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Abstract
In this paper, I argue that Amie Thomasson’sEasyOntology rests on a vicious circular-
ity that is highly damaging. Easy Ontology invokes the idea of application conditions
that give rise to analytic entailments. Such entailments can be used to answer ontolog-
ical questions easily. I argue that the application conditions for basic terms are only
circularly specifiable showing that Thomasson misses her self-set goal of preventing
such a circularity. Using this circularity, I go on to show that Easy Ontology as a whole
collapses.

Keywords Easy ontology · Amie Thomasson · Circularity · Application conditions ·
Deflationary metaontology

1 Introduction

In recent years, Amie Thomasson has been developing a deflationary metaontology
called Easy Ontology. The ‘Easy’ in ‘Easy Ontology’ is supposed to make obvious
that we can answer ontological questions easily—at least if certain conditions are
satisfied. Ontological questions are questions asking whether certain entities exist.
According to Easy Ontology, those questions are answered by considering whether
the corresponding terms refer. The strategy to answer specific ontological questions
is to check whether certain terms apply given some uncontroversial truths. This is
accomplished by associating terms with what Thomasson calls application condi-
tions. As relations between application conditions give rise to analytic entailments,
we only need to check whether some of the uncontroversial truths analytically entail
the fulfilment of the application conditions of the terms in question. This is why Easy
Ontology is deflationary.

This paper raises doubt whether Thomasson’s Easy Ontology is tenable. I argue
that it is not—as it is viciously circular. To arrive at this conclusion, I only use what
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Thomasson explicitly endorses as part of Easy Ontology. This is important insofar as
there are many charges of begging the question in the debate. For example, Contessa
(2016: §2) discusses a charge of begging the question that Thomasson directs towards
the fictionalist; he claims that it is rather Thomasson who begs the question. In her
reply, Thomasson (2017) claims again that it is the fictionalist who begs the question.1

Thus, to prevent the charge of question begging, it is important to use only what she
gives us; this shows, then, that Thomasson’s Easy Ontology has an internal problem—
regardless of whether or not it (or an internally consistent version of it, cf. footnote 3)
is plausible for independent reasons.

The structure of this paper is as follows. In Sect. 2, I present the relevant parts of
Easy Ontology as developed by Thomasson. Section 2.1 is a brief account of how Easy
Ontology works. Section 2.2 motivates Thomasson’s reasons to introduce application
conditions and how they are characterized.

Section 3 argues that the account of the application conditions is flawed. Thomasson
explicitly imposes a non-circularity condition on application conditions (see (AC2) in
Sect. 2.2). I argue that she fails to meet her own requirement. Section 3.1 lays down
some ground work and specifies which parts are circular. Section 3.2, then, argues that
there is an unavoidable circularity involved. The circularity uncovered in this section
is, in certain respects, analogous to definitional circles (more on that below).2 Sect. 4
discusses possible objections to my argument.

If the argument of Sect. 3 is correct, then Easy Ontology is circular. Section 5
evaluates howmuch damage such a charge does to EasyOntology. Section 6 concludes
the paper.3

1 Note also Plebani (2018, p. 305f.) who, like me, wants to give a reply to Thomasson that cannot simply
be dismissed because it begs the question.
2 Thanks to an anonymous referee for pushing me on making this connection explicit and suggesting the
references to Hempel (1952) and Suppes (1957: ch. 8).
3 Brenner (2018) brings forward an argument that Easy Ontology “will involve an objectionable sort of
regress or circularity” (2018, p. 605). As I am likewise arguing that Easy Ontology is circular, let me make
explicit two differences between the papers; I will mention more in the course of this paper.
First, Brenner’s argument is less general than the one presented in Sect. 3.2 as his only applies to what he
calls “terms with non-trivial application conditions” (2018, p. 607). I don’t employ such a restriction.
Second, and based on the first point, I think that Brenner (2018) misses the underlying point why such a
circularity is damaging. His paper is flawed insofar as it misses out on the core problem for Thomasson’s
account uncovered in this paper (see Sect. 5).
As far as his paper is concerned, he mentions that “one or more components of Thomasson’s so-called
easy approach to ontology will need to be modified or abandoned” (2018, p. 605). Both our arguments
rely on the deflationary principle (E) and the non-circularity condition (AC2). However, as a response
to Brenner’s charge, Thomasson could just bite the bullet and accept that those terms with ‘non-trivial
application conditions’ (and presumably only the basic ones among them—see Sect. 3.2 for what ‘basic’
means here) are circularly specified, and apply her easy approach to all the other terms. Indeed, this is what
Thomasson seems to suggest herself (see her 2015, p. 103f., quoted in Sect. 5—interestingly, a passage
which Brenner (2018: n. 2 on p. 605), mentions himself but does not discuss).
On the other hand, as I develop the circularity charge and its impact in Sects. 3 and 5, this is not a tenable
move for Thomasson because it conflicts with her own account. For, in the light of, e.g., the qua problem
(see Sect. 2.2), it is her move to introduce application conditions. These application conditions do the
heavy lifting of Easy Ontology because they give rise to the analytic entailments that render the answers to
existence questions easy. My argument shows that the approach as a whole collapses because of the way
I set the circularity argument up, i.e., it depends on the generality that is lacking in Brenner’s paper. In
this sense, Brenner’s paper does not get to the root of the problem. Indeed, Brenner’s (2018) does not even
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2 Thomasson’s easy ontology

2.1 Easy ontology in a nutshell

In recent years, Thomasson (2007, 2008, 2009a, b, 2013, 2014, 2015, 2016, 2017)
has been developing a deflationary approach to metaontology (we will mainly focus
on her (2007, 2015)). The central idea of the approach is captured in her principle (E):

(E) “K s exist [if, and only if, (iff)] the application conditions actually associated with
‘K ’ are fulfilled.” (2015, p. 86)

In this context, K is a general noun, but as her (2007) witnesses, she thinks that a
similar approach can handle the existence of particular objects (see also (2015), n.
1, p. 84). For our discussion the ‘actually associated with’ part is not important.4

Likewise, I only present parts of Easy Ontology that are relevant for this paper and
don’t attempt to give a full account.5

Before further presenting Easy Ontology, let me be explicit about two conventions.
First of all, I will follow Thomasson’s terminology and speak of ‘terms’.6

Second, let me also be explicit about my usage of ‘applies’ in the following.7 We
can start from a binary version, viz., a term T applies to an entity e. This is the case if e
is such that it satisfies the application conditions of T . Based on this, we can introduce
a unary notion and say that a term T applies iff the application conditions of T are
fulfilled, i.e., iff there is an entity e such that T applies to e. To distinguish this specific
version of the unary ‘applies’, I will call it (E)-applies in the following.

This brings us back to the main discussion. In order to understand principle (E), we
need to know what ‘application conditions’ are and what role they play. In a nutshell,
though see Sect. 2.2, they are “conceptual truths” (2015, p. 257f.) that play the crucial
role in the answerability of existence questions, viz., “if a term lacks application
conditions, we cannot […] evaluate claims about whether or not the corresponding
entities exist” (2015, p. 219). In case a term does have application conditions, we call
the corresponding existence question well-formed.

The strategy to answer any particular (well-formed) existence question is to “start
from uncontroversial premises” (2015, p. 129) which are such that (i) they do not
contain a term T , but (ii) they guarantee the satisfaction of T ’s application conditions.
Since the application conditions are fulfilled, we can use (E) and infer the existence
of T s (cf. 2015, p. 130). Such arguments are called easy arguments.

Footnote 3 continued
mention Thomasson’s strategy to distinguish between ‘basic’ and ‘derivative’ terms in order to make her
non-circularity condition (AC2) work.
So, by and large, the argument developed here is more general and has a different scope insofar as it
shows the underlying flaw of Easy Ontology. This is also the reason for this paper’s title; the circularity is
‘unbearable’ as it hinders a fix that doesn’t undermine the whole easy approach.
4 See her (2015, p. 85f.) for the motivation.
5 Most notably, this paper will not be concerned with what Thomasson calls ‘frame-level coapplication
conditions’ or simply ‘coapplication conditions’.
6 Her specific reason to speak of ‘terms’ is the following: “I prefer to avoid controversies about concepts,
their existence, and nature, by speaking of terms and their application conditions” (2015, p. 85).
7 Thanks to an anonymous referee to pointing out that my use of ‘applies’ needs disambiguation.
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As an example, consider the following easy argument for the existence of events:

[W]e may start from the undisputed truth that May was born on a Monday, and
conclude that a birth (an event) occurred on a Monday, and thus that there are
events. (2015, p. 130)

Let me be explicit about the steps taken in the argument (but I’ll brush over some
details such as different tense). We start with ‘May was born on a Monday’ which
is declared an ‘undisputed truth’ and can therefore serve as starting-point of an easy
argument. In order to conclude ‘a birth occurred’, we need to consider the application
conditions of ‘birth’. Anticipating the details from Sect. 2.2, we take the conditional
‘If someone was born on a Monday, then a birth occurred on Monday’ to provide
(sufficient) application conditions for ‘birth’ (where I take ‘a birth occurred’ to mean
the same as ‘there is a birth’). Since the uncontroversial truth guarantees the satisfaction
of the antecedent of this conditional, i.e., that the application conditions of ‘birth’ are
fulfilled, we can use (E) and conclude that there are births (on Monday), i.e., there is
an entity which is a birth. To conclude from that there are events, we have to consider
(sufficient) application conditions of ‘event’ which we take to be ‘If something is a
birth, it is an event’. Therefore, since we already established that there are births, we
can, once more, use (E) and conclude that events exist.

2.2 Application conditions and theQua problem

Thomasson’s main motivation for the association of terms with application conditions
is that she thinks this move solves the so-called qua problem. The qua problem is a
problem for (purely) causal theories of reference (see Devitt and Sterelny 1999). Such
purely causal theories need the grounding of reference to be causal in nature, too,
such as in what Kripke (1972, p. 96) calls ‘baptism’. Thomasson summarizes the qua
problem as follows.

