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Abstract

The aim of this article is to contribute to a better understanding of Frege’s views on
semantics and metatheory by looking at his take on several themes in nineteenth cen-
tury geometry that were significant for the development of modern model-theoretic
semantics. I will focus on three issues in which a central semantic idea, the idea of
reinterpreting non-logical terms, gradually came to play a substantial role: the intro-
duction of elements at infinity in projective geometry; the study of transfer principles,
especially the principle of duality; and the use of counterexamples in independence
arguments. Based on a discussion of these issues and how nineteenth century geome-
ters reflected about them, I will then look into Frege’s take on these matters. I conclude
with a discussion of Frege’s views and what they entail for the debate about his stance
towards semantics and metatheory more generally.

Keywords Frege - Early metatheory - History of model theory - Nineteenth century
geometry

1 Introduction

Gottlob Frege was arguably the first to establish a formal system of logic in an essen-
tially modern sense. In the course of justifying his logicist thesis, he created a formal
language to represent propositions in a perspicuous way and devised deductive sys-
tems that enabled him to represent gap-free derivations. From a contemporary point
of view though, Frege’s presentations also contain some striking lacunae. Frege never
precisely defined a semantics for his formal systems in the now-standard way, he
never defined a relation of logical consequence in terms of this semantics, and he
never explicitly raised the question of whether his systems are sound and complete
with respect to this consequence relation in a way we’ve grown accustomed to.
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According to an influential tradition in Frege-scholarship, tracing back to Van Hei-
jenoort (1967), these omissions are no coincidence. According to this tradition, they
are expressions of a fundamental trait in Frege’s conception of logic, his universal-
ism, which prevented him from stepping outside his systems and raising metalogical
questions, specifically questions relating to semantics. Tom Ricketts, for example,
claims that “anything like formal semantics, as it has come to be understood in light of
Tarski’s work on truth, is utterly foreign to Frege” (Ricketts 1986, p. 67). In particular,
according to this interpretive tradition, Frege was unable to make sense of all forms of
reasoning that involve the idea of ‘reinterpreting’ non-logical terms.! James Conant
notes that “the distinction between a formal system and its interpretation is entirely
alien to the Begriffsschrift” and that “questions concerning [a sign’s] disinterpretation
or reinterpretation do not arise” (Conant 1992, p. 171, en. 58). Jaakko Hintikka, even
more drastically, asserts that “[for Frege] model theory was impossible” (Hintikka
1988, p. 1).

Now, there is a serious danger of anachronism when it comes to claims to the effect
that certain ways of reasoning that we would now classify as ‘semantic’ or ‘model-
theoretic’ were alien or familiar to Frege. After all, semantics as we know it, and
model-theoretic semantics in particular, are of relatively recent origin. Still, we may
legitimately ask ourselves what Frege thought about issues that were closely connected
to the gradual development of model-theoretic thinking. In order to restrict ourselves
to a manageable task, I want to focus on three salient issues in nineteenth century
geometry that are relevant: the introduction of elements at infinity in projective geom-
etry; the idea of transfer principles, especially the principle of duality; and the use of
counterexamples in independence arguments. Each of these topics has been discussed
in the secondary literature on Frege in one form or another by people like Patricia
Blanchette, Tom Ricketts, Jamie Tappenden, Mark Wilson, Michael Hallett, Paolo
Mancosu, and others. The general aim of this article is to gain a better understanding
of Frege’s views by bringing together and following up on these discussions.

The plan for this article is as follows: In the next section I will try to identify more
precisely what we will be looking for, namely the idea that parts of mathematical lan-
guage can be reinterpreted. The third section will be concerned with tracing this idea
in nineteenth century geometry by focussing on the aforementioned themes: the intro-
duction of elements at infinity, the principle of duality, and the use of counterexamples
in independence proofs. In the fourth section, I will discuss how Frege reflected about
these issues, concluding that Frege indeed rejects the notion of mathematical language
as being reinterpretable. The last section will be concerned with a discussion of why
this is so and what this might teach us about the controversy over Frege’s views on
semantics and metatheory.

