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Abstract
In this paper I consider the question of whether absolute discernibility is attain-
able in symmetric languages. Simon Saunders has proven that all facts expressible
in first-order language with identity can be equivalently stated within its symmetric
sublanguage. I use this result to show specifically how particles of the same type can
be absolutely discerned in the permutation-invariant language of the quantum theory
of many particles.

Keywords Quantum particles · Absolute discernibility · Permutation invariance ·
Projection operators · Quantum logic

The main problem considered in this paper comes down to this simple question: is it
possible to discern (in an appropriate sense of the word) objects in a language that
is fully symmetric (meaning that the denotations of its formulae are permutation-
invariant)? The motivation behind asking such a question derives from physics: as
is well known, the quantum theory of many particles imposes a restriction on the
available states of particles of the same type in the form of the requirement of their
permutation invariance. As some claim, the permutation invariance of the states of
composite systems leads directly to the consequence that the components of such
systems can never be qualitatively discerned by their properties (in gross violation
of the Leibnizian Principle of the Identity of Indiscernibles).1 In what follows I will
critically evaluate this claim, citing some general facts provable within first-order
logic and applying them to the specific case of quantum particles. The conclusion
I am aiming to argue for is that the symmetry of a language in which we describe
quantum objects of the same type does not block the possibility of making absolute
discernments between them.

1 The list of works in which this thesis is accepted contains, among others, French and Redhead (1988),
Redhead and Teller (1992), Butterfield (1993), Huggett (2003), and French and Rickles (2003).
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The plan of the paper is as follows. In Sect. 1 I will present and briefly discuss three
fundamental notions of discernibility (absolute, relative and weak) commonly used in
the literature on the subject, together with the logical relations holding among them.
Section 2 contains an extended analysis of the requirement of symmetry (permutation-
invariance) as applied to languages. After recalling the standard logical result showing
that the symmetry of a language implies the non-existence of absolutely and relatively
discerning formulas, I lay out a theorem due to Simon Saunders which implies that
symmetric first-order languages are capable of expressing facts about absolute (and
relative) discernibility. I also explain why the two above-mentioned results, while
seemingly contradictory, are in no conflict with one another. Sections 3 and 4 are
devoted to the task of applying Saunders’ theorem to the case of the quantum theory
of many particles. In Sect. 3 I take up the task of translating the basic elements of
the quantum–mechanical formalism into a first-order language, which to my knowl-
edge has never been done in a systematic way. I propose to introduce multi-variable
predicates whose satisfaction by sequences of objects is explicated in terms of the
state of the system being an eigenstate for a particular projection operator. In Sect. 4 I
show directly how to use Saunders’ theorem in order to argue that the symmetric lan-
guage describing states of groups of ‘indistinguishable’ fermions and bosons contains
expressions which can be interpreted as stating that particles are absolutely discernible
by appropriate properties. I point out that this result hinges on the assumption that the
logical connectives are to be interpreted non-classically (quantum-logically), and I
briefly discuss the consequences of this assumption.

1 Discernibility in a language

In the first step we should definewhat wemean by discernibility with respect to a given
language. We will present here the standard approach to this problem, expressed in
the most concise way in the overview (Ladyman et al. 2012).2 Let L be a first-order
language without proper names (constants) and without the identity symbol, whose
intended semantic interpretation is given in the form of a particular relational struc-
tureA (consisting of a non-empty set and a number of relations of various numbers of
arguments corresponding to the primitive predicates ofL ). We will distinguish three
basic types of discernibility that can be expressed in L under the semantic interpre-
tation encompassed in the modelA. These types are known as absolute discernibility,
relative discernibility and weak discernibility. Objects a and b in the domain of the
modelA are said to be absolutely discernible inL iff there is a one-argument formula
�(x) in L such that �(x) is satisfied by a and not by b in A.3 Objects a and b are
relatively discernible inL iff there is a two-argument formula �(x, y) inL such that
�(x, y) is satisfied in A by pair (a, b) and not by (b, a). And, thirdly, objects a and b
are weakly discernible in L iff there is a formula �(x, y) in L such that �(x, y) is

2 Many important results reported in Ladyman et al. (2012) were proven in Ketland (2006, 2011). See also
Bigaj (2015a) for some follow-up discussions and extensions of Ladyman et al. (2012).
3 Beware: symbols “a” and “b” do not belong to languageL , but to the metalanguage in which we describe
semantical relations between L and the corresponding relational structure A. Thus we are not violating
the assumption that L does not contain any proper names.
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satisfied in A by pairs (a, b) and (b, a), and is not satisfied by pairs (a, a) and (b, b).4

These three definitions can be concisely given as follows5:

Definition 1.1 Let a and b be elements of the domain of structure A. Then

(a) a and b are absolutely discernible in L iff there is an open formula �(x) in L
such that A � �(a) and A � ¬�(b),6

(b) a and b are relatively discernible inL iff there is an open formula �(x, y) inL
such that A � �(a, b) and A � ¬�(b, a),

(c) a and b are weakly discernible in L iff there is an open formula �(x, y) in L
such that A � �(a, b) and A � ¬�(a, a).

We can also define what it means for a particular formula in L to discern two
objects—absolutely, relatively or weakly.

Definition 1.2 Let a and b be elements of the domain of structure A. Then

(a) formula �(x) in L absolutely discerns objects a and b iff A � �(a) and A �
¬�(b), or A � �(b) and A � ¬�(a),

(b) formula �(x, y) in L relatively discerns objects a and b iff A � �(a, b) and A
� ¬�(b, a), or A � �(b, a) and A � ¬�(a, b),

(c) formula �(x, y) inL weakly discerns objects a and b iffA � �(a, b),A � �(b,
a), A � ¬�(a, a) and A � ¬�(b, b).

