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Abstract
We use the method of fixed points to describe a form of probabilistic truth approxi-
mation which we illustrate by means of three examples. We then contrast this form
of probabilistic truth approximation with another, more familiar kind, where no fixed
points are used. In probabilistic truth approximation with fixed points the events are
dependent on one another, but in the second kind they are independent. The first form
exhibits a phenomenon that we call ‘fading origins’, the second one is subject to a phe-
nomenon known as ‘the washing out of the prior’. We explain that the two phenomena
may seem very similar, but are in fact quite different.

Keywords Probability · Truth approximation · Fixed points · Genetics

1 Introduction

We shall consider two kinds of systems in which one can say that there is an ‘approach
to the probabilistic truth’.1 In the first kind, one event is made more likely by another
event, which in turn is made more likely by still another event, and so on. In the second
kind, which is more familiar, the successive events are not made more likely by their
precursors; on the contrary, they are independent of one another. While the first kind
relies on the method of fixed points, the second one does not.

The prime example of the first kind is a biological population in which the relative
number of individuals with some property (like having blue eyes or hammer toes or
an aptitude for mathematics) approaches a fixed value; this value corresponds to a
steady state of affairs or a stable ratio which we call the probabilistic truth for that
system. The prime example of the second kind is the simple tossing of a coin in which
the probability of a head is unknown. As more and more tosses are made, the relative

1 We shall sometimes speak of ‘approach to the truth’, but we always mean ‘approach to the probabilistic
truth’.
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frequency of heads approaches a particular number (except on a set of measure zero),
which is the probabilistic truth for this system.

The example about the biological population exhibits a phenomenon that we here
dub ‘fading origins’: the probabilistic truth does not depend on whether the primal
ancestor or ancestors have or lack the property in question.2 The coin tossing scenario
is subject to what Bayesians call the ‘washing out of the prior’: the probabilistic truth
does not depend on the value of the prior. Although these two effects, fading origins
and the washing out of the prior, seem superficially to be similar, they are in fact very
different, as we shall explain.

We present probabilistic truth approximation with fixed points in Sects. 2, 3 and 4
by giving three examples. These examples are taken from genetics and they are of
increasing complexity. The simplest example has a one-dimensional structure (Sect. 2),
the next example is two-dimensional (Sect. 3), and the most complicated one is three-
dimensional (Sect. 4). While the first example may appear rather straightforward to
readers familiar with fixed points, the second and the third example are surprising
in view of their connection with two acclaimed scientific breakthroughs, namely the
Mandelbrot fractal and the celebrated Hardy–Weinberg equilibrium.

Section 5 is devoted to the more familiar way of approaching the truth, as exempli-
fied in the coin tossing example. Here we show how Bayes’ theorem leads to the basic
formula of Carnap’s λ-system. In Sect. 6 we explain the difference between fading
origins and the washing out of the prior. Technical details have been relegated to four
appendices.

2 Amitochondrial trait

Suppose we want to know how likely it is that Mary has a particular trait, T . The trait
in question is mitochondrial: it is inherited along the female line. We know it to be
more likely that Mary has T if her mother had the trait than if her mother lacked it.
Similarly, it is more likely that Mary’s mother has T if her mother had it, and so on.
Here the events (having or lacking T ) are clearly dependent upon one another.

Consider the following hypotheses:

h0: Mary has T
h−1: Mary’s mother has T
h−2: Mary’s (maternal) grandmother has T

and so on, for all negative integers −3, −4, et cetera. These hypotheses can be repre-
sented in a one-dimensional chain, as in Fig. 1, where the solid lines indicate that a
hypothesis left of a line is made more likely by the one right of the line. Thus h0 is
made more likely by h−1, which is made more likely by h−2, and so on.

2 Elsewhere we have talked about ‘fading foundations’ (Atkinson and Peijnenburg 2017), but here we
follow the advice of an anonymous reviewer according to whom ‘origins’ is better suited to our biological
and genetic examples.

123



Synthese (2021) 199:4195–4216 4197

Fig. 1 One-dimensional chain

We assume that empirical research has provided us with the numerical values of the
conditional probabilities that satisfy the following inequalities:

P(h0|h−1) > P(h0|¬h−1)

P(h−1|h−2) > P(h−1|¬h−2)

P(h−2|h−3) > P(h−2|¬h−3)

. . . . . .

We further assume that the conditional probabilities are uniform. That is, all the condi-
tional probabilities on the left of the inequality signs are numerically identical, and the
same goes for all the conditional probabilities on the right of the signs.3 The uniformity
assumption enables us to adopt the succinct notation

α = P(hi |hi−1) β = P(hi |¬hi−1), (1)

for i = 0,−1,−2, . . ..
It is a theorem of the probability calculus that:

P(h0) = αP(h−1) + β
(
1 − P(h−1)

)
. (2)

What is the value of P(h0), the probability that Mary has T ? Eq. (2) does not tell
us. For though we have assumed that empirical research has provided the conditional
probabilities, α and β, we still need to know the value of P(h−1) in order to use (2)
for the calculation of P(h0). We could simply guess the value of P(h−1), but that of
course is not very satisfactory. A better idea might be to eliminate P(h−1) by using
the theorem

P(h−1) = αP(h−2) + β
(
1 − P(h−2)

)
, (3)

and replacing P(h−1) in (2) by the right hand side of (3). We thereby obtain:

P(h0) = β + (α − β)β + (α − β)2P(h−2),

from which the unconditional probability P(h−1) has disappeared. However, this
manoeuvre does not seem to help much. True, we got rid of the unknown P(h−1), but
we are now saddled with another unknown unconditional probability, viz. P(h−2).

