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Abstract
In a recent paper Ronald Meester and Timber Kerkvliet argue by example that infinite
epistemic regresses have different solutions depending on whether they are analyzed
with probability functions or with belief functions. Meester and Kerkvliet give two
examples, each of which aims to show that an analysis based on belief functions yields
a different numerical outcome for the agent’s degree of rational belief than one based
on probability functions. In the present paper we however show that the outcomes are
the same. The only way in which probability functions and belief functions can yield
different solutions for the agent’s degree of belief is if they are applied to different
examples, i.e. to different situations in which the agent finds himself.

Keywords Infinite epistemic regress · Probability function · Belief function ·
Uniqueness

1 Introduction

It is a truth widely acknowledged that a belief which is justified must be based on a
reason. This reason is either justified or unjustified. If it is unjustified, it cannot really
provide justification, but if it is justified, then it must be based on a second reason,
which in turn is either justified or unjustified, and so on. Enter the notorious regress
problem: (a belief in) a proposition E0 is justified by (a belief in) E1, which is justified
by (a belief in) E2, et cetera, ad infinitum. As a justificatory chain, such a regress not
only seems at odds with our finite natures, it also appears to be inconsistent, for it
blocks rather than brings justification. It is as if we are given a cheque with which we
go to a bank teller, who gives us a new cheque with which we go to another bank teller,
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and so on. Never do we encounter a teller who actually converts our cheque into bars
of gold. Similarly, since the justification in an infinite epistemic regress is for ever
postponed and never cashed out, a proposition which receives its justification from an
infinite regress actually is not justified, for the justification never materializes.

The regress problem has plagued epistemology for at least two millennia. Several
solutions have been proposed, but each has its own drawbacks.1 The problem is no
small beer, for the very existence of justified beliefs and thus of knowledge depends on
it. Bonjour called considerations pertaining to the problem “perhaps the most crucial
in the entire theory of knowledge” and Huemer speaks of “the most fundamental and
important issues in all of human inquiry”.2

As it turns out, a great deal of the problem springs from the fact that the justification
relation has been seen, sometimes explicitly but more often tacitly, as some sort of
entailment, where Ek is implied by Ek+1 for all k. In that case it is of course impossible
to determine the truth value of E0 if the chain is infinitely long. However, once the
relation is given a probabilistic interpretation, in which Ek is merely made more
probable by Ek+1, then the probability value of the target proposition, P(E0), can be
determined even if the chain goes on forever.3 If E0 is probabilistically justified by E1,
which in turn is probabilistically justified by E2, and so on, then it can be shown that
P(E0) is well-defined. It does not go to zero, as has beenmaintained by C.I. Lewis, nor
does it remain forever unknown, as for example Nicholas Rescher thought.4 Rather it
tends to a unique, positive value between zero and one. In this sense a probabilistic
regress, as Frederik Herzberg has called it, is not inconsistent in the way that a non-
probabilistic one is. Unlike the truth value of E0 in a non-probabilistic regress, the
probability value of E0 in a probabilistic regress is well-defined, so justification can
materialize in the latter but not in the former.5

The consistency of probabilistic regresses has been demonstrated on the basis of
Kolmogorov probability functions.6 In a recent paper, Ronald Meester and Timber
Kerkvliet have made a welcome and original attempt to analyze such regresses in
terms of Shafer belief functions.7 Their findings reinforce the view that epistemic
regresses are consistent once they have been given a probabilistic interpretation rather
than an interpretation in terms of entailment. This is a notable result, for belief func-
tions and probability functions are rather different. First, belief functions are weaker
than probability functions, containing the latter as special cases. Second, belief func-
tions have been hailed as being particularly useful for modelling lack of information,

