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Abstract
I provide and defend two natural accounts of (both relative and absolute) fundamen-
tality for facts that do justice to the idea that the “degree of fundamentality” enjoyed 
by a fact is a matter of how far, from a ground-theoretic perspective, the fact is from 
the ungrounded facts.

Keywords Fundamentality · Relative fundamentality · Absolute fundamentality · 
Grounding · Immediate grounding

What is it for a fact to be more fundamental than another fact? There are plausibly 
numerous answers to this question, pointing to different relations of being more fun-
damental than. In this paper, I wish to explore the idea that being more fundamental 
than is a matter of how far, ground-theoretically speaking, the facts that it relates are 
from the ungrounded facts. My main aim is to make this idea precise.

The idea has certainly been contemplated by many, but it is only very recently 
that philosophers have attempted to discuss it in detail. Karen Bennett (2017) initi-
ated the move, and one can indeed extract from her discussion an account of being 
more fundamental than understood in terms of ground-theoretic distance from the 
ungrounded facts (an account which she does not endorse, see below). This account 
is flawed in a number of ways, as Bennett herself admits. In what follows, I offer two 
natural accounts in the same spirit, each with its own merits, which are better than 
Bennett’s account. These two accounts correspond to two ways of measuring dis-
tances from the ungrounded, “from the top down” and “from the bottom up” which, 
perhaps surprisingly, do not always give the same results. I also discuss a similar 
account recently put forward by Jonas Werner (forthcoming). What his account pre-
cisely amounts to is not clear, but I propose a reconstruction of the account that 
strikes me as being as close as one could wish to Werner’s intentions. My ver-
sion of Werner’s account turns out to be extensionally equivalent to my bottom-up 
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account. I also show that a top-down Werner-style account can be provided, and that 
it is extensionally equivalent to my own top-down account. Despite these facts of 
extensional equivalence, I argue that my accounts are superior to their Werner-style 
counterparts.

The plan of the paper is as follows. In Sect. 1, I spell out the Bennettian account 
of being more fundamental than and explain why it is inadequate. In Sect. 2, I intro-
duce my top-down account and in Sect. 3 my bottom-up account. In Sect. 4, I spell 
out the Werner-style accounts and argue that mine are to be preferred. In Sect. 5, I 
close the discussion by providing accounts of the relation of being as fundamental as 
and accounts of the property of being fundamental that mesh well with my accounts 
of being more fundamental than. In the “Appendix”, some important claims made in 
previous sections are established.1,2

1  Bennett

Bennett (2017) identifies a class of “building relations”, which comprises composi-
tion, constitution, set-formation, realisation, microbased determination and ground-
ing (pp. 8–13), and proposes a definition of being more fundamental than indexed to 
a building relation R that goes as follows (p. 161):

Entity x is more fundamentalR than entity y  iffdf at least one of the following 
holds:

(1) x is fewer R-ing steps away from the non-R-ed entity(ies) that terminate its 
unique chain than y is from the non-R-ed entity(ies) that terminate its unique 
chain;

(2) x at least partially R-s y;

1 In this paper I focus on fact-fundamentality and on grounding understood as relating facts. I will be 
neutral on whether in this context facts should be taken to be true propositions or obtaining states of 
affairs. I will assume that grounding is factive, i.e. that grounding can only be exemplified by true propo-
sitions or obtaining states of affairs. This is compatible with the view that factive grounding should be 
understood in terms of a more basic non-factive notion of grounding (see Fine 2012 on this point and 
more generally on the factive vs non-factive distinction). I believe that my accounts of fundamentality 
in terms of grounding can also be formulated, mutatis mutandis, if both fundamentality and grounding 
are taken to be expressed by means of sentential operators instead of predicates (see Correia 2010 on the 
operator vs predicate approaches to grounding).
2 Fact-fundamentality need not be understood in terms of grounding. Sider 2011 defines a fundamental 
fact as a truth that carves reality at its joints, and Correia forthcoming explores the view that it is ground-
ing that should be understood in terms of a previously given notion of fact-fundamentality. Both views 
strike me as viable, they simply focus on notions of fundamentality that are distinct from the one I am 
interested in here. (In Correia forthcoming, which I wrote long before starting to think seriously about 
the tree-theoretic characterisations that I offer here, I explained that I could not think of any plausible 
way of characterising relative fundamentality in terms of grounding, but I did not exclude that some such 
characterisations could be found.) I should stress here that I also believe that fundamentality does not 
boil down to fact-fundamentality. I take it that Sider’s (2011) notion of fundamentality has a legitimate 
range of application that goes far beyond facts, and that the same is true of some notions of fundamental-
ity linked to ontological dependence rather than grounding (see Correia 2008).
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(3) x stands in the ancestral of partial R-ing to y;
(4) x is not R-ed whereas y is R-ed;
(5) x belongs to some kind K and y belongs to some kind K* such that

a. neither K nor K* includes both R-ed and non-R-ed members, and
b. y does not belong to K and x does not belong to K*, and
c. K*s are typically or normally R-ed in Ks.

Irrespective of the underlying building relation, the highly disjunctive nature of 
the definiens suggests that Bennett merges distinct notions into one, and it is legiti-
mate to wonder whether the resulting notion is natural enough to be worthy of inter-
est. I will leave this issue aside here and focus only on clause (1) of the definition in 
the particular case where R is grounding.3 This instance of clause (1) characterises 
a notion of being more fundamental than that fits well with the conception of fun-
damentality I am interested in here. Let me label this notion ‘being more Bennett-
fundamental than’, and accordingly adopt the following definition:

Fact F is more Bennett-fundamental than fact G  iffdf F is fewer grounding steps 
away from the ungrounded fact(s) that terminate its unique chain than G is 
from the ungrounded fact(s) that terminate its unique chain.

 There are obvious problems with this definition, which Bennett herself men-
tions (but in the more general context of a search for a definition of being more 
fundamental than indexed to an arbitrary building relation; here and below I pre-
tend that she had only grounding in mind). One problem is that since grounding 
is sometimes many-one rather than one–one,4 it sometimes generates (proper) trees 
rather than chains. Conjunctive facts provide straightforward illustrations. Granted 
that (F & G) & H is grounded in F & G and H taken together, and that F & G is 
grounded in F and G taken together, the structure that witnesses how (F & G) & H 
“arises from” F, G and H is something like the one depicted in Fig. 1.

Another problem is that such grounding trees or chains need not have a finite 
height. Many examples of grounding trees or chains that never “bottom out” can 
be found in the literature (see e.g. Correia 2005: pp. 63–64 and Rosen 2010: p. 116 
for early references). A third problem is that some facts may be associated with 
more than one grounding tree or chain. Disjunctive facts illustrate this. Granted that 
F ∨ G is grounded in F and also in G, we have two associated structures rather than 
one, as shown in Fig. 2.

There is a further problem with the definition, which Bennett does not high-
light. It relies on the presupposition that grounding operates by discrete steps. The 
definiens is indeed best understood as invoking the notion of immediate ground-
ing: the chains Bennett has in mind are chains in which each fact that is not last 

3 Bennett is neutral on whether grounding relates fact-like entities only or entities of any ontological cat-
egories. As I stressed in footnote 1, I am not.
4 Dasgupta 2014 and Litland 2016 both defend the non-orthodox view that grounding can also be many-
many. I leave this idea aside in this paper.
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is immediately grounded in the next fact in the chain. Let us take such a notion 
for granted. Then there arises the question of whether there can be facts that are 
grounded but which have no immediate grounds—transcendent facts, as I will call 
them. (I assume that the question of whether there can be facts that are immedi-
ately grounded but not grounded does not arise: being immediately grounded surely 
entails being grounded.) It is far from absurd to hold that there are such facts. Thus, 
consider a body B whose mass is 1 kg, and consider the fact  F1 that B has a mass 
that is between 0 and 2 kg. We may take  F1 to be grounded, say in the fact that B has 
a mass that is between 0.5 kg and 1.5 kg, and also in the fact that B has a mass that 
is between 0.75 kg and 1.25 kg, and so on. Yet there does not appear to be any fact 
that immediately grounds  F1.5 Now suppose there are transcendent facts. Since they 
are not immediately grounded, they are zero grounding steps away from any facts, 
and therefore they are more Bennett-fundamental than any facts that have immediate 
grounds. Does this not make being more Bennett-fundamental than ill-suited to cap-
ture a bona fide notion of relative fundamentality of the sort I am trying to capture? 
I am not suggesting that the answer is positive. The problem that I want to highlight 
here is that the definition should come with a story about what to do with transcend-
ent facts, and that this story remains to be told.

The definition of being more Bennett-fundamental than is thus problematic in 
several respects. However, as I show in the next section, it is possible to formulate a 
definition of being more fundamental than that preserves the spirit of the Bennettian 
definition but which fails to have the shortcomings that have just been highlighted.