The second disjunct in (a) is necessary in order to make sure that discernibility by
a formula is a symmetric relation: if � discerns a from b, it would be rather absurd

4 The definition of weak discernibility can be simplified by eliminating the parts requiring the satisfaction
of formula � by the pair (b, a) and the non-satisfaction of � by (b, b). If � is known to be satisfied by (a,
b) and not satisfied by (a, a), we can define a new weakly discerning formula �(x, y) whose form depends
on whether (b, b) actually satisfies � or not. If � is not satisfied by (b, b), the formula �(x, y) : � �(x, y)
∨ �(y, x) will be weakly discerning in the above-defined sense (i.e. it will be symmetric and irreflexive in
the set {a, b}). And if � is satisfied by (b, b), it can be checked that the following formula will do the job
of weakly discerning a and b: [�(x, y) ∨ �(y, x)] ∧ [¬�(x, x) ∨ ¬�(y, y)].
5 The expressions of the form A � �(a) and A � �(a, b) used in Definition 1.1 are abbreviations of the
more standard symbolization of the relation of satisfaction: A � �(x)[a] and A � �(x, y)[a, b]. The latter
makes it clear that symbols “a” and “b” are not parts of the formula�, since they do not belong to language
L but to the metalanguage.
6 Sometimes two further subcategories of absolute discernibility are distinguished: absolute intrinsic dis-
cernibility and absolute extrinsic discernibility. Intrinsic discernibility restricts formulas � to those that do
not contain quantifiers, while extrinsic discernibility admits quantifiers in discerning formulas. The standard
gloss on these concepts is that intrinsic discernibility is in terms of intrinsic properties only (properties not
involving other objects), whereas extrinsic discernibility admits relations with other entities as a means to
discern two objects. The reason why extrinsic absolute discernibility is defined in terms of quantifiers is that
in a language with no constants the only way to ‘contract’ a multi-variable formula (for instance�(x, y)) to a
one-argument formula is by binding all variables except one by quantifiers, as in ∃y �(x, y), or by replacing
different variables by the same symbol, as in �(x, x). (However, the second method produces a formula
which, even though technically represents a relation of an object to itself, is not extrinsic in the sense of
involving other objects.) Thus, if a one-argument formula with no constants does not contain quantifiers,
it cannot involve reference to other objects and therefore does not represent an extrinsic property. In the
context of quantum–mechanical indiscernibility both concepts are important, as the typical arguments for
the indiscernibility of ‘identical’ quantum particles employ both non-relational and relational properties
[see e.g. French and Redhead (1988), Butterfield (1993), and Dieks and Versteegh (2008).
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to deny that � discerns b from a. Also, we want to ensure that if � discerns two
objects, so does its negation ¬�. Similarly, the second clause of the disjunction in
(b) ensures that discernibility by a formula is symmetric (even though in this case the
discerning relation is clearly asymmetric—beware of conflating the cognate notions
of being relatively discerned by a formula and being connected by a relation that does
the discerning). In case (c) it is unnecessary to add the second clause, since the relation
of weak discernibility is already stipulated to be symmetric.

Instead of considering the purely ‘qualitative’ language L , we could expand it
to L * by adding either a proper name for every element in the domain (given the
assumption that the intended modelA is finite), or by adding the symbol of identity �
with its intended interpretation {(a1, a1), (a2, a2),… (an, an)} toL =. That waywewill
obtain new languages L * and L = and new corresponding notions of discernibility.
All in all, we have introduced nine distinct grades of discernibility, which turn out
to be mutually connected by relations of logical entailment. These relations can be
synthetically presented in the following theorem (the abbreviations used in the theorem
should be self-explanatory)7:

Theorem 1.1 The following logical relations hold:

(a) AbsL ⇒RelL ⇒WeakL
(b) AbsL ⇒AbsL =
(c) RelL ⇒RelL =
(d) AbsL = ⇒RelL = ⇒WeakL
(e) WeakL ⇔ WeakL * ⇔ AbsL * ⇔ RelL *
(f) WeakL = ⇔ ��
(g) No implications other than those entailed by (a)–(f) hold true.

Of particular importance to us are clauses (a) and (d) which show (together with
(e) and (g)) that weak discernibility is indeed the weakest of all typical grades of
discernibility, with absolute discernibility inL the strongest of all. Clause (e) shows
that in a language equipped with proper names for every element of the domain all
grades of discernibility collapse into weak discernibility. Clause (f) establishes that
weak discernibility in a language with identity is trivially non-identity.

2 Discernibility and symmetry

It is common knowledge that the language in which we are supposed to describe
systems of quantum particles of the same type should satisfy the requirement of sym-
metry, also known as permutation invariance. Of course, the primary reason for the
symmetry of a language is that the corresponding reality described by the language is
supposed to be symmetric too. Thus, in the case of the language of quantum mechan-
ics its symmetry follows from the fact that the physical states of particles of the same
type described in this language are supposed to be permutation-invariant. Due to the
correspondence between languageL and its intended interpretationA, we can move

7 For proofs of these facts see Ladyman et al. (2012) and references therein.
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back and forth between the symmetry of the language and the symmetry of its cor-
responding model. But what does it precisely mean for a language to be permutation
invariant (symmetric)? The standard definition can be given as follows.

Definition 2.1 Let L be a first-order language and A its intended interpretation. Let
σ: Dom(A)→Dom(A) be a permutation of the domain of A (that is, a bijection of
Dom(A) onto itself). ThenL is symmetric iff for every open formula�(x1, x2, … xn)
inL and any permutation σ,A � �(a1, a2, … an) iffA � �(σ(a1), σ(a2), … σ(an)).8

It can be proven relatively easily (by induction over the complexity of formulas)
that Definition 2.1 is equivalent to the condition of symmetry imposed on the structure
A corresponding toL , spelled out as follows:

Definition 2.2 Relational structure A is symmetric iff for any k-element relation R in
A, any elements a1, …, ak ∈ Dom(A) and any permutation σ: Dom(A)→Dom(A),
Ra1…ak iff Rσ(a1)…σ(ak).

The following fact regarding discernibility in symmetric languages holds:

Theorem 2.1 Let L be a symmetric language (in the sense of Definition 2.1). Then
no two objects in Dom(A) are absolutely or relatively discerned inL .

The proof of this theorem is quick. Suppose that elements a and b of the domain
Dom(A) are relatively discerned in L . That means, according to Definition 1.1. (b)
that there is a formula �(x, y) in L such that A � �(a, b) and A � ¬�(b, a),
but this directly contradicts Definition 2.1, since the transposition σ(a) � b and σ(b)
� a does not preserve the satisfaction of formula �(x, y). Thus a and b can’t be
relatively discerned in L . And because of Theorem 1.1 (a), this implies that a and
b are not absolutely discernible either. Theorem 2.1 remains also valid for languages
with identity L = when we limit ourselves to finite models, but its proof is more
complicated (see Caulton and Butterfield 2012, Sect. 4.3).