1 For recent overviews, see for example (Aikin 2011; Aikin and Peijnenburg 2014; Turri and Klein 2014).
2 Bonjour (1985), p. 18; Huemer (2016), p. 16.
3 Ek is made more probable by Ek+1 iff P(Ek |Ek+1) > P(Ek |Ec

k+1), where Ec is the complement of
proposition E , taken as a set of possible worlds. For the most part we will in this paper use set theory
notation (rather than the notation for logical languages); for first, it is the notation used by Meester and
Kerkvliet, and second, both Kolmogorov and Shafer defined their functions over algebras and not over
logical languages. The inequality P(Ek |Ek+1) > P(Ek |Ec

k+1) is a necessary but not sufficient condition
for probabilistic justification. See Peijnenburg (2007) and Atkinson and Peijnenburg (2017).
4 Lewis (1929), pp. 327–328; Rescher (2010), pp. 36–37.
5 Herzberg (2010).
6 Peijnenburg (2007), Atkinson and Peijnenburg (2017), Kolmogorov (1933).
7 Meester and Kerkvliet (2019), Shafer (1976), Shafer (1981).
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which probability functions can only handle by means of probability intervals.8 Third,
whereas the value of the unconditional probability P(E0) is determined solely by the
conditional probabilities, P(Ek |Ek+1) and P(Ek |Ec

k+1), the value of the unconditional
belief Bel(E0) cannot be expressed solely by the conditional beliefs Bel(Ek |Ek+1)

and Bel(Ek |Ec
k+1).

9

Although probabilistic regresses turn out to be consistent in both analyses, Meester
and Kerkvliet argue that an analysis with belief functions may yield a different numer-
ical outcome than one using probability functions. In other words, given a particular
infinite epistemic regress, the value of Bel(E0) may differ from that of P(E0). This
would mean that our degree of rational belief in E0 could vary, dependent on whether
we analyze the regress with probability functions or with belief functions.

Meester and Kerkvliet argue for this claim by means of examples. In their Sect. 3,
they construct two examples aimed at showing that Kolmogorov probability functions
andShafer functions give different outcomes for one and the sameprobabilistic regress.
In Example 3.1 they find that the agent’s degree of belief in E0 is one half if one uses
belief functions, Bel(E0) = 1

2 , whereas with probability functions the degree of
belief is a bit less: P(E0) = 3

7 . In Example 3.2, Shafer belief functions again give
Bel(E0) = 1

2 , but a probability distribution yields P(E0) = 1
3 .

Contrary to what the paper of Meester and Kerkvliet may suggest, it is however not
so that P(E0) = 3

7 in Example 3.1, nor is it so that P(E0) = 1
3 in Example 3.2. A

detailed analysis of Examples 3.1 and 3.2 shows that in both examples P(E0) = 1
2 .

So these examples do not show that a particular regress may have different solutions
when analyzed with belief functions or with probability functions: in both examples,
Bel(E0) = P(E0) = 1

2 . They only show that a regress may have different solutions
in different situations; applied to the same situation or example, Bel(E0) and P(E0)

are numerically identical.
Our paper is set up as follows. In Sect. 2 we call to mind the systems of Kolmogorov

and Shafer, and the difference between probability functions and belief functions. In
Sect. 3 we summarize Meester and Kerkvliet’s reasoning about their Example 3.1,
and we explain that a Kolmogorov analysis of this example gives P(E0) = 1

2 . In
Sect. 4 we do the same for their Example 3.2, showing that here, too, P(E0) = 1

2 .
Thus neither Example 3.1 nor Example 3.2 shows that a particular regress can have
different solutions when applied to the same situation. Can there exist other examples
which do the job? In Sect. 5 we explain that this is impossible: probability functions
and belief functions always yield the same numerical outcome when applied to a
particular probabilistic regress in a particular situation.

8 For a more sceptical view about the Shafer approach, see for instance (Pearl 1988).
9 For the former, see Peijnenburg (2007) and Atkinson and Peijnenburg (2017); for the latter, see Meester
and Kerkvliet (2019), Sect. 4.
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2 Probability functions and belief functions

In this section we recall the axioms of Kolmogorov and of Shafer, and we shall explain
the basic similarities and differences.10

The probability functions are defined on a σ -algebra over a set�, that is a collection
of�’s subsets which includes�, and is closed under complement and under countable
unions. Originally these subsets are related to events, and we follow Kolmogorov in
stating the axioms in this language. However, they can also refer to (beliefs in) propo-
sitions, and this is of course more natural when we address subjective assessments of
a rational agent about how likely it is that an event will occur.

The sample space, �, is the set of all elementary events (e.g. in throwing a die,
there are six elementary events), F is the σ -algebra over �. It contains all possible
events (e.g. throwing six is a possible event, but so is throwing an even number), and
P is a probability function associated with every event, E , in F . The axioms are

1. The probability of any event is non-negative: P(E) ≥ 0.
2. The probability of the sample space is one: P(�) = 1.
3. The probability of the union of any countable sequence of disjoint events is equal

to the sum of the probabilities of all those events:

P(E1 ∪ E2 ∪ E3 . . .) = P(E1) + P(E2) + P(E3) + · · · .