Fig. 1  A tree for a conjunctive fact (F & G) & H

F & G H

F G

Fig. 2  Two trees for a disjunctive fact F v G

F

F v G

G

5 This example is similar to one given in Dixon 2016: pp. 449–450 to illustrate a different point. The 
dense chain of grounds involving determinables / determinates mentioned in Correia forthcoming: 
Sect. 2.2 provides a further example.
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2  Defining being more fundamental than by measuring distances 
“from the top down”

The definition is framed in terms of trees, more precisely in terms of trees as they 
are defined in set theory.6 A set-theoretic (rooted) tree is a structure 〈T, <〉 that satis-
fies the following conditions:

• T (the set of nodes) is a non-empty set;
•  < (precedence) is a strict partial order on T—i.e. an irreflexive and transitive 

binary relation on T;
• For any x ∈ T, the set {y ∈ T: y < x} of predecessors of x is well-ordered 

by < —i.e. < is a total order on the set, and any of its non-empty subsets has a 
minimal element for < (which must be unique since < is total on the set in ques-
tion);

• T has a unique minimal element for < (the root of the tree).

A leaf in a tree is a node that has no successor for the partial order. A parent is a 
node that is not a leaf. A child of a node x is a node that immediately follows x, i.e. 
a node y such that x precedes y and there is no node z such that x precedes z and 
z precedes y. A branch is a set of nodes totally ordered by precedence that is not 
strictly contained in another such set of nodes.

Trees are typically represented “upside down” in diagrams such as those of the 
previous section. The diagram in Fig. 3 is a further illustration. It represents a tree 
with nodes  N1,  N2,  N3, … and O, such that a node precedes another node iff there is 
a path from the former to the latter that goes exclusively downward. The root of the 
represented tree is  N1. This tree has only one leaf, O, and its parent nodes are thus 
 N1,  N2,  N3, …. And it has two branches, the set {N1,  N2,  N3, …} and the set {N1, 
O}.

The trees needed to formulate the account are special kinds of trees, “small” trees 
that I call bushes. The definition of a bush goes just like the definition of a tree given 
above except that the third condition is replaced by the stronger condition that for 
any node x, the set of predecessors of x is totally ordered by the precedence relation 
and finite.

In any tree, be it a bush or not, any node that has successors (i.e. any parent) 
must have immediate successors (i.e. children). The dual property is possessed by 
all bushes, but not by all trees: in any bush, but not in any tree, any node that has 
predecessors (i.e. any node distinct from the root) must have an immediate prede-
cessor (i.e. must be a child). An example of a tree that fails to have that property, 
and hence is not a bush, is 〈{1, 2, 3, …, ω}, < 〉 where < is the usual ordering on 
the ordinals. It is represented in Fig. 4.

6 See e.g. Jech 2002: p. 114. I slightly depart from Jech’s presentation, and I employ standard terminol-
ogy of graph theory.
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The tree represented in Fig. 3 is a bush that has an infinite branch. Figure 5 rep-
resents two bushes without infinite branches—the first one with a finite number of 
branches, the second one with infinitely many branches.

Every tree can be assigned an ordinal number usually called its height, which 
provides a measure of its “vertical length”. I will call this ordinal number a T-height 
(‘T’ is for ‘Top’), to distinguish it from another kind of tree-theoretic height that I 
will define in the next section. Define first the height of a node x in a tree as the ordi-
nal that is the order-type of (i.e. is order-isomorphic to) the set of x’s predecessors. 
The T-height of a tree is then defined as the least upper bound of the set {height of 
(x) + 1: x a node in the tree}.

In case the tree is a bush, the height of a node is a finite ordinal, it is simply 
the number of its predecessors in the tree. The T-height of a bush is either a finite 
ordinal or ω. The smallest T-height for a bush is 1, this is the T-height of any bush 
with only one node. The first bush depicted in Fig. 5 has T-height 3, and the second 
one T-height ω. The bush depicted in Fig. 3 also has T-height ω, but for a different 
reason: it has T-height ω because it contains an infinite branch, whereas the second 
bush depicted in Fig. 5 has T-height ω because it contains branches of arbitrarily big 

Fig. 3  Another tree (a bush with an infinite branch) N
1

N
2

O

N
3

etc.

Fig. 4  A tree that is not a bush 1

2

3

etc.
ω



5971

1 3

Synthese (2021) 199:5965–5994 

finite cardinality. (By the general definition of T-height, the tree depicted in Fig. 4—
which, again, is not a bush—has T-height ω + 1.)

The last mathematical notion needed before proceeding with our main concern is 
that of a labelled tree: a labelled tree is a tree together with a function that assigns 
to each node of the tree an entity, which is then said to label or to occupy the node.

The notions introduced so far have nothing to do with grounding. Let me now lay 
down the following ground-theoretic definitions:

• A grounding tree is a bush labelled by facts (i.e. whose nodes are occupied by 
facts), which satisfies the condition that every fact occupying a parent node (if 
any) is immediately grounded in the facts that occupy the corresponding chil-
dren. Each grounding tree thus represents a ground-theoretic “genealogy” of 
the fact that occupies its root; it represents in a neat way how links of imme-
diate grounding are chained together up to this fact. Note that grounding trees 
can be used to provide a straightforward definition of mediate grounding: 
fact F is mediately grounded in the members of set of facts Γ  iffdf there is a 
grounding tree without infinite branches whose root is occupied by F and whose 
leaves are the members of Γ.

• A grounding tree for a fact is a grounding tree whose root is occupied by that 
fact.

• A complete grounding tree is a grounding tree whose leaves (if any) are occu-
pied by facts that fail to be immediately grounded. A complete grounding tree 
for a fact thus represents a complete genealogy of that fact in terms of immediate 
grounding, a genealogy that goes as far as possible in the grounded-to-grounding 
direction. Note that grounding trees that have no leaves, i.e. that have only infi-
nite branches, count as complete.

• Where J  is a grounding tree for fact F, F’s T-height in J  is J  ’s T-height.
• The T-rank of a fact is the smallest of its T-heights.

If a fact fails to be immediately grounded, then there are complete grounding 
trees for that fact, and all of them consist of one node occupied by this fact. Facts 
that fail to be immediately grounded therefore have T-rank 1. It can be proved that 

Fig. 5  Two bushes with finite branches
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for every fact that is immediately grounded, there are complete grounding trees for 
that fact (see Proposition 15 in the “Appendix”). This guarantees that every fact 
has a T-rank. Facts that are immediately grounded have T-ranks that are comprised 
between 2 and ω.

My suggestion for defining being more fundamental than goes as follows:

(T-MFT)  F is more fundamentalT than G  iffdf F’s T-rank is smaller than G’s 
T-rank.

As good as the account might seem to be, however, it cannot be accepted without 
further comments. At the end of the previous section, I emphasised that one cannot 
lightly rule out that some facts are transcendent, i.e. grounded without being imme-
diately grounded. And I also argued that, accordingly, the definition of being more 
Bennett-fundamental than has to be supplemented with a story about what to do with 
transcendent facts. The same is true of (T-MFT). Transcendent facts have T-rank 1. 
Consider two distinct ungrounded facts  F0 and  G0 and their conjunction  F0 &  G0. 
Granted that  F0 &  G0 is immediately grounded in  F0 and  G0 taken together, and that it 
is grounded in nothing else, it has T-rank 2. Given (T-MFT), it follows that all trans-
cendent facts are more fundamental than  F0 &  G0. Is this an acceptable consequence?

I do not have firm “intuitions” about the view that all transcendent facts are more 
fundamental than  F0 &  G0, and more generally about the view that all transcendent 
facts are more fundamental than all facts that have immediate grounds. Sometimes 
I am tempted to say that the general view is perfectly acceptable: on the conception 
of fundamentality that I am exploring here, it is the relation of immediate grounding 
that generates the relation of being more fundamental than, and since transcendent 
facts are not immediately grounded, they should count as being minimal for that rela-
tion. But I am also sometimes tempted to say that the general view is not acceptable. 
For lack of proper arguments in favour or against the view, I officially offer (T-MFT) 
not as an account that is acceptable simpliciter, but as an account that is acceptable 
on the assumption that there are no transcendent facts, and I officially remain agnos-
tic on the question of whether it is acceptable simpliciter. Of course, I take it that this 
move is also open to friends (actual or merely possible) of the Bennettian account.

The proposed account of being more fundamental than is clearly in the spirit of 
the Bennettian account discussed in the previous section. Remember, the target idea 
is that relative fundamentality is a matter of how far, from a ground-theoretic point 
of view, the facts are from the ungrounded facts. Given the assumption that there are 
no transcendent facts, the ungrounded facts are the facts that are not immediately 
grounded. On that account, the target idea is respected to the letter if we focus on 
facts of finite T-rank; and if we focus on all facts, be they of finite T-rank or not, 
the original idea is still respected, if not in letter, at least in spirit, since it is cer-
tainly acceptable to say that facts of T-rank ω are infinitely far from the ungrounded 
facts. And it is also clear that my objections to the Bennettian account do not affect 
my account: the latter respects the fact that grounding is sometimes many-one, the 
fact that chaining links of immediate grounding may in some cases fail to yield 
a structure that “starts” with ungrounded facts, the fact that a given fact may be 
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immediately grounded in different ways, and, finally, it comes with a story about 
what to do with the view that there are transcendent facts.

Before moving on to the next section, let me point to an important feature of the 
account, and reply to two questions that some may have about the particular way in 
which I defined grounding trees.

(1) Given (T-MFT), one to easily construct counterexamples to the following 
principle that many, including Bennett, accept7:

If F grounds, or even only helps to ground, G, then F is more fundamental than G.