On the other hand, the symmetry of L does not exclude the possibility of weak
discernment, as seen in the following example. In the two-element symmetric graph
given in Fig. 1, the double arrow represents a relation corresponding to a primitive,
two-place predicate P in L (note that the relation used in the graph is irreflexive, as
no object is connected to itself by an arrow). Clearly, the graph is invariant under the
permutation of objects, and yet they are weakly discernible by formula P(x, y).9

One lesson from this basic logical analysis seems to be inescapable: if we have at
our disposal a symmetric language only, we can at best achieve weak discernibility

8 It is conceivable to introduce an alternative notion of symmetry (permutation-invariance) with respect
to languages, which would be based not on permutations of objects in the domain, but on permutations of
their occurrences within a given formula. A definition of such a notion would look similar to Definition
2.1, except that now σ would signify a permutation of the set of numbers {1, …, n}, and the condition of
permutation-invariance would be given in the form of the following equivalence:A � �(a1, a2, … an) iff
A � �(aσ(1), aσ(2), … aσ(n)). The difference between the two concepts of symmetry can be illustrated with
the help of a simple example. Suppose that a three-argument formula �(x, y, z) is satisfied by the triple
(a, a, b) in a two-element domain {a, b}. According to Definition 2.1, the condition of symmetry demands
only thatA � �(b, b, a), whereas the new definition instead implies thatA � �(b, a, a) andA � �(a, b, a).
However, it turns out that the alternative definition of symmetry is rather uninteresting, since its satisfaction

123



8490 Synthese (2021) 198:8485–8502

Fig. 1 A two-element symmetric graph

but not relative and not absolute discernibility. This conclusion apparently supports
the orthodox approach to the question of the discernibility of quantum particles of
the same type. It is commonly accepted that in the permutation-invariant language of
the quantum theory of many particles no absolute discernibility is possible, but weak
discernibility is sometimes attainable.10 However, in what follows we will try to cast
doubt on the inevitability of this conclusion.Wewill start with a relatively little-known
theorem due to Saunders (2006b, 2013), which, on the face of it, seems to contravene
the conclusion that symmetry prevents absolute discernment.

Theorem 2.2 Let L = be a first-order language without proper names but with the
identity symbol. Then for every sentence T in L = and every natural number N, there
is a sentence S in L = of the form S=∃x1…∃xn G(x1, …, xn) such that predicate G is
symmetric, and S is equivalent to T in all models of cardinality N.

The sketch of a proof for this theorem is as follows (for details see Saunders 2006b,
pp. 209–210). Every sentenceT can be presented in the standard prenex form asQ1,…,
Qn F(x1, …, xn), whereQi is either ∃xi or ∀xi. In order to construct the corresponding
symmetric sentence S, we eliminate every quantifier Qi step by step, starting with Qn,
while simultaneously replacing formula F(x1, …, xn) with either a conjunction (when
Qi is the universal quantifier) or a disjunction (when Qi is the existential quantifier)
of formulas F(…a1…), …, F(…aN…), where all occurrences of the variable xi are
replaced with unique names a1, …, aN of all elements in the domain. For instance,
the first step in the procedure in the case when Qn is universal will give us formula

Q1 . . . Qn−1[F
(
x1, . . . , xn−1, a1

) ∧ F
(
x1, . . . , xn−1, a2

) ∧ . . . ∧ F
(
x1, . . . , xn−1, aN

)
].

After finishing this procedure, we end up with a formula with no quantifiers but
instead containing constants a1, …, aN . Finally, we replace every occurrence of ai
with a variable xi bound by an existential quantifier, and we add to the entire sentence
the formula stating that all xi’s are distinct and that they exhaust the entire domain
(every object in the domain is identical with some xi). The sentence S obtained during
this procedure is symmetric by design, and it is also not difficult to observe that it must
be equivalent to T in all models of cardinality N .

Theorem 2.2 seems to be highly relevant to the issue of the relation between sym-
metry and discernibility. Suppose that L = is a language in which all elements of a

Footnote 8 continued
by a language L implies that all predicates in L are either empty or full. No interesting theory can be
formulated in a language whose predicates are either satisfied by all objects, or by none.
9 This example easily generalizes for an arbitrary number of objects. In a structure consisting of one binary
relation R such that it holds between any two distinct objects and does not hold between any object and
itself (i.e. it is true that ∀xy (x ��y ↔ Rxy)), the relation R weakly discerns every two objects in spite of the
fact that the structure is clearly permutation-invariant.
10 The possibility of the weak discernment of quantum particles has been extensively studied e.g. in
Saunders (2003, 2006a), Muller and Saunders (2008), Muller and Seevinck (2009), Muller (2011, 2015),
Caulton (2013), Huggett and Norton (2014), Bigaj (2015b).
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(finite) domain Dom(A) are absolutely discernible. Then, Theorem 2.2 ensures that
all true sentences about this domain expressible inL = can be equivalently formulated
in its symmetric sublanguage Sym(L =) consisting of permutation-invariant formulas
only. And since the collection of all sentences of L = true in A presumably include
truths regarding absolute discernibility of objects in Dom(A), it follows that these
truths are expressible in the symmetric language Sym(L =). However, we have to be
careful here. The way we defined absolute discernibility in Definition 1.1 (a) does not
automatically ensure that facts regarding the absolute discernibility of objects will be
expressible in languageL =, since the definition is given in the metalanguage. And, as
we learn from the well-known limitation theorems about the non-definability of truth
or consistency, not all metalinguistic facts about a given language (or a theory formu-
lated in that language) can be expressed in the language (theory) itself. In particular,
even though objects a and b are absolutely discernible by formula �(x) in L =, this
very truth may not be expressible inL due to the simple fact thatL does not contain
proper names for a and b.