The limitation to countable sequences is called σ -additivity. From these axioms one
can prove that the probability of any event cannot be greater than 1, and that the
probability of the null set is 0. Moreover, if E1 and E2 are not disjoint, one can also
prove that

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2) . (1)

If you know the probabilities of every event in F , then you know the probability
distribution.

Glenn Shafer was interested in situations where one does not know the whole
probability distribution, in short where there is some ignorance.11 He introduced the
notion of the mass of the proposition E , m(E). Bearing in mind that E is a set of
possible worlds (see footnote 3), we may interpret m(E) as the weight of evidence
supporting only the claim that the actual world belongs to E . Note that this makes
room for ignorance in that it leaves open to which particular subset of E the actual
world belongs. The mass of the null set is zero, m(∅) = 0; and the sum of the masses
of all the subsets (and not only the subsets in the σ -algebra) contained in the sample
space is one:

∑

C⊆�

m(C) = 1 .

10 We thank an anonymous referee for the advice to add this section as a service to readers who are less
familiar with the material.
11 Shafer (1976).
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The belief in E is defined as the sum of the masses of all the subsets of E :

Bel(E) =
∑

C⊆E

m(C) .

The axioms for Shafer belief functions can now be stated as follows:

1. The belief in any proposition is non-negative: Bel(E) ≥ 0.
2. The belief in the disjunction of all the propositions (the sample space) is one,

Bel(�) = 1, and the belief in the impossibility is zero, Bel(∅) = 0.
3. The belief in a disjunction is greater than or equal to the sum of the beliefs in the

disjuncts, minus the belief in their conjunction:

Bel(E1 ∪ E2) ≥ Bel(E1) + Bel(E2) − Bel(E1 ∩ E2) . (2)

Formula (2) is like (1), except that the equality has been replaced by an inequality.12

In the special case when there is no ignorance, all the nonzero masses range over
singleton sets, and the inequality in (2) becomes an equality. So in that case the belief
function reduces to a probability function.

Arthur P. Dempster introduced a rule for combining two sets ofmass assignments.13

Since this rule has certain undesirable features we shall not use it. Like Meester and
Kerkvliet (see theirDefinition 2.2),wewill use insteadFagin andHalpern’s conditional
belief function:

Bel(Ek |Ek+1) = Bel(Ek ∩ Ek+1)

Bel(Ek ∩ Ek+1) + 1 − Bel(Ek ∪ Ec
k+1)

, (3)

where Ec
k+1 is the complement of Ek+1 in�.14 This somewhat resembles the definition

of a conditional probability in the Kolmogorov system, namely

P(Ek |Ek+1) = P(Ek ∩ Ek+1)

P(Ek+1)
. (4)

The numerators in (3) and (4) are similar, except that a belief function occurs in the
one and a probability function in the other; but the denominators are very different.
Nevertheless, when there is no ignorance, the belief function reduces to a probability

12 It is possible to generalize (2) so that more than two events are involved, and Shafer did so. However
this limited axiom is enough for our purposes, since we will never have to consider unions of more than
two events.
13 Dempster (1967), Dempster (1968).
14 Fagin and Halpern (1989).
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function, as we mentioned above, and in this case the denominator in (3) is equal to
the denominator in (4).15

In the next two sections we discuss the two examples that have been introduced by
Meester and Kerkvliet. Despite the differences in the details, we will show that in both
examples the belief and the probability values are equal: Bel(E0) = P(E0) = 1

2 .

3 First example

Meester and Kerkvliet introduce their Example 3.1 first abstractly in terms of Shafer
mass functions, and then they offer a concrete model. The model features a fair tetra-
hedral die that is tossed randomly and a lamp that is either on or off at different times
tk , k = 0, 1, 2, 3, . . .. . Define sets S j and Ek as follows:

S j = ‘the tetrahedron has landed on side j’, where j can be any one of 1, 2, 3, or
4.
Ek = ‘the lamp is on at time tk’, where k can be any non-negative integer, 0, 1, 2,
etc.

The following rules apply. If the tetrahedron has landed on . . .