But the qua problem arises once we acknowledge that there are terms of many
different sorts that at least purport to refer to many different sorts of things, for
example, artifacts, lumps of matter, spatial or temporal parts of objects, events,
and so on. For those attempting to ground the reference of a new singular term,
it will be radically indeterminate what the term refers to (or even whether or not
it refers) unless they have some very basic concept of what sort of thing (broadly
speaking) they intend to refer to, if the reference grounding is to succeed. (2007,
p. 38)

Thismeans that ifwe progress purely causally, it is indeterminate towhat exactly newly
introduced terms refer. The solution to this problem is to disambiguate: “nominative
termsmust be associated with a sortal or, more generally, categorial concept” (2007, p.
39, my emphasis). If done correctly, this association is, among other things, such that
“it must establish certain very basic conditions under which the attempted grounding
would or would not be successful in establishing reference” (2007, p. 39)—and these
conditions are what Thomasson calls ‘frame-level application conditions’. Thomasson
also explains the ‘frame-level’ in ‘frame-level application conditions’: “they involve
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conditions that are conceptually relevant to whether or not reference is established,
not all the conditions that may be empirically discovered as relevant” (2007, p. 39f.,
her emphasis).

Thus, application conditions derive their plausibility from solving the qua problem,
i.e., from the role they play in disambiguating reference—or, more strongly, in even
establishing successful reference. This will be important in the following.

Thomasson characterizes further features of application conditions. For our pur-
poses, only one of the three features is relevant:

AC1 “They are semantic rules of use which speakers master, but these rules needn’t
take the form of necessary and sufficient conditions, and needn’t be statable.”
(2015, p. 91)

Crucially, Thomasson also adds the following condition:

AC2 “Application conditions must not take the following form: ‘K ’ applies iff K s
exist.” (2015, p. 96, my emphasis)

Let us briefly consider these in turn. (AC1) is related to a point Thomasson already
emphasized in her (2007, p. 44), viz., the association with application conditions does
not mean that every competent speaker is in (explicit) possession of them. Indeed,
we are rarely capable of explicitly giving the application conditions of any term we
use. To make this claim further plausible, she notes that the “history of philosophical
attempts” to provide any such is “a history of failures” (2015, p. 91); even philosophers
who have tried and those who are still trying have—according to Thomasson—not
much to show for. However, Thomasson insists that just because we cannot state them
doesn’t mean that our terms don’t have them [see (2015, p. 92)].

Let me flag, at this point, that there is a certain ambiguity with respect to ‘needn’t
be statable’. We will come back to this in Sect. 4.1.

Feature (AC1) and its motivation also make it difficult to explicitly provide any
application conditions. Indeed, Thomasson says:

One thing I should be upfront about, however, is that it is not always perfectly
clear what precisely the constitutive rules are that govern any particular natural
language expression. (2015, p. 248)

Put differently, it is not perfectly clear what the application conditions of our terms are.
This is why I am, likewise, not in a position to provide concrete examples; in Sect. 3.2
I will use the mathematical terms ‘set’ and ‘function’ as proxies for fitting examples
of terms for which we can provide application conditions. The closest Thomasson
comes to stating application conditions is that it is “in part constitutive of the meaning
of ‘house’ that all houses are buildings” (2007, p. 28). Another example is this: A
“term like ‘marriage’ may be introduced and partially governed by the rule ‘If two
suitable people A and B visit the justice of the peace and fill in the relevant paperwork
and say the relevant vows, then A and B got married’” (2015, p. 101).8 What these

8 As per (AC3) (p. 7), the term ‘marriage’ needs to be introduced by a conditional providing sufficient
conditions for its use. An anonymous referee pointed out that, in the example, the term does not even occur
in the conditional. I leave it open how Thomasson wants to align this with her own account. Also, it is not
clear whether you can non-circularly spell out the ‘suitable’ or ‘relevant’ in the antecedent.
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examples have in common is that the (partial) application conditions involve other
terms (but see Sect. 4.2).

Moreover, since any explicit statement of application conditions of a term T must
contain other terms, some terms must be “semantically basic terms” (2015, p. 92)
since, otherwise, we run into a regress or circle (not unlike a definitional circle; see
below). Thus, there must be other means to learn how to properly use at least some
terms, for example, “ostensively as we learn that a term is to be applied in situations
like this (and not in situations like that), or via judgments of similarity to ostended
paradigms” (2015, p. 92, her emphases). For now, let us grant her this point. Note,
however, that without disambiguation it is not clear what the ostension ostends to;
thus, as it stands, we have no reason to not apply Thomasson’s own reasoning with
respect to the need to introduce application conditions to this case. We return to this
in Sects. 4 and 5.

Condition (AC2) is the crucial non-circularity condition. If the only way to deter-
minewhether or not a term (E)-applies is by checkingwhether or not the corresponding
entity exists, we would run in a circle and would not be able to deflate our metaontol-
ogy. The burden on Thomasson is, thus, to show that it is possible to “make it evident
that application conditions for ‘K ’ need not appeal to the existence of K s” (2015, p.
97). Her strategy is “to show a way in which they may be stated without appealing
to the existence of K s—or of some thing that meets the application conditions for
‘K ’” (2015, p. 97, her emphasis). To accomplish this, she “divide[s] nominative terms
into two cases: concrete nouns of what Carnap called the ‘thing’ language […], and
derivative nouns […] that may be introduced on the basis of these” (2015, p. 99).
I argue in Sect. 3 that Thomasson is not successful in preventing the circularity and
evaluate which damage this does to her approach in Sect. 5. Section 4 discusses several
of Thomasson’s strategies to prevent the circle.

Note that Thomasson formulates (AC2) with a biconditional, viz., ‘“K ” applies iff
K s exist’. To anticipate my understanding of application conditions provided below,
I understand the biconditional as follows: I take a condition ϕ(x) to be (sufficient)
application conditions of a term T if the condition’s satisfaction guarantees the exis-
tence of a T (ϕ(x) → T (x)), and, if to be a T is exhausted by this condition, then
it’s also necessary (T (x) → ϕ(x)). As it is not important for our concerns, I won’t
spell out a tight connection between such conditions and terms, as we’d might want
to distinguish ϕ from logically equivalent conditions which don’t add anything (such
as ϕ ∧ (ψ ∨ ¬ψ)).9

Put together, (AC1) and (AC2) are not unsimilar to what is usually required of
definitions.10 Just as (AC2) is a non-circularity condition, definitions, too, are not
allowed to be circular. (AC1) is, of course, not meant as enforcing the semantic rules
of use to take the form of full-fledged definitions, but we can understand the condition
as at least enforcing these rules to “give us (e.g.) an open list of sufficient conditions for

9 Thanks to an anonymous referee for pointing out this difficulty.
10 For a standard introduction to the topic of theory of definition, see Suppes (1957: ch. 8). Another
criterion of definition is the criterion of non-creativity (Suppes 1957, p. 154f.) which is usually guaranteed
by the requirement that definitions need to be conservative. Thomasson (2015, p. 263f.) also invokes a
conservativeness requirements for the proper introduction of new terms. In my (2020), I argue that this
requirement is problematic for Easy Ontology.
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the application of” (Thomasson 2015, p. 101) a term; indeed, Thomasson repeatedly
speaks of ‘sufficient condition for the application of a term’ [see, e.g., (2015, pp. 99,
101, 107)]. Whether or not all sufficient conditions of a term jointly build up to a
definition is not important.

Moreover, just as we distinguish between primitive and derivative vocabulary in the
case of definitions, Thomasson divides the terms into basic and derivative.11 Hempel
(1952, p. 15) is also explicit that we have to divide the vocabulary into primitive and
derivative; one reason to do so is to avoid circular definitions. This is a well-motivated
and plausible move in the case of definitions. However, as I will argue, the same
strategy does not work for Easy Ontology. On the contrary, Easy Ontology ends up in
a vicious circle not unlike one of circular definitions.

Lastly, Thomasson also gives us some information regarding how to introduce new
terms. I restrict the presentation to the condition which is relevant in the following.12

In order for terms to be “minimally introduced to an unextended language L” (2015,
p. 263), the following condition needs to be satisfied:

AC3 “The term(s)must be introduced via a conditional that gives sufficient conditions
for its(/their) application” (2015, p. 263).

This means that we introduce a term T by providing a conditional whose antecedent
‘gives sufficient conditions’. I take it that the consequent of such a conditional is just
the term that’s being introduced. Thus, to introduce a term T , we need to provide a
conditional of the form ‘ϕ(x) → T (x)’ where ‘ϕ(x)’ provides sufficient conditions
formulated in terms of the unextended language (or an extended language in which
all the terms introduced have been properly introduced). Since the application condi-
tions are supposed to be conceptual truths (2015, p. 257f.), this must mean that the
conditional is what’s being referred to as ‘application conditions’. Since it is supposed
to be a conceptual truth that whenever the sufficient application conditions of a term
T are satisfied, then this term (E)-applies, I take the application conditions to be the
universal closure of such conditionals, i.e., to be of the form ‘∀x(ϕ(x) → T (x))’.13

Such conditionals together with ‘uncontroversial premises’ give us enough resources
to infer a positive instance of T . For example, if houses suffice for the application
of the term ‘Building’, i.e., ‘∀x(House(x) → Building(x))’ is (conceptually) true,
then using the uncontroversial premise that I am inside a house provides us with the
necessary information to infer that there are buildings.

Before moving on, let me introduce another convention: In the following, I will
use ‘application conditions’ to mean the antecedent of such conditionals. With this
convention in place, the application conditions of a term T are circular if they essen-
tially contain T , so that the only way for the application conditions to be satisfied is
by T (E)-applying. Reformulated in terms of conditionals, we have a circularity if,

11 As both Hempel (1952) and Suppes (1957) make obvious, definitions do not have to be of the genus-
and-differentia form—and neither do application conditions.
12 Thomasson (2015, p. 263f.) provides three conditions to introduce a new term T to a language. The
second condition is a conservativeness condition which I argue in my (2020) is problematic for her account.
See my (2020: §2.4) for an explication of ‘analytic entailment’ and a discussion of the term introducing
mechanisms; see also Sect. 5.
13 Cf. what Carnap (1952) calls ‘meaning postulates’.
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for example, the conditional has the form ‘T (x)∧ϕ(x) → T (x)’ where ‘ϕ(x)’ might
be “empty”, i.e., either vacuously satisfied or, understood as a list of conditions, the
empty list.