Approaching this problem more generally, we may ask whether there is a sentence
Abs in L = which states that all objects in the finite domain of L are absolutely
discernible from each other. And it is easy to see that the answer to this question is
“yes”. Let the elements of the domain be symbolized as {a1, …, aN}. By assumption,
for every pair (ai, aj) such that i �� j there is a formula �ij(x) in L = that absolutely
discerns ai and aj, that is A � [�ij(ai) ∧ ¬�ij(aj)] ∨ [�ij(aj) ∧ ¬�ij(ai)]. If we take
the disjunction of all such formulas over all possible i �� j, it is clear that the resulting
formulamust be satisfiedby every pair of distinct objects, and that the satisfaction of the
universal generalization of this formula is equivalent to the statement that all distinct
objects are absolutely discernible. Hence, the sought-after sentence is as follows:

(1) Abs ≡ ∀x∀y
{
x �� y → ∨N

i �� j

[
Φi j (x) ∧ ¬Φi j (y)

] ∨ [
Φi j (y) ∧ ¬Φi j (x)

]}
.11

Now we can apply Saunders’ procedure from Theorem 2.2 to the rhs of formula
(1), eliminating every universal quantifier and adding an N-argument conjunction of
formulas with constants to obtain the following:

(2)
∧N

k,l�1{ak �� al → ∨N
i �� j [Φi j (ak) ∧ ¬Φi j (al)] ∨ [Φi j (al) ∧ ¬Φi j (ak)]}

Finally, we will obtain the totally symmetric formula logically equivalent (in N-
element domains) to the original statement Abs:

(3) ∃x1 . . . ∃xN
{
ρ
(
x1, . . . , xN

)
∧∧N

k ��l

{
xk �� xl → ∨N

i �� j [Φi j

(
xk

)
∧¬Φi j

(
xl

)
]∨

[Φi j

(
xl

)
∧ ¬Φi j

(
xk

)
]
}}

where ρ(x1, . . . , xN ) abbreviates the following:
∧N

i �� j xi �� x j ∧∀x∨N
k�1x � xk , that

is the formula stating that there are exactly N objects in the domain.12

11 It may appear, at first glance, that the disjunctive formula in (1) is already symmetric, since it remains
invariant under the exchange of variables x and y, so there is no need to appeal to Saunders’ Theorem 2.2.
But this is incorrect. Symmetry, as defined in Definition 2.1, implies that if a two-argument formula is
satisfied by the pair (a, b) of distinct objects, it must be satisfied by every other pair of distinct objects. This
is by no means guaranteed by the disjunctive form of the expression in (1).
12 Technically, the antecedent condition xk ��xl of the implication in (3) can be dropped, due to the presence
of the condition ρ(x1, . . . , xN ).
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A similar result obtains in the case of relative discernibility. That is, if all objects
are relatively discernible in language L =, then the following sentence expresses this
very fact in finite domains of cardinality N (formula � ij(x, y) is assumed to relatively
discern objects ai and aj):

(4) Rel ≡ ∀x∀y
{
x �� y → ∨N

i �� j [ψi j (x, y) ∨ ψi j (y, x)]
}

The rhs of the equivalence (4) after symmetrization will look similar to (3):

(5) x1 . . . ∃xN
{
ρ(x1, . . . , xN ) ∧ ∧N

k ��l{xk �� xl → ∨N
i �� j [ψi j (xk, xl) ∧ ψi j (xl , xk)]

}

Now we are in a position to explain away the apparent inconsistency between
Theorems 2.1 and 2.2. The impossibility of absolute (and relative) discernibility in
symmetric languages, as stated in Theorem 2.1, means that there is no symmetric
formula that would discern objects absolutely or relatively. Nevertheless, this does not
preclude the possibility that there may be a symmetric sentence expressing the fact that
objects are absolutely (or relatively) discernible in a broader, non-symmetric language.
Sentences (1) and (2) are constructed with the help of symmetric combinations of
predicates from a non-symmetric languageL =, but they don’t assert the possibility of
absolute (relative) discernibility in Sym(L =), but inL =. The possibility of conveying
in a symmetric language the fact that some objects are absolutely discernible in a
different, non-symmetric language, does not invalidate the fact, stated in Theorem 2.1,
that absolute discernment, as defined in Definition 1.1, cannot be literally achieved
in a symmetric language. However, if sentences (3) or (5) are true, we are justified in
claiming that objects in the domain are in fact discernible by appropriate properties or
relations, even though these properties and relations cannot find their direct linguistic
representations in Sym(L =).13 The issue of the appropriateness of these properties
and relations in the case of the quantum theory of many particles will be discussed in
the next section.

3 Quantum–mechanical predicates

The next logical step should be to apply the general analysis done above to the spe-
cific case of systems of many particles obeying symmetry restrictions. The idea is of
course to see whether absolute discernibility can be proven to be satisfied in the case
of particles occupying permutation-invariant states, following the method from The-
orem 2.2. However, when attempting to do this, we immediately encounter a serious
stumbling block. The problem is that there is no straightforward way to cast the quan-
tum–mechanical formalism in terms of first-order logic with its well-known structure
of multi-variable predicates and logical constants. So far no rigorous and systematic
method of translating the quantum–mechanical framework into standard first-order
logic has been proposed, apart from some rather limited in scope and ad hoc transla-

13 If we wanted, we could call this type of discernibility “implicit”. However, to avoid possible confusion,
we have to stress that implicit absolute (or relative) discernibility is not a new grade of discernibility, but the
old one in a new guise. The concept of “implicit” is relative to a language—what counts as regular absolute
discernibility in language L = is classified as implicit absolute discernibility in Sym(L =).
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tions used for specific purposes.14 In what followswewill try to approach this problem
more generally, but the result will be partially negative in that it will be shown that
certain translations cannot be done for some rather fundamental reasons. However,
what can be done should be sufficient for the purpose of answering the main question
of this article.

Before we move on to the specific task of constructing a first-order language for the
quantum theory of many particles (QTMP), one general remark is in order. As we have
seen, Saunders’ Theorem 2.2 assumes that the considered language does not contain
proper names (individual constants). This may be seen as contradicting the standard
practice of QTMP, which commonly uses indices (labels) as names of individual
particles. In particular, the requirement of permutation invariance is typically cast in a
language that uses labels as individual constants. However, as we will see below, the
presence of individual constants is by no means necessary to express the requirement
of permutation invariance in quantum mechanics. The permutation invariance of a
particular formula can be expressed in the metalanguage, as in Definition 2.1, where
only metalinguistic terms are used. Thus there is no reason to believe that Saunders’
theorem is inapplicable to the case of the language of QTMP.15

We will start with the simplest case of one quantum–mechanical system with no
proper parts. The standard way to formally represent a specific property16 of this
system is with the help of a particular subspace of the entire Hilbert space of states
for this system or, equivalently, of a projector onto that subspace (there is a one-to-
one correspondence between orthogonal projectors and subspaces onto which they
project). That is, the fact that a given physical system possesses a particular property
is formally expressed by saying that its state vector |v〉 lies in a given subspace V of
H (or, alternatively, that |v〉 is an eigenstate of the corresponding projector PV with
the eigenvalue 1).17 In the case when V is one-dimensional (a ray) we say that the
property is categorical (it amounts to the fact that there is a maximal, non-degenerate
observable O whose value is determined when vector |v〉 lies in V). But V may be
more than one-dimensional, in which case the property is less specific, given the
assumption that O is non-degenerate (in such a case it is usually assumed that the
value of a particular observable O lies within a certain range of possible values rather
than being determined sharply).