. . . side 1, the lamp is on at tk if k is even, but off if k is odd [1]

. . . side 2, the lamp is on at tk if k is odd, but off if k is even [2]

. . . side 3, the lamp is on at tk for all k [3]

. . . side 4, the state of the lamp is unknown. [4]

Meester and Kerkvliet first ask: “To what degree would you believe that the lamp is
on at time t0?”, in other words, what is the value of Bel(E0)? Their answer is derived
from the Shafer masses

m(E0 ∩ Ec
1 ∩ E2 ∩ Ec

3 ∩ . . .) = 1

4
[1]

m(Ec
0 ∩ E1 ∩ Ec

2 ∩ E3 ∩ . . .) = 1

4
[2]

m(E0 ∩ E1 ∩ E2 ∩ E3 ∩ . . .) = 1

4
[3]

m(�) = 1

4
[4] (5)

15 Proof:

P(Ek ∩ Ek+1) + 1 − P(Ek ∪ Ec
k+1) = P(Ek ∩ Ek+1) + 1 − P(Ek ) − P(Ec

k+1) + P(Ek ∩ Ec
k+1)

= 1 − P(Ec
k+1) = P(Ek+1).
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where we recall that � is the set of all outcomes, so that the last entry corresponds to
the state of ignorance when the tetrahedron lands 4. We find

Bel(E0) =
∑

C⊆E0

m(C) = 1

4
+ 0 + 1

4
+ 0 = 1

2
. (6)

They next ask “What is your conditional belief on the lamp being on at time tk , given
that it is on at time tk+1?”, and subsequently “What is your conditional belief that it is
on at time tk , given that it is off at time tk+1?”. In other words, what are the values of
Bel(Ek |Ek+1) and Bel(Ek |Ec

k+1)? We will distinguish conditional belief functions
from conditional probability functions by using a and b for the former and α and β

for the latter:

a = Bel(Ek |Ek+1) b = Bel(Ek |Ec
k+1)

α = P(Ek |Ek+1) β = P(Ek |Ec
k+1).

InExample 3.1 the rules for the tetrahedron are symmetric between even andoddvalues
of k. This means that the conditional belief functions and the conditional probability
functions are independent of k, which we express by saying that the regress is uniform.
(Aswewill see, this is not so inMeester andKerkvliet’s Example 3.2whichwe discuss
in the next section.)

Using formula (3) for the conditional belief in Ek given Ek+1,Meester andKerkvliet
calculate the values of a and b in Example 3.1:

a = Bel(Ek |Ek+1) = 1

3
b = Bel(Ek |Ec

k+1) = 1

2
. (7)

They then write

“Hence in this example, a = 1
3 and b = 1

2 so in a classical situation …the belief
in E0 would be 3

7 .”
16

What they mean is the following. We have shown17 that for a uniform Kolmogorovian
probabilistic regress, P(E0) equals

β
1−α+β

. If in the probabilistic case α and β were
to take the same values as a and b in the case with belief functions:

α = 1

3
β = 1

2
,

then it would follow that

P(E0) = β

1 − α + β
=

1
2

1 − 1
3 + 1

2

= 3

7
. (8)

16 Meester and Kerkvliet (2019), Sect. 3, Example 3.1. By ‘classical’ they mean ‘Kolmogorov-
probabilistic’.
17 (Peijnenburg 2007; Atkinson and Peijnenburg 2017), Subsection 3.4.
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Hence their conclusion: whereas in Example 3.1 the agent’s degree of rational belief
in E0 is 1

2 when computed with belief functions, with probability functions it would
be 3

7 .
This suggests that in Example 3.1 the value of P(E0) would be 3

7 . However, in
Example 3.1 the combination α = 1

3 and β = 1
2 is logically impossible, as we will

shortly demonstrate. The result (8) in fact refers to a different situation than that which
yielded (6), and so to a different situation than the one described in Example 3.1. That
is to say, the tetrahedron model by Meester and Kerkvliet, with its specific rules for
each of the four options, fits (6), but it does not fit (8). A model that does fit (8) would
need seven rather than four options (we will come back to this in Sect. 5). The masses
corresponding to (8) are not the same as those in (5), and this means that the situations
are not the same.