3 The circularity of the application conditions

In the following, I will first delineate the scope of the circularity charge in Sect. 3.1
before giving the argument in Sect. 3.2. I will discuss potential objections to such
a circularity charge in Sect. 4. Section 4.1 discusses the alleged unstatability of the
application conditions before Sect. 4.2 discusses the proposal to circumvent the cir-
cularity by supplying application conditions in a different language. As we have just
noted, the circularity charge is not unlike the problem of circular definitions and trying
to provide definitions for all relevant parts of one’s vocabulary. One common sugges-
tion to get around this problem is to introduce an infinite regress; Sect. 4.3 discusses,
among others, such an option.

3.1 Preliminaries and scope of the circularity charge

Before coming to the circularity charge, note, first, that it is explicitly Thomasson’s
strategy to divide the terms into ‘derivative’ and ‘basic’ in order to show that the non-
circularity condition (AC2) holds. As this is the only strategy she mentions, showing
it to fail suffices to show that Easy Ontology—as it stands—is circular.

Moreover, since the answerability of existence questions is interlinked with the
availability of application conditions (see, e.g., her 2009b), an Easy Ontologist has to
provide a new strategy to specify them non-circularly. As Easy Ontology rests on the
idea that the triviality of inferences to answer existence questions is due to analytic
entailments—which, in turn, rest on the application conditions—there seems to be
no room to answer the circularity charge without giving up substantial parts of Easy
Ontology. In particular, giving up the analytic entailments that provide reasons for the
‘Easy’ in ‘Easy Ontology’, some existence questions cannot be answered easily; hard
ontology is back on the table. I argue in Sect. 5 that this problem is more widespread
than Thomasson (2015, p. 104) acknowledges; to arrive at this conclusion, we need
the circularity argument to be quite general in order to see that it does not depend on
how exactly the line between ‘basic’ and ‘derivative’ terms is drawn.14

Before giving the argument, let us consider one strategy to accomplish a non-
circular specification of application conditions—to dismiss it right away. By showing
how this strategy fails, we get a better grip on what it takes for application conditions
to be non-circular and to see in what sense Thomasson’s account does not satisfy it.

Consider a term T . As it is often difficult to come up with application conditions
for any such term (cf. the discussion of (AC1) in Sect. 2.2), let’s introduce another
term T ′ and stipulate that the application conditions of ‘T ’ are that they are T ′s

14 This, in particular, is where my paper is more substantial than Brenner’s (2018). Sections 4 and 5 show
that Thomasson cannot just bite the bullet and accept that some terms have circular application conditions
or even lack any application conditions.

123



Synthese (2021) 199:3527–3556 3535

and the application conditions of ‘T ′’ are that they are T s. In this way, it seems
as though we satisfy the non-circularity condition (AC2); for we arrive at “‘T ’ (E)-
applies iff T ′s exist” (or “‘T ’ (E)-applies iff ‘T ′’ (E)-applies”). But as we also arrive
at “‘T ′’ (E)-applies iff T s exist”, we have made no progress. This is also true if the
application conditions of at least one of these terms involve other terms; the circularity
is more complex then, but still there. For, the only thing that changes is the addition
of conditions. But in this case, too, to see whether ‘T ’ (E)-applies, means, inter alia,
to check whether there are T ′s; and to check whether there are T ′s, means to check
whether the term ‘T ′’ (E)-applies; this, then, means to check whether there are T s, and
we have gone full circle. Thus, we should assume obvious restrictions on the proper
satisfaction of (AC2) to dismiss such cases.

We can also note that whatever term T we choose, the equivalence “‘T ’ (E)-applies
iff T s exist” must be true.15 It is only problematic if this is the only available way to
specify the application conditions for the respective term.My argument below amounts
to the claim that for (at least some) basic terms, this must be the case; therefore, the
account is circular in the sense that condition (AC2) is not satisfied. As this is a
condition that Thomasson explicitly endorses, my argument shows that her account
is insufficient by her own lights.16 However, it is not just that there are circular terms
which we could isolate and dismiss; rather, as argued for in Sects. 4 and 5, all other
terms rely on those circular ones; and this means that the circularity infects the whole
approach. In particular, we can see that the problem repeats itself if we choose to
dismiss the circular terms; we can apply the same argument again to show that there
must be circularly specified terms among the remaining ones—the problem does not
go away.

Let me also point out that this boils essentially down to a problem regarding the
grounding of reference. If all derivative terms are only insofar disambiguated as
they are provided with application conditions, they are only insofar disambiguated
as the terms involved in their application conditions are disambiguated—to be disam-
biguated, as we have seen in Sect. 2.2, just means to be associated with application
conditions [see also Thomasson (2007, p. 41, 2015, p. 94)]. My argument shows that
the basic terms either have no application conditions or only have circular ones. Both

15 Interestingly, Thomasson, when she formulates condition (AC2), immediately says the following in
parentheses: “While this [the equivalence “‘T ’ (E)-applies iff T s exist”] will always be true, it will not
count as an application condition, in our terms” (2015, p. 96). In the following, I will be more charitable
and consider conditions which violate (AC2) to be application conditions because they play an important
role in the grounding of reference as outlined in Sect. 2.2; I don’t think that there is any room on giving up
on this without doing more harm than good. This will become clear in the following. (This takes effectively
also care of the suggestion to take certain terms to be primitive terms; they wouldn’t have proper application
conditions and couldn’t give rise to analytic entailments; see Sect. 5.)
16 Note that Brenner’s (2018) does not even mention Thomasson’s strategy to distinguish between ‘basic’
and ‘derivative’ terms in order to make her non-circularity condition (AC2) work. Nor does Brenner make
the point that the analytic entailments are endangered by a general circularity charge. His paper leaves
it open whether or not an easy approach is viable for terms that are not among those he characterizes as
‘terms with non-trivial application conditions’. I will formulate my argument below in terms of the basic
terms—which are among the ‘terms with non-trivial application conditions’ if understood as Thomasson
(2015, p. 104) introduces them—but it is clear that this generalizes to any term; this is also suggested by the
examples involving mathematical terms which are presented after the presentation of the abstract argument.
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options mean that there cannot be disambiguation after all, i.e., the qua problem is not
resolved. This is a problem deep down in the approach.

3.2 The circularity charge

This brings us to the argument. Recall that Thomasson has to argue that the application
conditions for a term ‘T ’ do not include—in the relevant sense, see Sect. 3.1—the
requirement that T s exist (in the following, I will use ‘AC(T )’ as shorthand for
‘application conditions of term T ’ which captures the antecedent of the corresponding
conditional as per (AC3)). To this end, she proceeds in two steps. First, she considers
‘derivative nouns’ (2015, pp. 99–103) which are introduced by explicitly using other
nouns. Second, she considers ‘basic nouns’ (2015, pp. 103–112) which are not so
introduced. As the circularity charge is directed towards the latter, the former are
irrelevant for the present purposes.

In the following, I first present the abstract argument before spelling it out in a
more concrete way. As we already saw that it is difficult to come up with applica-
tion conditions for any term (recall the discussion of (AC1) in Sect. 2.2), I will use
mathematical terms as illustration in the concrete example even though this does not
fit the characterization of ‘basic’ (see below). However, as, in contrast to many other
terms, we can even provide definitions for mathematical terms, this clarifies the case
at hand. Besides being clarificatory in this sense, this also illustrates that the argument
is invariant with respect to the characterization of ‘basic’ in ‘basic term’.

First, we have to understand in what sense the basic terms are basic (but, note
again, that even if we draw the line differently, the following argument is not affected).
Thomasson considers the following to be the “relevant” (2015, p. 105) sense of ‘basic
term’. Basic terms are terms

we tend to learn early in our cognitive or linguistic development, and that we
make use of in acquiring other concepts and learning to use other terms[.] (2015,
p. 104)

Following Carnap, she suggests ‘piece of paper’ and ‘desk’ as basic terms of ‘the thing
language’, and claims that terms “of this category, such as ‘dog’, ‘cup’, or ‘teddy’, tend
to figure prominently in early language acquisition” (2015, p. 106). She thinks that
this supports the claim that “these sortals are at least relatively fundamental” (2015,
p. 106).

Moreover, Thomasson claims that

we can show that one may answer an existence question ‘Do K s exist?’ easily,
by appeal to whether the application conditions for ‘K ’ are fulfilled, if we can
show a way to state and understand the application conditions for ‘K ’ that does
not appeal to K s. (2015, p. 106)

As an example, Thomasson uses ‘cup’: “if there are particles arranged cupwise, we
are entitled to infer ‘there is a cupwise arrangement of particles’, and so to infer: ‘there
is a cup’” (2015, p. 106f.).
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This is problematic, though. By assumption, ‘cup’ is a basic term. We have, in
general, two options in supplying application conditions for such a term. One option
is to supply application conditions exclusively via basic terms; another is to also mix
in derivative terms. Both options run into a circularity problem.

As ‘particles arranged cupwise’ seems not to be a basic term, let us first assume
that it is derivative. Then, if the above quotation does indeed give the application
conditions of ‘cup’, we have to go through derivative terms and the existence of their
corresponding entities to infer the existence of an entity falling under a basic term.
This might not (yet) be problematic in itself. For we have again two options. First, the
application conditions of ‘particles arranged cupwise’ (and of any term that is part of
the application conditions of a basic term) might not include reference to cups (and
the like). Second, the application condition of ‘particles arranged cupwise’ do include
reference to cups.

As we can dismiss the latter option right away—it is obviously circular (see
Sect. 3.1)—let us consider the former option. Suppose that there is a basic term T
such that

AC(particles arranged cupwise) = ϕ(T ).17

This, then,means that the application conditions of ‘cup’ are specified in termsof a term
T which does not refer to cups. The question, now, is what the application conditions
of T are.We can apply the same reasoning again to conclude that even if all basic terms
T can have application conditions like ‘particles arranged T -wise’ where the latter are
derivative, we have made no progress as we need to specify the application conditions
of the terms ‘particles arranged T -wise’. These, in turn, can involve derivative terms.
In this case, we need to do further work until we reach a specification fully in terms
of basic terms. And, as we want to give application conditions for ‘cup’, none of the
terms involved in the application conditions of ‘particles arranged cupwise’ can be the
term ‘cup’, as this would obviously be circular.