1 A note on quotation marks: I use single quotation marks within quotations and as scare quotes and double
quotation marks to refer to expressions and for proper quotations.
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2 The notion of a reinterpretable language

Contemporary model-theoretic semantics starts off with formal languages, typically
first-order languages. A first-order language L(o) is determined by a set of logical
constants, i.e. some fixed set of truth-functional connectives and quantifiers, and a
set of non-logical constants o that consists of individual constants, and relation- and
function symbols of some specified arity. Formulas of L(o) can be formed by con-
catenating primitive terms according to certain formation rules. The central notion of
model theory, then, is that of an L (o )-structure, which is determined by a non-empty
set D that specifies a domain for the quantifiers, and an interpretation function / that
assigns interpretations to each non-logical constant. Each constant symbol is assigned
some individual from the domain and relation- and function symbols are assigned rela-
tions and functions over the given domain according to their arity. Given some range
of L(o)-structures, we can then inductively define the relation of an L(o)-formula
being true in an L(o)-structure in a sufficiently rich metalanguage. Given some lan-
guage L(o), model theory then studies theories of this language by investigating the
L (o)-structures in which they are true or false.

It is important to note that this textbook build-up of model theory is of relatively
recent origin and several things had to fall into place first. The list of ingredients
includes, first and foremost, the notion of a formal language. With that comes an
understanding of the distinctions between syntax and semantics and between object-
and metalanguage as well as the specific distinction between logical and non-logical
constants. Model theory then relies on the idea that the logical terms of a formal
language have a fixed interpretation, while non-logical terms can be assigned different
interpretations relative to some structure. Finally, model theory is based on the notion
of a sentence being true in a structure, and that truth in a structure can be defined
recursively in a sufficiently rich (typically informal set-theoretical) metalanguage.”

All of the aforementioned ingredients are important for contemporary model theory
as a mathematical discipline. However, in this article I will only be concerned with the
informal notion that seems to be prerequisite for all of this, the idea that a language,
or parts of it, can be reinterpreted. What I mean by that is the informal idea that
we can think of the interpretation (meaning, content, etc.) associated with certain
terms as somehow variable, that the interpretation (meaning, content, etc.) commonly
associated with an expression is not glued to it, and that, furthermore, sentences can
be evaluated with respect to different interpretations associated with certain terms.
For this notion to make sense, several things have to be in place. First, the notion of
reinterpretation that we’ll be interested in only makes sense for a reasonably delineated
part of mathematical discourse with specific primitive terms. Secondly, it requires a
reasonably clear separation of a sign and what it designates. And, thirdly, it presupposes
a distinction (if only implicit) between logical and non-logical terms. Of course, all
of these requirements are to some extent still vague. As a consequence, the idea of

2 Standard expositions of modern model theory can be found in Chang and Keisler (1973) and Hodges
(1993). The emergence of the notion of a formula being true in a structure, especially in Tarski’s work,
is dicussed in Hodges (1986). The conceptual structure and prehistory of model theory are discussed in
Demopoulos (1994) and Hintikka (1988), with a critical eye on Frege.
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mathematical language as being reinterpretable is vague itself and leaves room for
discussion about particular cases. As we will see though, it will serve our purposes.
The notion of mathematical sentences as reinterpretable schemas has its roots in
several different branches of mathematics. Since tracing this notion in all its facets
is beyond the scope of this article, I will confine myself to discussing three specific
issues in nineteenth century geometry that seem to be significant pieces of a complete
story. I will hint at other issues throughout the article, though mostly in footnotes.

3 Reinterpretable languages and nineteenth century geometry

The development of mathematics in the nineteenth century, and geometry in particular,
is marked by a number of innovations and fundamental shifts.3 At the turn of the
nineteenth century, Euclid’s Elements had been around for more than 2000 years
and several shortcomings had become apparent by that time. Like nineteenth century
mathematicians in general, geometers had acquired a new sense of rigour and voices
became louder that were calling for new foundations for geometry. Towards the end of
the nineteenth century, prominent figures like Moritz Pasch, David Hilbert, Guiseppe
Peano, and others, were working on providing such foundations in the form of rigorous
axiom systems for geometry. These efforts went hand in hand with two important
trends. The first was the rise of projective geometry in the first half of the nineteenth
century, and the other was the development of non-Euclidean geometry. We’ll get back
to the latter later on, but for now we’ll focus on projective geometry.

