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Abstract
The paper starts with the distinction between conjunction-of-parts accounts and 
disjunction-of-possibilities accounts to truthlikeness (Sects. 1, 2). In Sect. 3, three 
distinctions between kinds of truthlikeness measures (t-measures) are introduced: 
(i) comparative versus numeric t-measures, (ii) t-measures for qualitative versus 
quantitative theories, and (iii) t-measures for deterministic versus probabilistic truth. 
These three kinds of truthlikeness are explicated and developed within a version of 
conjunctive part accounts based on content elements (Sects. 4, 5). The focus lies on 
measures of probabilistic truthlikeness, that are divided into t-measures for statisti-
cal probabilities and single case probabilities (Sect. 4). The logical notion of prob-
abilistic truthlikeness (evaluated relative to true probabilistic laws) can be treated 
as a subcase of deterministic truthlikeness for quantitative theories (Sects. 4–6). In 
contrast, the epistemic notion of probabilistic truthlikeness (evaluated relative to 
given empirical evidence) creates genuinely new problems, especially for hypoth-
eses about single case probabilities that are evaluated not by comparison to observed 
frequencies (as statistical probabilities), but by comparison to the truth values of 
single event statements (Sect. 6). By the method of meta-induction, competing theo-
ries about single case probabilities can be aggregated into a combined theory with 
optimal predictive success and epistemic truthlikeness (Sect. 7).
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1 Introduction

In order to be sufficiently general, scientific theories have to make various simpli-
fications and neglect (small) deviations from reality. So these theories are strictly 
speaking false. Nevertheless they are highly successful in their explanations and pre-
dictions, because what they assert is close to the truth, in the sense of being a good 
approximation to reality.

It is difficult to develop the notion of "closeness to the truth" in terms of proba-
bilistic confirmation measures, since theories that are falsified by evidence have a 
conditional probability of zero. Because of this shortcoming of confirmation meas-
ures, Popper (1962, 1963) developed the account of truthlikeness, or verisimilitude. 
Within this account it is possible to attribute a high truthlikeness even to a false 
theory, provided its truth-content is high and its falsity-content is low.

Popper’s original definition of truthlikeness had a technical defect, as demon-
strated by Tichý (1974) and Miller (1974). Soon after this defect was detected, phi-
losophers proposed revised accounts that avoid this defect. Two major families of 
approaches have been proposed for this purpose: conjunction-of-parts accounts and 
disjunction-of-possibilities accounts; their difference will be explained in Sect.  2. 
Hereafter, three distinctions between kinds of truthlikeness measures (t-measures) 
are introduced: (i) comparative versus numeric t-measures, (ii) t-measures for quali-
tative versus quantitative theories, and (iii) t-measures for deterministic versus prob-
abilistic truth. In Sects. 3–5 these kinds of truthlikeness are explicated and devel-
oped within a version of conjunctive part accounts based on content elements. The 
focus lies on measures of probabilistic truthlikeness, that are divided into t-measures 
for statistical probabilities and single case probabilities (Sect. 3).

The logical notion of truthlikeness for probability statements (evaluated relative 
to true probabilistic laws) can be treated as a subcase of deterministic truthlike-
ness for quantitative theories (Sects. 4–6). In contrast, for the epistemic notions of 
truthlikeness (evaluated relative to a given set of empirical evidence), probabilistic 
truthlikeness creates genuinely new problems. This is especially true for hypotheses 
about single case probabilities, because they are not evaluated by comparison with 
observed frequencies (as statistical probabilities), but by comparison with the truth 
values of single event statements (Sect. 6). In the final Sect. 7 the method of meta-
induction is introduced as a means of aggregating competing theories about single 
case probabilities into a combined theory with optimal predictive success and epis-
temic truthlikeness.

1.1  Two families of truthlikeness accounts: conjunction‑of‑parts 
and disjunction‑of‑possibilities

Conjunction-of-parts accounts represent theories as conjunctions of (smallest) con-
junctive parts. Since conjunctive parts are selected consequences of the theory, con-
junction-of-parts accounts are also called consequence accounts (Schurz and Wein-
gartner 2010; Oddie 2013). The truthlikeness of a conjunctively represented theory 
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increases with the number and strength of its true parts and decreases with the num-
ber and strength of its false parts. Popper’s original account to verisimilitude was a 
conjunction-of-parts account, in which conjunctive parts were understood as arbi-
trary logical consequences of the theory. The above-mentioned technical defect of 
Popper’s original account resulted from the fact that the (classical) notion of logical 
consequence covers two sorts of unnatural consequences that should be disregarded 
in truthlikeness definitions, namely (i) redundant conjunctions p ∧ q of elementary 
consequences p and q of a theory A, and (ii) irrelevant disjunctive weakenings p ∨ x 
of a consequence p of A by arbitrary formulas x (cf., e.g., Schurz 2018, sec. 4). For 
example, the theory of Newtonian physics, N, entails the true prediction α that the 
planets circumscribe the sun in elliptic orbits, and the false prediction β that the sun 
is the center of the universe. However, one should not count the conjunction α ∧ β as 
a third and false consequence of N, nor should one count the disjunction α ∨ γ for an 
arbitrary γ (e.g., γ = the moon is made of green cheese) as a third true consequence 
of N. Since redundant conjunctions and irrelevant weakenings are responsible for 
the technical defect of Popper’s account, all conjunction-of-parts accounts rejected 
them as conjunctive parts. In the literature, conjunctive parts have been understood 
in four major ways:

 (i) As relevant elements, or content elements. This account has been developed 
by Schurz and Weingartner (1987); improved versions are given in Schurz 
and Weingartner (2010), Schippers and Schurz (2017, sec. 4), and in Schurz 
(2018), who refers to relevant elements as content elements. An advantage 
of this account is that it applies to theories of all logical formats, not only in 
propositional but also in predicate logic. Since the set of content elements of 
a theory is logically equivalent to the theory, no information gets lost by the 
content element representation.

 (ii) As content parts in the sense of Gemes (1994, 2007). Gemes’ content-parts 
are similar to the relevant elements of Schurz and Weingartner, but less fine-
grained, as was shown in Schurz (2005, sec. 6).

 (iii) As independent conjuncts. In propositional logic they have the form of unne-
gated or negated atomic sentences, so-called literals, abbreviated as ±  pi. This 
account was anticipated in Kuipers’ (1982) notion of "actual truthlikeness" 
and has been elegantly developed by Cevolani and Festa (2009), Cevolani 
et al. (2011) and Cevolani and Festa (2020). The account applies to so-called 
conjunctive theories, consisting of conjunctions of mutually independent ele-
mentary statements. The conjunctive format is a significant restriction, since 
it excludes theories containing disjunctions or implications such as p ∨ q, p 
→ q or ∀x(Fx → Gx) (etc.). Cevolani and Festa (2020) have extended their 
account to include disjunctions of literals by assuming a notion a partial entail-
ment between a disjunction of literals d and a literal l, based on the conditional 
logical probability of l given d.

 (iv) A special case of a conjunctive account is Kuipers’ account of nomic truthlike-
ness based on conjunctions or sets of nomic constituents, or of corresponding 
set-theoretic structures (Kuipers 1982; 2000, sec. 7.2.2; 2019; Cevolani et al. 
2013).
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In contrast, disjunction-of-possibilities accounts represent theories disjunctively, 
either semantically as disjunctions of possible words (Hilpinen 1976; Oddie 1981) 
or syntactically as disjunctions of constituents, which are descriptions of possible 
worlds (Tichý 1974; Niiniluoto 1977, 1987). In a propositional language with n 
propositional variables  p1,…,pn, constituents are given as complete conjunctions of 
the form  ci =  ±  p1 ∧…∧  ±  pn, where " ± " means "unnegated" or "negated" (± p ∈ 
{p,¬p}); there are  2n such constituents. In 1st order languages the number and size 
of constituents grows astronomically large with the number of individual constants 
and predicates, especially in relational languages (Niiniluoto 1987, p. 70f.). Almost 
all disjunction-of-possibilities accounts (with the exception of Miller’s 1979) are 
based on a measure of similarity (or inverse distance) between possible worlds or 
constituents, respectively. The truthlikeness of a theory A, represented as a disjunc-
tion of constituents  c1∨…∨  ck, is defined by the similarity between A’s constituents 
 ci and the true constituent  cT. While most disjunction-of-possibilities accounts agree 
in their similarity measure (sim) between two constituents, there is disagreement 
about the right measure for the similarity between the set of A’s constituents and the 
true constituent  cT:

 (i) the average-measure (Tichý 1976; Oddie 1981) defines sim(A,cT) as the aver-
age of the distances between  cT and A’s constituents,

 (ii) the min–max-measure (Hilpinen 1976) defines sim(A,cT) as a weighted aver-
age of the minimum and the maximum of these distances, and.

 (iii) the min-sum measure (Niiniluoto 1977; 1987, ch. 6) defines sim(A,cT) as a 
doubly weighted average of the minimum distance and the normalized sum 
of the distances between  cT and A’s constituents.

In a variety of examples, the three disjunction-of-possibility accounts, as well as 
the above-mentioned conjunction-of-parts accounts, lead to different truthlikeness 
orderings of theories (Niiniluoto 1987, 232–234). These differences concern mainly 
the truthlikeness of disjunctions or implications. Most accounts on truthlikeness 
agree on the truthlikeness ordering of purely conjunctive theories, as expressed by 
the following intuitions:

(1) Intuitions for truthlikeness of conjunctive theories:
Let  p1,  p2, … be true content elements and " > " denote "being more truthlike than".
(1.1) For true theories truthlikeness increases with logical strength:  p1 ∧  p2 >  p1 >  p1 
∨  p2.
(1.2) True conjuncts are better than false conjuncts: ¬p1 ∧  p2 > ¬p1 ∧ ¬p2.
(1.3) The less false conjuncts, the better:  p1 >  p1 ∧ ¬p2 and ¬p1 > ¬p1 ∧ ¬p2.
(1.4) Contradictions are worst in truthlikeness:  α > p ∧ ¬p for non-contradictory α.
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The above intuitions are supported by various passages in Popper (1963), col-
lected in Schurz and Weingartner (2010, sec. 2). Intuition (1) is accepted by most 
truthlikeness accounts with the exception of the average measure of Tichý (1974) 
and Oddie (1981) and the partial entailment measure of Cevolani and Festa (2020). 
Intuitions (2–4) are accepted by all accounts, with the exception of Miller (1979), 
who rejects these intuitions in order to make truthlikeness language-independent 
(cf. Schurz 2018, sec. 6). Intuition (3) is rejected in Niiniluoto’s account (Niiniluoto 
2020).

