias 
in order to act adaptively. In these cases, control demands have priority, given that 
action—rather than perception—does the heavy lifting of free energy minimiza-
tion (i.e., only action can reduce surprisal and make the world compatible with the 
prior). As a result, there are cases in which the agent’s perceptual and state estima-
tion processes become systematically biased (e.g., by the agent’s goals). These mod-
els, which do not (always) maintain an accurate estimation of external variables, can 
be considered either representational—by appealing to the fact that temporary mis-
representation is a nuance of goal-directed behaviour—or non-representational, by 
noticing that accuracy of representation is constitutively less important than adap-
tive action (Bruineberg et al., 2016).

On the other hand, at least three features of FEP suggest that it entails some 
epistemic grasp (and not only a pragmatic grasp) over the external world. First, 

12 The idea that the posterior beliefs parameterizing the recognition density Q are structural representa-
tions and that they arises from a system’s coupled activity with its environment is interesting for the fol-
lowing reason: since the Q density is encoded by internal states of the Markov blanket, it is possible that 
the kind of recourse to coupled dynamics—something which has traditionally been used to as an explan-
atory alternative to representationalism—from the perspective of organizational aspects (Sect. 3.1) could 
nonetheless imply elements of structural representation. We are indebted to an anonymous reviewer for 
pushing us to make this point explicit.
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perceptual inference can be cast as a process in which the brain attempts to maxi-
mize the empirical adequacy of the (approximate) belief Q with respect to current 
sensory observations (Hohwy et al., 2008). This process is continuously optimized, 
and the model complexity actively regulated to avoid overfitting to sensory data 
(Hobson & Friston, 2012), which testifies that FEP carefully considers the neces-
sity of maintaining some adaptive level of accuracy. Second, in FEP it is possible to 
select actions that serve properly epistemic functions, as they are aimed at exploring 
the environment to reduce long-term uncertainty about its causal structure (Friston, 
Rigoli, et  al., 2015; Pezzulo et  al., 2016)—as opposed to having pragmatic func-
tions, such as obtaining a reward. Hence in FEP, epistemic imperatives are fun-
damental, over and above pragmatic imperatives. Third, on the PP view, the brain 
stores metacognitive estimations of the precisions of its incoming sensory signals, 
and adjusts those estimations to match environmental volatility, thus regulating the 
learning rate (Mathys et al., 2014). The best way of making sense of these three fea-
tures is in terms of the brain (or cognitive system) actively maintaining the genera-
tive model, so as to maximize accuracy (or a certain level of accuracy-to-complexity 
ratio) and hence maintain some epistemic grasp on the external world.

Lastly, the evaluationist view provides yet another manner of thinking about the 
notion of representational accuracy. This view holds that a prediction error signal 
is an internally accessible evaluation or assessment of how ready or prepared the 
organism (or receiver at a given level in the processing hierarchy) is in relation to 
anticipated future environmental and organismic states in light of its most recent 
behaviour and goals. Prediction error signals relay to the organism “its state of 
readiness for goal-directed, adaptive activity” (MacKay, 1969)—that is, how well or 
poorly adjusted it is to how various states of the world appear to be unfolding given 
how it expects them to unfold.13 Contextualizing the evaluationist perspective within 
the notion of intentionality or the “aboutness” of mental states as directed at the 
world (Brentano, 1874/1995) marks an important distinction with traditional views. 
Whereas traditional views take for granted aboutness-as-representation across the 
board, the proposed evaluationist alternative posits aboutness-as-evaluation for pre-
diction error signals and accepts aboutness-as-representation for generative models.

3.3  Focusing on content‑based aspects of FEP

The arguments for or against casting FEP as a representational framework presented 
in the previous section have been implicitly based on the question of whether inter-
nal states need to be somewhat similar to external states, or share some structural 
resemblance with them, to represent those states. Now let us turn to a closely related 
but distinct question that has been instrumental in considering the status of FEP as 

13 For further illumination, compare the evaluationist proposal with Millikan’s (1995) pushmi-pullyu 
representations and Shea’s (2012) use of them in this context. These are representations that “face in 
two directions at once” (Millikan, 1995, p. 186) in that they have two types of representational content, 
one indicative or descriptive and one directive or imperative (borrowing her familiar bee-dance example, 
"There is nectar at location X" and "Fly to location X").
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representational or non-representational: whether the generative models need to 
explicitly model the ways external states produce sensations (aka environmental 
models) or the ways actions produce sensations (aka sensorimotor models).

To date, most published studies using active inference use generative models that 
closely mimic generative processes; or in other words, whose internal states (and 
their relations) are largely analogous to external states (and their relations). This is 
often done for illustrative purposes (Friston et  al., 2016a) and few would assume 
that this condition could be met in biological organisms, where generative models 
and internal states can be at best a very impoverished version of external, environ-
mental states and dynamics.

However, this raises a more profound question about the content of the generative 
models in FEP: is it really important that internal states resemble (closely or loosely) 
external states, or is it sufficient that—whatever they are—they afford accurate 
action control? This question, which concerns contentful aspects of representations, 
motivates a family of action-oriented theories, which de-emphasize the similarity 
between internal and external states, arguing that the most important requirement 
of models and internal states is affording accurate control—and this does not neces-
sarily imply that they also provide a precise account of the world. In action-oriented 
and naturalistic models, predictions and prediction error signals are useful as bases 
for acting adaptively without necessarily representing external entities. These might 
be seen as pragmatic representations or representations of affordances (Pezzulo 
& Cisek, 2016). They are about some precondition for action (using the notion of 
aboutness of Brentano (1874/1995), or about one’s relation with something external, 
but without necessarily representing it (nor does the object of thought need to exist).