3 This uniformity assumption is a natural one for biological systems in which the external conditions are
steady from generation to generation. When these conditions change appreciably with time, uniformity of
the conditional probabilities will no longer be true and our fixed point method is then inapplicable. There
exists however an alternative method, which does not require uniformity but also works with nonuniform
conditional probabilities, andwhich gives analogous results.We have used this alternativemethod elsewhere
in another context (Atkinson and Peijnenburg 2017).
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We could try to remove P(h−2) by essentially repeating the procedure, only to find
that we are then stuck with still another unknown, P(h−3). And so on. With each
replacement, an unknown unconditional probability disappears and a new one comes
in. We seem to have made no progress at all.

But appearances are deceptive: we did make headway. Every time that an uncon-
ditional probability disappears and another one enters, our estimation of P(h0) has
improved. This is because the greater the distance between h0 and h−n , the smaller
is the impact of P(h−n) on our estimate of P(h0). If n is very large, the contribution
of P(h−n) to P(h0) is very small, and if n goes to infinity, the contribution peters out
completely. This is shown in detail in “Appendix A”, but the gist can be explained as
follows.

Whatever the value is of the unknown P(h−n), it turns out that

β

1 − α + β
− (α − β)n ≤ P(h0) ≤ β

1 − α + β
+ (α − β)n .

For small values of n, corresponding to only a few eliminations of the unconditional
probabilities, (α −β)n may not be small, so the above inequality will be lax; but since
α − β is positive and less than one, (α − β)n will be tiny if n is very large. As a result
the probability that Mary has the trait in question, P(h0), will be squeezed more and
more around the value of β

1−α+β
as n becomes larger. In the limit of infinite n,

P(h0) = β

1 − α + β
≡ p∗.

Here p∗ is called a fixed point, and its value is fully determined by the conditional
probabilities α and β. It is only when n is infinite that the values of P(h0) and p∗
coincide. With finite n, the value of P(h0) typically differs from that of p∗. For in
that case our calculation of P(h0) will depend not only on α and β, but also on
an unconditional probability P(h−n), which represents the probability that a female
ancestor in the nth generation has T .

In “Appendix A” we prove that the fixed point p∗ is not repelling but attracting.
This means that the larger n is, and thus the longer the chain of Mary’s ancestors, the
closer our estimate of P(h0) will be to p∗. In this sense we are dealing with a form
of probabilistic truth approximation: as we go further and further back into Mary’s
ancestry, the chain of conditional probabilities increases, and the probability thatMary
has the trait in question, P(h0), approaches a final value, namely p∗, the probabilistic
truth of the system in question.

The idea that an attracting fixed point is a form of probabilistic truth approximation
can be made more intuitive as follows. Imagine three medical doctors, each of whom
tries to estimate the probability that Mary has T . All three are aware of the fact that
T is mitochondrial, but since Mary is a foundling whose parents are unknown, the
doctors have no information about Mary’s ancestors. In particular they do not know
whether any of her female progenitors had T . They agree that if one is totally ignorant
about whether a woman has T or not, one should set the probability that this woman
has T equal to one half. The first doctor now calculates the probability that Mary has
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T , P(h0), by taking into account only the probability that Mary’s mother has T , that is
P(h−1) = 1

2 . The second doctor, however, also takes into consideration the probability
pertaining to Mary’s grandmother, P(h−2) = 1

2 . The third one decides to go back to
Mary’s great-grandmother, and performs his calculations on the basis of P(h−3) = 1

2 .
Each of the three doctors will now come up with a different estimate for P(h0). The

estimation of the second doctor will be better than that of the first, but the estimation
of the third one will be the best. For that estimation will be the closest to a definite
value, the fixed point p∗, which would be the result of an imaginary doctor who went
back an infinite number of generations. The calculation of this imaginary doctor is
free of any guessing or any ignorance. It is based solely on the known values of the
conditional probabilities α and β, and for that reason the outcome of this calculation
can be called the probabilistic truth for this system.

Of course in practice no doctor can go back infinitely far. In determining the prob-
ability that Mary has T , a doctor will normally stop after two or three steps, at the
unconditional probability that Mary’s grandmother or great-grandmother has the trait,
and for all practical purposes this is enough.

This means that for finite n, the estimate of P(h0) will in general differ from p∗.
There is however a natural way to measure the distance between the estimate of P(h0)

based on finite n and the value of the probabilistic truth p∗. Let P(n)(h0) be the
estimate of P(h0) based on going back n steps in Mary’s ancestry. The distance to the
probabilistic truth is then simply the absolute difference between P(n)(h0) and p∗:

|P(n)(h0) − p∗|,

and this difference can never be greater than (α − β)n . Thus the so-called ‘logical
problem’ of truthlikeness or of truth approximation is handled here simply in terms
of the absolute difference between a current value and the true value.4

Our method with fixed points not only implies that P(h0) gets closer and closer
to the probabilistic truth as the number of generations increases. It also entails that
the incremental change in P(h0) brought about by going one step further into Mary’s
ancestry is a decreasing function of the length of the chain. For example, if we add to a
chain with ten ancestors of Mary an eleventh one, P(h0) will be changed by a certain
amount. If we now add another ancestor, thus bringing the tally to twelve, the new
change in P(h0) will be less than it was when the eleventh ancestor was included in
the calculation.5 This tendency goes on: every time we add an ancestor, the change in
P(h0) is less. Here we call this effect fading origins: the influence of Mary’s maternal
ancestors on the probability that she has T diminishes as the ancestors are further and
further away. In the limit this influence disappears completely.6