In the next sections we develop important kinds of truthlikeness, thereby focusing 
on the content element account of truthlikeness and its application to probabilistic 
truthlikeness. To make our ideas logically precise we introduce the following techni-
cal notions: L is our formal propositional or predicate language with the standard 
logical operators (¬, ∨, ∧, → for material implication, ⟷, ∀,∃, = identity,T verum, 
⊥ falsum).  p1,  p2, … stand for atomic propositions, F, G, R … for predicates, a, b,… 
for individual constants, x, y, … for individual variables, small letters α, β, … for 
arbitrary sentences  (hi for hypotheses), capital letters A, B, … for theories, repre-
sented as arbitrary sets of sentences, and "|==" for "logical consequence". When it 
comes to probabilistic truth, we enrich L by lower-case p for an objective statisti-
cal probability function and upper-case P for an objective single case probability 
function.

2  Four kinds of truthlikeness

In this section we introduce three dichotomic distinctions between kinds of 
truthlikeness:

(a) between comparative and numeric measures of truthlikeness,
(b) between truthlikeness for qualitative versus quantitative theories, and
(c) between truthlikeness in regard to deterministic versus probabilistic truth.

Although these distinctions are logically speaking independent, there are certain 
plausibility relations between them, with the effect that in the literature there are 
not 2 ⋅ 2 ⋅ 2 = 8 but merely four major kinds of truthlikeness: comparative qualita-
tive deterministic, numeric qualitative deterministic, numeric quantitative determin-
istic and numeric quantitative probabilistic (see below). The plausibility relations 
are based on two facts: (1) for qualitative statements numeric t-measures involve 
difficulties that have motivated some authors to prefer comparative t-measures, but 
for quantitative statements they are straightforwardly definable, and (2) probabilis-
tic truthlikeness applies to probability statements that are a subcase of quantitative 
statements. Of course, these plausibility relations do not exclude the development of 
other interesting kinds of t-measures, e.g. comparative for quantitative statements 
(etc.).
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2.1  Comparative versus numerical notions of truthlikeness

Concerning the gradation type of the truthlikeness concept one can distinguish 
between comparative and numerical notions. Comparative notions of truthlikeness 
have the form "theory A is closer (or at least as close) to the truth than theory B", 
abbreviated as A >i (≥ i) B, where the index "i" ranges over different explications of 
this notion. Comparative notions do not establish a total but merely a partial truth-
likeness ordering of theories, i.e., there exist theories A, B that are incomparable in 
truthlikeness.

Numerical notions explicate truthlikeness by a real-valued measure of the form 
"the truthlikeness of A is r", in short  ti(A) = r. Numerical notions are more fine-
grained than comparative notions; on the other hand, their definition involves more 
arbitrary conventions. Comparative and numerical notions must be ordinally equiva-
lent in the sense that A ≥ i B iff  ti(A) ≥  ti(B).

Popper’s first concept of truthlikeness (1963) was comparative. Many conjunc-
tion-of-parts accounts followed Popper in this respect (Kuipers 1982, 2000, 2019; 
Schurz and Weingartner 1987; Gemes 2007; Cevolani and Festa 2009) and expli-
cated comparative truthlikeness as follows:

(2) Comparative truthlikeness in conjunction-of-parts accounts:
A ≥i B iff  At-parts|==  Bt-parts and  Bf-parts |==  Af-parts
where  At-parts (resp.  Af-parts) stand for the set of A’s true (resp. false) conjunctive 
parts. Formally, the two sets are defined as  At-parts =  Aparts ∩ T and  Af-parts =  Aparts ∩ F, 
where T and F are the set of all true resp. false statements of L and  Aparts is the 
set of A’s conjunctive parts as explicated in "version i" of the conjunction-of-parts 
account.

Conjunctive parts in the sense of Schurz and Weingarter (1987) and Gemes 
(2007) are not closed under logical consequences, whence the superset relation " ⊇ " 
of Popper’s original explication is replaced by the logical entailment relation |==. In 
contrast, for conjunction-of-parts in the sense of Cevolani and Festa (2009) and Kui-
pers (2000) logical entailment coincides with the super-set relation, whence in their 
account "|==" is replaced by " ⊇ " in definition (2).

Conjunction-of-parts accounts have also been developed as numeric measures 
(Cevolani and Festa 2009, Schurz and Weingartner 2010, Schurz 2018; already 
Popper 1963 proposed a numerical measure). Moreover, disjunction-of-possibility 
accounts are typically numeric.

2.2  Truthlikeness for qualitative versus quantitative theories

Concerning the theories whose truthlikeness is evaluated one can distinguish 
between qualitative versus quantitative theories. The conjunctive parts of qualita-
tive theories are basic qualitative assertions or disjunctions of them, without involv-
ing any quantitative magnitudes. The truthlikeness of such theories can be evaluated 
solely in terms of the numbers and logical strengths of its true versus false content 
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parts, without involving any measure of similarity or distance between numerically 
graded assertions about magnitudes. Their definition within the content element 
approach is treated in Sect. 4.

Quantitative truthlikeness applies to theories that contain quantitative (met-
ric) concepts, such as length, time or mass in physics. These concepts are called  
magnitudes and are expressed as functions m: D → R that map objects in a domain 
D (and possibly time points t ∈ T) to real numbers (r ∈ R), e.g., "m(a) = r" standing 
for "The length of this tower is 19.523 m". In what follows, we abbreviate physical 
magnitude functions as  m1,  m2, …, while f, g,… denote purely mathematical func-
tions over numbers and p,  p1,… stand for mixed physical–mathematical functions, 
e.g. p(x) = f(m1(x),m2(x)).

A singular quantitative statement expresses the value of a physical magnitude 
only with a certain accuracy. Thus it almost always involves an error (except when 
the true value is representable by a finite number of digits). This error corresponds 
inversely to its truthlikeness. Therefore truthlikeness measures of quantitative the-
ories are typically numerical. They are based on a measure of the similarity (or 
inverse distance) between the value of a quantitative property m for an individual a 
that is predicted by a theory A,  mA(a), and the true value of m for a,  mT(a). In what 
follows we abbreviate this similarity measure as sim(mA(a),mT(a)).

Different similarity (or inverse distance) measures between quantitative state-
ments are possible; for an excellent overview see Niiniluoto (1989, ch. 1). The sim-
plest measure for sim(x,y) applied to elementary quantitative statements ("m(a) = x") 
is based on the absolute difference |x − y| and is inversely related to |x − y| (this 
measure has already been suggested by Niiniluoto 1982). One reason why |x − y| is 
arguably a most natural distance measure is that already in the metrization proce-
dure of extensive magnitudes, the magnitude m (e.g., mass) of objects x, y … is 
defined by the concatenation (o) of suitable copies of a m-unit u (e.g., n gram units 
put together on a scale), where the concatenation function "o" is additive (i.e.,  
m(x o y) = m(x) + m(y)). It follows that m(x) is definable as a certain number or frac-
tion of concatenated m-units (the axioms for Archimedean ordered semi-groups 
guarantees uniqueness of m(x) up to a constant factor; cf. Krantz et al. 1971, 45, 74). 
The additivity of o implies that the natural distance is the absolute distance (since 
m(x) − m(y) = def the number of m-units needed to expand y to the size of x). Of 
course, one may ask why the concatenation function is assumed to be  
additive, instead, for example, quadratic-euclidean (m(x o y)= 

√
m(x)2 +m(y)2 ). A 

frequently given answer is that this would not incur a loss of information, but it 
would complicate the laws of nature; ’natural’ measures should lead to most simple 
laws of nature that "cut nature at its joints". On the other hand, even if one has 
accepted an additive metric with a natural absolute distance measure, nonlinear dis-
tance functions can be useful for special purposes. One such special purpose is the 
similarity measure for single case probabilities whose proper scoring requires a non-
linear distance function, as for example the quadratic function, for reasons to be 
explained in Sect.  5.3. Since truthlikeness for probabilistic laws is central to this 
paper, we focus in the following on absolute and quadratic measures for distance and 
similarity. A further non-linear distance function is the logarithmic distance, defined 
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as log(m(x)/m(y)), and its Kullback–Leibler generalization; the disadvantage of log-
arithmic distance measures for truthlikeness applications is that they are not upper-
bounded, but can approach infinity.