Let us suppose that we have n distinct basic terms; let them be T1, …, Tn−1, and
cup. Then, the application conditions of ‘cup’ can be a combination of T1, …, Tn−1,
i.e.,

AC(cup) = ψ(T1, . . . , Tn−1).

The question, then, is: What are the application conditions of term Tn−1?
On pain of circularity, ‘cup’ cannot be among them. For, if ‘cup’ is among them,

we end up specifying the application conditions of ‘cup’ in terms of T1, …, Tn−1, and
the application conditions of Tn−1 in terms of ‘cup’. So, we arrive at the situation we
already dismissed in Sect. 3.1; this is so because, by assumption, the current terms are
basic. Assuming the application conditions of these terms (here: Tn−1 and ‘cup’) to
be specifiable in terms of common basic terms (here: T1, …, Tn−2) means that they

17 In principle, the application conditions of ‘particles arranged cupwise’ can be a combination of many
(basic) terms. As nothing changes in the reasoning, I will only consider the case in which they are exhausted
by just one. So, in our context, ‘ϕ(T )’ just is ‘T s exist’ (or something similar).
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are not basic, but derivative.18 Nonetheless, the application conditions of term Tn−1
must be a combination of the terms T1, …, Tn−2, i.e.,

AC(Tn−1) = ϑ(T1, . . . , Tn−2).

Following this line of reasoning, we end up with the question: What are the appli-
cation conditions of the term T1? As we have used up all the basic terms, there is no
way of specifying them non-circularly.

Of course, we might not need all of the other terms to specify the application con-
ditions of one term. We might, for example, only use the term Tn−2 in the application
conditions of ‘cup’, and only Tn−3 in the application conditions of Tn−2, and so on.
However, following this kind of reasoning, we still end up with at least one basic term
which is used to specify the application conditions of the other terms but whose appli-
cation conditions are not satisfying the non-circularity condition (AC2)—and exactly
those problematic terms are the ones providing non-circular application conditions for
all the other basic terms.

In particular, consider the case of exactly one basic term, i.e., let n = 1. As there
is only one basic term, its application conditions—assuming them to exist—must be
circular. As every other term is specified on the basis of the basic terms—in the case at
hand just the one—we cannot just use a derivative term in the application conditions
of the basic term; for the derivative terms are introduced “on the basis” (2015, p.
99) of the basic terms.19 But, since we need terms to have application conditions
to circumvent the qua problem, we cannot just assume some terms without. For, this
would also destroy the analytic relationships that do the heavy lifting of EasyOntology
with respect to existence questions (see Sect. 5).

To sum this case up, we either end up in a situation that is exactly what condition
(AC2) explicitly dismisses, viz., we have a basic term T such that its application
conditions are “‘T ’ applies iff T s exist”, or we end up in a situation such that we
have terms T1, …, Tn (n ∈ N) such that AC(T1) = ϕ1(T2), AC(T2) = ϕ2(T3), …,
AC(Tn−1) = ϕn−1(Tn), and AC(Tn) = ϕn(T1), i.e., another circle.

The case in which ‘particles arranged cupwise’ is itself a basic term is analogous
to the one above. As we run out of options, either this term itself is violating (AC2)
or there is another term whose application conditions are circular.

By and large, this consideration shows that Thomasson has merely hidden the
circularity that she wanted to prevent. The non-circularity condition (AC2) is not

18 Note that there is a potential ambiguity in ‘basic’ and ‘derivative’. In principle, a basic term (in the sense
of being acquired early in ones development) might still be derivative (in the sense of being specifiable in
other terms). However, the argument brought forward in the main body of the text stays the same. In either
case we have to wonder what the application conditions are. And the picture Thomasson draws suggests
that we start with terms that are semantically basic and use those to introduce further terms. But the easy
approach has to apply to such basic terms as well—and this is the root of the problem.
19 The problem here goes even deeper. Thomasson has to place restrictions on terms being “minimally
introduced” (2015, p. 263). One such restriction is that only the “extant terms of” (2015, p. 263) a base
language are allowed to be used; see Sect. 5 for the full quotation. But given that our base language consists
of only n = 1 term, there simply are no other terms to supply application conditions, i.e., we can’t even
introduce the derivative terms in order to supply application conditions of the basic one. I discuss this more
fully in my (2020).
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satisfied across the board. In particular, as the terms for which condition (AC2) is not
satisfied supply the application conditions of all other terms, this problem affects all
terms; see Sect. 5.

We can put the circularity charge in terms of ‘reference grounding’. For, according
to Thomasson, to have successful reference grounding (which we have to have to
circumvent the qua problem), we need what she calls categorial terms. These, in turn,
must refer. If they did not refer, there would be no way to use them to successfully
ground reference. The reason is simply that we apply further conditions on the catego-
rial term to successfully ground reference to something more specific. For example,
assuming ‘animal’ to be a categorial term, we can use it to introduce the term ‘human
being’ via specifying what kind of animal a human being is supposed to be; tradi-
tionally, this would either be ‘rational animal’ or ‘two-footed animal’ or even ‘social
animal’. But, if ‘animal’ does not (E)-apply at all, it cannot be used to successfully
establish reference to anything (any subset of an empty set is itself empty).

Thus, before the reference grounding can even start, we must assume there to be
successfully referring categorial terms. These, then, play the role of the basic terms
whose application conditions cannot be non-circular. For, there are just no other terms
in which they could be specified. But if these terms do not have application conditions,
they cannot be used to provide analytic entailments between the terms which are
based on them. For, these terms inherit their analytic interrelations from the respective
application conditions. But if we start out with terms which do not provide analytic
entailments between the terms, the easy approach as a whole collapses (see Sect. 5).

This also shows a mismatch in the approach. To be in a position to introduce all
other terms on the basis of basic terms, we need an appropriate set of basic terms.
Depending on the choice of such a set, we end up in the following dilemma: Either
(i) we assume abstracta (i.e., instances of what is called ‘highly general term’ below)
among the basic terms and render the approach rather uninteresting, or (ii) we cannot
infer all entities.20

Let me elaborate on this. As the solution to the qua problem suggests, we need
categorial terms to ground reference where Thomasson calls terms ‘categorial’ if they
are “highly general sortal terms” (2007, p. 41). But how did we get the categorial
terms necessary to get to successful reference grounding? One possibility is to assume
them to be basic. But whatever sense of ‘basic’ this is, it does not match the ‘basic’ in
the description of ‘basic term’. For, as the examples Thomasson (2015, p. 106) brings
forward also show, these are highly specific terms such as ‘cup’ or ‘teddy’. Thomasson
suggests that we can arrange terms with respect to their “specificity” (2007, p. 41).
These orderings lead to “hierarchies of increasing generality” (2007, p. 41). If we start
an ordering with highly specific terms, then we can take basic terms to be near the
very bottom. The grounding of reference of a term T is accomplished by using a less
specific, and, therefore, more general, term T ′ and placing some condition on it; for
example, I used the more general term ‘animal’ in order to specify the term ‘human
being’ in the above example. But the idea of starting with basic terms suggests that

20 See my (2020: §3). Cf. also the related, but somewhat different dilemma posed by Contessa (2016:
766ff.) which is based on whether or not easy arguments are ‘ampliative inferences’.
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we have to start with quite specific terms. Thus, we need to use these basic terms in
order to introduce less specific terms.

Note, though, that even the hierarchies of generality have a limit: terms such as
‘individual’, ‘object’, or ‘thing’ are not included, because they “are not associated
with the application and coapplication conditions needed to provide disambiguation”
(2007, p. 42). This claim is central in many of her arguments against other positions:
Thomasson regularly points to the use of ‘thing’ and ‘object’ in such views and dis-
misses the positions on this very ground [for a recent example, see her (2017, p. 773)].

However, the idea of using the basic terms to introduce all other terms leads to the
following problem. Again, grounding of reference works by taking a categorial term
and imposing certain conditions on it.21 Hence the most general term we are able to
introduce in this manner is the categorial term itself (for example, if the condition is
vacuously satisfied). This means that we cannot introduce anything more general than
the most general term we have at our disposal.22 Therefore, the above characterization
of ‘basic’—see Thomasson (2015, pp. 104, 106)—blocks the successful introduction
of anything more general than such basic terms.23 Thus, if we want to be in a position
to introduce something as general as the term ‘number’, we have to assume a term at
least as general as such a term as ‘number’ among our basic terms.

Let me illustrate this by considering the foundations of mathematics as provided
by ZFC set theory. As this is merely an illustration of the more general argument and
points from above, we can ignore other ways of providing set theoretic foundations.
Moreover, we need to recognize that the illustration and the illustrated are not a perfect
match so that we have to be specific of which parts correspond to which andwhat’s just
an artefact of the illustration. In particular, we are not too interested in the exact formal
details or all the different ways of providing such, and we don’t intend to suggest that
every feature of the illustration generalizes. In particular, the following illustration is
not meant as arguing for or endorsing a particular position within the philosophy of
mathematics.