What would happen if we were to apply a probabilistic analysis to the same sit-
uation as the one to which we applied a Shafer analysis, namely Example 3.1? As
intimated above, we would then run into a contradiction, for in Example 3.1 it cannot
be simultaneously true that

α = P(Ek |Ek+1) = 1

3
and β = P(Ek |Ec

k+1) = 1

2
.

To show this, we first calculate

α ≡ P(E0|E1) = P(E0 ∩ E1)

P(E1)
.

According to the rules of the tetrahedral model, if S1, then the lamp is off at t1, so E1
is false in this case. If S2 or S3, then E1 is true. If S4, we have no information about
the state of the lamp; and we will express this ignorance by supposing the probability
of the lamp’s being on at t1 when S4 to be p, which can have any value in [0, 1]. Since
the tetrahedron is fair, P(E1) = 1

4 (0 + 1 + 1 + p) = 1
4 (2 + p).

We know that E0 ∩ E1 is false if S1 or S2, but true if S3. If S4, then the probability
of E0 ∩ E1 is qp, where q is the probability that the lamp is on at t0, which can also
take on any value in [0, 1].18 Note that we do not need to assume equality of q and p.
Since the tetrahedron is fair, P(E0 ∩ E1) = 1

4 (0 + 0 + 1 + qp) = 1
4 (1 + qp). We

therefore conclude that

α = 1 + qp

2 + p
. (9)

Next we calculate

β ≡ P(E0|Ec
1) = P(E0 ∩ Ec

1)

P(Ec
1)

.

18 When conditioned on S4, E0 and E1 are independent:
P(E0 ∩ E1|S4) = P(E0|S4)P(E1|S4).
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Now P(Ec
1) = 1− P(E1) = 1

4 (2− p), and P(E0∩ Ec
1) = 1

4 (1+0+0+q(1− p)) =
1
4 (1 + q(1 − p)). Hence

β = 1 + q(1 − p)

2 − p
. (10)

We can now prove that α = 1
3 and β = 1

2 cannot be simultaneously true. For if α = 1
3 ,

we see from (9) that

2 + p = 3(1 + qp) that is p = 1 + 3qp .

Since p, being a probability value, cannot be greater than one, it follows that q or p
must be zero. The option that p is zero is inconsistent with the latter equation, so q
must vanish, which means that p = 1. With the values q = 0 and p = 1, we see from
(10) that β must be equal to one. Ergo α = 1

3 and β = 1
2 is impossible.

In Example 3.1 it is in fact the case that P(E0) = Bel(E0) = 1
2 . This can be

explained as follows. The agent in Example 3.1 is completely rational. For the Shafer
functions described by Meester and Kerkvliet this means not only that the agent bases
her beliefs about the lamp and the tetrahedron on relative frequencies, but also that she
settles on what she knows for sure. Referring to their formula for conditional belief,
see Eq.(3) above, Meester and Kerkvliet write:

The expression [(3)] has a very intuitive rationale, as follows. If wewere to repeat
the experiment many times, then we can consider the frequency occurring in the
subsequence of outcomes that [Ek+1] occurs. The expression in [(3)] turns out
to be the minimum such relative frequency of [Ek] that we can be sure of, given
the information contained in the basic belief assignment.19

We followMeester and Kerkvliet in adopting the minimum relative frequency that we
can be sure of. This amounts to setting q = 0 and p = 0 in (9) and (10), which leads
to α = 1

2 and β = 1
2 .
20 The standard formula for a uniform regress then yields

P(E0) = β

1 − α + β
=

1
2

1 − 1
2 + 1

2

= 1

2
. (11)

19 Meester and Kerkvliet (2019), Sect. 2, our italics. Cf. their dialogue between T. and R., which makes
clear that when T. says “I have no confidence at all for the lamp being on corresponding to rolling 4”, he
means that his degree of belief in the lamp being on in the case of S4 is the minimum value, i.e. zero.
20 The formula (9) was worked out for P(E0|E1). Although P(E1|E2), P(E2|E3), and so on, will be
given by the same formula, they may have different values for p and q. However, once we settle for the
minimum relative frequency we can be sure of, all values of p and q equal zero. Similar considerations
apply to P(E0|Ec

1), P(E1|Ec
2), P(E2|Ec

3), and so on. See also footnote 24.
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So Example 3.1 yields the same numerical value for the probability of E0 as for the
Shafer belief in E0, namely one half.21

4 Second example

As they did with Example 3.1, Meester and Kerkvliet first introduce Example 3.2
purely abstractly in terms of Shafer masses. But while in Example 3.1 the abstract
system is followed by an interpretation in terms of a concrete model, viz. with a
tetrahedron, this is not so for Example 3.2. However, we can construct a model by
tweaking the tetrahedron case a little.