One such influential action-oriented view, championed by Clark (2013, 2016), 
is that FEP (or predictive processing more specifically) is representational but in 
a sense that is more compatible with embodied, action, or control-oriented theo-
ries of cognition. Accordingly, although FEP requires generative models, these can 
fall within a range, spanning from rich to quite frugal models. Importantly, rather 
than maximizing the accuracy of representations, the role of generative models is to 
secure behavioural control; and hence they only need to incorporate those aspects 
of the external world and its “true” dynamics to the extent that such aspects sat-
isfy control demands. As Clark puts it, “the role of such models is to control action 
by predicting and bringing about the complex plays of sensory data” (2016, p. 4). 
This means that in most practical cases, models do not need to encode deep aspects 
of the external world (e.g., a full 3-D reconstruction of the visual scene) but use 
information efficiently in the service of adaptive action. Action-oriented represen-
tations as such, are a means to engage the world, rather than to portray it in a way 
that is impartial to action. If this is correct, then the traditional view of models that 
see them exhaustively as world-depicting “mirrors of nature” (Rorty, 1979) divorced 
from action is a substantial oversimplification if not outright erroneous.

The embodied cognition literature has shown some practical examples of how 
good control can be realized using fast-and-frugal solutions and very simple models. 
One popular example is the “baseball outfielder problem”, or the fact that catching 
a moving ball may not require a full model of the ball’s position, velocity and direc-
tion (allowing for trajectory prediction), but a simpler control mechanism that only 
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keeps the image of the ball stationary on the retina (McBeath et al., 1995). The idea 
behind Clark’s (2013, 2016) action-oriented representational view is that it is pos-
sible to incorporate within FEP this and other lessons of embodied and ecological 
cognition, by considering frugal internal models, the main aim of which is man-
aging adaptive agent-environment interaction as opposed to representing the exter-
nal reality as accurately as possible (Cisek, 1999, 2007; Pezzulo & Cisek, 2016). 
A more nuanced view is that different kinds of models can coexist within different 
hierarchical layers of the same FEP agent, with lower hierarchical levels that encode 
relatively simpler and cheaper models (or heuristics) that can be contextualized by 
higher hierarchical levels to incorporate more sophisticated models or knowledge 
(Clark, 2016; Pezzulo, et al., 2015). This hierarchical view affords habit formation 
when lower hierarchical levels acquire sufficient precision or when environmental 
uncertainty is fully resolved (Friston et al., 2016b). Along similar lines, one can con-
sider that extensive learning implies strong information compression, thus favouring 
the selection of behaviours that are both adaptive and cheap from an informational 
viewpoint (Globerson et al., 2009).

Another manner of approaching the question of whether resemblance of inner 
states to target states or the capacity of inner states to guide satisficing action con-
trol is most relevant to considerations of representational content begins from the 
notion of generative models. A formal requirement of FEP is having a generative 
model that describes (in statistical terms) the ways incoming sensations are gener-
ated. However, an FEP agent can “explain” or “model” the way its sensations are 
generated in at least two different ways: by appealing to entities or dynamics in the 
external environment or by only considering the effects of its own actions. In other 
words, an FEP agent can be equipped roughly with two kinds of generative models: 
environmental and sensorimotor models. The first kind of model—environmental 
models—captures the contingencies between a given external state or event (e.g., 
the presence of an apple) and the ensuing sensations (e.g., seeing something red, 
feeling something hard after grasping). Examples of this family of models include 
hierarchical perceptual models that represent simpler-to-more-complex visual fea-
tures in their lower-to-higher hierarchical layers (Rao & Ballard, 1999; Lee & Mum-
ford, 2003) and motor control models that are equipped with a hierarchy of motor 
representations, from long-term intentions to short-term motor programs (Hamilton 
& Grafton, 2007).

The second kind of model—sensorimotor models—captures the contingencies 
between the agent’s actions (e.g., moving the finger forward) and the ensuing sen-
sations (e.g., feeling something hard). These latter models code for sensorimotor 
contingencies (O’Regan and Noe 2001; Ahissar & Assa, 2016; Seth, 2014) relevant 
for behaviour, without necessarily hypothesizing external entities or providing pre-
cise accounts of the outside world. Consider for example an FEP agent (a simulated 
rodent), which senses the external environment through use of its whiskers. A senso-
rimotor model may encode (for example) the contingencies between the movement, 
velocity and angle of the whisker and the ensuing (expected) sensation, and a stimu-
lation of the touch sensor. This model would afford some form of adaptive action, 
such as for example deciding whether to move forward (if no touch stimulation is 
sensed or expected following a whisking), change direction (in the opposite case) 
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or jump (if some touch stimulation is absent and yet expected following a whisking 
with a certain angle)—without explicitly assuming external entities such as corri-
dors, walls or holes in the ground. One can then consider that these are not models 
of external entities, but of one’s own sensory-motor cycle—and that one actively 
samples sensations (e.g., the way whisking results in touch sensations).14 See (Bas-
tos et al., 2012; Friston, Rigoli, et al., 2015; Pio-Lopez et al., 2016) and (Friston, 
2013; Baltieri & Buckley, 2017; Buckley et al., 2017) for more detailed examples of 
the two kinds of models, respectively.

One immediate question that may be posed for sensorimotor models is how they 
might afford sophisticated cognitive processing? On the one hand, one can argue 
that the notion of sensorimotor model can stretch to any kind of complexity (Bru-
ineberg et al., 2016), as sensorimotor loops become able to incorporate increasingly 
distal consequences. Furthermore, the sensorimotor dynamics created by sensorimo-
tor models may be progressively internalized to support mental operations detached 
from the sensory-motor cycle (Hesslow, 2002; Ito, 2008; Buzsáki et al., 2014; Pez-
zulo, Donnarumma, et al., 2017; Pezzulo, Kemere, et al., 2017; Pezzulo et al., 2020; 
Stoianov et al., 2020).