For consider two facts F and G with, say, F of T-rank 1 and G of T-rank greater 
than 2. Granted that F immediately grounds F ∨ G, F ∨ G has T-rank 2, the small-
est T-rank for a fact that is immediately grounded. And granted that G immedi-
ately grounds F ∨ G, G grounds F ∨ G. Yet since G’s T-rank is greater than 2, G 
is not more fundamental than F ∨ G according to (T-MFT).

(2) Why define grounding trees as rooted trees labelled by facts rather than as 
unlabelled rooted trees whose nodes are themselves facts? The reason, quickly put, 
is that the same fact can appear twice in a ground-theoretic genealogy of a fact. 
Consider for instance the labelled tree depicted in Fig. 6. Here the nodes are N, N’, 
N’’, N’’’ and N’’’’, and the labels are the facts (F & G) & G, F & G, F and G. This 
is a grounding tree in the sense defined above. G occupies two nodes in this tree. It 
is clear that no rooted tree whose nodes are among the facts just listed can repre-
sent this genealogy. (Note that although the diagrams in Figs. 1 and 2 can be seen 
as depicting trees whose nodes are the facts that are mentioned, on the assumption 
that these facts are all distinct, they can alternatively be seen as depicting grounding 
trees whose labels are the facts in question and whose nodes are represented by the 
endpoints of the line segments.)

(3) Why define grounding trees in terms of bushes rather than trees in general? 
The general idea of using trees labelled by facts is this: the relation of parent to 
children in such trees represents the link between a fact and some facts that imme-
diately ground it. Now consider for instance the tree depicted in Fig. 4 and suppose 
given a labelling of that tree by means of facts. (The considerations that follow are 
intended to generalise to all trees that are not bushes.) Following the general idea 
7 See Bennett 2017: p. 40 for a formulation of the principle generalised to arbitrary building relations. 
See also Bennett 2011: p. 1, Correia forthcoming: Sect. 1, Griffith 2018: p. 394, Koslicki 2015: p. 306, 
Moran 2018: p. 361, Rabin 2018: p. 42, Raven 2012: p. 689, Rosen 2010: p. 116 and Wilson 2012: p. 1. 
It is because Bennett endorses the generalised principle that she included clause (2) in the definiens of 
her definition of being more fundamental than (see Sect. 1).

Fig. 6  Why using labelled trees is important N : (F & G) & G

N' : F & G N'' : G

N''' : F N'''' : G
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just mentioned, we can interpret part of the tree in ground-theoretic terms: the fact 
that occupies k is immediately grounded in the fact that occupies k + 1 for all posi-
tive integers k. But what are we going to say about the fact that occupies ω? There 
are several conventions that we may decide to adopt. For instance, we may agree 
that in a labelled tree based on the tree in question, the fact that occupies ω is repre-
sented as immediately grounding the fact that occupies 1; or that it is represented as 
immediately grounding all the facts that occupy a positive integer; or again, that it 
is represented as being immediately grounded in the fact that occupies 1. If any one 
of these suggestions is adopted, though, it is clear that appeal to the tree depicted in 
Fig. 4 is dispensable: the corresponding connections can be just as well represented 
using bushes. More generally, any sensible interpretation of labelled trees based on 
this tree will make dispensable appeal to such a tree, for the same reason.

3  Defining being more fundamental than by measuring distances 
“from the bottom up”

Complete grounding trees allow one to define a notion of rank that is distinct from 
that of T-rank and accordingly to provide an alternative definition of being more 
fundamental than on the model of (T-MFT). Interestingly, the rank of a fact in this 
new sense—its B-rank, as I will call it—is finite iff its T-rank is finite, and when 
finite, the B-rank and the T-rank of a fact are the same; yet when they are infinite, 
they sometimes differ.

Let me start by adopting the following definitions:

• A grounding tie is a pair 〈Γ, F〉, where Γ—the tail—is a set of facts and F—the 
head—a fact such that F is immediately grounded in the members of Γ.

• A grounding tie 〈Γ, F〉 is implemented at a node x in a grounding tree iff x is a 
parent node that is occupied by F and the members of Γ are the facts that occupy 
x’s children.

• A path is a nonempty sequence of grounding ties indexed by an interval of inte-
gers, which satisfies the condition that for all grounding ties 〈Γ1,  F1〉 and 〈Γ2, 
 F2〉 such that 〈Γ1,  F1〉 immediately precedes 〈Γ2,  F2〉 in the sequence,  F1 ∈ Γ2.8 
Note that this condition is trivially satisfied by sequences consisting of just one 
grounding tie. If a path has a last element, the path is said to be to the head of 
this element.

• A grounding tree generates a path iff the elements of the path are all imple-
mented at nodes of the tree.

Let J  be a grounding tree for a fact F that does not generate infinite paths (the 
condition is crucial).9 Where G is a fact in J  , let IG(G, J  ) (‘IG’ is mnemonic for 

8 I borrow the term ‘path’ and the notion it expresses to Werner forthcoming.
9 Generating an infinite path is not the same thing as having an infinite branch. If a grounding tree has an 
infinite branch, then it generates an infinite path, but the converse may fail: consider a simple grounding 
tree of T-height 2 for a fact F such that F occupies not only the root of the tree but also one of its leaves.
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‘immediate grounds’) be the set of all facts H such that, in J  , G occupies a node that 
is a parent of a node occupied by H (so that J  witnesses the fact that G is immedi-
ately grounded in H or in H together with other facts). For every nonnull ordinal α, 
I define the set of facts BH(α, J  ) (‘BH’ is mnemonic for ‘B-height’) by transfinite 
induction as follows:

• BH(1, J  ) is the set of all facts G in J  such that IG(G, J ) = ∅;
• BH(α + 1, J  ) is the set of all facts G in J  such that (i) IG(G, J ) ⊆  ∪ 1 ≤ β ≤ α 

BH(β, J  ) and (ii) IG(G, J ) ∩ BH(α, J ) ≠ ∅;
• For α a nonnull limit ordinal, BH(α, J  ) is the set of all facts G in J  such that 

(i) IG(G, J ) ⊆  ∪ 1 ≤ β < α BH(β, J  ) and (ii) for all nonnull α* < α, there is some 
β such that α* ≤ β < α and IG(G, J ) ∩ BH(β, J ) ≠ ∅.

(The definition can be simplified by only keeping the last clause and take it to 
hold for all ordinals, but its present formulation is more intuitive.) By construc-
tion, every fact in J  belongs exactly to one BH(α, J  ) (see Proposition 1 in the 
“Appendix”; to prove that every fact belongs to at least one BH(α, J  ), one needs 
to use the assumption that J  does not generate infinite paths—hence the require-
ment that J  has that property). Note that for any nonnull ordinal α, if F (the fact 
that occupies J  ’s root) belongs to BH(α, J  ), then (i) no other fact in J  does and 
(ii) BH(β, J ) = ∅ for all β > α.

Function BH(…, J  ) provides a measure of the distance that separates arbitrary 
facts in J  from the facts that occupy the leaves in J  . To illustrate how it does 
this, consider the first three complete grounding trees (starting from the left) rep-
resented in Fig. 7 (the fourth tree has an infinite branch and therefore BH is not 
defined on it), and call them ‘ J 1’, ‘ J 2’ and ‘ J 3’, respectively. Assume first that 
the facts mentioned are all distinct. Then:

• BH(1, J 1) = {F21,  F31,  F23}, BH(2, J 1) = {F22} and BH(3, J 1) = {F11}.
• For all finite ordinals α ≥ 1, BH(α, J 2) = {Fβα: β a finite ordinal with β ≥ 2} and 

BH(ω, J 2) = {F11}.
• BH(α, J 3) = BH(α, J 2) for all α ≤ ω, but we have BH(ω + 1, J 3) = {F0}.

Relaxing the assumption that the facts mentioned in the trees are all distinct may 
induce changes. Thus, for instance, if in J 2  F22 is identical with  F23 but not with 
any other fact, then  F22 belongs to BH(3, J 2) rather than to BH(2, J 2).

Function BH being defined, I can proceed to define B-rank:

• The B-height of a grounding tree J  that does not generate infinite paths is the 
ordinal α such that F ∈ BH(α, J  ), where F is the fact that occupies J  ’s root.

• Where J  is a complete grounding tree for fact F, F’s B-height in J  is J  ’s 
B-height.
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• A fact is bounded iff there are complete grounding trees for that fact that do not 
generate infinite paths.

• The B-rank of a bounded fact is the smallest of its B-heights.

It can be proved that for any nonnull finite ordinal α, a fact has B-rank α iff it has 
T-rank α (this is Theorem 4 in the “Appendix”). When it comes to infinite ranks, 
things are different: as we saw, while T-ranks cannot mathematically exceed ω, 
B-ranks can. I will give a concrete example of a fact with B-rank greater than ω at 
the end of this section.

I can finally formulate my second definition of being more fundamental than:

(B-MFT)  F is more fundamentalB than G  iffdf F’s B-rank is smaller than G’s 
B-rank.

Since only the bounded facts have a B-rank, the definition identifies a rela-
tion between bounded facts: if a fact is unbounded, it cannot be more or less 
 fundamentalB than another fact. By contrast, unbounded facts have T-rank ω and 
can therefore be less (but not more)  fundamentalT than other facts. For bounded 
facts we have the following relations between the two notions of being more fun-
damental than:

• If F is of finite T-rank, then the facts that are more  fundamentalB than F are those 
that are more  fundamentalT than F; likewise the facts that are less  fundamentalB 
than F are those that are less  fundamentalT than F.
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Fig. 7  Function BH on various trees
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• If F is of T-rank ω, then the facts that are more  fundamentalB than F are those 
that are more  fundamentalT than F; no fact can be less  fundamentalT than F, but 
some facts may be less  fundamentalB than F.