4 In Sects. 3–5, we will tackle the logical problem in the same way. As to the epistemic problem of
truthlikeness, that is dealt with by identifying the probabilistic truth and explaining how it is approached
by estimates based on empirical evidence. Thanks to an anonymous reviewer for pressing us to make this
explicit.
5 A proof of this statement can be found at the end of “Appendix A”.
6 Atkinson and Peijnenburg (2017). There we call the effect ‘fading foundations’, and h0 was labelled A0
whereas h−i was labelled Ai .
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So far we have assumed that the conditional probabilities α and β have been mea-
sured with perfect accuracy. This assumption is however not very realistic. Nor is
it necessary: our argument also works if α and β are subject to error. Suppose that
empirical studies indicate that the values of α and β lie in the following intervals:

αmin ≤ α ≤ αmax βmin ≤ β ≤ βmax. (4)

The fixed point p∗ is an increasing function of both α and β.7 Therefore the minimum
and maximum values of p∗ are

pmin∗ = βmin

1 − αmin + βmin pmax∗ = βmax

1 − αmax + βmax .

If the error bounds in (4) correspond to two standard deviations, we can say that it is
95% probable that the probabilistic truth lies between these two values: pmin∗ ≤ p∗ ≤
pmax∗ .

Note that in the abovemethodwithfixedpoints, truth approximation is not a separate
epistemic utility associated with hypotheses. It is not something that we take into
account beside the hypotheses’ probabilities. Rather it is a function of the probabilities.
More particularly, it is a function of the conditional probabilities: the more conditional
probabilities we have been able to estimate empirically, the better will be the approach
to the truth.As has often been remarked, it is not rational to believe a propositionmerely
because it has high probability. This is because the probability value of a proposition
might change under further investigations and discoveries—it might go up or down,
both are possible. The form of truth approximation presented here, however, does not
go up or down as the chain lengthens. On the contrary; although it is a function of the
probabilities alone, truth approximation via fixed points always improves as the chain
gets longer.

In the present section we have restricted ourselves to one-dimensional chains. The
same points can however be made for multi-dimensional networks: the greater and
more complex the network is, the more precise the value of P(h0) will be. In the limit
that the network spreads out to infinity, P(h0) will tend to its real or final value. We
discuss two-dimensional networks in Sect. 3 and three-dimensional ones in Sect. 4.
Interestingly, as we will see, the two-dimensional networks will take us to the famous
Mandelbrot fractal while the three-dimensional ones resemble the structure of the
Hardy–Weinberg equilibrium.

3 Inheritance in two dimensions

In this section we extend the one-dimensional system to a structure with two dimen-
sions: rather than considering a trait that can be inherited only from the mother, we
examine one that can be inherited from the mother as well as the father. We will
see that nevertheless the same argument applies and the same conclusion follows.

7 The reason is that ∂
∂α

β
1−α+β

= β

(1−α+β)2
and ∂

∂β
β

1−α+β
= 1−α

(1−α+β)2
are both positive.
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Fig. 2 Two-dimensional network

Like the one-dimensional system, the two-dimensional structure exhibits an attracting
fixed point which is determined exclusively by known conditional probabilities, and
therefore can be regarded as the probabilistic truth of the system.

Consider the tree structure of Fig. 2. Here C stands for some child in a particular
generation, F and M for the child’s father and mother, and F ′,M ′, F ′′ and M ′′ for the
four grandparents. Since each node arises from two forebears, the structure is two-
dimensional. The child stems from two parents, so the probability that she has T is a
function of the characteristics of her mother and her father. Rather than two reference
classes (the mother having or not having T ), we now have four reference classes, and
four conditional probabilities:

α = P(child has T | both parents have T )

β = P(child has T | both parents lack T )

γ = P(child has T | the father has, and the mother lacks T )

δ = P(child has T | the mother has, and the father lacks T ).

As before, the conditional probabilities are supposed to be known through empirical
research. We again assume them to be uniform, that is the same from generation to
generation.

Consider the following propositions:

c: A child in generation i + 1 has T .
m: The child’s mother in generation i has T .
f : The child’s father in generation i has T ,

where i = −1,−2,−3, and so on. Then the probability calculus prescribes the fol-
lowing relation between the unconditional probability that the child has T , and the
unconditional probabilities relating to its parents:

P(c) = αP(m ∧ f ) + β P(¬m ∧ ¬ f ) + γ P(¬m ∧ f ) + δP(m ∧ ¬ f ). (5)

We further simplify matters by making two assumptions (which are just made for
convenience, they are not essential for our argument):

• the probabilities that mother and father have T are the same;
• with respect to T mother and father are independent.

Note that the assumed independence of mother and father with respect to T has to do
with unconditional probabilities in one and the same generation. Between generations
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there is still dependence of course, just as there was in the one-dimensional chain of
the previous section.

Accordingly P(m ∧ f ) = (
P(hi )

)2, where P(hi ) stands for the unconditional
probability that an individual in the i th generation has T . Similar considerations apply
to P(¬m ∧ ¬ f ), P(¬m ∧ f ) and P(m ∧ ¬ f ), so (5) becomes

P(hi+1) = α
(
P(hi )

)2 + β
(
1 − P(hi )

)2 + (γ + δ)P(hi )
(
1 − P(hi )

)
, (6)

where i = −1,−2,−3, . . . et cetera, and P(hi+1) is the probability that an individual
in generation i + 1 has the trait T .