Imagine again a fair tetrahedron that is tossed randomly, and a lamp that is on or
off. This time the rules are a bit different from those in Example 3.1. If the tetrahedron
has landed on …

. . . side 1, the lamp is on at tk if k is even, but off if k is odd [1]

. . . side 2, the lamp is on at tk if k is odd, but off if k is even [2]

. . . side 3, the lamp is off at tk for all k [3]

. . . side 4, the lamp is on at tk if k is even, butif k is odd,
the state of the lamp is unknown. [4]

The rules for sides 1 or 2 are the same as they were in Example 3.1; but for side 3 the
rule is opposite to what it was before; and, more importantly, for side 4 the even/odd
symmetry has been broken, because ignorance now only reigns when k is odd. The
regress of Example 3.2 is therefore non-uniform, which will turn out to be relevant
when we analyze the example probabilistically.

The Shafer masses are

m(E0 ∩ Ec
1 ∩ E2 ∩ Ec

3 ∩ . . .) = 1

4
[1]

m(Ec
0 ∩ E1 ∩ Ec

2 ∩ E3 ∩ . . .) = 1

4
[2]

m(Ec
0 ∩ Ec

1 ∩ Ec
2 ∩ Ec

3 ∩ . . .) = 1

4
[3]

m(E0 ∩ E2 ∩ E4 ∩ E6 ∩ . . .) = 1

4
[4] (12)

where in the last entry all the k in Ek are even, since if k is odd, the state of the lamp
is unknown.

21 We have for the sake of argument ignored the fact that Meester and Kerkvliet’s Example 3.1 is actually
not a regress. For when α = β,

P(E0) = αP(E1) + βP(Ec
1) = β

(
P(E1) + P(Ec

1)
)

= β .

This means that E1, and all the higher Ek , drop out, so we cannot speak of a regress. As we will see in
the next section, their Example 3.2 does not suffer from this defect. In that example α and β have different
values, and there is a real regress.
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A rational agent will calculate as the belief functions:

a = Bel(Ek |Ek+1) = 0 b = Bel(Ek |Ec
k+1) = 1

2
,

for all k. The unconditional belief in E0 is: Bel(E0) = 1
4 + 0 + 0 + 1

4 = 1
2 .

As in Example 3.1, Meester and Kerkvliet set the values of the conditional proba-
bilities equal to the values of the conditional beliefs:

α = P(Ek |Ek+1) = 0 β = P(Ek |Ec
k+1) = 1

2
.

These values of α and β would lead to

P(E0) = β

1 − α + β
=

1
2

1 − 0 + 1
2

= 1

3
. (13)

They conclude again that Bel(E0) and P(E0) have different values. In their own
words:

“Hence in this examplewe have a = 0 and b = 1
2 . In the classical case this would

lead to probability 1
3 …that E0 is true, but we have obtained Bel(E0) = 1

2 .”
22

However, as in the previous section, these two cases refer to different situations. When
Meester and Kerkvliet conclude that Bel(E0) = 1

2 and P(E0) = 1
3 , this is only true

in the sense that Bel(E0) = 1
2 in Example 3.2 and that P(E0) = 1

3 in some other
example, not further specified,where incidentally the conditional probability functions
numerically agree with the conditional belief functions.

Let us see what happens if we perform a probabilistic analysis on the same Example
3.2. If S1 or S3, then the lamp is off at t1, so E1 is false in those cases, but if S2, then
E1 is true. If S4, we have no information about the state of the lamp at t1, hence we
set the probability of E1 given S4 equal to some p in [0,1]. Since the tetrahedron is
fair, P(E1) = 1

4 (0 + 1 + 0 + p) = 1
4 (1 + p). E0 ∩ E1 is false if S1 or S2 or S3.