ZFC set theory is commonly used as foundation of mathematics because we can
define all concepts contemporary mathematics needs in terms of sets.24 However, the
language of set theory is a first-order language with a primitive membership-relation

21 In terms of definition, this aligns reference grounding with definitions of the genus-and-differentia form;
see Hempel (1952, p. 5f.) and Suppes (1957: §8.1). See also Thomasson’s (2007, p. 41f.) own example.
22 If we allow for the introduction of new terms via disjunction, then the most general term is a disjunction
of the terms at our disposal. However, there is the danger that building the disjunction of many such terms
puts us into a position in which we can even introduce ‘thing’, ‘object’, or ‘individual’—which are not part
of any of the hierarchies (Thomasson 2007, p. 42).
23 Again, if we allow for the introduction of new terms via disjunction,we get to a term that is the disjunction
of the basic terms. This, however, does not suffice to introduce something like ‘number’ if there wasn’t
already some rather general and abstract term available. Also, the disjunction might be infinitely long and
so not even be a proper part of the language.
24 Of course, set theory is also considered a foundation of mathematics because of its ontology, i.e., of its
(broadly Quinean) ontological commitments. Not only can we introduce the necessary definitions, but we
have enough entities to answer to them if we take the ontological commitments at face value. This leaves
it, of course, open to be a nominalist with respect to such entities and take, for example, the mathematical
ontology to be part of a fiction (cf. Field 1980 and Yablo 1998).
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∈25 whereas the ontology of set theory consists solely of sets. In the language of set
theory, we can define ‘set’ by (something like) ‘set(x) :↔ ∃y(x = y)’ since ZFC
only talks about sets so that everything is a set. Of course, as just noted above, this
is not a way of providing application conditions for ‘set’, i.e., such a definition is an
artefact of the illustration. We can, of course, use ‘∈’ to define ‘set’, but for the sake of
the illustration, I ignore this option. The reason to ignore it is simply that the problem
illustrated would not disappear, but simply be pushed back to be about ∈; however, I
take it that it is more natural in our context to work with ‘set’ instead of ‘∈’ because
‘set’ is a sortal and so in line with the main target of (E).

This brings us to the illustration. Let us illustrate application conditions with defini-
tions andbasic terms (in the sense ofEasyOntology)withprimitiveones (as understood
in definitions). We could do with just the one primitive term ‘set’ (illustrating the case
n = 1), or consider a larger base and take ‘set’ and ‘function’ to be primitive terms
(illustrating the case n = 2). Again, ‘set’ might be understood in terms of ‘∈’ (which
we also allow ourselves to use here), but for the sake of illustration this is irrelevant.
Now, given the two primitive terms, the quest is to provide them with definitions.
This is easy enough in the case of ‘function’: as usually understood in ZFC, every
function is a univalent relation and every m-ary relation can be identified with a set
of ordered m-tuples; these, in turn, can be identified with certain sets such as in the
Kuratowski–Wiener definition. In this manner, we get a non-circular specification of
the term ‘function’: every set of this-and-that form (i.e., read the analysis provided in
the previous sentence backwards) is a function.

However, as ‘set’ is our solely remaining primitive term, we are in no position to
provide it with a non-circular definition.26 This situation illustrates also why axioms
of theories are often thought of as implicit definitions27: the reason is simply that we
cannot non-circularly define all terms. Relating this back to Easy Ontology, the insight
is that we cannot provide non-circular application conditions for all terms.

Similarly for any other competitor. Consider, for example, category theory to be
the proper foundation of mathematics. It relies on the notion of ‘arrow’ that cannot
itself be non-circularly specified. The problem is simply that we cannot give a proper
definition of our basic termswith the resources at hand.Wecan, of course, go toanother
theory and provide such definitions. But this is only a way out if we can specify all
the terms of this theory. (This is essentially the objection discussed in Sect. 4.2.)
Now, as condition (AC1) makes obvious, the application conditions of (basic) terms
need not be definitions. Thus, partial definitions suffice to satisfy this condition. But,
nevertheless, we also do not have the means to give any kind of application conditions
in a language that rests solely on such terms because we do not have any other terms
left which could specify them. The example of the implicit definitions shows exactly
this: we have to specify (the behaviour of) basic terms circularly.

25 Thanks to an anonymous referee to pressing this point and the following.
26 Again, we might use ‘∈’ to provide it with such, but then the problem is to provide ‘∈’ with appropriate
non-circular application conditions; and as we use it to introduce ‘set’, we cannot use ‘set’ in its application
conditions.
27 Cf. Hempel (1952, n. 26, p. 81), Horwich (1998: ch. 6), and Hale and Wright (2001: ch. 5); for an
overview, see Gupta (2019: §2.5).

123



3542 Synthese (2021) 199:3527–3556

This is also unproblematic in the case of mathematics because—if we, for example,
subscribe to Realism about mathematics—we only want to describe an existing ontol-
ogy.28 It might not even be problematic for other metaontologies. But it is problematic
for Easy Ontology—and this for at least two reasons: first, Thomasson imposes a
non-circularity condition (AC2) and, thus, exposes her account to such an objection.
Second, as we will see in Sects. 4 and 5, just giving up this crucial condition (AC2) is
even more damaging for her account than can, prima facie, be expected. This shows
that it is not particularly easy to ‘take it easy’ as the title of Thomasson’s (2017)
suggests.29

4 Potential objections to the circularity charge

I mainly want to discuss two objections to the above argument. The first, discussed in
Sect. 4.1, draws on condition (AC1) which states that application conditions “needn’t
be statable” (Thomasson 2015, p. 91). The second objection, discussed in Sect. 4.2, is
that we might be able to supply non-circular application conditions for all basic terms
if we invoke another language. Section 4.3, then, briefly discusses somemore possible
objections such as the possibility of an infinite regress.

Before discussing the objections, let me informally point out the general dialectic
of my arguments. We have seen in Sect. 3 that there is a circularity problem. The
following objections try to show either that such a circularity does not, in fact, arise,
or that the circularity is not problematic. In order to do so, I will consider several
strategies—be they Thomasson’s or not. I will show then the following: either the
strategy is unsuccessful, or Easy Ontology loses its motivation. I take it to be clear
that both options are problematic for Easy Ontology.

4.1 Objection 1: unstatability

Recall condition (AC1) from Sect. 2.2; it states, among other things, that application
conditions are “semantic rules of use” which “needn’t take the form of necessary and
sufficient conditions, and needn’t be statable” (2015, p. 91). The objection to the above
circularity argument is effectively to point out that all that the argument shows is that
the application conditions of (some) basic terms are not statable. But as this was never
presupposed, Easy Ontology is not threatened by my argument.

Before answering it, let me first point out that this objection is implausible as
Thomasson herself wants to supply application conditions. She claims that

we can show that one may answer an existence question ‘Do K s exist?’ easily,
by appeal to whether the application conditions for ‘K ’ are fulfilled, if we can
show a way to state and understand the application conditions for ‘K ’ that does

28 On this issue, cf. Gödel’s (1944, p. 455ff.) discussion of impredicative definitions; see also Gupta (2019:
§2.6).
29 See also Button (2020: §2.4) for an argument that “‘easy’ ontology is something of a misnomer” (2020,
p. 41). His specific reasons are different from the ones provided here, though.
Note, again, that this is the crucial difference between this paper and Brenner’s (2018).
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not appeal to K s. A little ingenuity enables us to see how application conditions
even for these (relatively) basic nouns of the thing language could be stated in
terms that don’t appeal to the existence of those very things. (2015, p. 106, my
emphases)

Indeed, her specific proposal is to specify the application conditions as we discussed
them inSect. 3.2, viz., the application conditions for a basic term like ‘cup’ are provided
by ‘cupwise arrangement of particles’. Thus, she seems to feel the need herself to state
application conditions for basic terms. Of course, we could just take that to be a slip
and disregard it. Instead, an Easy Ontologist can insist on the non-statability of some
of the application conditions. So let us consider this route.

Before doing so, let me also point out again which particular problem needs to
be resolved—if only in order to see what would count as legitimate objection to
my argument. As I put it in Sect. 3.2, the problem concerns reference grounding.
Recall that the particular motivation for application conditions is that they (allegedly)
resolve the qua problem (Sect. 2.2). What my argument establishes is, effectively, that
Easy Ontology still has such a problem at its hand. For, we need the basic terms to
disambiguate, i.e., resolve the qua problem, for derivative terms. But this can only then
be successful, if the basic terms are not themselves riddled with such a problem. The
specific way proposed to circumvent this problem is to supply application conditions.
But, as we have seen, the application conditions of (some) basic terms are either
non-existent or circular—and both options are not apt to resolve any ambiguity. It is
important to bear that in mind when we discuss (Thomasson’s) strategies to supply
application conditions to such basic terms.30

Furthermore, I flagged already in Sect. 2.2 that the phrase ‘needn’t be statable’
is ambiguous. Indeed, both the ‘needn’t’ and the ‘statable’ are somewhat unclear. I
will go through several possible readings of them; however, as there might be more
possible cases than anyone can consider, I will rather pose a challenge to the Easy
Ontologist and indicate why I think it cannot be met.

Let us start to distinguish different ways in which something is not statable. One
way is that, so far, no one has come up with a way to state the application conditions,
but it is perfectly possible to do so. This, however, cannot be the relevant sense as the
above argument certainly applies to it.

Another relevant sense—and, indeed, the one suggested by Thomasson (2015, p.
91ff.)—is exactly the above one. She draws an analogy with grammatical rules when
she explicitly states that application conditions “should be thought of as semantic rules
analogous to grammatical rules” (2015, p. 92, my emphasis). Even though many of
us cannot state the grammatical rules, we have mastered them and count as competent
speakers. This sense of ‘unstatable’ is certainly uncontentious—but it is also irrelevant
here. Indeed, even though most of us cannot state the grammatical rules, there are
experts who can. Also, we could acquire this knowledge rather easily by picking up
the right book. Thus, this case is covered by the above circularity observation. My
argument applies to the case of experts; and this cannot be dismissed on the basis that

30 Thanks to an anonymous referee to pushing me on several of Thomasson’s strategies to prevent a
circularity as well as on insisting that application conditions might be unstatable. This led to several changes
in this as well as in the following sections.
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ordinary people are not experts. Besides providing a disambiguation for ‘unstatable’,
this also provides us with a reading of ‘need’. It is true that we don’t need to state
grammatical rules explicitly in order for our sentences to be grammatical; nevertheless,
such rules exist and there are people who can explicitly state them. Indeed, they even
are explicitly stated in grammars.

Another suggestion for an appropriate sense of ‘unstatable’ is the following: Appli-
cation conditions of certain terms are properly unstatable by anyone. This, too, is
problematic for Thomasson. We’ll come to this case shortly after considering inter-
mediate cases.

Another way for the application conditions to be unstatable is for them to be too
long to actually state them, i.e., we would need a language that allows for infinitely
long sentences. This case, too, is covered by the above argument. Even though the
conditions (e.g., the ‘ψ(T1, . . . , Tn−1)’ from Sect. 3.2) are then infinitely long, the
circularity charge would still apply. (We’ll come back to such a case below.)