Certain objections have been raised against the inverse relation between numeri-
cal distance and truthlikeness. These objections have to do with problems of apply-
ing similarity measures directly to complex statements, i.e., to theories having many 
elementary consequences. Weston (1992, p. 64) and Liu (1999, p. 235) have argued 
that a small distance between a predicted value  mA (predicted by theory A) and the 
true value  mT may nevertheless have large effects − that is, may entail large distances 
for other physical parameters within the given theory A. In this case a small numeri-
cal m-difference implies a large distance of theory A from the truth. Therefore, the 
two authors conclude, the relation between numerical closeness and truthlikeness is 
intricate and not formally explicable. Within the conjunctive element account, how-
ever, there is no need of drawing such drastic conclusion, because the theory is split 
into its content elements, i.e. its elementary quantitative statements, before measures 
of numerical similarity are applied. Thus if a small deviation of  mA from  mT has 
large effects, this cashed out in terms of other content elements of theory A whose 
distance from the truth is large, so that the overall truthlikeness of theory A (formed 
by adding up the truthlikeness contributions of its elementary consequences) will be 
very small or negative. In conclusion, Weston and Liu’s problem does not arise for 
conjunctive accounts. In their second objection, Weston (1992, p. 60) and Liu (1999, 
p. 241) consider a true linear lawlike function (T) between two real-valued magni-
tudes, say position p and time t, T: p = a⋅t + b (where a, b are real-valued constants). 
They assume a false function A: p = a⋅t + b that is also linear with the right inclina-
tion (thus A is ’nomologically’ correct), but it involves a false constant factor b* 
strongly different from b. They compare A with a false function C: p =  fzig-zag(t) that 
runs in a complicated zig-zag pattern  (fzig-zag) around T, but is numerically closer to 
T than C. In this case, the authors argue, although A is numerically farer apart from 
T than C, it is nevertheless more truthlike than C because A has correctly captured 
the linear shape. Also this objection can be elegantly handled within the conjunctive 
approach, because the assertion that the function is linear, formally expressed by 
the existential quantification ∃c(p = a⋅t + c), is a true content element of A that is not 
entailed by C and that boosts A’s truthlikeness over that of C.

After this fundamental considerations we continue the explication of truthlike-
ness, turning now to truthlikeness for universally quantified quantitative state-
ments. As an example from classical mechanics consider the law hypothesis L: 
∀x∀t(s(x,t) = f(t,m(x),s0(x)), where s is the position function, t the time variable and 
x a variable ranging over physical objects. L says that the position of all objects in 
an intended domain (e.g., all planets of our solar system) is a unique function f of 
time, the object’s mass m(x) and the object’s initial position  s0(x). Also in this case 
we can distinguish between the function  fA predicted by theory A and the true func-
tion  fT. A natural measure of the truthlikeness of a universally quantified quantita-
tive statement is the average of the similarities between the predicted and the true 
value of f, for all values of the universally quantified variables. For the continuous 
time variable t, this average is given as the integral of these differences divided by 
the length of the considered time interval, as in (3b) below (Niiniluoto 1987, sec. 
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11.3). For the discrete individual variable x ranging over a domain of individuals D, 
this average is given by the limit of the averages for the first n individuals of D, for n 
→ ∞, as in (3c) below. Equations (3b) and (3c) have to be applied iteratively to each 
universal quantifier of the law.

To integrate our truthlikeness measure (3) for elementary quantitative hypotheses 
into our generalized measure (8) for qualitative theories in Sect. 4, we normalize it 
to the interval between − 1 and + 1 as follows. We assume the magnitude m is meas-
ured within a maximal interval  [m1,m2] of length ∆  (m1 ≤ m ≤  m2 and  m2 −  m1 = ∆). 
Since the truthlikeness of a basic content element (Sect. 4) is + 1 if it is true, − 1 if it 
is false, and 0 for a tautology, we integrate the truthlikeness of quantitative hypoth-
esis into this frame by assuming that its truthlikeness is + 1 if its distance to the truth 
is zero, − 1 if this distance is maximal, i.e., equal to ∆, and 0 if this distance is equal 
to the average distance of a random guess. Assuming a uniform probability distribu-
tion over the true and the predicted value, the average distance of a random guess is 
provably ∆/3. Therefore the similarity sim(x,y) is normalized as in condition (3d) 
below.

(3) [Definition] Truthlikeness of elementary quantitative hypotheses
Let "t( −)" denote the numeric truthlikeness of an elementary quantitative statement 
 mA(a) = r, asserted by theory A and "mT(a)" the true value of magnitude m for object 
a, where the values of m(x) range in the interval  [m1,m2] of length ∆. Moreover, 
let "sim(x,y)" denote the similarity between two values x,y ∈  [m1,m2] based on the 
absolute distance  (sim1) or the quadratic distance  (sim2), as defined in (3d). Then:
(3a) For singular quantitative statements: t(m(a) = r) = sim(r,mT(a)).
For quantitative laws:
(3b) Discrete quantifiers: t(∀x(m(x) = p(x))) =  limn → ∞ (Σd∈D sim(p(d),mT(d)))/|Dn|, 
where  Dn = {d1,…,dn} and D = {di: i∈N}.
(3c) Continuous quantifiers: 
t(∀t(m(t) = p(t))) = (∫

t∈[t1,t2]

(
sim

(
p(t), mT(t)

)
dt
)
∕(t

2
− t

1
).

(3d) The similarity measures  sim1 and  sim2 are defined as follows:
sim1(x,y) = (∆/3 −|x − y|)⋅n, where the normalization factor n satisfies:
(i) if |x − y|< ∆/3 (better than a random guess), n = 3/∆, and
(ii) if |x − y|≥ ∆/3 (not better than a random guess), n = 3/(2⋅∆).
sim2(x,y) = ((∆/3)2 − (x − y)2)⋅n’, where n’ =  n2 in case (i) and n’ =  n2/2 in case (ii).
Thus if |x − y|= 0, sim(x,y) =  + 1; if |x − y|= ∆/3, sim(x,y) = 0; and if |x − y|= ∆, 
sim(x,y) =  − 1; so sim(x,y) ranges between − 1 and + 1 

For theories consisting of logical combinations of quantitative hypotheses, the 
truthlikeness measure (3) has to be combined with the qualitative truthlikeness 
measure in definition (9) of Sect. 4.
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2.3  Deterministic versus probabilistic truthlikeness

Concerning the nature of truth, we distinguish between deterministic and probabilis-
tic truth. In almost all accounts of truthlikeness developed so far,1 the complete truth 
T was assumed to be deterministic, i.e., to consist of true factual (singular or exis-
tential) statements together with strict (universally quantified) laws or theories that 
deductively entail observation statements. However, according to quantum physics 
(in its prevalent interpretation), microphysical reality is indeterministic, i.e., there 
are genuinely probabilistic laws and the future states of a closed physical system are 
not completely determined by its past states. Thus both current theories of physics 
and the objective truth T are probabilistic, containing probabilistic laws. So it makes 
sense to introduce and investigate the notion of probabilistic truthlikeness, measur-
ing how close a probabilistic theory comes to the objective probabilistic truth.

Probabilistic truthlikeness is of particular relevance for nomic truthlikeness, as 
developed by Kuipers (2000, 2019). Here the objective truth T does not contain 
all true facts (expressible in the given language L ), but only all true nomic facts, 
i.e. facts expressing general nomic possibilities and necessities. Logically speaking 
this means that T is no longer complete, i.e., T doesn’t decide for every singular L
-statement whether it is true or false. Nomic truthlikeness makes especially sense for 
theories of physics, because their hypotheses consist predominantly of nomic state-
ments. In contrast, theories of biology or social sciences contain also many contin-
gent (non-nomic) generalizations.

Probabilistic truthlikeness is similar to nomic truthlikeness in two respects. First, 
in the context of probabilistic truthlikeness, the objective truth consists solely of 
probability statements, not of factual statements; thus T is incomplete. Second the 
notion of probabilistic truthlikeness assumes that the probabilistic truth approx-
imated by our theories is an objective one, not representing epistemic degrees of 
belief, but objective probabilistic dispositions (also called propensities). As argued 
below, all objective probability statements (be they generic or single case) are 
backed up by statistical probabilities (frequency limits) in given reference classes, 
expressing probabilistic laws or generalizations. Let us consider some examples. 
"50% of all  Caesium137 atoms (for any amount of the substance) will have decayed 
within 30 years" expresses an objective statistical law that is causally complete and 
thus invariant under conditionalization to any additional information, since radioac-
tive decay is an objective random processes in nature. In contrast, "80% of people in 
this room have brown hair" expresses an accidental frequency fact that can be bro-
ken any time; it does not express an objective probabilistic disposition. However, we 
do not assume that there is a strict borderline between nomic and non-nomic proba-
bilistic generalizations. For example, the generalization "80% of all overweight per-
sons have high blood pressure" is not causally complete, because high blood pres-
sure depends on many other causes whose contingent distribution determines the 
probability value; yet the law is not accidental. For the application of probabilistic 
truthlikeness to ’special’ sciences (medicine, biology, social sciences) the notion of 

1 With the exception of Rosenkrantz (1980) and Niiniluoto (1987, p. 404).
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an objective probabilistic law should not require that the law antecedent is causally 
complete.

Summarizing, in the context of probabilistic truthlikeness, the considered theo-
ries A are sets of probability statements, the objective truth T consists of all true 
probability statements expressible in L , and truthlikeness measures the similarity 
between the probability assertions in A and T. Since probability assertions are a spe-
cies of quantitative assertions, their truthlikeness measures are typically numeric. 
Of course, one may also combine deterministic and probabilistic truthlikeness (cf. 
Cevolani and Festa this volume). One possibility to cover this combination is to con-
sider deterministic truth as the subcase of probabilistic truth with a probability of 1.

3  Probabilistic truthlikeness for elementary probability statements

We first consider elementary probability statements expressed by (closed or open) 
formulas α. Unconditional (elementary) probability statements have the form 
p(α) = r, saying that the probability of event α has the value r ∈ [0,1]; conditional 
probability statements have the form p(α|β) = r, saying that the probability of α 
in conditions where β occurred is r (where p(α|β) is standardly defined as p(α ∧ 
β)/p(β)).2 For simplicity reasons we assume that events are binary or discrete (thus 
we don’t treat probability densities over continuous events). Binary events are 
expressed by simple statements α versus ¬α. Discrete events are expressed by func-
tions X:D → Val assigning to individuals in the domain D values out of a finite 
value space  ValX = {v1,…,vk}, e.g., "the color of object a is green", C(a) = green, 
with  ValC = {red, blue, green,…}. In statistics these functions are called random 
variables.