If S4, then we do not know whether E0 ∩ E1 is false or true; we do know, however,
that E0 is true and that there is a certain probability p that E1 is true as well. Hence:
P(E0 ∩ E1) = 1

4 p. Since the conditional probabilities differ for even and odd values
of k, the symmetry breaking in Example 3.2 is now relevant, and we therefore add an
index to α and β. We conclude that

α0 ≡ P(E0|E1) =
1
4 p

1
4 (1 + p)

= p

1 + p
. (14)

We have P(Ec
1) = 1−P(E1) = 1

4 (3− p). Note that E0∩Ec
1 is true if S1, but false if S2

or S3, whereas if S4 its probability is 1− p, so P(E0∩Ec
1) = 1

4 (1+1− p) = 1
4 (2− p).

22 Meester and Kerkvliet (2019), Sect. 3, Example 3.2. Again, ‘classical’ here means ‘Kolmogorov-
probabilistic’.
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Hence

β0 ≡ P(E0|Ec
1) = 2 − p

3 − p
. (15)

Meester and Kerkvliet’s values for α and β in Example 3.2 are again inconsistent, for
if α0 = 0 we see from (14) that p = 0. But then from (15) it follows that β0 = 2

3 , not
1
2 , as Meester and Kerkvliet would have it. Similar formulae apply to αk and βk for all
the even values of k; but for the odd values we need to perform a separate calculation.

To calculate α1, we note first that E2 is true if S1 or S4, false if S2 or S3, so
P(E2) = 1

4 (1 + 0 + 0 + 1) = 1
2 . On the other hand, E1 ∩ E2 is false if S1, S2 or S3,

and true with probability p if S4,23 so

α1 ≡ P(E1|E2) =
1
4 p
1
2

= 1

2
p . (16)

We have P(Ec
2) = 1− P(E2) = 1

2 . Moreover, E1 ∩ Ec
2 is true if S2, false if S1, S3 or

S4, thus

β1 ≡ P(E1|Ec
2) =

1
4
1
2

= 1

2
. (17)

Similar formulae apply to αk and βk for all the odd values of k. Evidently the values
of αk and βk are different for even or odd k — a significant contrast with the Shafer
belief functions, which are the same for even and odd k.

Following Meester and Kerkvliet again in settling on the minimum relative fre-
quency that we can be sure of, we set p = 0 in (14), (15), (16) and (17), resulting in
αk = 0 and βk = 2

3 for even k, and αk = 0 and βk = 1
2 for odd k.24

Since βk is different for even and odd k, the regress is not uniform. So in contrast to
what was the case in Example 3.1, the formula β

1−α+β
cannot immediately be used to

evaluate P(E0). To circumvent this difficulty, we combine the equations for the even
and odd k in such a way that P(Ek) is eliminated for all odd k, and we retain only
the even values. This composite regress is uniform, so the above formula can now be
used.

The rule of total probability for E0 is

P(E0) = α0P(E1) + β0P(Ec
1)

= α0P(E1) + β0[1 − P(E1)]
= β0 + γ0P(E1) ,

23 This is the same probability as the one in (14) and (15), since it is also the chance that the lamp is on at
t1 if S4.
24 The formula (14) applies to α0 and (16) applies to α1. Similarly, α2, α4, and so on, are given by (14), and
α3, α5, and so on, are given by (16), with possibly different values for p. Again we settle on the minimum
relative frequency we can be sure of, so all values of p equal zero. Similar considerations pertain to β2, β3,
β4, and so on. See also footnote 20.
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where γ0 = α0 − β0. We now eliminate P(E1) by using the rule of total probability
for P(E1), which can be written in the form

P(E1) = β1 + γ1P(E2) ,

where γ1 = α1 − β1. The result is

P(E0) = β0 + γ0β1 + γ0γ1P(E2) , (18)

which is equivalent to

P(E0) = α̂P(E2) + β̂P(Ec
2) , (19)

where α̂ = β0 + γ0α1 = 2
3 and β̂ = β0 + γ0β1 = 1

3 .
25 All the P(Ek) for even k obey

a rule of total probability like (19): they constitute a regress in which the odd k have
been eliminated, and where the effective conditional probabilities are α̂ and β̂. We can
now use the standard formula:

P(E0) = β̂

1 − α̂ + β̂
=

1
3

1 − 2
3 + 1

3

= 1

2
.