Given that we are considering the domain containing one object only, we can
safely limit ourselves to monadic predicates in our first-order language reconstruction.
And there is a natural and simple correspondence between properties represented

14 One such attempt has been made in Muller and Seevinck (2009) in which the authors defined a relation
that weakly discerns fermions of the same type. I will use some of their insights in my subsequent analysis.
15 I am grateful to an anonymous referee for pressing me on that point.
16 By a ‘specific property’ I understand a particular range of values of a given quantity, and not the quantity
itself (e.g. spin, position, momentum). Moreover, I limit myself to so-called state-dependent properties,
leaving aside state-independent ones, such as rest mass or charge, which are not representable with the help
of Hermitian operators.
17 We can easily generalize this approach to cover states that are represented not by vectors (rays) but by
density operators (convex sums of projectors). In that case the system possesses the property associated
with PV iff the range of the density operator representing the state of the system lies within subspace V .
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by projectors and one-argument predicates satisfiable by the considered system. Let
�PV (ξ ) be a monadic predicate in the language that we are constructing such that

(6) �PV (ξ ) is satisfied by the system a iff a is in a state |v〉 such that PV |v〉 � |v〉.18
In other words, �PV (a) is true, if the vector representing the state of system a lies in
subspace V (we are presupposing the eigenstate-eigenvalue link here). If we assume
that for each projector there is a corresponding predicate, we can express in our
language any simple sentence regarding the possession of quantum–mechanical prop-
erties by the system. One small problem with this assumption is that we may have to
accept the existence of an infinite (in fact uncountably infinite) number of primitive
predicates. Alternatively, we may introduce one two-place predicate �(ξ , V) whose
truth conditions are exactly as stated in the rhs of the equivalence in (6). Finally, if one
wishes, one can use a three-place predicate �(ξ , V , ϕ) which is satisfied by an object
a, a subspace V and a state |ϕ〉 iff |ϕ〉 is the state of a and |ϕ〉 ∈ V .

Now we will have to extend our language to describe systems of many particles.
Suppose, then, that we have N particles jointly forming a system described by a state
vector |ϕ(1, …, N)〉. Our goal will be to define predicates with arity k smaller or equal
N . The idea, again, is that these predicates should correspond to appropriate projectors
acting in the tensor product H N � H 1 ⊗…⊗H N . However, we have to proceed
cautiously, since concrete projectors are already ‘attached’ to specific factor Hilbert
spaces, and predicates in formalized language should be satisfiable by various com-
binations of objects. Thus we cannot tie a given k-argument predicate to a particular
projector, but rather to an entire class of projectors that share their ‘physical’ meaning
while being attributed to different objects in the composite system. This can be done
as follows. Let us start with a particular subset of the set of N objects which can be
picked using simply numbers as labels: 1, …, k (keep in mind that these are labels that
belong to the metalanguage, not the first-order language that we are constructing). A
specific property of this subset can be represented by any projector that is the product
of k projectors acting in the first k Hilbert spaces, and N− k identity operators acting
in the remaining spaces: P (a1)

1 ⊗ . . . ⊗ P(ak)
k ⊗ Ik+1 ⊗ . . . ⊗ IN . In addition to that,

some linear combinations of projectors of this type can also be permitted, even though
not all such combinations will produce projectors, which are idempotent operators.19

Generally, all permissible operators representing properties of the first k particles can
be written in the following form:

(7) �k � P(1, …, k)⊗ I(k+ 1, …, N),

where P(1, …, k) is any projector acting in the k-fold tensor product of Hilbert spaces
H 1 ⊗…⊗H k , and I(k+ 1, …, N) is the product of N− k identity operators.

The k-argument predicate �Ωk corresponding to the above projector �k has to be
built step by step. In the first step we specify the truth condition for �Ωk applied to
particles 1, …, k as follows:

18 Following a referee’s suggestion, I am using the symbols ξ1,… ξn as variables of the first-order language
ranging over particles, instead of the standard notation x1, …, xn, since the latter symbols are often used as
representing spatial coordinates of the wave function.
19 One condition ensuring that a particular linear combination of projectors will be idempotent is that
single-particle projectors participating in the combination should be mutually orthogonal.
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(8) �Ωk (ξ1, . . . , ξk) is satisfied by the k-tuple (1, …, k) iff the N-element system is
in a state |ϕ〉 such that �k |ϕ〉 � |ϕ〉.20

In order to stipulate the condition of the satisfaction of �Ωk for any other k-tuple, we
have to transform the projector �k accordingly. That is, let σ be any permutation of
the set of metalinguistic labels {1, …, N}. In that case we stipulate the following to
be true:

(9) �Ωk (ξ1, . . . , ξk) is satisfied by the k-tuple (σ(1), …, σ(k)) iff the N-element
system is in a state |ϕ〉 such that σ−1�k σ|ϕ〉 � |ϕ〉.

As can be seen from the above, the satisfaction of the predicate�Ωk by any sequence of
objects other than 1, …, k requires that we transform the operator �k to be applicable
to this sequence. That way we can cover all cases of satisfaction of predicate �Ωk by
k-element sequences formed from the set {1, …, N} with no repetitions. However,
there remains cases in which �Ωk is applied to sequences with repetitions. And these
cases present us with a difficulty that ultimately cannot be overcome in full generality,
except in some special cases. Let us explain what we are up against here using the
simplest possible case of two particles (N � 2). Let �(2) be any projector acting in
the productH 1 ⊗H 2. The corresponding two-argument predicate�Ω(2) (ξ1, ξ2)will
receive the following partial characteristics:

(10) �Ω(2) (ξ1, ξ2) is satisfied by pair (1, 2) iff the system is in a state |ϕ(1,2)〉 such
that �(2)|ϕ(1,2)〉 � |ϕ(1,2)〉;
�Ω(2) (ξ1, ξ2) is satisfied by pair (2, 1) iff the system is in a state |ϕ(1,2)〉 such
that P12�

(2)P12|ϕ(1,2)〉 � |ϕ(1,2)〉, and therefore �(2)|ϕ(2,1)〉 � |ϕ(2,1)〉.
However, in additionwe have to stipulate the conditions for satisfaction of predicate