3.1  Probabilistic truthlikeness as subcase of truthlikeness for quantitative 
theories

Let h: p(α) = r be an elementary probabilistic hypothesis entailed by a theory and 
 pT(α) the true probability of the event α (which is unknown to us, whence we don’t 
write "pT(α) = q" but just "pT(α)"). Then the truthlikeness t(h) of h measures the 
similarity between r and  pT(α) and is given as sim(r,pT(α)), as in definition (3a) of 
Sect.  2. If we consider universally quantified probability statements of the form 
∀x(p(Fx) = r) (examples are given in Sect.  5), we use the limiting average of the 
similarities sim(r,  pT(Fai)) (ai ∈ Dn) for n → ∞, as in definition (3b) (for continu-
ous quantifiers we use (3c)). The truthlikeness of logical combinations of probability 
statements requires the combination of the measures in (3) with the truthlikeness 
measure for qualitative theories, to be explained in Sect. 4.

2 If the antecedent’s probability p(β) is zero, we use a direct axiomatization of conditional probabilities 
as in Carnap and Jeffrey (1971, pp. 38f), instead of Kolmogorov’s (1950) axiomatization of uncondi-
tional probabilities.
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Until now it seems that probabilistic truthlikeness is just a special case of truth-
likeness for quantitative theories and requires no special treatment. In the next sub-
sections we discuss specific subtleties of probabilistic truthlikeness.

3.2  Statistical versus single case probability

There are two kinds of objective probabilities: statistical or generic probabilities 
denoted by small p, and single case probabilities denoted by capital P.

Statistical probabilities apply to repeatable types of events, linguistically 
expressed by open formulas, e.g. Fx. The statistical probability of the event type 
Fx in a reference class or reference sequence Rx is understood as the disposi-
tion of R-events (or corresponding ’random experiments’ of type R) to produce 
F-events with certain relative frequencies that converge towards a frequency limit 
whose value is denoted as p(Fx|Rx) (cf. Schurz 2014, sec. 3.9). If the class of 
R-events is finite, the relative frequency of F’s among R’s, f(Fx|Rx), is simply 
given as the ratio |F|/|R|. If R is infinite, this frequency ratio is undefined; one 
rather refers to a random ordering of the individuals in R in the form of so-called 
random sequence  (a1,  a2,…), and defines p(Fx|Rx) as the limit of the relative 
frequencies  fn(Fx|Rx) in n-membered initial segments of this random sequence: 
p(Fx|Rx) =  limn → ∞  fn(Fx|Rx). The frequency-limit understanding of statistical 
probabilities goes back to von Mises (1964). From a more contemporary perspec-
tive frequency limits are theoretical idealizations that are not observable, but only 
extrapolable from the observation of finite frequencies (cf. Howson and Urbach 
1996; Gillies 2000; Schurz 2014, sec. 3.13).

As explained, statistical probabilities refer to repeatable types of events or 
states of affairs in given reference classes or sequences (R), expressed by open 
formulas. For example, p(Fx|Rx) could express the limiting frequency of rainy 
days (Fx) among all days in Düsseldorf (Rx). If the reference class is left out, 
as in p(Fx), this merely means that it is specified elsewhere. Objective single 
case probabilities, on the other hand, refer to particular events or states of affairs 
expressed by singular sentences (closed formulas), e.g. Fa, without any explicit 
mentioning of a reference class. P(Fa), for example, could express the objective 
probability that it will rain in Düsseldorf tomorrow ("a" for "the day tomorrow 
in Düsseldorf"). Without an at least implicit connection to statistical probabili-
ties it seems unclear how single case probabilities could be cognitively accessible 
(for criticisms cf. Gillies 2000, pp. 126–36; Schurz 2014, sec. 3.13.2). There is, 
however, a well known method to explain the objective probabilities of single 
case events by implicit statistical probabilities, namely in relation to their nar-
rowest relevant reference class. In our example, if a meteorologist announces a 
probability of 3/4 that it will rain tomorrow in Düsseldorf, (s)he uses the weather 
conditions in the (say three) preceding days as the narrowest reference class; so 
her claim means that the statistical probability of rain in Düsseldorf on a day pre-
ceded by three days with similar weather patterns as in the last three days is 3/4.
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In what follows, the narrowest relevant reference class of an event Fa is 
denoted as  RFa. It is the narrowest reference class to which the individual event 
Fa belongs and which is statistically relevant for Fx. With "reference class" we 
mean not just any class of individuals in the set-theoretic sense, but a conjunc-
tion of nomological predicates. Narrowest reference classes as a method of defin-
ing single case probabilities go back to Reichenbach (1949, §72) and to Hempel 
(1968). These two authors, however, understood narrowest reference classes in 
the epistemic sense, as narrowest reference classes from which we know that they 
apply. For an objective notion of single case probabilities we need the notion of 
an objectively narrowest relevant reference class. This notion was first explicated 
by Salmon (1984), who called it the "broadest objectively homogeneous" refer-
ence class  RFa: "objectively homogeneous" means "narrowest", i.e. no further 
strengthening of  RFa changes the statistical probability p(Fx|RFax), and "broadest" 
means "relevant", i.e.  RFa contains no superfluous irrelevant conditions that make 
 RFa narrower than necessary.

In addition, Salmon requires that R contains only conditions that are causally 
relevant for Fa; thus R has to refer to conditions that temporally precede the event 
Fa. Following Salmon we define:

(4) [Definition] Objective single case probabilities
P(Fa) is defined as p(Fx|RFax), where  RFax is the narrowest relevant reference class 
for the event Fa, defined as strongest conjunction of conditions  R1x ∧ … ∧  Rnx that 
refer to events preceding the event Fx,3 and each of the  Rix is statistically relevant 
for Fx, i.e., the value of p(Fx|R1x ∧ … ∧  Rnx) changes when  Rix is replaced by ¬Rix

In a similar way, objective single case propensities have been explicated by 
Lewis (1980), who calls them chances. Lewis does not explicitly explain single case 
chances as statistical probabilities relative to objectively narrowest reference classes, 
but he says that they are conditionalized to the entire history of the world until the 
present time. This can be interpreted as an implicit statistical assertion, since if the 
world’s history were repeated infinitely many times, the objective chance would 
coincide with the limiting frequency of the event in the sequence of these histories.

Coffa (1974) was the first who pointed out that if the world were deterministic, 
then all objective single case probabilities would be zeros or ones, i.e., they would 
coincide with truth values, because in a deterministic world the objectively nar-
rowest relevant reference class for a future event determines its occurrence or non-
occurrence. Thus non-trivial objective single case probabilities can only exist in 
indeterministic worlds.

3 This can be formally expressed by assuming that in "Fx" x stands for a sequence of variables contain-
ing the time t, and "Rx" stands for the application of R to a function f(x) of x that refers to a neighbour-
hood at an earlier time. For example, when Fx = Fxt, then Rx = Rf(x)g(t), where g(t) is a time t’ preced-
ing t and f(x) an object at time t’ located in a neighbourhood of x.
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3.3  Logical versus epistemic truthlikeness

At the end of Sect. 3.1 it seemed that probabilistic truthlikeness is just a special case 
of truthlikeness for quantitative theories and requires no special treatment. We think 
that this is indeed true for the logical notion of truthlikeness, but not for the epis-
temic notion of truthlikeness. This last distinction is explained in this section.

Logical truthlikeness means truthlikeness relative to the objective complete 
truth T (which for probabilistic truthlikeness is the set of all objective probabilistic 
truths). When we speak of "truthlikeness" simpliciter we always mean logical truth-
likeness, because this is how truthlikeness is defined. However, the objective truth 
T is typically unknown. We need epistemic criteria to assess the truthlikeness of a 
theory in the light of our given set E of data or empirical evidence. The estimation 
of truthlikeness relative to a given evidence is also called epistemic truthlikeness.

In epistemic truthlikeness, the role of the objective truth T is taken over by the 
evidence set E. This brings us to two important differences between the epistemic 
versions of deterministic and probabilistic truthlikeness, which are particularly 
important for conjunction-of-parts accounts of truthlikeness.4 Thereby we assume 
a given distinction of the consequences of a theory into empirical consequences 
that are directly testable by observation and measurement, and theoretical con-
sequences that postulate unobservable causes of observable effects and can only 
indirectly be tested via the empirical consequences (for a defense of this distinc-
tion against challenges cf. Schurz 2014, sec. 2.9).

Difference 1: Deterministic theories deductively entail empirical conse-
quences. Thus they have empirical content elements whose truthlikeness can be 
directly assessed by comparison with the empirical data in E, in the same way as 
for objective truthlikeness. If one replaces T by E and the set of a theory’s content 
elements by its empirical content elements, then one can apply the definition of 
logical truthlikeness analogously to epistemic truthlikeness. One obtains a sim-
ple version of epistemic truthlikeness that has been worked out in Schurz (2018, 
explication (12)). In contrast, probabilistic theories do not entail any empirical 
consequences; they imply them only with probability. For example, assume p 
is a statistical probability function over binary random events ± Fx in reference 
sequences of kind R whose repetitions are independently and identically dis-
tributed. Then the theory A = {hr}, with  hr: p(Fx|Rx) = r, implies the probability 
statement:

the well-known binomial formula, where "f(F|R)" is the relative frequency of F’s 
in a random sample of R’s. Equation (5) specifies the probability of obtaining k out 
of n F’s among n randomly chosen R’s (given  hr is true), but it doesn’t entail their 

(5)p(f(F|R) =
k

n
| hr) =

(
n

k

)
⋅ rk ⋅ (1 − r)(n−k),

4 In disjunction-of-possibilities accounts, epistemic truthlikeness is defined as expected truthlike-
ness based on an inductive probability distribution over the constituents, conditional to the evidence 
(Niiniluoto 1987, p. 269). For these accounts "difference 1" below disappears, while "difference 2" still 
remains.
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actual frequencies. We cannot directly compare the probability statement h with the 
actually observed frequencies. Rather we have to compute the inductive probability 
of  hr, given our frequentist evidence e (i.e., f(F|R) = k

n
 ), according to the well-known 

Bayesian formula:

where D(hq) is a uniform prior probability density over all possible probability func-
tions  hq: p(Fx|Rx) = q, for q ∈ [0,1]. In practical applications r is replaced by an 
interval ∆r of real numbers and P(h|e) is the integral of D(hr|e) over this interval. 
The inductive probabilities of the content elements of statistical theories have to be 
inserted into the truthlikeness definition, as will be explained in Sect. 5.