An alternative proposal is that sensorimotor models pave the way to increasingly 
more sophisticated models. To give an account of this, one approach which dates 
back at least to schema theory (Drescher, 1991; Roy, 2005), consists in starting from 
sensorimotor (action-effect) models but progressively extending them to incorpo-
rate extra variables that describe external causes of sensations (e.g., objects)—which 
therefore become akin to environmental models. The key to this form of schema 
learning is postulating external objects as the common cause of several action-effect 
pairs. For example, one can postulate the existence of a “coffee cup” because it 
explains several sensorimotor processes (e.g., lifting X results in feeling something 
light-weighted; drinking from X, results in something hot; looking at X from vari-
ous positions results in seeing something cylindrical; grasping X results in feeling 
something cylindrical, etc.).15 Schema learning thus constitutes a way to gradually 
pass from sensorimotor to environmental models, and to let them co-exist after-
wards. In contrast to enactive views of sensorimotor contingencies, in schema learn-
ing the common cause of coherent sets of contingencies is reified in the form of a 
novel set of internal variables that are partly action-independent—hence producing 
environmental models.

With this being said, how might the distinction between environmental and sen-
sorimotor internal models allow for a more detailed understanding of the different 
representational and anti-representational perspectives on FEP? In principle, both 

14 One interesting question that might arise is how this distinction between environmental and sensori-
motor models maps onto the two-visual systems account of perception and action, according to which the 
anatomical branching of the visual system into the ventral or ‘what’ and dorsal ‘how’ pathways under-
write semantic and pragmatic processing (see Goodale & Milner, 1992).
15 How sensorimotor schema learning leads to object postulation is clearly expressed by Drescher when 
he writes: “The coordination of hand motions and eye motions, of seeing and feeling, begins to describe 
the nature of objects and space; sight and touch begin to be known as coordinated properties of external 
objects” (2002, p. 135).
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environmental and sensorimotor models can be interpreted in representational and 
anti-representational terms. Following a long tradition in cognitive science (Craik, 
1943; Tolman, 1948) environmental models have been often interpreted in represen-
tational terms, given that they play the role of vehicles that refer to external entities, 
and they include internal (hidden) variables bearing some similarity to the exter-
nal entities, e.g., increasingly complex features of an apple or a face for perceptual 
models. However, it is possible to assign different representational status (represen-
tational versus non-representational, or strong representational versus weak or mini-
mal representational) to internal dynamics that accurately encode the key aspects of 
external dynamics (the generative process) and to more frugal environmental mod-
els; for example, models that afford catching a ball by modelling its trajectory or by 
maintaining a stable visual angle. The latter (frugal) kinds of model do not neces-
sarily lend themselves to representational interpretations. It is not even necessary to 
interpret them as “models” in the sense specified by FEP: at least in certain condi-
tions, the FEP scheme can include simple stimulus–response mechanisms (Friston 
et al., 2016b).

Sensorimotor models have also been interpreted as being either representational 
or non-representational. For instance, from radical enactivist or ecological perspec-
tives, sensorimotor models do not involve the use of representations; they mediate 
the reciprocal exchanges between the agent and the environment without involving 
internal representation of the latter (Bruineberg et  al., 2016; Gallagher & Allen, 
2016). Moreover, when taking the radical enactivist or ecological perspectives on 
FEP, the notion that FEP agents are endowed with sensorimotor models (or environ-
mental models for that matter) may be interpreted more broadly as the claim that the 
agent is a model of its environment. In other words, the agent’s phenotype embodies 
evidence of the very environmental dynamics that it and its progenitors over both 
phylogenetic and ontogenetic timescales have successfully adapted to. Since being 
a model of the environment does not imply any need to represent the environment, 
the central place that models play in FEP does not itself entail a representationalist 
view of FEP. One can push this argument even further, and argue that the statisti-
cal notions (e.g., Bayesian inference, estimation) used by FEP are stretched beyond 
explanatory usefulness given that FEP applies just as equally to non-neural bacteria 
as it does to more complex organisms with nervous systems. Descriptions of adap-
tive behaviour which make use of inference as such are thus seen as uninformative 
and may be more fruitfully replaced with explanations involving the idea that certain 
states of the system become dynamically coupled with certain states outside the sys-
tem via generalized synchrony (Bruineberg et al., 2016; Korbak, 2019).

Other researchers have taken a representational perspective when interpreting 
sensorimotor models. A first line of argument, as discussed above, focuses on organ-
izational aspects of internal models within the action-perception cycle of FEP. In 
this perspective, all FEP agents are representational, because their internal states are 
segregated from the states of the external milieu via a Markov blanket and the gen-
erative models are deployed in inferring the causal-probabilistic structure of external 
states (Hohwy, 2013). It does not really matter whether the internal models are mini-
mal, given that even the most accurate models that one can think of are nevertheless 
simplifications of the “true” state of the world—after all, any models is just a useful 
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simplification that affords estimation, prediction and control. If simpler models do a 
good job, they must be preferred given standard statistical arguments (model selec-
tion) that are part and parcel of free energy minimization (FitzGerald et al., 2014).

A second line of argument in favour of the representationalist interpretation of 
sensorimotor models is that they afford forms of internal manipulation and infer-
ence—for example, when they are used to steer sensorimotor predictions of action 
consequences—and for this they are sometimes called “action-oriented” or “embod-
ied representations” (Clark & Grush, 1999; Grush, 2004; Pezzulo, 2008). This 
line of argument is in agreement with many foundational works in cognitive sci-
ence, according to which internal representations are important because they can be 
used prior to or instead of acting in the real world—and even “vicariously”, in the 
absence of their referent (Craik, 1943; Piaget, 1954).