�Ω(2) (ξ1, ξ2) by pairs (1, 1) and (2, 2), and this turns out to be a harder nut to crack.
We can suggest the following solution to this problem in the special case when �(2)

� Pa ⊗Pb, and Pa commutes with Pb:

(11) �Ω(2) (ξ1, ξ2) is satisfied by pair (1, 1) iff the system is in a state |ϕ(1,2)〉 such
that PaPb ⊗ I |ϕ(1,2)〉 � |ϕ(1,2)〉,
�Ω(2) (ξ1, ξ2) is satisfied by pair (2, 2) iff the system is in a state |ϕ(1,2)〉 such
that I⊗PaPb|ϕ(1,2)〉 � |ϕ(1,2)〉.21

What justifies the correctness of these stipulation is that in this special case the prop-
erty represented by projector PaPb is just the ordinary conjunction of one-particle
properties represented by Pa and Pb. Thus the satisfaction of predicate �Ω(2) (ξ1, ξ2)

by pair (1, 1) (or (2, 2)) means simply that object 1 (or 2) possesses both attributes
Pa and Pb, and this is precisely what the above conditions guarantee. However, this
characteristic is formally incorrect when Pa and Pb do not commute, since in that case
PaPb is not a projector. Moreover, the proposed method of interpretation cannot be
applied to more complex cases, such as for instance when the operator �(2) is equal to

20 Following remarks made in the context of (6), we may want to express (8) alternatively in terms of the
multi-type variable predicate �(ξ1, . . . , ξN , Ωk , �). As I consider this alternative notation more cumber-
some, I’ll nevertheless continue to use the one-type variable predicate �Ωk (ξ1, . . . , ξN ).
21 This is also a solution adopted implicitly in the concrete example used in Muller and Seevinck (2009).
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Pa ⊗Pb + Pb ⊗Pa (where Pa and Pb are orthogonal) In that case it simply does not
make much sense to ask what the property represented by this symmetric projector
would look like when applied ‘twice over’ to one particle. Speaking figuratively, the
‘entanglement’ of the property of a two-particle system represented by Pa ⊗Pb + Pb

⊗Pa makes it impossible to disentangle it in a way necessary to turn it into a relational
property of one particle.

In conclusion, it is possible to definemany-argument quantumpredicates applicable
to sequences of distinct objects; however ‘contractions’ of such predicateswith smaller
numbers of arguments are well defined only in special cases.

4 Absolute discernibility in the quantum theory of many particles

In this section we will make use of the tools developed in the previous sections in
order to formally argue that absolute discernibility is attainable in the quantum–me-
chanical formalism of many-particle systems, even if these systems can only occupy
permutation-invariant states. Let us consider the most general case of N particles,
labeled by natural numbers 1, …, N , and let us suppose that they have been prepared
in the product state

|χ(1, . . . N )〉 � |a1〉|a2〉 . . . |aN 〉,

where each two vectors |ai〉 and |aj〉 are orthogonal for i �� j.22 Moreover, let P(i)

� |ai〉〈ai |. Now we can define N monadic predicates �i(ξ ), where i � 1, …, N , as
follows:

(12) �i(ξ ) is satisfied by particle j iff the system is in a state |ϕ〉 such that Ω(i)
j |ϕ〉 �

|ϕ〉, where Ω
(i)
j � I ⊗ I . . . ⊗ P(i)

︸︷︷︸
j

⊗ . . . ⊗ I .

It is elementary to observe that if the system is in state |χ(1, … N)〉 defined above,
then for every i, the ith particle satisfies predicate �i(x) and only it. Thus, for every k,
l,A � �k(k) ∧ �l(l), from which it follows that for every k �� l,A � �k(k) ∧ ¬�k(l).
Consequently, each formula�i(x) absolutely discerns the ith particle from every other
particle. We can express this fact in the following general statement:

(13) ∀ξ1∀ξ2

{
ξ1 �� ξ2 → ∨N

k�1[�k(ξ1) ∧ ¬�k(ξ2)]
}

Applying the method of symmetrization described in Sect. 2, we can reformulate
the above ‘discernibility’ sentence in a permutation-invariant way:

(14) ∃ξ1 . . . ∃ξN

{
ρ(ξ1, . . . , ξN ) ∧ ∧N

i �� j
∨N

k�1

[
�k(ξi ) ∧ ¬�k

(
ξ j

)]}
,

22 Of course I amperfectly aware of the fact that vector |χ(1,…,N)〉 is not permutation-invariant, and as such
cannot represent states of systems of ‘indistinguishable’ particles. The reason we are using this example is
to formulate a statement expressing the absolute discernibility of objects occupying such a state, in order
to translate it later into a fully symmetric language applicable to ‘indistinguishable’ particles, following
Saunders’ method described in Sect. 2.
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where ρ(ξ1, . . . , ξN ), as before, states that there are exactly N distinct objects. Sen-
tence (14) is built with the help of the totally symmetric N-argument predicate:

(15) Abs(ξ1, . . . , ξN ) ≡ ∧N
i �� j

∨N
k�1

[
�k(ξi ) ∧ ¬�k

(
ξ j

)]
.

Now the question is whether Abs(ξ1,…, ξN ) can be constructed independently of def-
inition (15), which is given in terms of non-symmetric predicates �i(ξ ). The reason
for asking this question is that in languages obeying the condition of permutation-
invariance, predicates �i(ξ ) are not admissible, so we can hardly use them to define
other formulas, even if these formulas themselves turn out to be permutation-invariant.
Following the method of interpreting quantum–mechanical predicates laid out in
Sect. 3, we will try to find a symmetric projector with the help of which we could
formulate truth conditions for predicate Abs(ξ1, …, ξN ) independently of (15). We
will do this in steps, starting first with formulas �k(ξ1) ∧ ¬�k(ξ2). The truth condi-
tions for such compound formulas can be given as follows:

(16) �k(ξ1) ∧ ¬�k(ξ2) is satisfied by pair (i, j) iff the system is in a state |ϕ〉 such
that Ω(k)

i j |ϕ〉 � |ϕ〉, where Ω
(k)
i j � I ⊗ . . .⊗ P(k)

︸︷︷︸
i

⊗ . . .⊗ I − P(k)
︸ ︷︷ ︸

j

⊗ . . .⊗ I .23

Observe that we are interpreting the negation of the monadic predicate �k(ξ ) with
the help of the projector I− P(k), which is the orthogonal complement of P(k). This
is standard practice in so-called quantum logic; however, it stands in conflict with
the ordinary, classical interpretation of negation.24 Classically, when the negation
¬�k(ξ ) is true of a, this means that a occupies any state not in the range of P(k). But
the quantum-logical interpretation of negation is stronger—it requires that the state
occupied by a be orthogonal to the space projected onto by P(k). Quantum logic does
not obey the metalogical principle of the excluded middle: the system a may be in a
state in which neither�k(ξ ) nor its negation is true of a. In the current context we may
observe that if we followed the classical interpretation of negation, then the formula
¬�k(ξ ) would not have an interpretation in terms of any projector, since the set of all
vectors in a Hilbert space minus one ray is not a vector space, and cannot form the
range of any projector.