Difference 2: Difference 1 applies to generic statistical probabilities, whose rel-
evant evidence is expressed in terms of finite frequencies within explicitly given 
reference classes. Objective single case probabilities, however, are not explicitly 
relativized to any reference class. They are understood relative to objectively nar-
rowest (relevant) reference classes: P(Fa) = p(Fx|RFax), as explained in the pre-
vious section. These objectively narrowest reference classes  RFax are typically 
unknown and different probabilistic theories or methods diverge in their hypoth-
eses about the relevant ’cues’ whose entirety makes up these classes. Thus there 
are no conditional frequencies in relation to which the truthlikeness of hypotheses 
about objective single case probabilities could be assessed. Rather, their truthlike-
ness has to be assessed relative to the truth values of the event statements whose 
probabilities are predicted. This evaluation method is entirely different from the 
similarity measures for ordinary quantitative statements. How it works and why 
meta-inductive probability aggregation becomes important for it is explained in 
Sects. 5 and 6. Before we come to this, we explain the combination of numerical 
and quantitative with qualitative truthlikeness within the framework of the con-
tent element account. This is done in Sect. 4.

4  Truthlikeness for qualitative and quantitative theories based 
on content elements

The truthlikeness account of Schurz and Weingartner (e.g., Schurz and Weingartner 
1987, 2010; Schurz 2018) is based on decomposing theories into their sets of rel-
evant elements, or content elements, as Schurz later prefers to say. The definition for 
languages of first or higher order predicate logic is given in (7). It generalizes the 
definitions in Schurz (1991) and Schippers and Schurz (2017, def. 4.2) by using the 
notion of a a’quasi-clause’ and ’quasi-literal’. Every sentence can be L-equivalently 
transformed into a conjunction of quasi-clauses.

(6)D
(
hr|e

)
= p(e | hr) ⋅ D

(
hr
)
∕

1

∫
0

p(e | hq)⋅D(hq) dq,
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(7) [Definition] Content elements (relevant elements)
α  is a content element of a theory (set of sentences) A iff
(a)  α  is a quasi-clause, also called an ’element’, which is a disjunction of one or 
more elementary quasi-literals, in short eqls, defined as follows:
(a1) a quasi-literal is either a closed literal (an unnegated or negated atomic sen-
tence) or a quantified sentence in negation-normal form (it begins with a quantifier 
and has all negation symbols in front of atomic formulas), expressed by means of 
the primitive symbols ¬, ∨, ∧, ∃, ∀; and
(a2) a quasi-literal is elementary iff it is not L(ogically)-equivalent with a conjunc-
tion or a disjunction n ≥ 1 of quasi-literals each of which is shorter than q, where the 
length of a sentence is defined as the number of its primitive symbols;
(b) α is a relevant logical consequence of A in the sense that A |== α  and no predi-
cate in α is replaceable on some of its occurrences by any other predicate (of the 
same degree) salva validitate of A |== α (propositional atoms are predicates of 
degree 0); and
(c) α is the first among all statements L-equivalent with α and satisfying (a) and (b), 
according to a given enumeration of all statements of L.

Examples of eql’s and of elements according to def. 7a: p, ¬p are eql’s; p ∨ q is an 
element; p ∧ p is not a eql, but p is one; p ∨ p is not an element; ¬¬p is not an eql, 
but p is one; p ∨ (q ∧ r) is not an element, but p ∨ q and p ∨ r are elements, ∃x(Fx 
∨ Gx) is not an eql, but ∃xFx and ∃xGx are eqls and ∃xFx ∨ ∃xGx is an element; 
∀x(Fx ∧ Gx) is not an eql, but ∀xFx and ∀xGx are eqls; ∃x(Fx ∧ Gx) is an eql and 
∀x(Fx ∨ Gx) is an eql.

Examples of irrelevant consequences according to clause (b), where underlined 
occurrences are salva validitate replaceable: p |== p ∨ q; p |= q → p; p |== (p ∨ 
q) ∧ (p  ∨ ¬q); ∀x(Fx → Gx) |= ∀x(Fx → (Gx ∨ Hx)). Examples of relevant conse-
quences: p ∧ q |== p; p → q, q → r |== p → r; ∀x(Fx → Gx), Fa |== Ga; ∀x(Fx → 
Gx), ∀x(Gx → Hx) |== ∀x(Fx → Hx).

Examples of content elements according to clause (c), where  Ac is the set of content 
elements of theory A and K is the set of L ’s individual constants): {p ∧ q}c = {p, q}, 
{p ∨ (q ∧ r)}c = {p ∨ q, p ∨ r}, {p ∨ ¬q, p ∨ q}c = {p}, {p → q, q → ¬r}c = {¬p ∨ q,  
¬q ∨ ¬r, ¬p ∨ ¬r}, {p ∨ ¬p}c ={ T}, {p ∧ ¬p}c = {⊥}, {∀xFx}c = {∀xFx, ∃xFx} ∪  
{Fai:  ai ∈ K }, {Fa}c = {Fa, ∃xFx}, {∀x((Fx ∨ Gx) → (Hx ∧ Qx))}c = {∀x(¬Fx ∨ 
Hx)}c ∪ {∀x(¬Fx ∨ Qx)}c ∪ {∀x(¬Gx ∨ Hx)}c ∪ {∀x(¬Gx ∨ Qx)}c.

The only content element of a logically true theory is the constant T and the only 
content element of a logically false theory is the constant ⊥.

Content elements within propositional logics are also called prime implicates (cf. 
Bienvenu 2009); the basic idea goes back to an old paper of Quine (1955). Schurz 
and Weingartner (2010, Lemma 5) prove that in propositional logic, definition (7) 
of relevant elements is equivalent with their definition in terms of strongest clauses, 
where clauses are disjunctions of literals ±  pi ordered according to a fixed enumera-
tion. This ensures that in propositional logic content elements are unique modulo 
L-equivalence. For predicate logic, this condition is not sufficient; uniqueness of 
content elements modulo L-equivalence has to be required by condition (c).
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The identification of content elements with relevant elementary quasi-clauses 
constrains the possible L-equivalent formulations of content elements significantly. 
In definition (a2) of elementary quasi-literals, universally or existential quantified 
quasi-literals are split into conjunctions or disjunctions, respectively, of quasi-liter-
als, as far as possible, as seen in the above examples.

A theory A is logically equivalent with the set  Ac of its content elements; thus 
no information gets lost in the representation of theories by their content elements. 
A proof of this important fact for propositional logic is given in Schurz and Wein-
gartner (1987). A general proof for predicate logic is so far only possible if content 
elements are allowed to contain second order quantifiers; whether the fact holds also 
without this assumption is until now an open problem.

We let  Ac,  Atc =  Ac ∩ T and  Afc =  Ac ∩ F be the sets of A’s content elements, A’s 
true content elements and A’s false content elements, respectively. Based on these 
notions, the concept of comparative truthlikeness for qualitative theories is given 
by inserting in definition (2) the sets  Atc and  Afc for the sets  At-parts and  Af-parts, 
respectively, and likewise for theory B (cf. Schurz 1991).

Building up on the comparative notion of truthlikeness, Schurz and Wein-
gartner (2010) proposed a content element-based definition of numeric truthlike-
ness, t(A), for propositional languages. Definition (8) below is a generalization 
of their definition to languages of predicate logic. The generalization to predicate 
logic is difficult and there are different approaches to this enterprise.5

Our proposal is based on the finiteness assumption, i.e. the set of quasi-literals 
expressible in the language of the considered theories is finite; this assumption 
will be discussed below. Quasi-literals are denoted as  q1,  q2,….

(8) [Definition] Numeric truthlikeness for qualitative theories based on content 
elements:
Let Q = {q1,…,qn} be the set of all n quasi-literals expressible in L , Q(α) the set of 
quasi-literals occurring in a clause  α ,  kα =|Qt(α)| their number, and  Qt(α) = Q(α) ∩ T 
the subset of α’s true quasi-literals. Then:
t(A) = Σ{t(α): α∈Ac}, where
(a) for  α∈Atc: t(α) = (n−k�+1)!

n!
⋅
∑

q∈Qt (�)
t(q)

k
�

,

(b) for  α∈Afc: t((α) =  − (n−k�+1)!
n!

⋅
∑

q∈Q(�) t(q)

k
�

,

(c) for a quasi-literal q: t(q) =  ± 1, (+ 1 if true, − 1 if false)

5 An approach different from ours is the partial entailment method of Cevolani and Festa (2020). It equates 
the truthlikeness t(α) for every content element α that is not a literal with 

∑
q∈Bt

Inf(q��) −
∑

q∈Bf
Inf(q��) , 

where Inf(q,α) = 2·P(q|α)−0.5, P is a logical probability measure, and  Bt and  Bf are the sets of all true resp. 
false literals. This proposal is rather attractive. It has two disadvantages: (1.) The definition of logical prob-
ability measures for constituents of general 1st order languages is extremely complicated. (2.) Cevolani and 
Festa’s measure doesn’t satisfy intuition (1.1) of sec. 1, according to which the truthlikeness of true theories 
should increase with their logical strength. The authors present interesting arguments for their position. For 
example, if "n" abbreviates "the number of planets is n", then they argue that 8∨7∨1 is more truthlike than 
8∨1, although 8∨7∨1 is weaker than 8∨1 and both assertions are true. Intuitions diverge on this point (cf. 
Schurz 2020 in reply to Cevolani and Festa 2020 and Niiniluoto 2020). In any case, my account shows how 
a generalization is possible that satisfies the intuition.
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The measure (8) is based on the following intuitions:

 (i) t(A) is defined as the sum of the truthlikeness of all content elements of A.
 (ii) True content elements have positive and false content elements have negative 

truthlikeness.
Concerning quasi-literals:
(iii) If a quasi-literal q is a literal, we set t(q) = 1 if q is true and t(q) =  − 1 if q is 

false. This is intuitive and coincides with the propositional measures of Schurz 
and Weingartner (2010) and Cevolani and Festa (2009). We set t(T) = 0 and 
t(⊥) =  − (n − 1); thus t(A) = 0 for L-true A and t(A) is maximally negative for 
L-false A.