Should a choice be made between the two notions of being more fundamental 
than? It depends, I contend, on whether one can rule out as conceptually impos-
sible unbounded facts or facts with a B-rank greater than ω. There are four cases 
to consider:

1. Both can be ruled out.
2. Fact with a B-rank greater than ω can be ruled out, not unbounded facts.
3. Unbounded facts can be ruled out, not facts with a B-rank greater than ω.
4. None can be ruled out.

In case 1, being more fundamentalT than and being more fundamentalB than are 
as a matter of conceptual necessity coextensive, but the notion of being more funda-
mentalT than should be preferred because it is simpler. It should of course also be 
preferred in case 2. In case 3, it is the other definition that should be preferred. In 
case 4, there are no principled (as opposed to e.g. pragmatic) reasons to prefer one 
as opposed to the other. I believe we are in case 4.

For an argument in favour of the conceptual possibility of unbounded facts, con-
sider for instance the following version of the “instantiation regress”, where ‘ /’ sig-
nifies that what is immediately on the left in the series is immediately grounded in 
what is immediately on the right10: 

The fact that object O  instantiates1 Fness / The fact that O and Fness 
 instantiate2  instantiation1 / The fact that O, Fness, and  instantiation1 
 instantiate3  instantiation2 / etc.

This series corresponds to a complete grounding tree for the first member of the 
series that has an (indeed, a unique) infinite branch, and given the plausible assump-
tion that there are no complete grounding trees for this fact without infinite branches, 
the fact is unbounded. I do not think one can rule out as conceptually impossible the 
obtaining of such a series of facts, and hence that one can take unbounded facts to be 
conceptually impossible.

For the conceptual possibility of facts with a B-rank greater than ω, consider the 
“concretisation” of the third tree depicted in Fig. 7, depicted in Fig. 8, where it is 
assumed that F is not immediately grounded (I here take conjunction to be an opera-
tion that can take arbitrarily many arguments). Granted that conjunctive facts are 
immediately grounded in their conjuncts and that for all facts G, ¬¬G is immediately 
grounded in G, the tree is indeed a complete grounding tree for the fact that occupies 
its root. The latter fact therefore has B-height ω + 1 in the tree, and consequently its 

10 See e.g. Cameron 2008: pp. 1–2 and Dixon 2016: pp. 251–255. Whereas standard presentations of 
the ground-theoretic versions of the instantiation regress do not specify that the links of ground between 
adjacent items are immediate, it is important for my purposes that the links be of that sort.
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B-rank is greater than ω. I do not think one can rule out as conceptually impossible 
the view that there are complete grounding trees of the sort under consideration, and 
hence that one can deem conceptually impossible facts with a B-rank greater than ω.

Thus, I take both (T-MFT) and (B-MFT) to define bona fide relations of being 
more fundamental than. Of course, just like I did with (T-MFT), I offer (B-MFT) as 
an account that is acceptable on the assumption that there are no transcendent facts.

4  Werner

Werner (forthcoming) puts forward a definition of being more fundamental than that 
is structurally similar to the definitions I proposed in the previous sections: each fact 
is assigned a rank, which is an ordinal number that is determined by certain struc-
tures associated with this fact, and a fact F is said to be more fundamental than a fact 
G when the rank assigned to F is smaller than the rank assigned to G. One key dif-
ference between our respective definitions is that the structures that they invoke are 
of different kinds. I will suggest that Werner’s ranks are something like my B-ranks. 
I will also show that something like my T-ranks can be defined in Werner’s frame-
work. As a result, in Werner’s framework just like in mine, two relations of being 
more fundamental than can naturally be defined, one associated with measuring dis-
tances “from the bottom up” and the other one with measuring distances “from the 
top down”. As we will see, it turns out that each Wernerian relation is coextensive 
the associated relation that I defined in my framework. Despite this result, I will 
argue that my definitions are to be preferred.

The role played in my framework by complete grounding trees is played in Wer-
ner’s framework by what I will call complete grounding graphs. Their definition 
appears last in the following series of definitions (here and below I depart from 

Fig. 8  A grounding tree of B-height ω + 1 ¬¬(F & ¬¬F & ¬¬¬¬F & ...)

F & ¬¬F & ¬¬¬¬F & ...

F ¬¬F ¬¬¬¬F etc.

F ¬¬F

F
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Werner’s presentation, in a way that will make both the discussion and the compari-
son with my framework easier):

• A grounding graph is a nonempty set of grounding ties.
• A path in a grounding graph is a path whose ties are members of the grounding 

graph.
• A grounding graph G is said to be for fact F iff every member of G is an element 

of a path to F in G . Note that since grounding graphs are nonempty, if G is a 
grounding graph for F, then F is the head of a grounding tie in G . Also note that 
whereas a grounding tree must be a grounding tree for a unique fact (the fact that 
occupies its root), a grounding graph need not be a grounding graph for a fact, 
and a grounding graph can be a grounding graph for more than one fact.

• If G is a grounding graph, its base, b(G ), is the set of all the facts that appear in G 
but not as heads.

• A grounding graph G for F is complete iff b(G ) contains only facts that are not 
immediately grounded.

Consider a given complete grounding graph G without infinite paths. Werner 
defines a function MG that is supposed to assign an ordinal to each fact in G as fol-
lows (I quote the text almost verbatim): 

• MG assigns the facts in G that are not in the head of a grounding tie in G the ordi-
nal 0.

• If MG has assigned ordinals to all the facts that immediately partially ground F 
according to G , then the set of these ordinals  OX determines which ordinal is 
assigned to F by MG in the following way:

• If  OX has a maximum, then MG assigns the successor of this maximum to F;
• If  OX doesn’t have a maximum, then MG assigns the supremum of  OX to F.

Then he proceeds essentially (though not literally) as follows: define the height of a 
fact F in a complete grounding graph G for F without infinite paths as MG(F) ; then 
define the rank of a fact as the smallest of its heights; and finally define being more 
fundamental than by saying that F is more fundamental than G just in case F’s rank 
is smaller than G’s rank.11

However, Werner’s definition of the MG s is not altogether clear. It somehow looks 
like an inductive definition, but it does not have the form of such a definition. I wish to 
suggest that, while respecting Werner’s intentions, one can define the MG s in terms of 

11 Werner supplements his definition of being more fundamental than with the claim that grounding can 
be characterised in terms of immediate grounding along the following lines:

        F is grounded in the members of just in case there is a grounding graph G for F, without infinite 
paths to F, such that Γ = b(G).

However, this characterisation is not essential to Werner’s definition of being more fundamental than. 
Note that if the characterisation is correct, then there cannot be transcendent facts. This point could be 
used to argue against it.
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something very much like my function BH. (It is actually thanks to my efforts to try to 
make clear sense of Werner’s notion of rank that I came up with the idea of defining 
BH for grounding trees and then to define my notion of B-rank in terms of it.)

Let G be a grounding graph without infinite paths. Define function W-BH(…, G ) 
exactly as I defined BH(…, J  ), except that instead of invoking function IG(…, J  ), 
one appeals to function W-IG(…, G ), where W-IG(G, G ) is the set of all facts H such 
that for some grounding tie 〈Δ, G〉 ∈  G , H ∈ Δ. One can show that every fact in G 
belongs exactly to exactly one W-BH(α, G ) (see Proposition 2 in the “Appendix”). 
My suggestion is to define MG(F) as the ordinal α such that F ∈ W-BH(α, G).12

Define the W-B-height of a fact F in a complete grounding graph G for F without 
infinite paths as MG(F) , and define the W-B-rank of a fact as the smallest of its W-B-
heights. On my proposed reconstruction, Werner’s definition of being more funda-
mental than goes as follows:

(W-B-MFT)  F is more fundamentalW-B than G  iffdf F’s W-B-rank is smaller than 
G’s W-B-rank.

Say that a fact is W-bounded iff there are complete grounding graphs  for that fact 
that do not have infinite paths. Just like my (B-MFT) captures a relation between 
bounded facts, (W-B-MFT) captures a relation between W-bounded facts.

So, (my reconstruction of) Werner’s definition and my (B-MFT) are quite similar. 
It can actually be established that the relations they define are coextensive: it can 
indeed be proved (with some efforts) that a fact is bounded iff it is W-bounded (see 
Theorem  2 in the “Appendix”) and that the B-rank of a bounded fact is identical 
with its W-B-rank (see Theorem 3).

The similarity between Werner’s “grounding graphs” approach and my “ground-
ing trees” approach to the characterisation of relative fundamentality can be shown 
to go beyond this result. It is easy to adapt my top-down conception of relative fun-
damentality to Werner’s approach. Let G be a complete grounding graph for a fact F. 
Let F’s W-T-height in G be 

 (i) ω if there is an infinite path to F in G;
 (ii) ω if all paths to F in G are finite and there is no finite ordinal α such that all 

these paths have at most α elements;
 (iii) α + 1 if there is a finite path to F in G with α elements such that all the other 

paths to F in G have at most α elements.