Although this scenario is more complicated than the one where T is mitochondrial,
it likewise provides an illustration of truth approximation with fixed points. For in
the present scenario, too, the probability that a child has T tends to a definite value.
Interestingly, to find this value we can transform the iteration (6) into the one that gen-
erates the celebrated Mandelbrot fractal;8 so we can press Mandelbrot’s analysis into
our service. In “Appendix B” we explain how to transform (6) into Mandelbrot’s form
and how to find the fixed point, p∗, which turns out to have the following expression:

p∗ = β

β + 1
2 (1 − γ − δ) +

√
β(1 − α) + 1

4 (1 − γ − δ)2
. (7)

Here p∗ is the probabilistic truth, approached as the number of generations increases
without bound. It depends on the conditional probabilities only, as did the limit in the
one-dimensional example of the previous section. In particular it in no way relies on
the unconditional probabilities that the infinitely remote ancestors had T .

As in the one-dimensional case, a distance measure presents itself in a natural way.
Let h0 again be the hypothesis that a child called Mary has T . And let P(n)(h0) be
the probability that Mary has T , as calculated by going back n generations in Mary’s
family tree. Then the distance measure is given by the absolute difference

|P(n)(h0) − p∗|.

In general this difference will not be zero, but it will decrease as we follow Mary’s
family tree further back into the past. In the limit n → ∞, that is when infinitely many
forebears are taken into account, this distance shrinks to zero so that the influence of
the remote ancestors fades away completely.

Again, as in the one-dimensional case, it is not a problem if the conditional proba-
bilities α, β, γ and δ are only approximately known. For also in the two-dimensional
case it is possible to replace precise values by intervals andwork out the corresponding
interval within which the fixed point p∗ will lie, say at the 95% confidence level.

8 Mandelbrot (1977). See also Atkinson and Peijnenburg (2017).
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4 Genetics in three dimensions

In this section we are going to look at a system in three dimensions. Once more we
will argue that the fixed point method is a way of approaching the probabilistic truth.
However, the three-dimensional structure is considerably richer than the systems in
one or two dimensions. We will now have no less than three fixed points, and we will
specify the conditions under which each of them is attracting rather than repelling.9

In describing a three-dimensional structure, we will leave the level of phenotypes
of the previous sections, and descend to the level of the genes that are responsible
for phenotypical traits like eye colour or hammer toes. Since at the genotypical level
it proves more convenient to look at the ‘descendants’ of a gene rather than at its
‘ancestors’, the direction in this section will be reversed. Rather than starting with a
child called Mary and going back into her past by looking at her progenitors, as we
did in the one- and two-dimensional cases, we shall now concentrate on a gene and
focus on how it reproduces itself in the future.

To simplify matters, we look at one gene only. It is true that most phenotypical
traits are affected by many genes that act in concert. Nevertheless, some traits are
determined by just one gene, and those are the ones that we will concentrate on here.

A trait might be determined by one gene that occurs in two variants or alleles,
which we call A and a. There are three genotypes: the two homozygotes AA and aa,
and the one heterozygote Aa. Let N AA

i , N Aa
i and N aa

i be the number of individuals in
generation i of genotype AA, Aa, aa respectively, so the total number of individuals
is Ni = N AA

i + N Aa
i + N aa

i . The number of alleles of type A in generation i is
N A

i = 2N AA
i + N Aa

i , and similarly the number of alleles of type a is N a
i = 2N aa

i +
N Aa

i . Therefore the relative numbers of alleles of types A and a in generation i are
respectively

pi = N A
i

N A
i + N a

i

= 2N AA
i + N Aa

i

2Ni

qi = N a
i

N A
i + N a

i

= 2N aa
i + N Aa

i

2Ni
, (8)

with pi + qi = 1. Here the relative number pi is the probability that an arbitrarily
selected allele in the i th generation is of type A. Similarly, qi is the probability that
such a random allele is of type a.

The probability that the father contributes A while the mother contributes a is
pi qi ; conversely, the probability that the father contributes a, and the mother A is
qi pi . Therefore there will be Ni p2i organisms of genotype AA, Ni q2

i organisms of
genotype aa, and 2Ni pi qi organisms of genotype Aa.

If mating is random, with females showing no preference at all for the genotype of
the male with whom they copulate, the alleles in the next generation will be randomly
paired. Suppose that the average number of alleles passed on to generation i + 1 by

9 Whereas the one- and two-dimensional examples in the previous sections are variations of cases described
in Atkinson and Peijnenburg (2017), the present three-dimensional system has not been considered by us
before.
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an organism of genotype AA is n AA. For simplicity we assume that this so-called
reproductive fitness of the organism (not to be confused with a fixed point) does not
change fromgeneration to generation. Since there are Ni p2i organismsof this genotype,
on average Ni p2i n AA organisms of genotype AA will be produced in generation i +1.
Each of these organisms carries two A alleles, therefore the number of A alleles passed
on to generation i + 1 is twice this number, namely 2Ni p2i n AA.

Analogously, suppose that the average number of alleles passed on to generation
i + 1 by an organism of genotype Aa is n Aa . There are 2Ni pi qi organisms of this
genotype, and there will on the average be 4Ni pi qi n Aa alleles passed on to generation
i +1. However, only half of these will be A alleles, i.e. there will be only 2Ni pi qi n Aa

of them.The other halfwill bea alleles. Thus the total number of A alleles in generation
i + 1 is 2Ni (p2i n AA + pi qi n Aa). Similarly the total number of a alleles in generation
i +1 is 2Ni (q2

i naa + pi qi n Aa). The total number of alleles is therefore 2Ni (p2i n AA +
2pi qi n Aa + q2

i naa). So the relative numbers of alleles in generation i + 1 of types A
and a are respectively

pi+1 = p2i n AA + pi qi n Aa

p2i n AA + 2pi qi n Aa + q2
i naa

qi+1 = q2
i naa + pi qi n Aa

p2i n AA + 2pi qi n Aa + q2
i naa

. (9)