This line of argument brings into focus to yet another well-acknowledged aspect 
of internal representations (that is distinct from organizational, structural, or con-
tent related aspects): their functional role, or what they do (as opposed to what they 
encode) within a cognitive architecture.

Let us now look more closely at this particular aspect of representations.

3.4  The functional role of internal models in FEP and the importance of vicarious 
operations and detachment

Another way to address the issue of what a representation is and what it is not is 
by asking what functional role representations play within a hierarchical architec-
ture. An idea that dates back at least to Piaget (1954) is that representations should 
vicariously “stand for” something external in its absence and afford vicarious opera-
tions, i.e., mental operations using an internal vehicle that are executed before acting 
on the external referent of the vehicle (e.g., consider mentally which route to take 
to go home), or even when the external referent of the vehicle is absent (e.g., con-
sider mentally whether one would enjoy eating a pizza—with no pizza is in sight).16 
Relatedly, this functional role aspect of representations has been expressed in terms 
of whether the agent’s internal operations are detached from its action-perception 
cycle and hence autonomously generated, versus determined or sustained by exter-
nal stimuli (Gardenfors, 1996; Pezzulo & Castelfranchi, 2007).17

From this perspective, to assess the representational status of FEP one could ask 
“what functional roles do internal models play during free energy minimization, and 
whether or not such minimization requires the internal manipulation of variables in 
ways that resemble vicarious operations in classical (e.g., Piagetian) accounts of rep-
resentation?”. Below we address these questions, in relation to the two forms of free 
energy minimization that occur in FEP: we focus first on variational free energy 
minimization (that depends on current and past observations) and then on expected 
free energy minimization (that depends on future, predicted observations).

16 See also Tolman (1948) for a similar idea.
17 See (Sims 2019b paper) however for a case against the idea that all off-line internal operations are 
decoupled across the board.
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In FEP, variational free energy minimization starts with an internally generated 
prediction (or, in a hierarchical architecture, a cascade of predictions). Importantly, 
not only are predictions self-generated and hence at least temporarily autonomous 
from current stimulations, but they are also used for purely internal (prediction-
matching and error-correction) operations. Specifically, the inferential scheme of 
FEP requires the continuous generation of two kinds of prediction errors. The first is 
a discrepancy between current expectations (about hidden states) and the available 
sensory evidence (or, in a hierarchical scheme, hidden states at lower levels). The 
second kind of prediction error is a divergence between current expectations (current 
posterior estimate of the state of hidden variables in the recognition density Q) and 
prior preferences (in the generative density G). The two densities are continuously 
compared against each other internally to the FEP agent (and in the second case, 
fully independent of current external stimuli). One can think of the elicitation of 
such expectations and the subsequent matching operations as vicarious operations, 
which use internal variables of the model as proxies for external entities (in the case 
of environmental models) or for possible actions (in the case of sensorimotor mod-
els). Hence, to the extent that these algorithmic steps of variational inference (and 
others, e.g., calculating the entropy of hidden states) are considered part and parcel 
of a process model of cognition (Constant & Clark, 2019), these internal manipula-
tions would count as representational (Clark, 2016). However, a possible counter-
argument is that the algorithmic steps of variational inference are just one way to 
implement FEP; and one can realize roughly the same computations by appealing 
to other methods that do not require this vicarious use of internal variables—for 
example, the synchronization between variables within and outside the generative 
model (Bruineberg et al., 2016; Gallagher & Allen, 2016).18 Furthermore, one may 
consider that calculating an expectation is not a sophisticated process but simply 
boils down to (for example) calculating the mean of a probability distribution, which 
does not require a degree of cognitive complexity. However, the cognitive complex-
ity increases in the case of planning and expected free energy minimization, as we 
describe next.

In FEP implementations of planning, candidate action sequences or policies are 
compared depending on their expected free energy; that is, the free energy that the 
agent expects in the future by executing the policies (Friston, Rigoli, et al., 2015). 
The expected free energy (or quality) of policies is calculated by internally simu-
lating sequences of actions between action-perception cycles, without selecting 
actions or receiving observations in the meantime. Hence, the expected free energy 
calculations require an off-line usage of the generative models, to predict (action- 
or policy-conditioned) future states and observations—both of which by definition 
cannot be observed. This self-fuelling, what-if or counterfactual internal inference 

18 See (Korbak, 2019), who in defending a computational—enactivist view of FEP, argues that elimi-
nativism with respect to algorithmic variational inference fails at certain levels of complexity at which 
dynamic coupling (generalised synchronicity) cannot sufficiently account for certain phenomena. And 
for a contrasting view that at progressively higher levels of complexity, variational inference will be con-
siderably to be intractable without taking the agent’s being environmentally embedded into account, see 
(van Rooij et al., 2019).
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(Seth, 2014) is thus operated in the prolonged absence of the stimulus and entails a 
stronger detachment of the agent from action-perception cycles compared to vari-
ational free energy.19 It therefore defies interpretations of belief updating in FEP 
based on coupling between internal and external states, as this coupling is broken. 
It also defies interpretations based on the idea an agent is a generative model of its 
environment, as opposed to the idea that an agent has a generative model of its envi-
ronment. This is because the generative model has to be explicitly used to gener-
ate predicted states and observations. Hence the planning mechanism of FEP lends 
itself more easily to representational interpretations, which is in keeping with related 
ideas about internal, what-if simulations in computational neuroscience (Jeannerod, 
2006), philosophy of mind (Clark & Grush, 1999), machine learning and robotics 
(Nishimoto & Tani, 2009).

In sum, the possibility to support detached operations that de-couple an agent 
from the current action-perception cycle has been often considered as a strong crite-
rion for representation, in the Piagetian sense of vicarious operations, in the absence 
of a referent. When assuming this perspective, representation links to a functional 
aspect—vicarious use, momentary or prolonged detached processing—rather than 
organizational, structural or content-related aspects of internal models.