(iv) If q is a universally quantified quasi-literal ∀xβx (for a possibly complex β), it 
is likewise reasonable to set t(q) =  ± 1, because the stronger content of ∀xβx 
compared to βai is cashed out in terms of ∀xβx’s content elements, which are 
given by the set {∀xβx} ∪ {βai:1 ≤ i ≤ c} ∪ {∃xβx}. Thus if ∀xβx is true, then 
t({∀xβx}) is greater than the truthlikeness of ∀xβx’s instances, namely equal 
to t({βai:1 ≤ i ≤ c}) + 1. This surplus truthlikeness is reasonable since not all 
individuals have names in L.

(v) A similar observation applies if q is an existential statement, ∃xβx. The abso-
lute value of t(∃xβx)), |t(∃xβx)|, must be smaller than the absolute value of q’s 
instances, |βai| and even smaller than the disjunction of q’s instances, |t(βa1 
∨…∨ βac), where c is the number of L ’s individual constants. However, this will 
automatically be the case since ∃xβ is a content element of βai and also one of 
βa1 ∨…∨ βac. Thus it is sufficient to set t(∃xβ) = t((¬)βai) =  ± 1.

Concerning disjunctions of quasi-literals:
 (vii) If  q1 ∨…∨  qk is true, its truthlikeness is positive and must decrease with 

decreasing logical content (decreasing k). If  q1 ∨…∨  qk is false, its truthlike-
ness is negative and its absolute value must likewise decrease with decreasing 
k. This requirement is realized as follows. Consider the disjunction  q1 ∨  qi of 
two true quasi-literals. The set of quasi-clauses {q1 ∨  qi: 2 ≤ i ≤ n} must be 
less truthlike than  q1 because this set is logically weaker than  q1. Thus if both 
 q1 and  qi are true, we multiply the truthlikeness of  q1 ∨  qi by the factor 1/n 
(= (n − 1)!/n!). Since there are n − 1 two-element disjunctions of the form  q1 
∨  qi, their sum is (n − 1)/n, which is slightly smaller than t(q1). The iterative 
application of this idea to  q1 ∨ …∨ qkα leads to the factor (n−kα+1)!

n!
 in def. (8), 

which we call the content-factor of the quasi-clause.
 (viii) The truthlikeness of a true quasi-clause α is given by multiplying the content-

factor of α with the fraction of the (positive) truthlikeness of the true quasi-
literals of q, 

∑
q∈Qt (�)

t(q)

k
�

 . For false quasi-clauses, their content factor is multi-
plied with the (negative) average truthlikeness of all quasi-literals of the clause 
which in this case are all false (Q(α) =  Qf(α)). For qualitative theories t(q) is 
always ± 1; therefore the term 

∑
q∈Qt (�)

t(q)

k
�

 is equal to |Qt(α)|/kα and the term 
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∑
q∈Q(�) t(q)

k
�

  equal to − 1 (cf. def. 5 of Schurz and Weingartner 2010). The for-
mulation in (8a,b) has the advantage of being generalizable to quantitative 
theories (or to refined t-measures with varying |t(qi)|).

Examples of truthlikeness according to def. 8, where positive quasi-literals are 
assumed to be true and negated ones false:

Schurz and Weingartner (2010) show that numeric truthlikeness satisfies the 
intuitions in (1) and is ordinally equivalent with comparative truthlikeness over all 
pairs of ≥ -comparable theories A, B, i.e. t(A) ≥ t(B) if A ≥ B. The advantage of t 
over comparative truthlikeness is that t allows reasonable truthlikeness-comparisons 
for ≤ -incomparable statements. For example, if p and q are true, then p ∨ q and p ∨ 
¬q are both true and ≤ -incomparable, but t(p ∨ q) = 1/2 > t(p ∨ ¬q) = 1/4.

The numeric truthlike measure (8) is not normalized. It can be normalized by 
dividing through n; then the truthlikeness of consistent theories ranges between + 1 
and − 1 and that of a contradictions is − n/(n + 1). For conjunctive propositional 
theories, the normalized truthlikeness measure (8) coincides with the unweighted 
numeric truthlikeness measure of Cevolani and Festa (2009).

In the transfer of the truthlikeness measure (8) to predicate logic we assumed that 
the number of quasi-literals expressible in L is finite. This restriction presupposes (i) 
that the depth of iterated quantifiers of the considered theories is bounded by a finite 
maximal depth d, (ii) that the number of predicates, relation and function symbols 
is finite and (iii) the number of individual constants is finite. Also the constituent 
account for 1st order languages assumes these restrictions (Hintikka 1965; Niini-
luoto 1987). We regard assumptions (i) and (ii) as unproblematic for applications 
to scientific theories. Assumption (iii) is more problematic, because often theories 
speak about infinitely many objects that are named by natural numbers. A possible 
way to get around assumption (iii) would be to consider, instead of content elements, 
equivalence classes [α] of content elements α that arise from α by permutations of 
the individual constants and have finite truthlikeness; elaborations of this idea are 
left to future work.

t({∃xFx}) = t(∃xFx) = 1; t({Fa}) = t(Fa) + t(∃xFx) = 2;

t({∀xFx}) = t(∀xFx) + t(∃xFx) +
∑

ai∈K

t
(
Fai

)
= 2 + c; t({∃xFx ∨ ∃xGx}) = (n − 1)!∕n!;

t({∃xFx ∨ ¬∃xGx}) = ((n − 1)!∕n!) ⋅ (1∕2); t ({¬∃xFx ∨ ¬∃xGx}) = −(n − 1)!∕n!;

t({Fa ∨ Ga}) = t(Fa ∨ Ga) + t(∃xFx ∨ Ga) + t(Fa ∨ ∃xGx) + t(∃xFx ∨ ∃xGx) = 4 ⋅ (n − 1)!∕n!;

t({∀x(Fx ∨ Gx)}) = t(∀x(Fx ∨ Gx)) +
∑

ai∈K

t(Fai ∨ Gai) = 1 + c ⋅ (n − 1)!∕n!;

t({∀x(Fx ∧ Gx)}) = t(∀xFx) + t(∃xFx) + t(∀xGx) + t(∃xGx) +
∑

ai∈K

t
(
Fai

)
+ t

(
Gai

)
= 4 + 2 ⋅ c;

t({∃x∀yRxy}) = t(∃x∀yRxy) + t(∃x∃yRxy) + t(∀y∃xRxy) +
∑

ai∈K

t(∃xRxai) = 3 + c.
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Definitions (7) and (8) are restricted to qualitative theories. The extension to 
quantitative theories is possible by assuming that some or all quasi-literals of content 
elements are elementary quantitative statements. Thus they have the form m(a) = r or 
∀x(m(x) = p(x)) (where a, x may be sequences of singular terms). Their quantita-
tive truthlikeness is measured according to definition (3) by a normalized measure 
that ranges between + 1 for "perfect approximation", 0 for random success, and − 1 
for "maximally distant from the true value". To integrate them into definition (8), 
we introduce a dichotomy between quasi-clauses. We call a quasi-literal q approxi-
mately true, in short "app-true", iff t(q) > 0 and app-false iff t(q) ≤ 0. A quasi-clause 
is app-true iff at least one of its quasi-literals is app-true, and app-false iff each of its 
quasi-literals is app-false.  Aapp-tc and  Aapp-fc denote the sets of a theory A’s app-true 
and app-false content elements, respectively. For a quasi-clause α, Q(α),  Qapp-t(α) 
and  Qapp-f(α) are the sets of quasi-literals, app-true quasi-literals and app-false quasi-
literals in α, respectively. Now we can define numeric-quantitative truthlikeness in 
complete analogy to definition (8)

(9) [Definition] Numeric truthlikeness for quantitative theories based on content ele-
ments:
Definition as in (9), except that  Atc,  Afc and  Qt are replaced by  Aapp-tc,  Aapp-fc and 
 Qapp-t, and if q is a quantitative quasi-literal, t(q) is computed by definition (3).

For qualitative clauses α this condition leads precisely back to definition (8).6

5  Probabilistic truthlikeness: logical and epistemic

5.1  Logical truthlikeness for statistical and single case probabilities

As remarked in Sect.  3, the logical notion of probabilistic truthlikeness is a special 
case of numeric truthlikeness for quantitative theories. For statistical probabilities, 
the objective truth T consists of all true (and ’sufficiently lawlike’) statistical prob-
ability assertions expressible in the language of the theory, such as  pT(Fx) =  r1 or 
 pT(Fx|Gx) =  r2 ("pT" for the true probability). Also the theories consist of probability 
statements of this form, or of logical combinations of them. Both the truth T and the 
theories may in addition contain probabilistic independence assumptions, e.g. p(±  Fx1
∧  ±  Fx2) = p(±  Fx1)⋅p(±  Fx2). The logical consequence operation applies also to prob-
ability assertions; it is now relativized to the basic axioms of probability, which are 
assumed as premises. For example, the theory {p(Fx|Rx) = r, p(Gx|Rx ∧ Fx) = q} logi-
cally implies the consequence p(Fx ∧ Gx|Rx) = r⋅q. In particular, every theory of the 
form {p(Fx|Rx) = r} together with a corresponding independence assumption implies 
the binomial formula in (5) for all k and n. The truthlikeness of an elementary prob-
ability assertion is measured using a suitable similarity measure defined as in (3), 

6 In Schurz (2018, def. 9), numeric truthlikeness for quantitative theories is defined in a simpler way. 
This has the disadvantage that the application of this definition to qualitative theories does not coincide 
with definition (8). Therefore we prefer the above definition (9).
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where the interval length ∆ is now 1. For example, t(p(Fx) =  r1) = sim(r1,pT(Fx)) and 
t(p(Fx|Gx)) =  r2) = sim(r2,  pT(Fx|Gx)). Quantifications over elementary probability 
assertions (e.g., ∀x(p(Rxy) = r)), are evaluated by definitions (3b) or (3c). Theories con-
taining logical combinations of probability assertions are decomposed into the sets of 
their content elements according to the definitions (8) and (9), which apply likewise to 
formulas containing probability operators.