A related case would be the one in which we allow for uncountably many distinct
(basic) terms. In such a case a countable language could not distinguish between all of
them with its resources. Thus, some of the terms would be unstatable in the countable
language. And this would be a case in which they really are unstatable. Compare, for
example, the case of a first-order language. It is well known that some sentences are
not ‘firstorderizable’, i.e., there are sentences which cannot be represented bymeans of
a first-order formula (see, e.g., Boolos 1984a, b); one such sentence is the well-known
Geach–Kaplan sentence “Some critics admire only one another”. Another example of
a property that cannot be expressed within a first-order setting is finiteness.

If this is the relevant sense of ‘unstatable’, then it does not help the Easy Ontologist.
For one thing, the problem arises in well-defined and fixed languages such that a
simple change of language circumvents the problem (changing from first-order to
second-order or from singular first-order to plural logic). Also, Thomasson is keen
to emphasize the fact that she is using ordinary English,31 i.e., a natural language,
and natural languages might not have the same problems as their formal counterparts.
Indeed, intuitively speaking, ordinary English is capable of expressing finiteness as
well as sentences such as the Geach–Kaplan sentence—as I just did above.32

For another, and this brings us back to the above thread, if ordinary English is
indeed not capable of expressing some of the application conditions, rendering them
unstatable, then we cannot answer the corresponding existence question. For, as we
have a name of the (kind of) entity, i.e., a term, we can ask whether this term (E)-
applies. But, as the application conditions tell us what to look for, we are in no position
to answer such an existence question—at least not by easy means; there might still be
a hard way.

31 See Sect. 4.2 for the relevant references.
32 Thanks to an anonymous referee for pointing out that there might be a problem with respect to what
counts as expressing a concept. I take it that, intuitively, using the corresponding term suffices here. Nothing
much hangs on it for myself. However, an Easy Ontologist is invited to challenge this. The challenge is,
then, to provide an account of adequately expressing something that does not conflict with application
of principle (E) as well as with its claim that Easy Ontology concerns natural language. In any case, my
following point is not affected by this.
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The objector might argue at this point that Easy Ontology only claims to answer
well-formed existence questions and this would not constitute one. But, to be a well-
formed existence question, the respective term must have application conditions [see
the discussion of (AC1) in Sect. 2.2 above as well as, e.g., (2009b, p. 449 and 2015,
p. 129)]—and, by assumption, it does; they just are not statable. Therefore, such an
existence question is in the range of questions that Easy Ontology claims to give an
answer to, or, as Thomasson puts it, “all well-formed existence questions may be
answered by conceptual and/or empirical work” (2015, p. 128). But as the conceptual
work is bound to the application conditions, this option drops out. So, it is the bur-
den of the Easy Ontologist to provide reasons that terms with unstatable application
conditions are such that they are empirically accessible.

But here is a problem in providing such reasons. The specificmotivation to introduce
application conditions is to circumvent the qua problem. The qua problem is a problem
of the indeterminacy of reference. So, if the application conditions of a term T are
unstatable, then we can likewise never have reasons that we even established reference
to the entities in question. This, then, blocks empirical inquiry until we have reasons
to believe that we are actually inquiring about T s. And any relevant reason will give
us a way to (at least partially) state application conditions for the term, rendering its
application conditions statable after all—and exposing such a term to the circularity
charge.33

Thomasson’s strategy to circumvent the problem of stating application conditions
in order to answer existence questions is to suggest that

it is plausible that any language must include some ‘semantic basic term’, that
is, terms that cannot be learned just by way of learning definitions stated in other
terms. (2015, p. 92)

And she continues:

And if that is so, we must allow that for at least some terms, the application
conditions (considered as semantic rules of use) needn’t be capable of being
(informatively) stated to be learned and to be in force. Instead, speakers may
learn to master the rules of use for those terms by other means, for example,
ostensively as we learn that a term is to be applied in situations like this (and not
in situations like that), or via judgments of similarity to ostended paradigms[.]
(2015, p. 92, her emphases)

Thus, these ‘semantic basic terms’ are supposedly learnable via ostension and sim-
ilarities among the referents of such ostensions. Furthermore, when teaching a new
term, we “simply demonstratively [apply the term] in some situations and [refuse] it
in others, and [applaud] or [correct]” (2015, p. 93) the attempts of the child.

Nevertheless, as all the other terms are built on basic ones, we run into the problem I
pointed out above. If we are not in a position to fix the reference, i.e., to circumvent the
qua problem, then—according to Easy Ontology—we cannot even evaluate existence
claims. I already flagged the issue in Sect. 2.2, viz., changing to ostension only helps

33 As already pointed out in footnote 19, any other term used to get us closer to the application conditions
has to be properly introduced—but, given Thomasson’s (2015: ch. 8.2) account of introducing new terms
to a language (see also my 2020), this is impossible, if the basic terms themselves are already problematic.
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if there is not an analogous qua problem—but there is. It is indeterminate to what
someone is pointing.

There are at least two problems with Thomasson’s suggestion. The first has to do
with indeterminacy and the second with the relevance of this account. Let me consider
these in turn.

First of all, it is hard to imagine a way in which you teach someone the use of a term
by telling her/him that it applies ‘in situations like this’ if s/he has not alreadymastered
a good amount of language; but then such a term can hardly be semantically basic. It
is difficult enough just to point to something to make someone else understand what
is referred to; and pointing to a situation makes the task rather more difficult. When
does the situation start? When does it end? How shall we distinguish the pointing to a
situation as distinct from the pointing to an object?34 And since the similarity is with
respect to ‘ostended paradigms’, it simply inherits the problems I just presented. By
and large, this way of interpreting the unstatability is rather not available to Thomasson
as she encounters problems she takes to be serious herself; indeed, they are the very
motivation to introduce application conditions in the first place. Thus, if she does
not recognize a qua problem here, then she loses her own motivation to introduce
application conditions because they are not needed to disambiguate reference.35

This brings us to the second problem. The problem is that Thomasson’s account
presupposes someone who has already learned the language and now teaches it to
someone else—but this means that we must be in a situation in which the problem my
argument gets at is already solved. Thus, even if this is how we learn language, the
particular issue is not addressed. As I put it at the beginning of this section, the problem
is reference grounding. Teaching children language presupposes that this problem is
already solved. The children can only pick up the correct use of terms from people who
use the term correctly. As we have seen, this presupposes that the term has application
conditions (whether or not they are statable). Thomasson (2007, p. 48) subscribes to a
‘hybrid’ causal theory of reference. The application conditions are necessary to ground
reference—and this is the non-causal part—in order for the reference of the terms to be
then passed along causal chains. The teaching of terms corresponds to the causal part
of this chain—but the problem is with the grounding of reference. Thus, the specific
way in which children are taught particular terms is irrelevant for the discussion here.
On the contrary, this aspect rather shows that something is wrong with Easy Ontology.
If reference grounding works in this particular way, we lose, again, all the motivation
to introduce application conditions in the first place.

To sum up, any understanding of ‘unstatable’ faces such problems. Thus, the burden
is on Thomasson to provide a reading of ‘needn’t be statable’ that does not invite
criticisms along the above lines. I fail to see how she can provide such a reading that
does not undermine her own approach.

34 Cf. Quine’s (1960: ch. 2, esp. §12, p. 52f.) ‘Gavagai’ argument in support of his ‘inscrutability of
reference’ thesis; see also his (1960: §21, p. 100ff. in ch. 3) as well as Putnam (1980, p. 17). Note, however,
that I only rely on the indeterminacy of ostension, and don’t invoke an indeterminacy of translation or
inscrutability of reference thesis.
35 This does not imply that I am objecting to us learning language in some such way. The point is simply
that going this way undermines the motivation for Easy Ontology.
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Lastly, there does not seem to be a reason why the application conditions should
be unstatable at all. To follow up on the ‘grammatical rules’ analogy, there is no
problem in providing a comprehensive grammar.36 There is, of course, a problem for
Thomasson’s account. But the lesson to be learned here can rather be: we do not have
any reason to believe that (basic) terms even have application conditions. And, indeed,
as the argument of Sect. 3.2 shows, if they have them, they are circular. As shown,
either way is damaging for the easy approach.

4.2 Objection 2: change of language

This brings us to the second objection which is related to the idea of theory change
(see the end of Sect. 3.2). The first longer quotation in Sect. 4.1 might be understood
as a change in language, i.e., ‘particles arrange cupwise’, for example, is a term of
another language that provides application conditions for ‘cup’ in our language (or,
as in the quotation, Carnap’s ‘thing language’). As there is a change in language, the
circularity is prevented.

I will first consider two replies to this objection. The first is to try and play the
suggestion out in order to see in what way it is problematic; this will also be helpful
for our discussion in Sect. 5 as it involves analytic entailments. The second reply is to
point out that we just run into another circularity problem. After these replies, I will
consider another of Thomasson’s strategies to get around the circularity, viz., to use a
‘feature-placing language’ in order to supply application conditions.

The first way to see that this objection is a non-starter is to note that Thomasson is
very keen to emphasize that she is talking about and using ordinary English (see, e.g.,
2007, pp. 33, 35, 2008, p. 72, 2015, pp. 25, 41, 44, 176, 2016, p. 125f., 2017, pp. 769,
771) and it is ordinary English that makes the inferences obvious (2017, p. 769), i.e.,
easy. So it would be rather surprising to have a change in language here.

In particular, many (if not all) of the easy arguments are either not easy or not valid
anymore if we have to change the language in-between. For, we want to establish
the existence of entities by using principle (E). But this principle is supposed to be a
principle of ordinary English. Since some steps in the easy arguments would involve
a change of language, principle (E) is not applicable anymore.

On the other hand, if we assume principle (E) still to be applicable, we need an
explanation for the alleged obviousness of the arguments. If one step of the argument
builds a bridge to another language, this cannot be obvious to anyone who has not
mastered both languages. Further, even if all the steps of such arguments are justified,
the steps are not easy as there is no reason that a valid argument in another language
involves only easy steps.