A possible counterargument to the idea that vicarious functions require represen-
tation is that they consist in a reuse of perceptual and motor capacities; and if these 
are not representational in the first place (as enactivists assume) they do not become 
representational just because they are reused (Hutto & Myin, 2017). There is how-
ever a problem with this rebuttal. In active inference, vicarious operations like plan-
ning require something more than a verbatim reuse. Indeed, the agent’s generative 
model is used differently during action-perception and during planning: in the latter 
(but not the former) case, it is used to predict observations to feed the (expected) 
free energy calculations. In other words, while during the action-perception loop 
it is the environment that closes the loop by feeding the necessary observations to 
the agent (Fig. 1), during planning it is the agent’s generative model that closes the 
loop and feeds the observations, therefore acting vicariously to replace (unobserved) 
environmental dynamics. In principle, one could consider the second usage of gen-
erative models as representational even if the former is not (as enactivists assume).

More broadly, one can consider the idea that “a process that starts non-represen-
tational cannot become representational” to be valid only if one focuses on content-
related aspects of representation, but not if one focuses on function. In the same way 
that a perceptual process which does not start as a memory can become a memory 
afterwards, also a perceptual process that does not start as a representation may 
become a representation afterwards (e.g., if it is used to perform a vicarious opera-
tion “in the absence” of the initial referent). We will now turn to a related manner of 
thinking about function that may be used to support the claim that non-representa-
tional processes may become representational processes.

19 For an argument that this kind of counterfactual decoupling is a marker of bona-fide cognition see 
Corcoran et al. (2020).
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4  Representation as an evolutionary function

Similar to other cognitive functions like working memory, planning, cognitive con-
trol and attention; or perhaps, even to functions like flying or swimming (Cisek, 
2019), representation—here intended in the sense of affording vicarious operations 
and detachment from the current action-perception cycle—may be an evolutionary 
function. The claim that some current trait is an evolutionary  function20 is to say 
that it was selected for and is now present in some organisms because in the past 
(or more specifically—in its recent selection history) it endowed those organisms 
possessing it with more adaptive advantage than those failing to have that trait (God-
frey-Smith, 1994a, b, 1996); the general notion of adaptive advantage expressing 
itself in the fact that organisms, because of their possessing the trait, were able to 
better respond to niche-specific selective pressures (e.g., avoiding predictors, com-
peting for mates, competing for food, avoiding sickness, etc.) and, as a result, to pass 
on that advantageous heritable trait. In suggesting that the ability to deploy detached 
operations on internal variables is an evolutionary function, we are suggesting that 
the fact that such representational capacities are found today in some organisms can 
be explained (partially) by the selection pressures that the capacity of detached rep-
resentation allowed such organisms to successfully respond to. Any detailed specu-
lative account however as to what the presence of detached representational capaci-
ties in certain organisms suggests about the kinds of environmental problem spaces 
that they have responded to in the past falls beyond the scope of this paper (but 
see for example Millikan, 1989, 2004; Sterelny, 2003; Schulz, 2018; Corcoran et al., 
2020).

Under the assumption that detached representation is an evolutionary function, 
being able to coordinate  current  actions with the effects of future actions seems 
likely to have placed those representing agents that occupied complex niches at an 
advantage over those failing such a capacity with respect to dealing with structured 
environments and predictable future events. Where complex niches might be thought 
of as having a high level of “structured heterogeneity” (Godfrey-Smith, 1996); those 
niches in which the cause-effect cycles that are relevant to a particular kind of organ-
ism unfold at long timescales such that current events may act cues for identifying 

20 Strictly speaking, the notion of evolutionary function is distinct from the kind of instrumental func-
tion which has been referred to as a criterion for representations above. In particular, instrumental func-
tions describe the functional role played by a process in reference to the larger system (or process) that it 
is part of and helps to explain (Cummins, 1975). When it is said that representations play the functional 
role of supporting vicarious operations, it may be assumed that this role is relevant to the larger cognitive 
prediction error minimizing system. Evolutionary functions, on the other hand, are specified in terms of 
those features of organisms that have gradually arisen due to their adaptive contribution to an organ-
ism’s fitness in the presence of selective pressures. The two claims that (a) the functional role of repre-
sentations (models) is to allow for vicarious operations and that (b) representations as such have been 
selected in given the advantage that organism deploying them (historically) had in dealing with selective 
pressures are two distinct yet mutually supportive kinds of functional claims—as one may consider, for 
example, that performing vicarious operations gave organisms strong evolutionary advantages in certain 
niches, see the main text. For more on the distinction between evolutionary functions and instrumental 
functions see Godfrey-Smith (1994a, b, 1996).
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and planning current action according to regular future manifestations-of organism-
relevant selection pressures. Moreover, the evolutionary function of detached rep-
resentation of one’s own action consequences (or those of some other agent) may 
be seen as a particularly important adaptive benefit for social organisms, where the 
same behavioural cue may lead to distinct future outcomes, some of which are more 
supportive to the individual’s survival than others (Pezzulo, Donnarumma, et  al., 
2017). Relatedly, the ability to represent the consequences of a given action seems to 
be a  necessary cognitive function for being able to actively construct niches, the 
group or social environment being just one such constructed niche domain; the con-
struction of social niches helping to ensure that selection pressures are dealt with 
effectively at both the individual and group level (Lewontin, 1983; Odling-Smee 
et al., 2013; Bruineberg et al., 2018; Constant et al., 2018).