If n AA, n Aa and naa are all equal, that is to say if the average number of children
per parent does not depend on the parent’s genotype, then from (9) we deduce that
pi+1 = pi and qi+1 = qi , i.e. the relative numbers of the two alleles remain the same
from generation to generation.10 This was the conclusion of Hardy andWeinberg, who
in 1908 independently obtained this result, now known as the Hardy–Weinberg law
or equilibrium.11 However, if the average number of children per parent does depend
on the parent’s genotype, the Hardy–Weinberg equilibrium will be broken, and the
relative numbers of the alleles A and a in (9) will in general change as time goes on.12

We turn now to such deviations from theHardy–Weinberg equilibrium. The connec-
tions between the genotypes are shown in Fig. 3, which represents a three-dimensional
network because some nodes give rise to three successors. As we explain in “Appendix
C”, the first of Eq. (9) can be rewritten in the form

p′ = p + pq
p n AA + (q − p) n Aa − qnaa

p2n AA + 2pq n Aa + q2naa
, (10)

10 When n AA = n Aa = naa ,

pi+1 = p2i + pi qi

p2i + 2pi qi + q2i
= pi (pi + qi )

(pi + qi )
2 = pi .

11 Hardy (1908), Weinberg (1908).
12 More details can be found in Okasha (2012).

123



Synthese (2021) 199:4195–4216 4205

Fig. 3 Genetic transmission

where we have replaced pi by p, qi by q, and pi+1 by p′. Are there fixed points of
the mapping p → p′, that is, are there values of p such that p′ = p? At such points
there will be no variation from generation to generation.

When we look at (10) we see that there are three fixed points

1. p = 0
2. q = 0 which is equivalent to p = 1, since q = 1 − p
3. p = p∗, where p∗n AA + (q∗ − p∗) n Aa − q∗naa = 0, which is equivalent to

p∗ = n Aa − naa

2n Aa − n AA − naa
. (11)

All of these fixed points are such that if p0, the relative number of A alleles in the first
generation, is equal to one of them, then this relative number will not change from
generation to generation. However, if p0 is not equal to one of the fixed points, pi will
change as i increases. In general it will tend to one or other of the fixed points as i
increases; but which fixed point it will be depends on the relative sizes of the average
numbers of progeny of the three genotypes.

For specified reproductive fitnesses of the genotypes only one of the three fixed
points is attracting, and only this one corresponds to the probabilistic truth that will
be approached. The effect of iterating (10) is to draw p′ closer to this attracting fixed
point. A repelling fixed point, on the other hand, is a solution of the equation p′ = p
such that any tiny deviation from this value will result in repulsion from it towards an
attracting fixed point.

As indicated, which fixed point is attracting depends on the relative sizes of n AA,
n Aa and naa . If n AA is greater than n Aa and naa , then there is only one attracting fixed
point, namely p = 1. In words, if the homozygote AA is more successful in producing
progeny than the heterozygote Aa, and also more successful than the homozygote aa,
then in the long run the a allele will disappear from the population. Similarly, if naa

is greater than n Aa and n AA, then the A allele will disappear in the long run. In this
case the attracting fixed point is q = 1, i.e. p = 0.

If, on the other hand, the heterozygote is more successful than either of the homozy-
gotes, which can happen in some cases, then neither allele dies out in the long run: the
attracting fixed point in this case is p∗. In Fig. 4 the axes represent the two homozy-
gotic reproductive fitnesses, n AA and naa ; and the dotted square at the bottom, where
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Fig. 4 Fixed points

n AA < n Aa and naa < n Aa , is the region in which the attracting fixed point is p∗.
We demonstrate in “Appendix C” that in this domain p′ is closer to the fixed point
(11) than is p, which means that the iteration (10) will converge to p∗. This fixed
point represents the probabilistic truth for the system, in which the relative numbers
of the three zygotes (AA, Aa and aa) no longer change. In practice, in finite sys-
tems there will be small fluctuations; but the salient point is that fading origins can
be discerned here at the genetic level. Whatever the original distribution of genotypes
was, if the heterozygote Aa is more successful than either of the homozygotes AA or
aa, the steady state after a large number of generations will be the probabilistic truth
p∗.

To summarize, we have looked in this section at a three-dimensional structure,
where the dimensions are represented by three genotypes: two homozygotes AA
and aa, and one heterozygote Aa. The structure has three fixed points. Which of
these points is attracting, and hence can function as a probabilistic truth that we
gradually approach, depends on the reproductive fitnesses of the zygotes, i.e. the
average number of alleles that a zygote passes on to a next generation. If one
of the homozygotes has the greatest reproductive fitness, then the attracting fixed
point turns out to be a trivial one: either p = 0 or p = 1. But if the heterozy-
gote is the most successful, then the fixed point has a definite value between 0
and 1, which in turn tells us the relative number of the three zygotes in the steady
state.

As in the one- and two-dimensional cases, in the three-dimensional structure, too, a
distancemeasure emerges naturally, butwewill not spell out the details here. Similarly,
we will not explain in detail the fact that also in the three-dimensional structure, the
fixed points can attract even if the conditional probabilities are imprecise.
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5 Bayes and Carnap

Approaching the probabilistic truth by means of fixed points can be easily confused
with another kind of truth approximation. The latter kind is familiar among Bayesians,
but as we will show it is already implicit in Carnap (1952).