For objective single case probabilities, the objective truth consists of true uncon-
ditional single case probability assertions, for all singular statements expressible in 
L , e.g.,  PT(Fa) =  r1,  PT(Fb) =  r2,  PT(Qab) =  r3, etc. All of them are understood as sta-
tistical probabilities relative to narrowest relevant reference classes as defined in (4), 
i.e.,  PT(Fa) =  pT(Fx|RFax),  PT(Fb) =  pT(Fx|RFbx),  PT(Qab) =  pT(Qxy|RQabxy), etc. 
Thus R( −) is a function that assigns to each closed formula its objective narrowest 
relevant reference class. The function R is typically unknown and we have only par-
tial knowledge about it, i.e., we know some interesting superclasses of narrowest ref-
erence classes. In general, the more deterministic laws are regulating the considered 
domain, the closer the objective single case probabilities of events are to their truth 
values (1 for true and 0 for false). Theories about single case probabilities consist of 
elementary single case probability assertions, or logical combinations of them. Their 
truthlikeness is again evaluated by our measure (3) for elementary P-assertions, e.g. 
t(P(Fa) =  q1) = sim(q1,PT(Fa)). For quantified P-assertions such as ∀x(P(Fx) = q) we use 
measure (3b,d), and for logical combinations of P-assertions we use definition (9).

5.2  Epistemic truthlikeness for statistical probabilities

For epistemic truthlikeness, the content elements of a statistical theory A consist of 
statistical probability statements (or disjunctions of them) solely expressed in terms 
of empirical predicates. The objective truth T is replaced by the set of all available 
pieces of frequency information corresponding to A’s probability statements. We let 
S be the set of reports about frequencies in random samples and  s1,  s2, … range 
over particular sample reports. Sample reports have either the unconditional form 
"f(Fx) = k/n" asserting that k out of n individuals drawn from the domain were Fs, or 
the conditional form "f(Fx|Gx) = k/n", saying that k out of n individuals drawn from 
the class of G’s were F’s. The epistemic truthlikeness of the elementary probability 
assertion h: p(Fx) =  r1 is evaluated relative to the sample information s: f(Fx) =  k1/n1 
by means of the inductive probability P(h|s), computed according to formula (6) of 
Sect. 3. Likewise, if h is p(Fx|Gx) =  r2, then s is f(Fx|Gx) =  k2/n2 (etc.). Based on the 
inductive probability P(h|s) and the inductive prior probability P(h) we define a con-
firmation measure conf(h|s) that ranges between + 1 and − 1 and is + 1 if P(h|s) = 1, 
0 if P(h|s) = P(h) and − 1 if p(h|s) =  − 1. This measure can be defined similarly as in 
condition (3d); we dispense with stating its details. By inserting this confirmation 
measure instead of the truthlikeness of h into definition (9), we obtain the epistemic 
truthlikeness for statistical theories.
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5.3  Epistemic truthlikeness for single case probabilities

Theories about single case probabilities attempt to predict unobserved events with 
a probability that comes as close as possible to their truth value. This is close to the 
Bayesian idea that probabilities are rational estimations of truth values.

The epistemic truthlikeness of single-case probability assertions, in short P-asser-
tions, is closely related to probabilistic predictions. In the latter context, their dis-
tance from the truth is called their loss, their similarity to the truth their score and 
the epistemic truthlikeness of a theory corresponds to its predictive success (cf. 
Schurz 2019, ch. 5).

The objectively best possible prediction is the statistical probability of the pre-
dicted event relative to its true narrowest relevant reference class. Since this ref-
erence class is typically unknown, the method of the previous section cannot be 
applied: there are no observable sample frequencies corresponding to competing 
predictions of single case probabilities. Rather, the predicted probabilities have to 
be scored relative to the truth values of the event statements whose probabilities are 
predicted (which is also a standard method in Bayesianism). The truthlikeness of the 
P-assertion about a binary event, P(Fa) = r, is given by sim(r,v(Fa)), where v(Fa) ∈ 
{1,0} denotes Fa’s truth value (similarly for the P-assertion of a discrete event).

The scoring of P-assertions relative to truth values has a peculiar feature. So far it 
was not decisive whether a linear or a quadratic distance measure is used, but now it 
becomes crucial. It is a well-known fact that if the similarity (or scoring) measure is 
based on the absolute (or some other linear) distance, then it is not optimal to predict 
probabilities, but to predict truth values: ‘1’ if the predicted probability is greater-
or-equal 0.5 and ‘0’ if its is smaller 0. This scoring rule is called the maximum rule 
(cf. Schurz 2019, sec. 5.9) and its proof is simple: assuming that the binary event Fa 
is independent from its prediction, the P-expected loss of the prediction P(Fa) = q is 
given as P(Fa)⋅(1 − q) + (1 − P(Fa))⋅q. When P(Fa) ≥ 0.5 this term is minimal if q = 1, 
and when P(Fa) < 0.5 if q = 0.

What follows from this fact is not that linear scoring rules are inadequate, but that 
under a linear scoring, single case probabilities are not optimal estimations of truth val-
ues. Rather, their roundings to 1 or 0 are the optimal estimations. However, in the con-
text of probabilistic predictions of events one wants a scoring relative to truth values 
that maximizes the P-expected score if the predicted value coincides with the probabil-
ity P. Such scoring functions exist and are called proper scoring functions. They have 
the property that the P-expected score of a probabilistic prediction P(Fa) = q is maximal 
iff q equals P(Fa). According to a famous result of Brier (1950), the scoring function 
based on the quadratic loss function is proper (cf. Selten 1998). The proof is simple, by 
differentiating the P-expected quadratic loss w.r.t. to q and setting it to zero: d(P(Fa)⋅(1 
− q)2 + (1 − P(Fa))⋅q2)/dq = 2⋅P(Fa) + 2q = ! 0, so P(Fa) = q. There are also other proper 
scoring functions, e.g. logarithmic ones (cf. Fallis 2007).

Brier (1950) designed proper scoring rules in the context of probabilistic weather 
forecasting. Under a subjective perspective, a properly scored probabilistic forecaster 
believes that she will maximize her expected score if she predicts her probabilities. 
Under the objective truthlikeness perspective, the properly scored average truthlikeness 
of P-assertions is the greater, the closer the predicted probabilities come to the true 
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single case probabilities, defined as statistical probabilities in the narrowest relevant 
reference classes. This is precisely what we want.

In the context of probabilistic predictions, the loss and score functions of elementary 
probabilistic predictions q∈ [0,1] relative to a truth value v∈{0,1} are normalized to 
the interval [0,1] and defined as loss(p,v) = (p − v)2 and score(p,v) = 1 − loss(p,v). In the 
truthlikeness context, similarity measures are normalized to the interval [− 1, + 1] and 
the truthlikeness of a random guess should be 0. Since the average quadratic loss of 
a random guess is 0.52 = 0.25 and the average score is 0.75, the similarity measure is 
renormalized as follows:

(10) Score and epistemic truthlikeness of elementary single case probabilities
(10.1) Score, normalized to [0,1]:
s(P(Fa) = r) = 1 − (r − v(Fa))2, where v(Fa) is Fa’s truth value.
(10.2) Truthlikeness, normalized to [− 1, + 1]:
t(P(Fa) = r) = sim(r,v(Fa)) = (0.25 − (r − v(Fa))2)⋅n, where
 − if |r − v(Fa)| < 0.5 (better than random guess), n = 4, and
 − if |r − v(Fa)| ≥ 0.5 (not better than random guess), n = 4/3.
Thus if |r − v(Fa)| = 0, t(P(Fa) = r) =  + 1; if |r − v(Fa)| = 0.5, t(P(Fa) = r) = 0; and if 
|r − v(Fa)|= 1, t(P(Fa) = r) =  − 1.

Based on the epistemic truthlikeness measure (10.2), the truthlikeness of theo-
ries about objective single case probabilistic can be evaluated relative to a given 
evidence set E, which now consists of singular statements that are accepted as true. 
Since E is incomplete, the theory may contain a content element h: P(Fa) = r without 
that E contains information about Fa’s truth value, i.e. Fa∉E and ¬Fa∉E. In this 
case, the epistemic truthlikeness of h is set to zero.

6  Meta‑inductive optimization of the epistemic truthlikeness 
of single case probabilities

Theories about single case probabilities may be based on different predic-
tion methods making different conjectures about the relevant cues (or reference 
classes). Since the objectively relevant cues may vary under different condi-
tions of the environment, the success of theories will be environment-dependent, 
which implies that under changing environments the most successful theory will 
frequently change. Is it possible to design a meta-method that combines differ-
ent probabilistic theories or methods into an aggregated method whose predic-
tions are optimal? This is indeed possible, namely by means of the method of 
meta-induction, abbreviated as MI. Meta-induction is induction applied at the 
level of prediction methods or theories, as opposed to object-induction applied at 
the level of events. Meta-inductive methods have been developed in the context 
of Hume’s problem of induction, as an attempt to provide a non-circular solu-
tion to this problem (Schurz 2019). The approach of meta-induction is compat-
ible with Hume’s diagnosis that one cannot demonstrate the universal reliability 
of induction. It attempts to show something weaker: the universal optimality of 
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meta-induction. Optimality is weaker than reliability because even in an induc-
tion-hostile world (in which all prediction methods are unreliable), meta-induc-
tion can be optimal in the sense of ’being the best of a bad lot’.