This perspective automatically entails that representation is an attribute of bio-
logical organisms that are subject to evolutionary pressures and does not readily 
apply to non-biological entities (e.g., a stone does not represent gravity). However, 
like any other functional attribute, it needn’t apply to all biological organisms—or at 
least to the same degree. As such, although FEP may be used to describe the self-
organizing behaviour of all biological systems, not all self-organizing behaviour of 
biological systems requires the use of detached operations on vicarious variables. 
For example, homeostatic regulation may be more parsimoniously understood with-
out evoking the notion of representations (e.g., in terms of simple reflex arcs) while 
the future-oriented (and hence detached) character of allostatic control in the service 
of essential homeostatic setpoint maintenance may indeed call out for representa-
tional explanation (Cf. Stephan et al., 2016)21 Thus, we would like to suggest that 
understanding the functional role aspect of representation in the context of evolu-
tionary function offers a manner of supporting the claim that a process that does not 
start as a representation may become a representation afterwards: if the functional 
role of a representation is to allow detached operations on vicarious variables, and it 
was the use of states playing this particular role that substantially contributed to the 
differential fitness of certain classes of living systems inhabiting increasingly com-
plex niches, then it is plausible that the processes underpinning this function are an 
extension of simpler, non-representational processes that have themselves been com-
plexified over evolutionary timescales. If this is the case, then not only can a process 
that does not start out as a representation become a representation at short time-
scales (think use/re-use accounts), but we should expect as much given some kind of 
evolutionary continuity between putatively non-representational processes and those 
detached processes that have evolved from them. In other words, full-fledged decou-
pled representational capacities might “shade-off” (Godfrey-Smith, 1996) into other 
cognitive or minimal cognitive processes, the dynamics of which are increasingly 

21 Allostatic control refers to anticipatory behaviour that by enslaving wide-range homeostatic variables 
allows systems to avoid deviation from essential homeostatic setpoints prior to the onset of deviation (for 
various and yet somewhat related views of allostatic control see Stephan et al. (2016), Corcoran et  al. 
(2020), Kiverstein and Sims (2021).
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more coupled to the environment through action and sensory feedback.22 Therefore, 
when taking functional role as contextualized by evolutionary function as a crite-
rion for identifying when recourse to representation is warranted in explanation, it 
is plausible to interpret at least some processes (i.e., those that involve the use of 
vicarious variables in the service of minimizing expected free energy) that drive the 
kind of self-organization that FEP describes as representational.

5  What can we learn from this debate?

This review of some of the most prominent philosophical interpretations of FEP has 
highlighted a wide variety of opinions. We briefly summarized that theories starting 
from different aspects of representations (e.g., organizational, structural, content-
related or functional) focus on different constructs of FEP (e.g., Markov blankets, 
prediction-error-matching, environmental or sensorimotor models, vicarious use 
of internal models) and come to different conclusions about the representational or 
non-representational nature of FEP.

However, one can use the debate on (representation in) FEP the other way around: 
not as a way to resolve the issue at stake, but as a “mirror” to look at one’s own 
implicit notions of representation. Figure 2 provides a simplified scheme to consider 
how, by starting from different implicit notions of and criteria for representation, 
one can arrive at different conclusions about FEP (or anything else). Note that the 
Figure is not meant to be prescriptive. The directions indicated by the arrows are not 
mandatory; they just reflect the most common pathways that we have discussed in 
the previous Sections, but of course alternative pathways are possible.

Representational interpretations tend to emphasize the importance of having 
internal generative models and environment-mediating internal states that are (sta-
tistically) separated from external states. One can interpret this separation from an 
internalist perspective by emphasizing that internal states are separated from the 
external milieu by a Markov blanket; or from a more action-based and embodied 
perspective by noticing that internal models can be frugal; their main role is medi-
ating adaptive action and they needn’t necessarily “resemble” external events—
providing that they offer a good guidance for action. This latter argument applies 
particularly well to FEP agents using sensorimotor (as opposed to environmental) 
generative models that encode the contingencies between actions and perceptions, 
without necessarily appealing to external entities to explain sensations.

22 For example, the capacity to distinguish an object from its surrounds based on some of its features 
(e.g., colour and shape) when an object is visually present may have evolved into a capacity to also imag-
ine objects when they are not visually present (Pezzulo, 2008) This is exactly what should be expected 
from a generative model which is a machine that operates according to “analysis by synthesis” and hence 
is able to re-create (i.e., generate) structure. The passage to a full-fledged representational role in our 
opinion is not just when the object features are re-created, something which is always part of generative 
modelling, but when they are also successively used within some mental operation—for example, to ask 
the question: “do you like the chair we saw at shop 1more than the one we saw at shop 2?”.
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If one only appeals to the organizational aspect of representation, the presence of 
environmental or sensorimotor (or complex or frugal) model does not matter, insofar 
as the internal variables of the model are understood to be separated from exter-
nal reality by a Markov blanket and the generative model is leveraged to infer the 
causal structure of external reality via self-evidencing. However, these differences 
matter if one considers structural aspects, and the degree of resemblance between 
hidden variables and environmental dynamics (as opposed to action or information 
gathering dynamics). Here, the content of representations is used to draw a further 
distinction (within the representational view) between an internalist (sometimes also 
called intellectualist or encodicist) versus an action-oriented perspective. Thus, this 
debate within FEP reiterates classical discussions between traditional versus action-
oriented and embodied theories of cognition, which emphasize the representation 
of environmental regularities versus sensorimotor contingencies, respectively—
although not all action-oriented theories appeal to the notions of internal models or 
representations; for a detailed discussion see (Pezzulo et al. 2016; Engel et al., 2013, 
2016).