Moreover, the obviousness and easiness of the arguments stems fromanalytic entail-
ments. Again, these analytic entailments are part of ordinary English. Therefore, if
we interpret easy arguments as involving a change of language, then at least one step
of such an argument cannot rest on analytic entailments in this sense.

36 Indeed, if we take the analogy seriously, the suggestion is: there are certain bits of language which don’t
have any grammatical rules. On the face of it, this is just implausible. This shows that the analogy is not
particularly well-suited for the case at hand.
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We can also note here that analyticity is a relation on sentences of one language and
not on sentences of different languages—as Thomasson (2015, p. 242, n. 10) points out
herself. It is maybe a plausible suggestion that there are languages which are related
in such a way that sentences of these languages stand in such a relation, too. However,
that presumably makes only sense if the one language contains all the sentences of the
other language so that this sense of ‘analytic’ is analogical to the analyticity within
one language.

However, even if we allow for such a relationship for sentences of different lan-
guages, say English and German, easy arguments can still only then count as easy if
both languages are mastered. And even in such cases it is unclear whether the ana-
lytic relationships of German sentences match up the analytic relationships of English
sentences, even if we have a German sentence G and an English sentence S such that
it can plausibly uphold that S analytically entails G or vice versa. Another German
sentence G ′ might be analytically entailed by G without being analytically entailed
by S. But if we pass from S to G and from G to G ′, it is not clear whether we end up
with the required English sentence S′ that puts us in a position to use (E) and infer the
existence of some entity.

Let us suppose, however, that even the change-of-language step can be considered
to be obvious and easy. Demanding the steps in arguments (except the step involving
a change of language) to be easy, we need a guarantee that the steps in the other
language are easy, too. But there is no such guarantee forthcoming since the other
language does not need to align in the right way to match up analytic entailments in
ordinary English [see, e.g., Hirsch’s (1993) for examples of languages that are able to
express the same things but without this strong analytic connection]. This shows that
this strategy fails, too.

Another way to see that this strategy fails is as follows. The change-of-language-
strategy can only then be taken to be successful, if we don’t end up in another circle,
i.e., if we don’t end up in a situation as dismissed in Sect. 3.1. What we effectively do
when supplying application conditions for the basic terms of English by recurrence
to German is to enrich our pool of basic terms. However, the circularity pointed out
in Sect. 3.2 is not directly circumvented in this way. Rather, we push the problem one
step back and have to ask, in the running example, what the application conditions of
the German terms are. As we cannot use the English terms, we run into a circularity
problem regarding the German terms. And this problem repeats itself if we try to
supply the application conditions of German terms by means of yet another language.

The problem, as we have just seen, is that the languages we used in order to supply
application conditions rely themselves on terms. However, Thomasson also considers
another type of language:

Or one could perhaps instead express the application conditions in […] a ‘feature-
placing language’, and hold that if it is cupping around here, then there is a cup.
If so, we could state the application conditions for ‘cup’ without appealing the
existence of a cup or indeed of any object at all. (2015, p. 107)

The idea is that we use a language that does not appeal to any particular object in order
to supply application conditions for the corresponding terms. This amounts to saying
that the application conditions of a term T do not involve any other term T ′ so that
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the circularity is prevented, viz., terms correspond to objects, but ‘it is cupping around
here’ does not correspond to an object. (The alternative is that ‘it is cupping around
here’ does correspond to an object; but then there is a term T ′ and the circularity is
not circumvented.)

Brenner (2018, p. 610f.) already considers and rejects this strategy, and I agree with
his assessment. According to him, we have two options of interpreting sentences like
‘it is cupping around here’, viz., either such sentences have ontological implications
or they don’t. In the latter case, we run into a problem as they are supposed to imply
sentences of the form ‘there exists a …’ which are, in turn, ontologically loaded
according to principle (E). This means that we have to understand such sentences as
having ontological implications, but then they are not helpful for the case at hand as
they are just different formulations of sentences of an object-placing language.

Adding to this, we can also note that we potentially run into the problem of ground-
ing the reference. The application conditions are supposed to ground reference. As
Thomasson presented the case, this is accomplished by invoking categorial terms. If
the feature-placing language does not have those, it is either not capable of grounding
the reference of terms like ‘cup’, or it cannot come with its own qua problem. But in
the latter case we lose all motivation to introduce application conditions again. Thus,
either we don’t solve the motivating problem to introduce application conditions, or
we lose the motivation to introduce application conditions. Either case is obviously
problematic.

4.3 Further objections

In this section, I want to consider further objections. As Brenner (2018) already dis-
cusses these issues, I will be quite brief.

One way of circumventing the circularity charge is to endorse an infinite regress.
This is also a possible way out if we try to use another language to supply application
conditions of the terms in the language we start with (see Sect. 4.2). In Sect. 3.2, I
did not mention the possibility of an infinite regress because Thomasson’s strategy
to divide terms into basic and derivative ones together with her characterization of
‘basic’ seems to suggest that we start from a finite base of basic terms which are used
to introduce all other terms. However, as my argument shows, we could easily go for
an infinite regress as well. Suppose that we have infinitely many (basic) terms T1, T2,
…, Tn , …, such that

AC(T1) = ϕ1(T2); . . . ; AC(Tn) = ϕn(Tn+1); . . . ,

i.e., the application conditions of a term Ti are provided in terms of (at least) a term
Ti+1.

Note, first, that if we even allow for uncountably many basic terms, we end up in a
situation that has already been covered by the discussion of ‘unstatable’ in Sect. 4.1. So,
let us assume that this regress is meant to introduce countably many terms. Likewise,
we can assume that we do not just have infinitely long sentences invoking many
basic terms in a circular fashion because, otherwise, we end up in another circle,
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as also discussed above. Thus, for every basic term Tj ( j ∈ N), either AC(Tj ) =
ϕ j (Tj1, . . . , Tjn ) (n ∈ N), i.e., the application conditions of Tj involve finitely many
other basic terms (that have not already been used, i.e., ji > j , 1 ≤ i ≤ n), or the
application conditions are themselves infinitely long.

Essentially, both options are open to Brenner’s observation that because Thomas-
son describes the application conditions of terms as meaning-constitutive, it “seems
implausible that we could learn an infinite sequence of sortals, and their terms’ asso-
ciated application conditions” (2018, p. 608). We can even make this charge more
pressing by recalling Thomasson’s characterization of ‘basic term’ as terms “we tend
to learn early in our cognitive or linguistic development” (2015, p. 104)—but even
allowing the possibility that we have infinitelymany terms at our disposal, we certainly
do not learn infinitely many terms in our early cognitive and linguistic development.
Thus, Thomasson’s only option here is to suggest that basic terms are “innate ‘input
analysers’ [which] give us the conceptual rules which we need [and] only link with
the relevant term of our language” (2015, p. 93). In the case of the regress, this means
that we must have infinitely many of such innate terms which seems implausible (cf.
Brenner 2018, p. 608).

Further, Thomasson suggests the following:

And in fact, we teach our children words not by telling them (unhelpfully) that
they should apply ‘dog’ wherever a dog exists, but rather by simply demonstra-
tively applying ‘dog’ in some situations and refusing it in others, and applauding
or correcting their attempted uses of phrases like ‘[there is a] dog’ in various
situations. (2015, p. 93)

The problem is, however, that we end up in a situation as above. By the lights of the
Easy Ontologist, we have a qua problem here. It would not be enough to just say ‘dog’
without disambiguation. This would not be a problem per se, but it is for the case at
hand, viz., for ‘semantic basic terms’, i.e., the very first words we learn. Whatever
reason there is for children to pick up the correct use of words, it does not seem that
Easy Ontology fits the picture with its need to supply application conditions. Indeed, it
rather seems that Thomasson supplies a picture of language acquisition that is contrary
to what she claims in other contexts.

It might be objected here that there are two different things going on. The one
is language acquisition, the other one disambiguating reference. Thus, the issue of
language acquisition should be kept separate form the latter—and it is only to the
latter for which a qua problem arises. Clearly, to teach children language already
presupposes that there is someone who has acquired the language properly; who else
would teach the children? However, if the Easy Ontologist plays this game, it is still
difficult to see how we ever got to this point that someone acquired a language in
the first place. In particular, the semantic basic terms of such a person may very
well differ from the semantic basic ones of anyone s/he teaches her/his language to.
But all the ontological questions and the easy game should be applicable to such a
person—and this is where we run into the circularity problem again. As discussed in
Sect. 4.1, teaching language to children presupposes that we have resolved the problem
of reference grounding—but, as I argued, this problem is wide open.
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Note, too, that it is implausible to suppose that whoever managed to first fix the
reference of a term had ‘innate input analysers’ in the sense needed to make Thomas-
son’s suggestion work. For, such a person would do the first steps in even getting to
the concepts which then might become innate in her/his offspring. Even today we
introduce new concepts to our available stock and this does not seem to answer to
anything ‘innate’ at all. It might be objected that we have enough concepts around to
ground reference to a new concept. However, this means again that we are only getting
more fine-grained with respect to what we are able to introduce because we’d need a
grounded concept that gives us at least a rough idea what we are introducing. In this
sense, we would not be able to properly introduce anything really new, but only to be
more and more specific with respect to what we refer; otherwise we’d need categorial
terms which, by assumption, we don’t have for these new terms. Thus, this option,
too, is not doing the work that the Easy Ontologist requires it to do. (Consider the
case of ‘electron’. Presumably we are now in a position to disambiguate the reference
by invoking terms such as ‘matter’—terms on a par with ‘object’ and ‘thing’ that
Thomasson rejects.)

With respect to the circularity charge, Brenner (2018, p. 609) discusses two reasons
why the circularity is bad. Thefirst reason is that Thomasson explicitly invokes her non-
circularity condition (AC2), the second that circular application conditions “make no
substantive requirements on the world for their satisfaction” (2018, p. 609). I covered
the first one already above in Sect. 3.2, so let me just say something about the second.
In the way I set up the argument, this concern is covered as well as I don’t think
my argument relies on terms with non-trivial application conditions, but also applies
to the latter. Thus, I don’t need another reason for the non-substantive terms to be
problematic.