Generally speaking, a meta-inductive method predicts a weighted average of 
the predictions of all accessible methods or theories, weighted according to their 
observed success. Based on deep theorems in mathematical learning theory (cf. 
Cesa-Bianchi and Lugosi 2006), one can design a meta-inductive prediction strat-
egy whose predictive success is optimal among all prediction methods that are 
epistemically accessible. This optimality result holds in the long-run and is uni-
versal, i.e., it holds in all possible worlds, including paranormal worlds hosting 
clairvoyants or anti-inductivistic demons. In the short run, certain ’regrets’ of the 
meta-inductive method compared to the best method are possible, but they are 
small and converge quickly to zero for an increasing number of predictions.

The universal optimality result provides a justification of meta-induction that 
is a priori, insofar it does not make any inductive assumptions (it merely assumes 
logic and the possibility of observing the past). By itself this a priori justification 
of meta-induction does not imply the optimality of object-induction, since clair-
voyants who predict better than object-inductive scientists are logically possible, 
and if they would really exist, the meta-inductivist would favor them for his pre-
dictions. However, the a priori justification of meta-induction implies the follow-
ing a posteriori justification of object-induction: So far object-inductive methods 
were (much) more successful than non-inductive methods of prediction; therefore 
it is meta-inductively justified to favor object-induction in the future. This argu-
ment is not circular, because of the independent justification of meta-induction.

Beyond its importance for epistemology, the meta-inductive optimality result 
can be applied in many other domains (Schurz 2019, ch. 10), e.g., to prediction 
and action tasks in cognitive science and computer science, to social learning and 
opinion aggregation in social epistemology and cultural evolution, and to prob-
ability aggregation in Bayesian epistemology. In this section we demonstrate the 
application of meta-induction to probabilistic truthlikeness—more precisely to 
the epistemic truthlikeness of single case probability assertions.

Note that meta-induction can also be applied to the epistemic truthlikeness of 
statistical probability assertions. For this application the question of finding an 
optimal theory is less pressing, because in the long-run this theory will be the one 
that is closest to the observed frequencies—although also in this domain there 
are different methods of frequentist estimation (e.g., Carnapian lambda rules) 
with different short-run success rates that can be meta-inductively evaluated (cf. 
Douven forthcoming). For single case probabilities, the question of epistemic 
optimality is more pressing, because the objectively narrowest reference class to 
which they are implicitly relativized is unknown and sensitive to changing condi-
tions of the environment.

To apply the method of meta-induction to the prediction of single case prob-
abilities, we assume the following ingredients:

• The singular statements whose probabilities are predicted are assumed to be 
ordered into a potentially infinite sequence of binary events  (e1,  e2, …,); this 
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sequence is called the event sequence. Thus  en =  Fnan (where  an may also be a 
vector of individual constants, in which case  Fn is a relational predicate).

• A1,…,Am is a finite set of theories or methods predicting single case prob-
abilities of the form  Pj(en) =  rn,j. Thus  Pj is the single case probability function 
of the theory or method  Aj.

• MI is the meta-inductive method whose predictions are defined below. The 
pair ((e1,  e2, …), {A1,…,Am, MI}) is called a probabilistic prediction game 
(Schurz 2019, sec. 7.1). The event-index n enumerates the rounds of the game.

• In each round n, each theory or method  Aj as well as MI delivers a prediction 
"Pj(en+1) =  rn+1,j" of the next event’s single case probability.

The success and truthlikeness of the theories  Aj and of MI is evaluated as follows 
(where in this section, "truthlikeness" means always "epistemic truthlikeness"):

• score: s(Pj(en) =  rn,j) is defined as in (10.1).
• truthlikeness: t(Pj(en) =  rn,j) is defined as in (10.2).
• absolute success until round n:  Sucn(Aj) =  Aj’s score-sum until round n.
• absolute truthlikeness until round n:  tn(Aj) =  Aj’s truthlikeness-sum until 

round n.
• success rate at round n:  sucn(Aj): =  Sucn(Aj) / n.
• truthlikeness rate at round n:  trn(Aj): =  tn(Aj) / n.
• attractivity of  Aj for MI at round n:  atn(Aj) =  sucn(Aj) −  sucn(MI).
• max-sucn is the maximum of the success rates  sucn(Aj) for j∈{1,…,m}.
• max-trn is the maximum of the truthlikeness rates  tn(Aj) for j∈{1,…,m}.

(11) Probabilistic predictions of the meta-inductivist strategy MI:
(11.1) The weight of a theory or method  Aj at time n is identified with the positive 
part of its attractivity at time n, i.e.,  wn(Aj) = max(atn(Aj,0))
(11.2) For all times n > 1 with 

∑
1≤i≤m wn(Aj) > 0:

PMI(en+1) = 
∑

1≤j≤m w
n
(A

j
) ⋅ P

j
(e

n+1)
∑

1≤j≤m w
n
(A

j
)

If n = 0 or 
∑

1≤i≤m wn(Aj) = 0, MI predicts according to a given fallback-method, 
independently of its weight

The attractivity of  Aj for MI is also called the regret of MI w.r.t.  Aj. If MI is 
predictively more successful then  Aj at time n, then  Aj’s attractivity is negative. 
The crucial property of attractivity-based meta-induction is that MI’s prediction 
ignores players whose attractivity is negative. The universal optimality of attrac-
tivity-based meta-induction is expressed in the following theorem:

(12) [Theorem] Universal optimality of attractivity-based meta-induction
For every probabilistic prediction game ((e1,e2,…), {A1,…,Am, MI}) the follow-
ing holds:
(12.1) Short run: (i)  sucn(MI) ≥ max-sucn − 

√
m

n
 . (ii)  trn(MI) ≥ max-trn − (4⋅

√
m

n
).
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(12.2) Long-run: MI’s limiting success rate and truthlikeness rate is at least as 
great as the maximal success rate or truthlikeness rate of the competing theories:
(i)  limn → ∞  (sucn(MI) − max-sucn) ≥ 0.             (ii)  limn → ∞(trn(MI) − max-trn) ≥ 0

Proof: The proof of claims (i) is found in Schurz (2019, sec. 6.6.1), based on Cesa-
Bianchi and Lugosi (2006, sec. 2.1). Claims (ii) follow from claims (i) by trans-
formation of predictive success into truthlikeness, as follows. Condition (10.2) 
implies that (a) the truthlikeness t of a probabilistic prediction with a score s > 0.75 
is obtained from its success-score s by the transformation t = (s − 0.75)⋅4, while (b) 
the truthlikeness of a prediction with a score s ≤ 0.75 by the transformation t = 
(s – 0.75)·(4/3). To obtain a unique transformation we transform also case (b) with 
the transformation in (a) and obtain a stretched truthlikeness score t* that lies in the 
interval [–3,+1]. This has the consequence that the regret of the t*-score for a single 
prediction with s(MI) ≤ 0.75, max-t* – t*(MI), gets stretched (in both cases max-s 
> 0.75 and max-s ≤ 0.75). Thus we have max-t – t(M) ≤ max-t* – t* (MI), where  
max-t* – t*(MI) = (4 · max-s – 3) – (4 · s(MI) – 3) = 4 · (max-s – s(MI)). By 
summing up and diving through n we obtain max-trn –  trn(MI) ≤ 4·(maxsucn – 
 sucn(MI)), which gives us claims (12.1)(ii) and (12.2)(ii).

Theorem (12) asserts that the aggregated probability function of the meta-
inductive strategy,  PMI, is in the long run maximally successful under all acces-
sible theories or methods, even when there is no unique best theory but the suc-
cess rates of the competing theories are permanently changing. Beyond its 
importance for Bayesian epistemology, this result is important as a strategy of 
optimal probability aggregation (Feldbacher-Escamilla and Schurz 2020). There 
are also more complicated exponential versions of attractivity-based meta-
induction, whose worst-case regret bounds are even better than 

√
m

n
 , namely 

proportional to 
√

log(m)

n
 (Schurz 2019, sec. 6.6.2), but in the present context the 

most simple version of meta-induction is sufficient.

7  Conclusion

We have started this paper with the distinction between conjunction-of-parts 
accounts and disjunction-of-possibilities accounts of truthlikeness, followed by three 
distinctions between kinds of truthlikeness measures (t-measures): comparative ver-
sus numeric t-measures, t-measures for qualitative versus quantitative theories, and 
t-measures for deterministic versus probabilistic truth. In Sects. 3 and 4 we have 
developed the three kinds of truthlikeness within the framework of conjunction-of-
parts accounts based on content elements, with a focus on probabilistic truthlike-
ness. We distinguished between probabilistic t-measures for statistical probabili-
ties and for single case probabilities (Sect. 3). For logical truthlikeness (t-measures 
relative to an assumed objective truth) probabilistic truthlikeness turns out to be a 
subcase of deterministic truthlikeness for quantitative theories (Sects. 3 and 5). In 
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contrast, for epistemic truthlikeness (t-measures relative to a given set of empirical 
evidence) probabilistic truthlikeness creates genuinely new problems, especially for 
hypotheses about single case probabilities that are evaluated not in regard to fre-
quencies (as statistical probabilities), but in regard to truth values. In the last section 
(Sect. 6) the method of meta-induction was applied to the epistemic truthlikeness of 
single case probabilities. Based on results about the universal predictive optimality 
of meta-induction it was demonstrated how competing theories about single case 
probabilities can be meta-inductively combined into a theory with optimal predic-
tive success and epistemic truthlikeness.
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