It is also possible to interpret FEP agents—and especially those having sensori-
motor models—in non-representational terms. Non-representational interpretations 
seem more compelling for FEP agents that use sensorimotor models and under the 
assumption that some aspects of FEP—organizational (Markov blankets) and algo-
rithmic (variational inference)—are neither mandatory nor relevant to the debate 
on representation. For example, it is worth noting that FEP agents make vicarious 
usage of internal variables before (or instead of) acting in the external environment 
in two situations: during on-line action-perception loops to calculate predictions and 
prediction errors, and off-line to propagate these predictions over time in order to 
covertly evaluate alternative policies or to support planning. For on-line action-per-
ception loops, one can appeal to the fact that some algorithmic aspects of variational 
inference can be replaced by non-representational mechanisms (e.g., synchrony with 
external stimuli). However, a major challenge for non-representational interpreta-
tions of FEP (when used with a process theory) is to offer mechanistic models of 
detached cognitive abilities such as planning. Current active inference implemen-
tations of planning require the off-line engagement of generative models to calcu-
late expected free energy, with a significant degree of detachment from the current 
action-perception loop. To the extent that detachment and vicarious use of internal 
variables for counterfactual inference are elevated to criteria for representation or 
sophisticated cognition, they would support a representational view of FEP—inde-
pendent of the content or complexity of the generative models. The opposite would 
be true if one does not consider detachment as a criterion for representation.

One important implication falling out of this diagnosis is that when consider-
ing functional role aspects, it is often how the details of our chosen process theo-
ries are fleshed out and contextualized by the kinds of cognitive phenomena that 
we are attempting to account for that skew our interpretation of FEP in one direc-
tion or another. For example, one may consider that there are core aspects of FEP, 
such as the possession of a Markov blanket and more ancillary aspects, such as the 
possibility to engage in counterfactual inference (which is only required for plan-
ning)—and it is only the latter, more ancillary aspects that call for a representational 
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interpretation under a given process theory. This would imply that (when using 
functional role as a sole criterion for representational processes) only some FEP 
agents—namely, those that can engage in counterfactual forms of inference—would 
meet the criteria for representation. It is only this subset of FEP agents that would be 
equated to full-fledged PP agents.

This possibility is voiced by Clark (2017), who suggest that many basal organ-
isms (e.g., bacteria) may minimize free energy and yet fail to have deep generative 
models that allow for the kind of counterfactual inference he views as being core to 
PP. If this is the case, then representations may be something that are only available 
to those systems that engage in the functionally asymmetric, hierarchical, bidirec-
tional message passing intrinsic to PP. Such a view is compatible with either of the 

Fig. 2  A conceptual map of possible pathways from different premises to different conclusions about the 
status of FEP as either representational (e.g., internal states represent external states) or non-representa-
tional (e.g., internal and external states have coupled dynamics, but the former do not represent the lat-
ter). “Internal states” and “external states” are the terminology used in Fig. 1
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following two claims: (1) when used with PP or without PP, FEP is non-represen-
tational; (2) at a certain level of increased complexity (i.e., meeting the increased 
hierarchical generative model depth that PP demands (Clark, 2017)) FEP becomes 
representational. It is only claim 2 which supports the assumption that FEP’s repre-
sentational status piggybacks upon the status of its process theory. Claim 2 however 
goes far beyond any of FEP’s core assumptions or constructs.

Notice, however, that it is possible to adjudicate the representational status of 
organizational, structural, and content related aspects independently of the details 
of a given process theory. Because Markov blankets, recognition models, and gen-
erative models are non-negotiable constructs of FEP, the role that they play in free 
energy minimization is not tied to any specific cognitive explanandum or process 
explanans. This is one reason why FEP may be used across the (biological) board 
as a normative principle for all adaptive self-organizing systems at non-equilibrium 
steady state (Cf. Kirchhoff, 2016). The dynamic interaction of an E. coli with its 
milieu, for instance, may be modelled under FEP using the Markov blanket for-
malism to predict how it adaptively self-organizes despite the influence of random 
fluctuations. Whether or not such bacteria engage in something so specific as plan-
ning is not restriction on using FEP to model E. coli’s adaptive behaviour. When the 
organizational aspect is used as a representational criterion, then the debate about 
FEP’s representational status is entered into from the beginning by considering how 
to best interpret the relationship between blanketed internal states and hidden states. 
The specifics of active inference (or PP), or how to account for particular cognitive 
phenomena are external to the debate at this more fundamental level where general 
principles of self-organizing adaptive behaviour are being applied to even the sim-
plest of living systems.

It is also interesting to note that placing emphasis upon one or the other of these 
non-negotiable constructs of FEP results in making representations a biologically 
pervasive feature of all FEP agents. For example, when understood as involving 
inference generating, self-evidencing internal models, the organizational criterion 
suggests that representation is a ubiquitous feature of any biological FEP agent that 
maintains its structural (and functional) integrity. This kind of biological pervasive-
ness of representation may of course not appeal to those theorists who would prefer 
to reserve representations for the sophisticated cognitive capacities of “complex” 
creatures. Avoiding a wide scope view of representations would seem to motivate 
some participants in the debate to opt for the functional role criterion and, if what 
we have argued is correct, doing so may very manifest itself in terms of a methodo-
logical strategy—one of investigating specific higher cognitive capacities (e.g., plan-
ning) with a favoured process theory under FEP.