Let the W-T-rank of a fact F be 1 if F is not immediately grounded, and the smallest 
of its W-T-heights otherwise. It can be shown that for every fact that is immediately 
grounded, there is a complete grounding graph for that fact (see Proposition 14 in 
the “Appendix”). It follows that all facts have a W-T-rank. Consider then the follow-
ing definition of being more fundamental than:

12 To be completely accurate, the minimal value of Werner’s MG is 0 while on my definition it is 1, but 
the difference is immaterial for the purpose of defining being more fundamental than. I chose to define 
the function the way I did in order to make comparisons with my framework more straightforward.
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(W-T-MFT)  F is more fundamentalW-T than G  iffdf F’s W-T-rank is smaller than 
G’s W-T-rank.

It can be shown (also with some efforts) that the T-rank of a fact is identical with 
its W-T-rank. Therefore, (W-T-MFT) and my (T-MFT) define coextensive relations.

These results are interesting, because they show that from an extensional point of 
view, it does not matter in the end whether one uses grounding trees or grounding 
graphs as the basic material to characterise the notion of being more fundamental 
than, be it of the top-down flavour or of the bottom-up flavour. However, I believe 
that my approach is to be preferred. There is indeed a good reason to dismiss the 
idea of using grounding graphs in the way Werner does in order to represent gene-
alogies of facts built from connections of immediate grounding. One would expect 
that each grounding graph for a fact represents one particular such genealogy. This 
is not the case. Suppose for instance that F ∨ G is immediately grounded in F, and 
also in G, and that G is immediately grounded in F. Then consider the grounding 
graph that contains just the grounding ties 〈{F}, F ∨ G〉, 〈{G}, F ∨ G〉 and 〈{F}, 
G〉. This is a grounding graph for F ∨ G (which is complete if F is not immediately 
grounded) that represents two genealogies for this fact: the genealogy that goes from 
F straight to F ∨ G, and another one that goes from F to F ∨ G via G. Thus, some 
(indeed, many) grounding graphs correspond to more than one ground-theoretic 
genealogy, and accordingly they are not adequate tools for perspicuously represent-
ing such genealogies. Clearly, my grounding trees are better than Werner’s ground-
ing graphs in the relevant respect: every grounding tree represents a specific geneal-
ogy (one that goes as far “down” as possible if the tree is complete).

5  Being as fundamental as and being fundamental

I have defined two relations of being more fundamental than, one via (T-MFT) and 
the other one via (B-MFT). How are the sister relations of being as fundamental as 
and the sister properties of being fundamental to be defined?

There is little doubt that they can be defined as follows:

(T-AFA)  F is as fundamentalT as G  iffdf F and G have the same T-rank.
(T-F)  F is fundamentalT  iffdf F is of minimal T-rank, i.e. of T-rank 1.
(B-AFA)  F is as fundamentalB as G  iffdf F and G have the same B-rank.
(B-F)  F is fundamentalB  iffdf F is of minimal B-rank, i.e. of B-rank 1.

Relying on a suggestion by Jon Litland, Bennett (2017: p. 173) proposes to char-
acterise being as fundamental as in terms of being more fundamental than along the 
following lines (unlike her, here I focus on fact-fundamentality): F is as fundamental 
as G just in case F and G are more fundamental than the same facts, and less funda-
mental than the same facts. The proposal is compelling, at least insofar as the corre-
sponding biconditional sounds intuitively correct. Of course, (T-MFT) and (T-AFA) 
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together entail the corresponding biconditional, and the same is true of (B-MFT) and 
(B-AFA) granted that we focus on bounded facts. This vindicates, if it was needed at 
all, the idea of adopting (T-AFA) given (T-MFT), and (B-AFA) given (B-MFT).

Being fundamentalT is coextensive with being minimal for the relation of 
being more fundamentalT than. It is also coextensive with not being immediately 
grounded. If there are no transcendent facts, the property is also coextensive with 
being ungrounded. Not so if there are transcendent facts, for in this case there are 
facts that are  fundamentalT but which are grounded. But this need not bother me: I 
offered (T-MFT) as an account that is acceptable on the assumption that there are no 
transcendent facts, and I offer (T-F)—and (T-AFA), for that matter—with the same 
qualification. These considerations about being fundamentalT also apply, mutatis 
mutandis, to being fundamentalB.13

Appendix

The main purpose of this appendix is to establish propositions that are mentioned in 
the previous sections, namely Propositions 1 and 2, Theorems 1–4, and Propositions 
14 and 15. The remaining 12 propositions except one (Theorem  5) are auxiliary, 
they are used to establish some of the other propositions. The appendix is also of 
independent interest, as it establishes deep connections between two ways of model-
ling ground-theoretic connections that have been used by others, the tree-theoretic 
way advocated in this paper and also used e.g. in Correia 2014 and deRosset 2015, 
and the graph-theoretic way used in Werner forthcoming and also used in deRosset 
2015 and several papers by Litland, starting from Litland 2015.

On the BH functions

Proposition 1 Let J  be a grounding tree that does not generate infinite paths and 
let function BH be as defined in Sect. 3. Then for every fact F that appears in J  , 
there is a unique ordinal α such that F ∈ BH(α, J ).

Proof  (1) Unicity. Suppose G is in both BH(α, J  ) and BH(α*, J  ) where α* ≠ α. 
Suppose that α* < α (the case where α < α* is exactly similar). Then either α = δ + 1 
for some ordinal δ or α is a limit ordinal. Assume that α = δ + 1. Since G ∈ BH(α, J  ), 
there must be a fact H ∈ IG(G, J  ) such that H ∈ BH(δ, J  ). But since G ∈ BH(α*, J  ), 
then for all β, H ∈ BH(β, J  ) only if β < α*. This is impossible since α* ≤ δ. Assume 
now that α is a limit ordinal. Since G ∈ BH(α*, J  ), IG(G, J  ) comprises only facts in 
BH(β, J  ) for β ≤ α* < α. But since G ∈ BH(α*, J  ), there is no α* < α such that IG(G, 
J  ) comprises only facts in BH(β, J  ) for β ≤ α*. Contradiction. (2) Existence. (This 
proof is essentially the same as the one Werner gives for the claim that his function 

13 I am grateful to the audience of an eidos meeting for useful comments on an ancestor of this paper 
and to Maria Scarpati for detailed comments on another version. A reviewer for this journal helped me 
improve the paper to a considerable extent. Work on the paper was supported by the Swiss National Sci-
ence Foundation (project BSCGI0_157792).
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MG is defined on every fact in grounding graph G .) Given the way BH is defined, for 
every fact G in J  , if every member of IG(G, J  ) belongs to some BH(α, J  ), then 
the same is true of G. So, suppose for reductio that for some G in J  , G belongs to 
no BH(α, J  ). Then there is a fact  G1 in IG(G, J  ) that belongs to no BH(α, J  ). But 
then there is a fact  G2 in IG(G1, J  ) that belongs to no BH(α, J  ), and then a fact  G3 
in IG(G2, J  ) that belongs to no BH(α, J  ), and so on and so forth. It follows that J  
generates infinite paths—contrary to hypothesis. □

Proposition 2  Let G be a grounding graph that does not generate infinite paths 
and let function W-BH be as defined in Sect. 4. Then for every fact F that appears 
in G , there is a unique ordinal α such that F ∈ W-BH(α,  G).

Proof Exactly like the previous proof. □

From (nontrivial) grounding trees to the corresponding grounding graphs

Let a segment of a tree be a set of nodes of the tree totally ordered by the ordering 
relation of the tree. Note that every segment of a tree is included in a branch of the 
tree, and that a branch is a maximal segment.

Remember, a grounding tie 〈Γ, F〉 is said to be implemented at a node x in a 
grounding tree iff x is a parent node that is occupied by F and the members of Γ are 
the facts that occupy x’s children. Say that a path is implemented at a segment of a 
grounding tree iff there is a one–one correspondence between the indices of the path 
and the members of the segment such that (i) every element of the path is imple-
mented at the corresponding node of the segment and (ii) for all grounding ties 〈Γ1, 
 F1〉 and 〈Γ2,  F2〉 such that 〈Γ1,  F1〉 immediately precedes 〈Γ2,  F2〉 in the path, there 
are nodes x and y in the segment such that x is a child of y, 〈Γ1,  F1〉 is implemented 
at x and 〈Γ2,  F2〉 is implemented at y. Note that if a path is implemented at a seg-
ment of a grounding tree, then the path and the segment have the same number of 
elements. Also note that a path consisting of a single grounding tie is implemented 
at a segment consisting of a single node iff that grounding tie is implemented at that 
node.

Say that a path is implemented in a grounding tree iff it is implemented at some 
segment of the tree.

Let the grounding graph corresponding to a grounding tree / a segment of a 
grounding tree be the grounding graph consisting of all the grounding ties that are 
implemented at some nodes in the grounding tree / the segment. A grounding tree 
has a corresponding grounding graph iff it is nontrivial, i.e. if it has more than one 
node.

The following proposition is immediate:

Proposition 3  Let J  be a nontrivial grounding tree for a fact F and G its corre-
sponding grounding graph.
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• If a path is implemented in J , then it is a path in G.
• G is a grounding graph for F.
• J  is complete iff G is complete.