This agrees with the result of direct calculation.26

5 Summary and conclusion

In a recent paper, Ronald Meester and Timber Kerkvliet have given two examples of
a probabilistic regress in terms of Shafer belief functions. In each of the examples, the
regress incorporates a well-defined nonzero number for the unconditional belief in the
target proposition, Bel(E0). On the basis of these examples, Meester and Kerkvliet
claim that the value of Bel(E0) may differ from that of P(E0), the unconditional
probability of the target. In the present paper we explained that this is misleading. A
detailed analysis with probability functions shows that in both examples the values of
P(E0) and Bel(E0) are the same. The only way in which these values can differ from
one another is if they refer to different examples, but of course that makes the claim
unsurprising.

The first example ofMeester andKerkvliet, Example 3.1, involves a fair tetrahedron
with specific rules pertaining to each of the four possible outcomes. In this example,
a = 1

3 and b = 1
2 , where a and b are conditional belief functions, and the rational

25 To get from (18) to (19), one can write P(E0) = (β0 + γ0β1) [P(E2) + P(Ec
2)] + γ0γ1P(E2); it then

suffices to gather the two pieces involving P(E2) together.
26 Meester and Kerkvliet’s Theorem 3.3(b) shows that there exists an infinite number of examples like
3.1 and 3.2. However, each of these examples is open to our criticism. None of them show that a regress
can have different solutions in a particular situation, dependent on whether one does a Kolmogorov or a
Shafer analysis. All the examples again only show that a regress may have different solutions in different
situations.
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agent concludes that his degree of belief in E0 is one half: Bel(E0) = 1
2 . Meester and

Kerkvliet argue that with α = 1
3 and β = 1

2 , where α and β are conditional probability
functions, the value would be different: P(E0) = 3

7 . As we have shown, however, they
thereby change the example, for α = 1

3 and β = 1
2 cannot be simultaneously true in

Example 3.1.
Here is an example in which α = 1

3 and β = 1
2 are simultaneously true. Consider

a fair roulette wheel with numbers 1 to 7, the probability that the wheel stops at a
given number being 1

7 . In analogy with the tetrahedron model, define sets S j and Ek

as follows:

S j = ‘the roulette wheel has stopped at number j’, where j can be any one of 1,
2, …, 7.
Ek = ‘the lamp is on at time tk’, where k can be any non-negative integer, 0, 1, 2,
etc.

The following rules apply. If the roulette wheel has stopped at …

…numbers 1 or 2, the lamp is on at tk if k is even, but off if k is odd
…numbers 3 or 4, the lamp is on at tk if k is odd, but off if k is even
…number 5, the lamp is on at tk for all k
…numbers 6 or 7, the lamp is off at tk for all k.

With these rules one can check that α = 1
3 and β = 1

2 and P(E0) = 3
7 .

This roulette example is quite different from Example 3.1. Probability functions
are special cases of belief functions, so like the latter they can be described in terms
of mass functions. The point is that the mass functions of which our roulette example
serves as a model differ from the mass functions in the tetrahedron model of Example
3.1.

Similar considerations apply to Meester and Kerkvliet’s second example, Example
3.2. In this case it turns out that one canmake dowith the fair tetrahedron, butwith rules
that are other than those given by Meester and Kerkvliet. Namely, if the tetrahedron
has landed on …

…sides 1 or 2, the lamp is on at tk if k is even, but off if k is odd
…side 3, the lamp is on at tk if k is odd, but off if k is even
…side 4, the lamp is off at tk for all k.

One can check that P(E0) = 1
2 , and αn = 0 for all n, while βn = 2

3 for even n, but
βn = 1

2 for odd n . The masses are not the same as those in Example 3.2, so this
configuration corresponds once more to a different situation.

In sum, given the masses, both in Example 3.1 and Example 3.2 the value of
the unconditional probability of the target, P(E0), is identical to the value of the
unconditional belief, Bel(E0).

That this identity is a general one, and not one that just applies to these two examples,
can be readily seen as follows. By adding up the relevant masses, one can calculate
directly both Bel(E0) and P(E0). It will always be the case that Bel(E0) is a number
between 0 and 1; but P(E0) will in general be a function of variable probabilities pn
that can take on any value in the unit interval. However, with Meester and Kerkvliet’s
definition of the conditional belief functions, we have seen that the minimum relative
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frequencies are effectively chosen: “The expression in [(3)] turns out to be the mini-
mum such relative frequency of E that we can be sure of”. This means that all the pn
are zero, and in that case P(E0) = Bel(E0).
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