Suppose we have some evidence, e, for a hypothesis, h, and suppose we are able
to calculate P(e|h), the probability with which e would obtain if h were true. We are
interested in the inverse probability, i.e. the probability that h is correct, given e, and
this we obtain from Bayes’ formula:

P(h|e) = P(e|h)P0(h)

P(e)
. (12)

Here P0(h) is the prior probability of h, to be superseded by the posterior probability,
P(h|e). The denominator in (12) can be computed from the rule of total probability:

P(e) = P(e|h)P0(h) + P(e|¬h)P0(¬h), (13)

on condition that the likelihood P(e|¬h) can also be calculated. More generally, if
{h1, h2, . . . , hn} is a partition of the space of hypotheses, then (13) is replaced by

P(e) = P(e|h1)P0(h1) + P(e|h2)P0(h2) + · · · + P(e|hn)P0(hn). (14)

More generally still, suppose we have, rather than a discrete set {h1, h2, . . . , hn}, a
continuum of hypotheses {hr }, one for each value of r between 0 and 1. Then in place
of (14) we must use an integral:

P(e) =
∫ 1

0
P(e|hr )P0(hr ) dr , (15)

in which P0(hr ) is a prior probability density, and P0(hr ) dr is an infinitesimal prior
probability.

Here is an example.We are about to toss a coin and wewant to know the probability
that a head will come up.13 Let hr be the hypothesis that this probability is r , and
suppose e to be the evidence that n tosses with this coin resulted in m heads. The
outcomes of the tosses are independent and identically distributed. The likelihood of
e, given hr , is

P(e|hr ) = n!
m!(n − m)! rm(1 − r)n−m, (16)

the factor involving the factorials being the number of different ways that m heads can
turn up in n tosses.

13 The example is based on a binomial probability distribution, but the same sort of analysis applies to
other discrete distributions.
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We substitute (16) into (15) and into

P(hr |e) = P(e|hr )P0(hr )

P(e)
,

which is (12), with h replaced by hr . This yields the posterior probability density,
P(hr |e), and this will in general be non-zero for all values of r . On the one hand, this
is as it should be: one single value for r is not singled out as the only possibility. On
the other hand, that is not quite what we want: we are looking for the correct value of
r , given e, not a whole spread of values. We therefore calculate the mean, or expected
value of r , which will give the most likely value for the sought-for probability. The
result is:

r =
∫ 1

0
r P(hr |e) dr , (17)

which tells us that, given the prior density and the evidence, the hypothesis with the
best credentials is hr . This hypothesis can be seen as the probabilistic truth that we
approach by means of the Bayesian method, for it is the most likely value of the
probability that heads will come up when the coin is tossed.

Following Pollard, Howson and Urbach inserted for the prior density P0(hr ) a
so-called beta distribution:

P0(hr ) = (u + v − 1)!
(u − 1)!(v − 1)! ru−1(1 − r)v−1, (18)

where u and v are free parameters.14 As we explain in detail in “Appendix D”, (17)
and (18) lead to

r =
∫ 1

0
r P(hr |e) dr = m + u

n + u + v
. (19)

The reason Howson and Urbach gave for using beta distributions was to stress the
malleability of the Bayesian method, which can model any belief system:

... beta distributions take on a wide variety of shapes, depending on the val-
ues of two positive-valued parameters, u and v, enabling you to choose a beta
distribution that best approximates your actual distribution of beliefs.15

This is true perhaps, but still rather arbitrary and therefore not so interesting. More
interesting, in our view, is the observation that Howson and Urbach’s free parameters
u and v acquire an interpretation if we derive a formula of Carnap’s λ-calculus from
the Bayes result. The simple transformation u = λ

k and v = λ − λ
k does the trick, for

it turns (19) into

14 Howson and Urbach (2006, p. 242), Pollard (1985, pp. 190–192).
15 Howson and Urbach, ibid.
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r = m + λ
k

n + λ
,

and the right-hand side is the basic formula of Carnap’s λ-system. Here k is taken to
be the number of conceivable elementary outcomes, and λ is interpreted as a measure
of the speed with which we want to learn from experience.16

The phenomenon known as ‘the washing out of the prior’ can now be explained in
terms of Carnap’s formula, for

r − m

n
= λ

n + λ

(
1

k
− m

n

)
.

When n goes to infinity, the right-hand side clearly tends to zero, so in this limit

r ∼ m

n
.

In other words, the dependence of r on the prior parameters λ and k washes out as n
increases indefinitely. This means that we are thrown back on the relative frequency as
the best estimate of the sought-for probability. The Bayesianmethod has thus provided
us with a simple answer to our question: the probability that the next toss with our
coin will result in heads if m heads have turned up in n tosses is the limit of m

n (except
on a set of measure zero) as n tends to infinity. This limit is the probabilistic truth for
the system, which we approach by means of Carnap’s formula.

One might of course ask what is the point of the Bayesian treatment if the final
answer is just the relative frequency of heads? The best answer seems to be a pragmatic
one. If one has some believable information to motivate the choice of a prior, then this
treatment can influence the choice of k and hopefully speed up the convergence to the
limiting value.

6 Concluding remarks: mind the gap

In the first part of this paper (Sects. 2–4) we have been concerned with approaching
the probabilistic truth in a system where the various events depend on one another.
We have given three examples. The first one concerned the event of Mary having a
mitochondrial trait T , which was made more likely by the event of Mary’s mother
having T , and so on. What typically happens in this one-dimensional chain is that the
probability ofMary having T approaches a fixed point—the probabilistic truth—as the
chain becomes infinitely long. The second and third examples involved networks in
two and three dimensions. We showed that in these networks, too, the probability that
we are interested in tends to a fixed point as the network expands without bound. The
distance measure in the three examples is the absolute numerical difference between
the fixed point and the precise or imprecise probability of interest, and in the limit this
difference tends to zero.