The converse of the first point does not hold in general: there may be paths in 
a given grounding graph corresponding to a grounding tree that are not imple-
mented in the tree. The converse does hold for a restricted family of grounding 
trees, as Proposition 4 below asserts.

Say that a grounding tree is uniform iff for any grounding ties 〈Γ1, G〉 and 〈Γ2, 
G〉 that are implemented at some nodes of the tree, Γ1 = Γ2.

Proposition 4 Let J be a nontrivial uniform grounding tree and G the correspond-
ing grounding graph. Then every path in G is implemented in J .

Proof  Suppose there is a path in G that is not implemented in J  . Then there are 
grounding ties 〈Γ1,  F1〉 and 〈Γ2,  F2〉 such that 〈Γ1,  F1〉 immediately precedes 〈Γ2,  F2〉 
in the path, so that  F1 ∈ Γ2, and such that (P) for all nodes x and y in J  such that x is 
a child of y, either 〈Γ1,  F1〉 is not implemented at x or 〈Γ2,  F2〉 is not implemented at 
y. Let y be a node in J  at which 〈Γ2,  F2〉 is implemented. Since  F1 ∈ Γ2,  F1 occupies 
a child x of y. Now since 〈Γ1,  F1〉 is implemented at some node in J  and J  is uni-
form, 〈Γ1,  F1〉 must be implemented at x. But this is impossible given (P).              □

Proposition 5  Let J  be a nontrivial uniform grounding tree for a fact F and G the 
corresponding grounding graph. Then F’s T-height in J  is identical with F’s W-T-
height in G.

Proof Let t be F’s T-height in J  and let g be F’s W-T-height in G . Case 1: there is 
no path P in G such that (i) P has a finite number α of elements and (ii) all the other 
paths have a number of elements that is smaller than or equal to α. In this case, 
g = ω. By Proposition 4, there is no branch B in J  such that (i) B has a finite number 
α of elements and (ii) all the others paths have a number of elements that is smaller 
than or equal to α. It follows that t = ω. Case 2: there is a path P in G such that (i) 
P has a finite number α of elements and (ii) all the other paths have a number of 
elements that is smaller than or equal to α. In this case, g = α + 1. By Proposition 
4, t ≥ α + 1. We cannot have t > α + 1, for otherwise by Proposition 3 (first point) G 
would contain a graph with more than α elements. Therefore, t = α + 1.                   □

Proposition 6 Let J  be a nontrivial grounding tree for a fact F that does not gen-
erate infinite paths and G the corresponding grounding graph. Then F’s B-height in 
J  is identical with F’s W-B-height in G.

Proof The condition on J  implies that F has a B-height in J  , and given that J  does 
not generate infinite paths, no path in G is infinite and therefore F has a W-B-height 
in G . To get the result it suffices to prove that for any nonnull ordinal α, BH(α, J ) =  
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W-BH(α, G ). But this is immediate since the facts in J  and the facts in G are the 
same, and for any of these facts G, IG(G, J ) = W-IG(G, G). □

From uniform grounding graphs to grounding trees they correspond to

Say that a grounding graph is uniform iff for any grounding ties 〈Γ1, G〉 and 〈Γ2, G〉 
in the graph, Γ1 = Γ2. Clearly:

Proposition 7 If G is the grounding graph that corresponds to grounding tree J  , 
then G is uniform iff J  is uniform.

Proposition 8 Let G be a uniform grounding graph for a fact F. Then there is a 
grounding tree J  for F to which G corresponds.

Proof I build a grounding tree for F such that a grounding tie 〈Γ, G〉 is implemented 
at some node of the tree iff 〈Γ, G〉 ∈ G . Where G is a fact that appears as the head 
of a grounding tie in G , I let Δ(G) be the unique set of facts Γ such that 〈Γ, G〉 ∈ G 
(since the graph is uniform, the definite description is proper).

If the set of all the facts that appear in G is finite, let κ be ℵ0, and if it is infinite, 
let κ be its cardinality. I suppose given a set S of objects, distinct from the facts that 
appear in G , whose cardinality card(S) is the smallest infinite cardinal number that 
is larger than κ (so if κ is ℵ0, then card(S) = ℵ1, if κ is ℵ1, then card(S) = ℵ2, and 
so on). The tree to be constructed will have its nodes taken from S, and the car-
dinality hypothesis is meant to ensure that there are enough nodes to perform the 
construction.

Let a basic tree be a tree whose nodes are in S and whose branches are all of 
cardinality 2, and let a basic grounding tree be a grounding tree with the following 
features: (i) its underlying tree is basic, (ii) there is a grounding tie 〈Δ(G), G〉 in G 
that is implemented at the node of the tree such that no fact in Δ(G) occupies more 
than one its leaves. The grounding tie 〈Δ(G), G〉 which satisfies condition (ii) is 
called the grounding tie of the basic grounding tree. Clearly, the number of nodes in 
a basic grounding tree is smaller than or equal to κ.

Let us represent labelled trees as triples 〈T, < , lab〉, where 〈T, <〉 is a tree and lab 
a function that assigns a fact to each member of T. I build a series of grounding trees 
indexed by the nonnull finite ordinals J 1 = 〈T1, < 1,  lab1〉, J 2 = 〈T2, < 2,  lab2〉, … as 
follows:

Let J 1 be a basic grounding tree whose grounding tie is 〈Δ(F), F〉. Note that 
the number of nodes in J 1 is smaller than or equal to κ (see previous remark).
Assume that J n has been constructed and that the number of nodes in J n is 
smaller than or equal to κ. If J n’s leaves are all occupied by facts that are not 
heads of grounding ties in G , then I let J n+1 be J n. Otherwise, I construct 
J n+1 as an extension of J n along the following lines. Let a target be a pair 
〈x, G〉 such that x is a leaf in J n, G occupies x and 〈Δ(G), G〉 ∈ G . I associ-
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ate to each target 〈x, G〉 a basic grounding tree J (x, G) with root x whose 
grounding tie is 〈Δ(G), G〉, in such a way that the leaves of any J (x, G) are 
(i) distinct from the nodes in J n and (ii) distinct from the leaves in any J (y, 
H) where y ≠ x. Here the hypothesis that κ is smaller than card(S) is crucial, 
since it ensures that there are enough objects in S to provide the relevant leaves 
(since the number of nodes in J n is smaller than or equal to κ and the number 
of nodes in a grounding tree whose grounding tie is in G is smaller than or 
equal to κ, the number of required leaves is smaller than or equal to κ × κ = κ). 
Call these basic grounding trees the new trees. J n+1 is the result of appending 
all the new trees to J n. More formally, the components of J n+1 are defined as 
follows:

• Tn+1 =  Tn ∪ {x: x is a leaf in a new tree}.
• x < n+1 y iffeither x, y ∈  Tn and x < n y,
  or y is a leaf in a new tree and x = y’s parent in that tree,
  or y is a leaf in a new tree and x < n y’s parent in that tree.
• Labn+1(x) =  Labn(x) if x is not a leaf in a new tree;
 Labn+1(x) = the fact that occupies x in the corresponding new tree other-

wise.

Note that the number of nodes in J n+1 is smaller than or equal to κ.

Clearly, for every nonnull finite ordinal,  Tn ⊆  Tn+1, < n ⊆  < n+1 and  labn ⊆  labn+1, and 
every J n is a grounding tree for F.

Let T be the union of the  Tns, < the union of the < ns, and lab the union of the 
 labns. Let J  be 〈T, < , lab〉. Given that every J n is a grounding tree for F, J  is also a 
grounding tree for F.

By construction, if a grounding tie is implemented at some node of J  , then this 
grounding tie is in G . The converse is also true. For consider a grounding tie 〈Δ(G), 
G〉 ∈ G . Then there must be a path to F in G whose first element is 〈Δ(G), G〉. Any 
such path must have a finite number of elements. If there is a 1-element path from 
〈Δ(G), G〉 to F in G , then 〈Δ(G), G〉 = 〈Δ(F), F〉 and we know that this ground-
ing tie is implemented at the root of J  . Let us show by induction that if there is an 
n-element path from 〈Δ(G), G〉 to F in G , with n ≥ 2, then 〈Δ(G), G〉 is implemented 
at some leaf in J n−1. (i) Suppose that there is a 2-element path from 〈Δ(G), G〉 
to F in G . This means that G ∈ Δ(F), and hence that 〈Δ(G), G〉 is implemented at 
some leaf in J 1. (ii) Suppose the proposition holds for n and assume that there is an 
(n + 1)-element path from 〈Δ(G), G〉 to F in G . Then there is a grounding tie 〈Δ(H), 
H〉 in G such that (a) G ∈ Δ(H) and (b) there is an n-element path from 〈Δ(H), H〉 to 
F in G . By induction hypothesis and (b), 〈Δ(H), H〉 is implemented at some leaf in  
J n−1. But then by (a), 〈Δ(G), G〉 is implemented at some leaf in J n.                         □
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From complete to uniform complete

Proposition 9  If there is a complete grounding graph for a fact F such that F’s 
W-T-height in that graph is g, then there is a uniform complete grounding graph for 
F such that F’s W-T-height in that graph is smaller than or equal to g.