Next, we will extend our projector-based interpretation to the disjunctive formula∨N
k�1[�k(ξ1) ∧ ¬�k(ξ2)]:

(17)
∨N

k�1[�k(ξ1) ∧ ¬�k(ξ2)] is satisfied by pair (i, j) iff the system is in a state |ϕ〉
such that Γi j |ϕ〉 � |ϕ〉, where Γi j � ∑N

k�1 Ω
(k)
i j .25

23 When i � j, it is stipulated, according to the method used in (11), that the corresponding projector has
the operator P(k)(I − P(k)) � 0 in the ith place of the whole tensor product. From this it follows that the
projector is the null operator, and consequently that formula �k (ξ1) ∧ ¬�k (ξ2) can never be satisfied by
pairs (i, i).
24 For a nice introduction to quantum logic see Hughes (1989, pp. 178–217). The assumption of quantum
logic seems necessary here, since otherwise we could not legitimately use the operations of the orthogonal
complement and addition of projectors in the appropriate interpretations of formulas of the constructed
language. Moreover, the formal result quoted at the end of Sect. 4 can be interpreted as proving the absolute
discernibility of quantum particles only under the quantum-logical interpretation of the connectives “not”
and “or”. This fact raises the question of whether Saunders’ theorem can be reinterpreted in terms of
quantum logic. I briefly address this issue in Conclusion.
25 
ij is a projector thanks to the fact that projectors Ω

(k)
i j are mutually orthogonal.
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This time we have adopted yet another quantum modification of a classical logical
concept, namely that of disjunction. Quantum disjunction is interpreted in terms of
the span of vector spaces in the following sense: if sentence α is true if and only if the
state vector of the system lies in space Vα, and the truth condition for sentence β is the
same as above with space Vβ replacing Vα, then the quantum disjunction α ∨ β is true
iff the state vector lies in the space that is spanned by Vα and Vβ. This interpretation
of disjunction is weaker than classical disjunction based on the notion of set-theoretic
sum rather than span. That is, if the state of the system is given as a non-trivial linear
combination of states from Vα and Vβ, the quantum disjunction of sentences α and β

is true but the classical disjunction is false.
Finally, we can present the complete projector corresponding to the symmetric

predicate Abs defined in (15):

(18) Abs(ξ1, …, ξN ) is satisfied by an N-tuple (a1, …, aN ), where ai ��aj for i �� j,
iff the system is in a state |ϕ〉 such that �|ϕ〉 � |ϕ〉, where Ξ � ∏N

i �� j Γi j �
∏N

i �� j
∑N

k�1 Ω
(k)
i j .26

Note that this time the appropriate projector � does not depend on the selected
sequence of objects (a1, …, aN ), thanks to the permutation invariance of the cor-
responding predicate. Also, we may observe that the interpretation of the logical
connective of conjunction in terms of the product of (commuting) projectors that
underlies definition (18) is equivalent to that adopted in classical logic. The formal
reason for this is that the intersection (set-theoretical product) of two vector spaces is
itself a vector space.

It can be verified that projector� has the following, simple form (see “Appendix”):

(19) Ξ � ∑

σ

Pσ(1) ⊗ Pσ(2) ⊗ . . . ⊗ Pσ(N )

Suppose, now, that the system of N ‘indistinguishable’ particles occupies one of the
two following states, depending on whether we are dealing with bosons or fermions:

(20)

Sym( |χ (1, . . . , N 〉) �
∑

σ

∣
∣aσ(1)

〉∣∣aσ(2)
〉
. . .

∣
∣aσ(N )

〉

Anti( |χ (1, . . . , N 〉)�
∑

σ

sgn(σ )
∣∣aσ(1)

〉∣∣aσ(2)
〉
. . .

∣∣aσ(N )

〉

It is straightforward to observe that vectors (20) lie in the range of the operator �,
as presented in (19). Thus, we can conclude that particles occupying states (20) are
absolutely distinguishable by their properties.

5 Conclusion

Saunders’ theoremgoes against thewidely-held belief that permutation-invariance and
absolute discernibility are irreconcilable. It shows that even in a language that consists

26 That operator � is a projector is guaranteed by the fact that projectors 
ij commute. The product of two
or more commuting projectors is the projector whose range is the intersection of the range spaces for the
factor projectors.
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of totally symmetric predicates it is possible to express facts about absolute discernibil-
ity of objects. And yet the application of this theorem to the case of quantum particles
of the same type is not at all straightforward. The main challenge is to make sure
that the totally symmetric predicate which encodes the statement about the absolute
discernibility of objects can be expressed within the standard quantum–mechanical
formalism that we use to describe systems of many particles. In order to accomplish
that, I have proposed a particular way of introducing multi-argument predicates into
the language of quantum theory. I have suggested that the satisfaction of a given pred-
icate by a k-tuple of objects should be tied to the fact that the state of the system
containing these objects lies in the range of a selected projection operator. Given this
interpretational rule, I have shown that the symmetric formula encoding the sentence
that all objects in the domain are absolutely discernible by one-particle projectors, cor-
responds to a particular permutation-invariant combination of these projectors. This
correspondence ensures that when the system occupies a state represented by a vector
within the range of this compound projector, it may be claimed that the individual
particles are absolutely discerned by their quantum–mechanical properties.