16 Carnap (1952, p. 33). The Carnapian connection is also noted in Kuipers (1978, pp. 57–59), and in Festa
(1992, p. 60).
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In all three cases the contribution of the distant parts of the system to the fixed
point diminishes and peters out in the limit. We call this phenomenon ‘fading origins’
to indicate that the influence of remote events, such as Mary’s ancestors having or
lacking T , decreases as the distance between Mary and her ancestors increases. In the
limit that the probability of Mary having T reaches the final value, the effect of the
infinitely remote event on Mary has faded away completely.

InSect. 5we looked at a different sort of system, exemplifiedby thebinomial process
of tossing a coin. Here the events were independent of one another. Nevertheless there
is here too a probabilistic truth which is reached in the limit of an infinite number
of tosses (except on a set of measure zero). From the Bayes formula, equipped with
a suitably flexible, but not too flexible prior probability, it proved possible to derive
the expected value of the probability that the coin lands heads. As the number of
tosses increases, so this mean value tends toward the probabilistic truth. Moreover
this probabilistic truth is independent of the parameters in the specification of the
Bayesian prior probability. This phenomenon goes under the epithet ‘the washing out
of the prior’.

The two phenomena, fading origins andwashing out, bear a superficial resemblance
to one another. They are however very different and it is essential to mind the gap
between them. Washing out of the prior flags the fact that in Bayesian reasoning the
posterior is in the limit unaffected by the choice of prior. Fading origins flags the fact
that the event we are interested in (e.g. Mary having T ) is in the limit unaffected by
the nature of the original event (e.g. her infinitely distant primal grandmother having
T ). These effects are very different. In Bayesian updating the Bayes formula involves
the computation of P(hr |e) in terms of the inverse conditional probability, P(e|hr ).
In our example the evidence, e, grows as more tosses of the coin are made. This is
quite different from our calculation of P(h0) in for example the one-dimensional case
of the mitochondrial trait. There was no inversion à la Bayes in that case, but rather
a sequence of events that follow one another in a linear chain, and as we have seen,
similar considerations apply in the many-dimensional situations.

Acknowledgements We thank the editors of this Topical Collection on Approaching Probabilistic Truths,
Ilkka Niiniluoto, Theo Kuipers and Gustavo Cevolani. We are also indebted to two anonymous reviewers:
their comments made the paper much better.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Synthese (2021) 199:4195–4216 4211

Appendices

A One-dimensional iteration

Consider the iteration

P(hi+1) = α pi + β
(
1 − P(hi )

)
,

where i = −1,−2,−3, . . . and so on. The conditional probabilities α and β were
defined in (1), and they satisfy 0 < β < α < 1. The case i = −1 corresponds to
(2). In this appendix we show that the iteration has an attracting fixed point, and we
discuss some of its features.

The above equation can be rearranged to read

P(hi+1) = β + (α − β)P(hi ). (20)

Define

p∗ = β

1 − α + β
.

If P(hi ) = p∗, we see from (20) that

P(hi+1) = β + (α − β)
β

1 − α + β

= β

(
1 − α + β + α − β

1 − α + β

)

= β

1 − α + β
= p∗.

The mapping p → p′, where

p′ = β + (α − β) p (21)

is said to have a fixed point at p = p∗. Since

p∗ = β + (α − β) p∗ ;

it follows from (20) that the distance between the probability of Mary having the trait,
P(h0), and the truth p∗ is:

∣∣P(h0) − p∗
∣∣ = (α − β)

∣∣P(h−1) − p∗
∣∣

= (α − β)2
∣∣P(h−2) − p∗

∣∣

= . . . . . .

= (α − β)n
∣∣P(h−n) − p∗

∣∣, (22)
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which goes to zero as n tends to infinity, irrespective of the value of P(h−n), since
0 < α − β < 1. Therefore P(h0) tends to p∗ in the limit. The relation (21) is said to
be a contraction mapping.

Since
∣∣P(h−n) − p∗

∣∣ ≤ 1, it follows from (22) that
∣∣P(h0) − p∗

∣∣ ≤ (α − β)n , or
equivalently

β

1 − α + β
− (α − β)n ≤ P(h0) ≤ β

1 − α + β
+ (α − β)n .

Consider next what would happen if one were to extend the chain back only n
generations. Then

P(n)(h0) − p∗ = (α − β)n( p̂ − p∗),

where P(n)(h0) is the probability of h0 that would be calculated if P(h−n)were equal
to some arbitrary number p̂ in [0, 1]. It follows that

∣∣∣P(n)(h0) − P(n+1)(h0)

∣∣∣ = (α − β)n(1 − α + β)| p̂ − p∗|,

where in order to calculate P(n+1)(h0) the same value p̂ has been assumed for
P(h−n−1). Continuing this procedure one more step, we find

∣∣∣P(n)(h0) − P(n+1)(h0)

∣∣∣ −
∣∣∣P(n+1)(h0) − P(n+2)(h0)

∣∣∣

= (α − β)n(1 − α + β)2| p̂ − p∗| > 0.

Thus the incremental change in
∣∣P(n)(h0) − P(n+1)(h0)

∣∣ is a decreasing function of
n.

B Two-dimensional iteration

With p in place of pi and p′ in place of pi+1, the iteration (6) turns into the mapping

p′ = α p2 + β(1 − p)2 + (γ + δ)p(1 − p). (23)

Here we will show that there are two fixed points, but only one of them is attracting.
As we will see, the form of the iteration is isomorphic to the one that generates the
well-known Mandelbrot fractal.