Proof  Let G be a non-uniform complete grounding graph for F such that F’s W-T-
height in G is g. Let a problematic fact be a fact G such that G contains two distinct 
grounding ties 〈Γ1, G〉 and 〈Γ2, G〉, and associate to each problematic fact G a given 
set of facts Δ(G) such that 〈Δ(G), G〉 ∈ G . Let G * be the grounding graph whose 
members are the members of G * without the ties 〈Γ, G〉 where G is problematic 
and Γ ≠ Δ(G). G* is clearly uniform and complete. But it need not be a graph for F: 
some tie in G * may fail to belong to a path to F. Consider the set of all the paths for 
F in G * and let G ** be the grounding graph whose members are all the grounding 
ties that are elements of these paths. G ** is nonempty since it contains 〈Δ(F), F〉. 
By construction it is of course a grounding graph for F and it is uniform. Remains 
to show that it is complete and that F’s W-T-height in G ** is smaller than or equal to 
g. The latter point is obvious since by construction every path to F in G ** is a path 
to F in G . For completeness, let G be a fact that is immediately grounded and that 
belongs to the tail of some grounding tie 〈Γ, H〉 ∈ G**. Then 〈Γ, H〉 belongs to some 
path to F in G *. Since G is complete, there is a grounding tie whose head is G in G *. 
Since 〈Γ, H〉 belongs to some path to F in G *, such grounding ties also belong to 
some path to F in G *, and therefore they belong to G**. Hence, G ** is complete. □

Proposition 10  If there is a complete grounding graph without infinite paths for a 
fact F such that F’s W-B-height in that graph is g, then there is a uniform complete 
grounding graph without infinite paths for F such that F’s W-B-height in that graph 
is smaller than or equal to g.

Proof Let G be a complete grounding graph without infinite paths for F such that F’s 
W-B-height in that graph is g and let G ** be defined in terms of G as in the previous 
proof. Then G** ⊆ G . It follows that G ** does not have infinite paths and hence that 
F has a W-B-height in G**. I establish by induction the following proposition, which 
clearly entails that F’s W-B-height in G ** is smaller than or equal to g:

For all ordinals α and facts G featuring in G ** such that G ∈ W-BH(α, G ), there 
is an ordinal δ ≤ α such that G ∈ W-BH(δ, G**).

Note that since G** ⊆ G , W-IG(G, G**) ⊆ W-IG(G, G ). For α = 1, the proposition 
directly follows from this latter fact. Suppose the proposition holds for all β ≤ α and 
assume that G features in G ** and G ∈ W-BH(α + 1, G ). Then W-IG(G, G) ⊆  ∪ β ≤ α 
W-BH(β, G ), and hence W-IG(G, G**) ⊆  ∪ β ≤ α W-BH(β, G ). By induction hypothe-
sis we get that W-IG(G, G**) ⊆  ∪ β ≤ α W-BH(β, G**). It follows that G ∈ W-BH(δ, G
**) for some δ ≤ α + 1. Suppose finally that the proposition holds for all β < α where 
α is a limit ordinal, and assume that G features in G ** and G ∈ W-BH(α, G ). Then 
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W-IG(G, G) ⊆  ∪ β < α W-BH(β, G ). Reasoning as in the previous case yields the con-
clusion that G ∈ W-BH(δ, G**) for some δ ≤ α.                                                          □

A subtree of a tree 〈T, <〉  is a pair 〈U, <〉  such that for some node x in T, 
U = {x} ∪ {y ∈ T: x < y}. Subtrees of a tree are themselves trees, and subtrees of a 
bush are bushes.

A labelled subtree of a labelled tree J  is a labelled tree whose underlying tree is a 
subtree of J  ’s underlying tree, such that a fact occupies a node in iff it occupies that 
node in J  . Labelled subtrees of a grounding tree are themselves grounding trees.

Where α is an ordinal number, the α-level of a bush is the set of all nodes of the 
tree that have α predecessors.

Proposition 11  If there is a complete grounding tree for a fact F of finite T-height 
t, then there is a uniform complete grounding tree for F of T-height smaller than or 
equal to t.

Proof Let J  be a grounding tree for a fact F of finite T-height t and suppose it is 
not uniform. Note that since J  is not uniform, t > 2. A fact G is said to be problem-
atic iff some distinct grounding ties 〈 Γ1, G〉 and 〈 Γ2, G〉 are implemented at some 
nodes in J  . The idea is now to build a new grounding tree J  * for F from J  with 
the desired properties by “eliminating” problematic facts step by step. I illustrate 
the construction with t = 4—how to deal with the general case will then be clear 
enough.

J  ’s 0-level contains only J  ’s root, J  ’s 3-level only contains nodes that are 
among J  ’s leaves, and J  ’s α-levels for α > 3 are all empty. Only J  ’s 0-level, 1-level 
and 2-level contain parent nodes, and therefore each problematic fact must occupy 
nodes that are in some of these levels. I accordingly build J  * in three steps, first 
building a tree J+ from J  , then a tree J++ from J+ , and finally J  * from J++:

(1) If no problematic fact occupies more than one node in J  ’s 2-level, let J+ be J  . 
Otherwise, do the following with each problematic fact G of the sort in ques-
tion. Consider all the labelled subtrees of J  whose roots are in J  ’s 2-level and 
are occupied by G. Since J  is complete, none of these labelled subtrees is of 
T-height 1, and therefore they are all of T-height 2. Arbitrarily pick out one of 
them and replace every other labelled subtree whose root is in J  ’s 2-level and is 
occupied by G by this chosen subtree. (I am a bit sloppy here: the replacements 
should be done using labelled subtrees isomorphic to the chosen subtree, such 
that no two of these subtrees share a node and none of these subtrees shares a 
node (except perhaps its root) with J  . Here, and indeed also in the rest of the 
proof below, I am less careful than I was in the proof of Proposition 8.) J+ is the 
resulting tree. Note that J+ is a grounding tree for F, that its T-height is 4, that 
no problematic fact occupies more than one node in  J+’s 2-level, and finally 
that J+ is complete.

(2) If no problematic fact occupies more than one node in  J+’s 1-level or 2-level, 
let J++ be J+ . Otherwise, do the following with each problematic fact G of 
the sort in question. Consider all the labelled subtrees of  + whose roots are in  
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J+’s 1-level or 2-level and are occupied by G. Since J  is complete, none of 
these labelled subtrees is of T-height 1, and therefore they are all of T-height 2 
or 3. There are three possible cases:

 (i) One of these labelled subtrees was used in some replacement at the previ-
ous step.

 (ii) (i) is not the case and one of these labelled trees is of T-height 2.
 (iii) (i) is not the case and none of these labelled trees is of T-height 2.

  I define grounding tree J (G) as follows: in case (i), J (G) is the labelled sub-
tree that was used in some replacement; in case (ii), J (G) is an arbitrary labelled 
subtree of T-height 2 among those in question; in case (iii), J (G) is an arbitrary 
labelled subtree of T-height 3 among those in question. In cases (i) and (ii), thus, 
J (G)’s T-height is 2, whereas in case (iii), it is 3. Replace every labelled subtree 
of J+ distinct from J (G) whose root is in J+’s 1-level or 2-level and is occu-
pied by G by J (G). J++ is the resulting tree. Note that  J++ is a grounding tree 
for F, that its T-height is either 4 or 3, that no problematic fact occupies more 
than one node in J++’s 1-level or 2-level, and finally that J++ is complete.

(3) If F does not occupy a node in  J++ other than J++’s root, then let J  * be J
++ . Otherwise, let x be a node in  J++ distinct from J++’s root that is occu-
pied by F and let J  * be the labelled subtree of J++ whose root is x. In either 
case, J  * is a grounding tree for F, its T-height is smaller than or equal to 4, it is 
uniform, and it is complete.                                                                                  □

Proposition 12  If there is a complete grounding tree that does not generate infi-
nite paths and that is of B-height t, then there is a uniform complete grounding tree 
for the same fact that does not generate infinite paths and that is of B-height smaller 
than or equal to t.

Proof Let J  be a grounding tree for a fact F that satisfies the antecedent. If J  is triv-
ial, i.e. has only one node, then it satisfies the consequent. Suppose J  is nontrivial 
and let G be the corresponding grounding graph. Since J  does not generate infinite 
paths, G does not have infinite paths and accordingly F has a W-B-height in G . By 
Propositions 3 and 6, G is a complete grounding graph for F and F’s W-B-height in 
G is t. By Proposition 10, there is a uniform complete grounding graph G * for F such 
that F’s W-B-height t* in G * is smaller than or equal to t. Thanks to Proposition 8, 
we know that there is a grounding tree J  * for F to which G * corresponds. Since G * 
has no infinite paths, J  * does not generate infinite paths. By Propositions 3, 6 and 
7, J  * is uniform, complete and its B-height is t* and hence is smaller than or equal 
to t.                                                                                                                             □
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Comparing ranks

Theorem 1  The T-rank of a fact is identical with its W-T-rank.

Proof Let F be an arbitrary fact. F’s T-rank is 1 iff F’s W-T-rank is 1. To get the gen-
eral result it suffices to establish the following two points:

1. If there is a nontrivial complete grounding tree for F of T-height t, then there is a 
complete grounding graph for F such that F’s W-T-height in that graph is smaller 
than or equal to t.

2. If there is a complete grounding graph for F such that F’s W-T-height in that 
graph is g, then there is a complete grounding tree for F of T-height smaller than 
or equal to g.