This brings us to a final and important more general point: even if one were to 
arrive at the conclusion that FEP is representational by way of taking one (or more) 
of the routes we have mapped out above, in evaluating FEP’s representational status 
via considering the nature of its various aspects, one would implicitly take on one 
of the core tenets of embodied and enactive cognitive science; the claim that the 
role of coupled agent-environment dynamics is central to any adequate explanation 
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of cognition (Schlicht & Starzak, 2021; Raab & Araujo, 2019).23 That representa-
tional FEP takes on this tenet is interesting because many embodied and enactive 
cognitive science programmes often pull in the other direction, favouring non-repre-
sentational explanations. This suggests that FEP may potentially offer an interesting 
middle ground for representationalist theories and embodied and enactive cognitive 
science. For example, given what the Markov blanket formalism is a description of, 
even if considerations about inferential seclusion of internal states lead one to hold 
a representational view of FEP, in adopting the Markov blanket formalism one has 
also committed oneself to the centrality of agent-environment dynamical exchanges 
in explanations of cognition (Allen & Friston, 2016); one has committed oneself not 
only to representing some of a system’s features as internal states that infer exter-
nal states but also committed oneself to representing some of a system’s features 
as action and sensory states (blanket states) that mediate self-evidencing dynamic 
exchanges with the environment. Although such action and sensory states dynam-
ics do not map onto folk psychological notions of action and perception in any 
direct manner (Sims, 2019a), the evolution of such states may be seen as abstractly 
describing coupled patterns of sensorimotor activity. This kind of causal action-per-
ception dynamic is moreover welcomed by representationalists, whose commitment 
to inference by internal states is compatible with “conceiving of the mind and world 
as causally linked, through the causal interface of the Markov blanket” (Hohwy, 
2017).

Similarly, when taking structural aspects as the route to a representationalist 
FEP, one’s commitment to a view of generative models (or Q densities) as captur-
ing environmental structure is compatible with the idea such models are primarily 
deployed in the service of guiding action as opposed to building rich internal recon-
structions of the world. Recall, according to FEP only action can minimize surprisal 
and that minimizing surprisal is what underwrites an organism’s continued viability 
(Bruineberg et al., 2016). Hence, even when models are viewed as representational, 
they are ultimately in the game of guiding action in ways that allow living systems 
to author evidence for their own existence (i.e., self-evidencing). In this way, cou-
pled agent-environment dynamics are central to FEP’s characterization of adaptive 
self-organization despite FEP’s representational status when using the structural 
criterion. Again, the centrality of coupled action-perception dynamics in FEP is 
something that it shares with embodied and enactive theories which have typically 
avoided recourse to representations. Thus, when considering organizational or struc-
tural aspects, it is possible to arrive at a perspective on adaptive self-organization 
that potentially fuses representationalism with core aspects of traditionally non-
representationalist theories, representing a kind of synthesis of say, internalism and 
various aspects of embodied and enactive cognitive science (Cf. Hohwy, 2017). The 
possibility of such a synthesis however fails to be available if one’s commitments 

23 More precisely, embodied cognitive science emphasizes that the body (beyond the brain) plays a con-
stitutive role in cognitive processes (Wilson & Foglia, 2017). Enactivism—in its most general form—
emphasizes that cognition emerges via perception–action loops that dynamically couple the embodied 
agent to the environment (Varela et al., 1991).
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stand with radical enactivism (see Baggs & Chemero, 2018). This being said, it 
should be noted that the possibility of representations figuring into the explanation 
of cognitive phenomena is consistent with non-radical forms of enactivism (Schlicht 
& Starzak, 2021) and embodied cognitive science (Raab & Araujo, 2019; Gentsch 
et  al., 2016). Thus, depending upon one’s previous commitments, FEP may offer 
a powerful overarching normative principle for enactive and embodied cognitive 
science.

In much the same manner as arriving at a representational or non-representational 
interpretation of FEP, arriving at an FEP as synthesis view depends upon which rep-
resentational criterion are assumed when either considering FEP’s central constructs 
or considering specific cognitive phenomena through the lens of a process theory 
under FEP. Hence, in the end, the debate about FEP may reveal more about us—our 
criteria for representation and our interests in particular facets of cognition—than it 
does about the representational status of FEP.24

6  Conclusion

We discussed different interpretations of FEP and explained how they depend on 
implicit assumptions about what qualifies (or fails to qualify) as representational. 
We have distinguished at least four main notions of representation, which focus on 
organizational, structural, content-related or functional aspects. The dispute is made 
more complex by the fact that FEP appeals to multiple constructs (e.g., Markov 
blankets, generative and recognition densities) and different process theories focus 
on one or the other; and furthermore, FEP models, can be constructed in various 
ways, e.g., one can use environmental and sensorimotor internal models. We have 
discussed in what ways these differences matter in arriving at a view of FEP as rep-
resentational or non-representational (see Fig. 2). We believe that this debate, and 
the arguments and counterarguments we have reviewed, offer an opportunity to 
reflect both upon the importance of our implicit notions of representation—above 
and beyond the solution of “representation wars” in FEP—and how such notions of 
representation may implicitly shape the details of the process theories with which 
FEP is used. In other words, irrespective of its utility to offer insight into the adap-
tive self-organizing behaviour of biological organisms, FEP can be very heuristic for 
philosophy of mind: even if not so much to settle the dispute on internal representa-
tion but to unveil and dissect the hidden assumptions in the debate.

Another lesson learned from this debate is that some traditional polarizations 
between (for example) more classical cognitivist and enactivist perspectives may be 
attenuated or dissolved under a FEP treatment. Indeed, one can consider that the 
FEP advances a unified view where terms that traditionally belong to different ontol-
ogies—e.g., notions of model and expectation versus notions of autopoiesis and syn-
chronization—can be harmonized. One can also consider that FEP advances these 

24 We would like to thank two anonymous reviewers for pushing us to clarify the points in this final sec-
tion.
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putatively disconnected ideas in novel territories: it begins with a strong enactivist 
flavour and a focus on action that is missing from traditional cognitive theories; but 
extends the scope of enactivist thinking to territories of (for example) counterfactual 
thinking and model selection that are rarely investigated. The extent to which this 
combination of enactivist and cognitive thinking is (theoretically and sociologically) 
possible—or desirable—remains to be seen in the future of FEP research.
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