On condition that α + β 
= γ + δ, define

q = (α + β − γ − δ) p − β + γ + δ

q ′ = (α + β − γ − δ) p′ − β + γ + δ.
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Fig. 5 TheMandelbrot fractal, associatedwith the complex number c = x+iy, is generated by the quadratic
iteration qn+1 = c + q2n

After some algebra, one finds that (23) is equivalent to

q ′ = c + q2, (24)

where

c = 1

4
(γ + δ)(2 − γ − δ) − β(1 − α). (25)

We recognize (24) as the mapping that leads to the Mandelbrot fractal (see Fig. 5).
For any point in the black region of Fig. 5, if c is the corresponding complex number, the
Mandelbrot iteration does not diverge to infinity. Some of these numbers correspond
to a fixed point, others to an iteration that switches back and forth between two values
(a two-cycle), yet others to a three-cycle, and so on.
This mapping has two fixed points. As can be verified by substitution, one of these is
1
2 +

√
1
4 − c, but this is repelling, and so is of no interest, while the other is

q∗ = c

1
2 +

√
1
4 − c

, (26)

and we will now show that this one is attracting.
We can rearrange (25) as follows:

c = 1

4
− 1

4
(1 − γ − δ)2 − β(1 − α) <

1

4
,
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since 0 < β < α < 1. A different rearrangement is

c = 1

4
(γ + δ)(2 − γ − δ) + (α − β)(1 − α) + (

1

2
− α)2 − 1

4
> −1

4
,

since also 0 < γ + δ < 2. From these inequalities it follows that

∣∣∣1 − √
1 − 4c

∣∣∣ < 1. (27)

In order to find the domain in which the fixed point (26) is attracting, we define
s = q − q∗ and s′ = q ′ − q∗, so that (24) is transformed into

s′ = s
(
1 − √

1 − 4c + s
)

. (28)

In view of (27), for s not too large
∣∣1 − √

1 − 4c + s
∣∣will be less than 1, which proves

that the fixed point is attracting. The proviso that s be not too large implies that q and
q∗ are close to one another, and thus that the attraction of q to q∗ is true only in a
so-called ‘basin of attraction’, i.e. in a restricted neighbourhood of q∗.

Going back to the original form (23) of the mapping, we find that the fixed point
(26) corresponds to the attracting fixed point

p∗ = β

β + 1
2 (1 − γ − δ) +

√
β(1 − α) + 1

4 (1 − γ − δ)2
,

which is (7).

C Genes

With p in place of pi , q in place of qi , and p′ in place of pi+1, we see that the first of
Eq. (9) implies that

p′ − p = p2n AA + pq n Aa

p2n AA + 2pq n Aa + q2naa
− p

= p2n AA + pq n Aa − p3n AA − 2p2q n Aa − pq2naa

p2n AA + 2pq n Aa + q2naa

= pq
p n AA + (q − p) n Aa − qnaa

p2n AA + 2pq n Aa + q2naa
, (29)

which is equivalent to (10). This iteration has three fixed points, p = 0, p = 1 and a
nontrivial one p = p∗, and we investigate the conditions under which the last one is
attracting.

If p = p∗, where p∗n AA + (q∗ − p∗) n Aa − q∗naa = 0, and q∗ = 1 − p∗, we see
from (29) that p′ = p, i.e. p∗ is a fixed point of the iteration.
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We have p∗n AA + (1 − 2p∗) n Aa − (1 − p∗)naa = 0, from which it follows that

p∗ = n Aa − naa

2n Aa − n AA − naa
.

By expanding p′ − p∗ in powers of (p − p∗), one can show that

p′ − p∗ = λ(p − p∗) + O
(
(p − p∗)2

)
,

where

λ = n AA(n Aa − naa) + naa(n Aa − n AA)

(n Aa)2 − n AAnaa
,

and O means ‘of order’. So if (p − p∗) is small, something of order (p − p∗)2 is
very small. If n Aa > n AA and n Aa > naa , it is evident that λ > 0. Moreover, one can
rearrange this expression for λ as follows:

λ = 1 − (n Aa − naa)(n Aa − n AA)

(n Aa)2 − n AAnaa
,

so λ < 1. We conclude that, when n AA < n Aa and naa < n Aa , the fixed point p∗ is
attracting: p′ is closer to the fixed point (10) than is p, which means that the iteration
(8) will converge to p∗.

D Bayesian truth approximation

In this appendix we gather together some basic results concerning the Bayesian treat-
ment of coin tossing. With the likelihood

P(e|hr ) = n!
m!(n − m)! rm(1 − r)n−m,

and the prior

P0(hr ) = (u + v − 1)!
(u − 1)!(v − 1)! ru−1(1 − r)v−1,

the Bayes formula yields

P(hr |e) = P(e|hr )P0(hr )
∫ 1
0 P(e|hr )P0(hr ) dr

= rm+u−1(1 − r)n−m+v−1

∫ 1
0 rm+u−1(1 − r)n−m+v−1 dr
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= (n + u + v − 1)!
(m + u − 1)!(n − m + v − 1)! rm+u−1(1 − r)n−m+v−1.

The mean value of r is

r =
∫ 1

0
r P(hr |e) dr

= (n + u + v − 1)!
(m + u − 1)!(n − m + v − 1)!

∫ 1

0
rm+u(1 − r)n−m+v−1 dr

= (n + u + v − 1)!
(m + u − 1)!(n − m + v − 1)!

(m + u)!(n − m + v − 1)!
(n + u + v)!

= m + u

n + u + v
,

which justifies (17).
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