For the first point, suppose the antecedent is true and let J  be a witness. Suppose 
t = ω. Consider the grounding graph G corresponding to J  . By Proposition 3, G is a 
complete grounding graph for F, and F’s W-T-height G —like the W-T-height of any 
fact—is smaller than or equal to ω. Suppose now t is finite. By Proposition 11, there 
is a uniform complete grounding tree J  * for F of T-height t* ≤ t. Since F’s T-rank 
is not 1, then J  * is nontrivial. Let G be the grounding graph corresponding to J  *. 
By Proposition 3, G is complete, and by Proposition 5, F’s W-T-height in G is t* and 
hence is smaller than or equal to t.

For the second point, suppose the antecedent is true and let G be a witness. By 
Proposition 9, there is a uniform complete grounding graph G * for F such that F’s 
W-T-height g* is smaller than or equal to g. By Propositions 8, 7, 5 and 3, there is a 
complete grounding tree J  for F whose T-height is g* and hence is smaller than or 
equal to g.                                                                                                                  □

Theorem 2  A fact is bounded iff it is W-bounded.

Proof Suppose F is bounded, i.e. that there is a complete grounding tree J  for F that 
does not generate infinite paths. Let G be the corresponding grounding graph. By 
Proposition 3, it is a complete grounding graph for F, and it does not have infinite 
paths since J  does not generate such paths. Hence, F is W-bounded. Conversely, 
suppose F is W-bounded and let G be a complete grounding graph for F without infi-
nite paths. By Proposition 10, there is a uniform complete grounding graph G * for 
F without infinite paths. By Proposition 8, there is a grounding tree J  for F to which 
G * corresponds. By Proposition 3, J  is complete, and it does not generate infinite 
paths since G * does not have such paths.                                                                   □

Theorem 3  The B-rank of a bounded fact is identical with its W-B-rank.

Proof Let F be an arbitrary bounded fact. F’s B-rank is 1 iff F’s W-B-rank is 1. To 
get the general result it suffices to establish the following two points:
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1. If there is a nontrivial complete grounding tree for F that does not generate infinite 
paths of B-height t, then there is a complete grounding graph for F without infinite 
paths such that F’s W-B-height in that graph is smaller than or equal to t.

2. If there is a complete grounding graph for F without infinite paths such that F’s 
W-B-height in that graph is g, then there is a complete grounding tree for F that 
does not generate infinite paths of B-height smaller than or equal to g.

For the first point, suppose the antecedent is true and let J  be a witness. By Proposi-
tion 12 there if a uniform complete grounding tree J  * for F that does not generate 
infinite paths of B-height t* ≤ t. Since F’s B-rank is not 1, then J  * is nontrivial. Let 
G be the grounding graph corresponding to J  *. Since J  does not generate infinite 
paths, G does not have such paths. By Proposition 3, G is complete, and by Proposi-
tion 6, F’s W-B-height in G is t* and hence is smaller than or equal to t.

For the second point, suppose the antecedent is true and let G be a witness. By 
Proposition 10, there is a uniform complete grounding graph G * for F without 
infinite paths of such that F’s W-B-height g* is smaller than or equal to g. By 
Propositions 8, 6 and 3, there is a complete grounding tree J  for F that does not 
generate infinite paths whose B-height is g* and hence is smaller than or equal  
to g.                                                                                                                      □

Proposition 13 Let α be a nonnull finite ordinal. Then for all uniform complete 
grounding trees J ,  J  has T-height α iff J  has B-height α.

Proof By induction on α. The proposition is immediate if α = 1. Suppose the propo-
sition holds up to α ≥ 1 and let J  be a uniform complete grounding tree for a fact 
F. Let J be the set of nodes that are children of J  ’s root, and for all j ∈ J, let J j be 
the labelled subtree of J  whose root is j and  Gj the fact that occupies j. Note that 
since J  is uniform and complete, so are the J js. Also note that if J  has a finite 
T-height, then it does not generate infinite paths (see Proposition 4) and hence it has 
a B-height.

Suppose first that J  has T-height α + 1. For all j ∈ J, let αj be J j’s T-height. Then 
for all j ∈ J, αj ≤ α, and for some j ∈ J, αj = α. By induction hypothesis, then, αj is J
j’s B-height for all j ∈ J. That is to say,  Gj ∈ BH(αj, J j) for all j ∈ J. Given that J  
is uniform and complete, one can easily prove by induction on β the following 
proposition:

(P) For every nonnull finite ordinal β, every j ∈ J and every G that appears in J j, 
G ∈ BH(β, J j) iff G ∈ BH(β, J ).

Given (P),  Gj ∈ BH(αj, J  ) for all j ∈ J. Because J  is uniform, IG(F, J ) = {Gj: 
j ∈ J}, and so we have that F ∈ BH(α + 1, J  ), and hence that J  has B-height α + 1.

Conversely, suppose that J  has B-height α + 1, i.e. that F ∈ BH(α + 1, J  ). For all 
j ∈ J, let αj be J j’s B-height. Then  Gj ∈ BH(αj, J j) for all j ∈ J. Given (P), it follows 
that  Gj ∈ BH(αj, J  ) for all j ∈ J. Because J  is uniform, IG(F, J ) = {Gj: j ∈ J}, and so 
we have that for all j ∈ J, αj ≤ α, and for some j ∈ J, αj = α. By induction hypothesis, 
then, αj is J j’s T-height for all j ∈ J. It follows that J  has T-height α + 1.                 □
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Theorem 4  Let α be a nonnull finite ordinal and F a fact. F has T-rank α iff F has 
B-rank α.

Proof By induction on α. The proposition is immediate if α = 1. Suppose the propo-
sition holds up to α ≥ 1 and suppose F has T-rank α + 1. This means that there is 
a complete grounding tree J  for F of T-height α + 1 and that no other complete 
grounding tree for F has a smaller T-height. Given Proposition 11, one can assume 
that J  is uniform. By Proposition 13, J  has B-height α + 1. Now by Propositions 
12 and 13, there cannot be a complete grounding tree for F of B-height smaller than 
α + 1. Hence, F has B-rank α + 1. Conversely, Suppose F has B-rank α + 1. This 
means that there is a complete grounding tree J  for F of B-height α + 1 and that no 
other complete grounding tree for F has a smaller B-height. Given Proposition 12, 
one can assume that J  is uniform. By Proposition 13, J  has T-height α + 1. Now by 
Propositions 11 and 13, there cannot be a complete grounding tree for F of T-height 
smaller than α + 1. Hence, F has T-rank α + 1.                                                           □

Theorem 5  Let α be a nonnull finite ordinal and F a fact. F has W-T-rank α iff F 
has W-B-rank α.

Proof  From Theorems 1, 3 and 4.                                                                             □

From being immediately grounded to having a complete uniform grounding 
graph / tree

Proposition 14  If a fact is immediately grounded, then there is a complete uniform 
grounding graph for that fact.

Proof Suppose F is immediately grounded in Γ. I build a series of graphs indexed by 
the nonnull finite ordinals G1, G2, … as follows:

• G1 is the set whose sole member is the grounding tie 〈Γ, F〉.
• If Gn is complete, then Gn+1 =  Gn. Otherwise, associate to each fact G in b(Gn) 

that is immediately grounded a grounding tie 〈Δ, G〉, and let Gn+1 be the result 
of adding all these grounding ties to Gn+1.

By construction, thus, Gn ⊆ Gn+1 for every nonnull finite ordinal n. Let G be the 
union of all these graphs. G is a grounding graph. I want to show that (a) it is a 
grounding graph for F, (b) it is uniform and (c) it is complete.

For (a), I first prove by induction that every Gn is a grounding graph for F. This 
is of course the case for G1. Suppose this is the case for Gn, and take a grounding tie 
〈Δ, G〉 in Gn+1. If 〈Δ, G〉 ∈ Gn, then by induction hypothesis 〈Δ, G〉 is an element of 
a path to F in Gn+1. Suppose 〈Δ, G〉 ∉ Gn. Then there is a grounding tie 〈Δ′, G′〉 in Gn 
such that G ∈ Δ′. By induction hypothesis, 〈Δ′, G′〉 is an element of a path to F in Gn. 
Take one such path, remove all the elements that precede a given occurrence of 〈Δ′, 
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G′〉 in the path, and put 〈Δ, G〉 right before this occurrence. The result is a path to F 
in Gn+1 of which 〈Δ, G〉 is an element. Hence, Gn+1 is a grounding graph for F. Given 
this, it is clear that G is a grounding graph for F.

For (b), things are clear since if a grounding tie 〈Δ, G〉 has been introduced in the 
construction at step n, no distinct grounding tie of type 〈Δ′, G〉 can be introduced 
at a later step n + k, since then G already appears as the head of a grounding tie in 
n + k − 1.

For (c), suppose for reductio that G is not complete. This means that there is a 
fact G in G that (i) is not a head and (ii) is immediately grounded. Let 〈Δ, H〉 be a 
grounding tie in G such that G ∈ Δ. Then 〈Δ, H〉 is in some Gn. But then by construc-
tion, Gn+1 contains a grounding tie 〈Λ, G〉, and therefore G is after all a head in G . 
Contradiction.                                                                                                             □

Proposition 15  If a fact is immediately grounded, then there is a complete uniform 
grounding tree for that fact.

Proof  From Propositions 14, 8, 7 and 3.                                                                   □
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