It has to be stressed that the above result relies on one crucial assumption—namely
that the logical connectives used in the symmetric formulation of the condition of
absolute discernibility (3) are interpreted quantum-logically rather than classically. It
may be argued that this assumption weakens slightly the absolute discernibility claim
made at the end of Sect. 4, since this claim cannot be upheld if we decide to use the
standard, classical interpretation.Moreover, one can raise the concern that the interpre-
tation of sentence Abs in (1) and its symmetric reformulation (3) following Saunders’
method, as expressing the absolute discernibility of objects, implicitly presupposes the
classical concepts of disjunction and negation. It is unclear whether we can continue
to interpret Abs in the same way when we replace classical connectives with their
quantum counterparts. In the end this may indicate that the problem of the absolute
discernibility of quantum particles is more intricate than we have presented it in this
survey. There are some independent arguments showing that the absolute discerni-
bility of fermions in all states and of bosons in the majority of states is admissible,
but these arguments presuppose a substantial change in the adopted interpretation
of the quantum–mechanical formalism. In particular, we would have to abandon the
doctrine of factorism, i.e. the claim that the factor Hilbert spaces in the symmetric
and antisymmetric sections of the N-fold tensor product represent states of individual
particles. Consequently, the symmetry properties of the states of many particles would
no longer be connected with invariance with respect to permutations of particles, but
would be treated analogously to gauge symmetries as reflecting the representational
redundancy of the mathematical formalism.27 Whether we follow this new approach,
or continue to use the method based on Saunders’ theorem, one thing seems to be cer-

27 For more on this approach see Caulton (2014). Caulton presents extensive arguments in favor of his
non-factorism based approach to the individuation of quantum particles that we don’t have space to discuss
here in detail. Suffice it to say that he argues, inter alia, that the standard, factorism-based approach does
not produce intuitively correct results when we take the classical limit of the quantum theory of many
particles, as well as the quantum field theoretical limit. See also a recent defense of factorism in Leegwater
and Muller (2019).

123



8500 Synthese (2021) 198:8485–8502

tain: the absolute discernibility of same-type quantum particles by their momentary
properties is not a far-fetched concept after all.

Acknowledgements I am grateful to the two anonymous referees for their extensive comments to an earlier
version of my paper. The work on this paper was supported by Grant No. 2017/25/B/HS1/00620 from the
National Science Centre, Poland.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

In what follows I will give a semi-formal argument aiming to show that any product
vector of the form |aσ(1)〉|aσ(2)〉 … |aσ(N)〉 is an eigenstate of the projector � defined
in (18), with corresponding eigenvalue equal 1, and consequently that the symmet-
ric/antisymmetric combination of such vectors has the same property too. Let us begin
with a reformulation of operators Ω

(k)
i j composing projector �, which we initially

defined as follows:

Ω
(k)
i j � I ⊗ . . . ⊗ P(k)

︸︷︷︸
i

⊗ . . . ⊗ I − P(k)
︸ ︷︷ ︸

j

⊗ . . . ⊗ I .

Given that I− P(k) � ∑N
l ��k P

(l), we can rewrite the above projector as the following
sum:

Ω
(k)
i j �

N∑

l ��k

I ⊗ . . . ⊗ P(k)
︸︷︷︸
i

⊗ . . . ⊗ P(l)
︸︷︷︸

j

⊗ . . . ⊗ I ,

and, consequently, the projectors 
ij from (17) will have the following form:

Γi j �
N∑

k�1

N∑

l ��k

I ⊗ . . . ⊗ P(k)
︸︷︷︸
i

⊗ . . . ⊗ P(l)
︸︷︷︸

j

⊗ . . . ⊗ I .

The operator� is calculated by taking the product of all the above expressions for any
i, j:

Ξ �
N∏

i, j�1

N∑

k�1

N∑

l ��k

I ⊗ . . . ⊗ P(k)
︸︷︷︸
i

⊗ . . . ⊗ P(l)
︸︷︷︸

j

⊗ . . . ⊗ I

123

http://creativecommons.org/licenses/by/4.0/


Synthese (2021) 198:8485–8502 8501

Computing this product directlymay seema daunting task, due to an enormous number
of possible combinations, since we are calculating here the product of N(N− 1) sums,
each of which consists of N(N− 1) elements, so the number of different combinations
to multiply is the staggering [N(N− 1)]N(N−1). However, the result of this gigantic
number of multiplications may be easier to predict than it seems. First off, we should
notice that the product of two projectors P(i)P(j) gives 0 when i �� j and P(i) when
i � j. This actually ensures that each non-zero component in the resulting sum that
constitutes projector � will have the form of the tensor product of N projectors P(i)

without any identity operators (since for each slot in the tensor product there is some

ij which has this slot filled by some operator P(k), and no product of these operators
can give I). Moreover, we can easily check that this product has to consist of distinct
projectors (no repetitions are allowed). Suppose, to the contrary, that one component in
the sum constituting� has the form . . .⊗P(k)

︸︷︷︸
i

⊗ . . .⊗P(k)
︸︷︷︸

j

⊗ . . .. But this wouldmean

that within the components of the sum constituting projector
ij there is a combination
of the form I ⊗ . . . ⊗ P(k)

︸︷︷︸
i

⊗ . . . ⊗ P(k)
︸︷︷︸

j

⊗ . . . ⊗ I , and this is impossible, given the

way we defined 
ij. Hence � must contain only products of projectors P(i) with no
repetition.

That such products must occur in the decomposition of � can be shown directly.
Let αij be the following selected component of the sum 
ij:

αi j � I ⊗ . . . ⊗ P(i)
︸︷︷︸
i

⊗ . . . ⊗ P( j)
︸︷︷︸

j

⊗ . . . ⊗ I

It is easy to observe that the product of allαij’swill be exactly the required combination:

N∏

i, j�1

αi j � P(1) ⊗ P(2) ⊗ . . . ⊗ P(N ).

However, projector � is obviously symmetric with respect to permutations of places,
hence the sum has to contain all permutations of the above tensor product. Conse-
quently, we have established that � has to have the following, simple form:

Ξ �
∑

σ

Pσ(1)Pσ(2) ⊗ . . . ⊗ Pσ(N )

fromwhich it immediately follows that all vectors |aσ(1)〉|aσ(2)〉… |aσ(N)〉 lie within the
range of �. And this in turn proves by linearity that the symmetric and antisymmet-
ric vectors

∑

σ

∣∣aσ(1)
〉∣∣aσ(2)

〉
. . .

∣∣aσ(N )

〉
and

∑

σ

sgn(σ )
∣∣aσ(1)

〉∣∣aσ(2)
〉
. . .

∣∣aσ(N )

〉
are also

eigenvectors of �.
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