5 How damaging is the circularity for easy ontology?

Having refuted the objections, let us consider which impact the circularity charge has
on EasyOntology. Themain ideas have already been invoked in Sects. 3 and 4; here we
consider how widespread they are. Before doing so, let us consider how Thomasson
herself thinks about her Easy Ontology and the potential impact of a circularity in the
approach. She wants to downplay such a circularity; I, on the other hand, argue in this
section that the circularity is more damaging than she makes it appear to be.

Thomasson characterizes any approach as ‘easy’ if it has “two features” (2015, p.
128):

Ef1 “all well-formed existence questions may be answered by conceptual and/or
empirical work” (2015, p. 128), and

Ef2 “at least some disputed existence questions may be answered by means of trivial
inferences from uncontroversial premises” (2015, p. 128).

We consider the impact on these features; I argue that neither is satisfied if Easy
Ontology is circular.
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Before giving her argument that the non-circularity condition (AC2) can be fulfilled,
Thomasson also tells us what’s at stake if she is not able to make her case for the basic
terms. Let me give the quotation in full:

Indeed, one might worry that the application conditions for basic sortal terms
‘K ’ must appeal to the existence of K s (rather than their being fulfilled by the
existence of entities of other sorts)—making it impossible to appeal to whether
or not application conditions are fulfilled to determine whether things of the
relevant sort exist, and so rendering the easy approach to existence questions
unworkable for this range of terms. Of course it might still provide an easy way
of resolving existence debates for many disputed entities, including numbers,
properties, propositions, events, states, nations, and so on, and so still might be
quite a significant contribution to metaontology. But, the objection goes, hard
ontology on this view still has a place: existence questions posed using basic
sortals must be addressed using hard ontological methods, and the rest may be
answered easily. (2015, p. 103f., her emphasis)

So, Thomasson reasons that even if she can’t make the case for principle (E) applying
in the case of (some) basic terms, she still has a lot going for cases in which the terms
are derivative such as, for example, ‘number’ (2015, p. 104).37 Thus, Thomasson
makes it sound as if nothing much is at stake here, and that the easy approach stands
its ground still for a large class of entities. I beg to differ.

First, given her own views, it is rather unclear how the basic terms that have to
be invoked in the application conditions of derivative ones do circumvent the qua
problem. For, according to Thomasson’s own reasoning, we cannot successfully refer
to anything without using a categorial term that helps to ground the reference. To this
end, she introduces the idea of application conditions. But, so far, she was not able
to make plausible that those basic terms even have application conditions. Indeed,
the argument of Sect. 3.2 shows that they can only have circular ones. Granting them
such, however, leaves us with two choices given (EF1). One is to admit that we do not
have a way of conceptually determining whether the corresponding entities exist; the
other is to do empirical research. But, we already pointed out in Sect. 4.1 that without
fixed reference, empirical investigations are doomed to fail, too. As these are the only
available options according to (EF1), we end up in a position that still refutes (EF1).
For, the terms have application conditions, i.e., the corresponding existence questions
are well-formed. Yet, they are not easily answerable. Easy Ontology is not easy.

So far, this just seems to be a rehearsal of what Thomasson already suggested in
the above quotation. But things get even worse as soon as we consider how derivative
terms are introduced. They are introduced “on the basis of” (2015, p. 99) other terms.
Thus, working our way back as far as possible, they are introduced on the basis of basic
terms. Indeed, Thomasson makes this explicit when she addresses a ‘bad company’
problem for her account; she gives “conditions for new sortal terms to be minimally
introduced to the unextended language L” (2015, p. 263); the first condition is as
follows.

37 Interestingly, Thomasson sees her account as not endangered for terms which do not have ‘non-trivial
application conditions’. This shows that Thomasson would not be particularly worried about Brenner’s
(2018) arguments.
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The term(s) must be introduced via a conditional that gives sufficient condi-
tions for its(/their) application, stated using the extant terms of L and/or other
minimally introduced terms. (Note that this permits that we may simultaneously
introduce interrelated terms […]. But it requires that to do so there must be
sufficient conditions for all of them statable in terms of L or other minimally
introduced terms.) (2015, p. 263, my emphases)

Thus, we are only allowed to use terms that have been ‘minimally introduced’.38 As
we have to start with a certain set of terms, viz., the basic terms, every other term
must be statable in terms of the basic terms we started with. For, otherwise, we would
end up with terms that have not been ‘minimally introduced’, contrary to what the
quotation enforces.

As argued in Sect. 3.2, some basic terms have circular application conditions, i.e.,
if T is such a basic term, its application conditions are ‘“T ” applies iff T s exist’. But,
as argued, any other (basic) term without circular application conditions must invoke
among its application conditions circular terms. Thus, we can count such terms as
derivative in the relevant sense here.

Furthermore, as the existence of some entity is, by (EF2), easily inferable from the
existence of other entities, we need corroboration of the existence of the latter. Put
differently, easy arguments work via analytic entailments, i.e., we start from “uncon-
troversial premises” (2015, p. 129) and apply such entailments to derive the existence
of something else—and the application of the latter must be statable in terms of the
basic terms we started with (as per the above quotation).

If we really do the ground work here, the uncontroversial premise must involve
basic terms. We can note that, by the observation in the above paragraphs, the premise
is presumably not uncontroversial after all—as the term needs proper application
conditions to guarantee successful reference; but we have seen that this condition
is not satisfied. Putting this problem to one side, we can still wonder what analytic
entailments are possible from application conditions of the form ‘“T ” applies iff T s
exist’ (or, ‘if something is a T , then it is a T ’). Prima facie, there seems to be no reason
that anything interesting follows analytically. An analytic entailment presumably is
only established, when the conditions of the entailed sentence are satisfied in virtue
of the satisfaction of the conditions of the entailing sentence.39 For example, if the
application conditions of a term T ′ are ‘“T ′” applies iff T1s exist’ (or, ‘if something is
a T1, it is a T ′’) and we have a sentence establishing the existence of T1 ∧ T2s,40 i.e.,
a more specific entity, then we can infer that T ′s exist, too. Likewise, if we have the
existence of T3s and the application conditions of T ′′ are ‘“T ′′” applies iff T3 ∨ T4s
exist’ (or, ‘if something is a T3 ∨ T4, it is a T ′′’), we can infer the existence of T ′′s.

But, again, these are not application conditions of basic terms; the available appli-
cation conditions don’t have that form. In fact, they seem rather to involve atomic
sentences, if we take ‘exist’ to be a predicate; if we take it to be a quantifier, it only

38 In terms of theory of definition, Thomasson’s condition corresponds to the eliminability of defined terms;
see Hempel (1952: §4, p. 17ff.) and Suppes (1957: §8.2).
39 See my (2020: §2.4) for a partial explication of ‘analytic entailment’.
40 The ‘T1 ∧ T2’ is to be understood in the obvious way, i.e., an entity x is a T1 ∧ T2 iff. x is a T1 and x is
a T2, and similarly in other cases.
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follows that something satisfies the formula in question—which we already knew.
Also note that even though something satisfies the formula, there is no reason to think
that such an existence sentence analytically entails a specific instance; otherwise, it
would be a conceptual truth that, given a specific a, if there are T s, then this very
a is T , which is absurd in most cases (just because there are human beings, it isn’t
analytically entailed that, for example, I exist). Note also that I am not claiming that no
existence sentence has interesting (analytic) implications, but that the specific ones we
are considering here, i.e., those involving basic terms with circular application con-
ditions, don’t have any. A sentence like ‘∃xT (x)’ might have interesting implications
if the ‘T (x)’ is complex and involves information about other things. But this is not
the case for basic terms. Thus, the only available analytic entailments for basic terms
seem to be from something like ‘∃xT1(x)’ to ‘∃x(T1 ∨ T2)(x)’.

Moreover, it is even unclear that the application conditions of derivative terms have
anything in common with the application conditions of a (circular) basic term. For
the application conditions of the basic term T are “T s exist”. But the application
conditions of the derivative term T ′ are, for example, “‘T ’ applies”. The problem here
is that in the one case we are using a term, in the other case we are only mentioning
it. Thus, even if we can take it as established that the basic term applies, there is no
immediate analytic entailment establishing the existence of anything else. The only
entailments that hold are trivial and amount to nothing more than a simple re-naming
of the entities corresponding to the terms involved in the entailments, but not to the
inference of the existence of (different) entities.

By and large, there don’t seem to be (interesting) analytic entailments available
(even granting that the concept analyticity makes sense). Thus, if we take away the
basis, the complete approach collapses. In particular, if we grant circular application
conditions, (EF2) cannot be satisfied, i.e., the approach is—by Thomasson’s own
characterization—not easy. In particular, then, it seems that Easy Ontology fulfils
neither condition (EF1) nor (EF2).

6 Conclusion

Let me summarize the results of this paper. In Sect. 2, I provided a sketch of Easy
Ontology (Sect. 2.1), motivated Thomasson’s reasons to introduce application con-
ditions and provided a partial characterization of them (Sect. 2.2). The main idea of
application conditions is to circumvent the qua problem that purely causal theories of
reference face. It is Thomasson’s self-set goal to give application conditions to terms in
a non-circular fashion to make her easy approach work. To this end, she distinguishes
between derivative and basic terms.

Section 3 is an argument that Thomasson is not successful in preventing the circular-
ity. In particular, after laying down some preliminaries in Sect. 3.1, I argue in Sect. 3.2
that there must be basic terms which only have circular application conditions. In
Sect. 4, I address potential objections to my argument.

Lastly, Sect. 5 evaluates the question of how much impact such a circularity charge
has. I argue that it is damaging for Easy Ontology as a whole, even though Thomasson
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claims that the approach might still be applicable to the parts involving derivative
terms. Thus, the circularity implies that Easy Ontology is not easy.41

Let me emphasize again that my arguments only use what Thomasson herself
endorses. This is why there is no reasonable claim that I am begging the question. And
as it is Thomasson’s strategy to distinguish between derivative and basic terms, this
step, too, is not easily dismissed. I conclude then, that EasyOntology—as it stands—is
not a tenable metaontology.
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