Projective geometry has its roots in the study of perspective during the renaissance,
when painters, architects and mathematicians became interested in problems relating
to central projections. Projective geometry differs from traditional, Euclidean geom-
etry in two respects. First, unlike Euclidean geometry, projective geometry is in the
first instance only concerned with geometrical properties that relate to the positions
of points, lines and planes relative to each other. Thus, metrical notions like distance,
length, area, angle etc. are ruled out. Secondly, projective geometry differs from tra-
ditional geometry in that the notion of parallelism is ruled out. Instead, parallel lines
are said to ‘meet’ at some ‘point at infinity’ and all these ‘points at infinity’ lie on a
‘line at infinity’. (In solid geometry, there are infinitely many ‘lines at infinity’, one
corresponding to each set of parallel planes, and, in addition, there is a ‘plane at infin-
ity’ on which all of these ‘lines’ lie.) It is these ‘elements at infinity’ that will be our
first topic.*

3 For more on the great transformations in mathematics at the turn of the twentieth century in general, see
Gray (2008) and the third volume of Kline (1972). Developments in geometry in particular are discussed
in the classic Freudenthal (1962) and Gray (2007).

4 The origins of projective geometry are discussed in Kline (1972, ch. 14). A detailed study of the prehistory
of projective geometry can be found in Andersen (2007). Andersen also critically discusses the idea that
points at infinity originated in the study of perspective in Andersen (2007, pp. 402—403) and Andersen
(2007, p. 441).
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3.1 Elements at infinity

As indicated, the introduction of elements at infinity originated in the study of perspec-
tive, the idea being that, from a particular viewpoint, parallel lines meet at a vanishing
point which lies at the horizon line. But elements at infinity soon developed a life of
their own because of their usefulness in pure mathematics, and it was this usefulness
that made them attractive for nineteenth century geometers. To illustrate, consider the
following proposition:

Theorem 1 Ifthe lines joining corresponding vertices of two triangles meet in a point
O, then the intersection points of corresponding sides of the triangles lie on a line o.
(See Fig. 1, left.)

Theorem 1 is a plane incidence theorem, that is, its statement only mentions points,
lines and the relation of a point lying on a line (incidence), and it is indeed a theorem
about the Euclidean plane if we further assume that the intersection points of corre-
sponding sides of the triangles exist. However, if these intersection points do not exist
because corresponding pairs of sides are parallel, then the theorem doesn’t apply. Still,
in this case we have another theorem:

Theorem 1* [fthe lines joining corresponding vertices of two triangles meet in a point
O, then, if two pairs of corresponding sides are parallel, then the third pair of sides
is parallel. (See Fig. 1, right.)

Obviously, the two theorems are very similar. After all, they have the same antecedent.
So one might hope to find a more general theorem of which both are instances. Indeed,
such a general theorem, called Desargues’ Theorem, is precisely what we get if we
interpret Theorem 1 in such a way that the term “point” not only refers to ordinary
points but also points at infinity and the term “line” not only refers to ordinary lines
but also some line at infinity. On this understanding, the original, Euclidean reading
of Theorem 1 is covered. But, in addition, Theorem 1* is now covered as a special
case as well. It’s just that in this case the intersection points are points at infinity and
the line where they meet is the line at infinity.)

As this simple example illustrates, the introduction of elements at infinity has the
potential to greatly facilitate the systematization of geometry, and all that seems to be
required is a minor shift in terminology. If we designate what is common to parallel
lines as a ‘point at infinity’ and extend the range of applicability of the term “point” to
include these new elements (similarly for lines and planes), then a variety of geomet-
rical propositions receive a uniform expression. Indeed, that’s precisely the advantage
that was typically emphasized by nineteenth century geometers. It is because of this
greater generality (among other things) that by the middle of the nineteenth century
projective geometry had been widely regarded as the basis for all of geometry.°

5 Since it is possible to prove the converse of Desargues’ theorem from Desargues’ theorem itself (and
conversely), the biconditional consisting of Desargues’ theorem and its converse is sometimes referred to as
“Desargues’ Theorem”. Theorem 1* is sometimes referred to as the affine version of Desargues’ theorem.
For various proofs as well as philosophical and historical discussion, see Arana and Mancosu (2012) and
Dawson (2015, pp. 93-110).

6 Theodor Reye, for example, writes in his Die Geometrie der Lage that “this view has the advantage over
the old view that many propositions can now be stated in full generality, whereas otherwise exceptions
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Fig. 1 Desargues configurations with non-parallel sides (left) and with parallel sides (right)

The idea that the transition from ordinary points to the more general notion is
effected by a mere change of terminology, introduced to achieve greater generality
and simplicity, was widely shared by geometers in nineteenth century. But it raises
some questions. Is talk about points at infinity a mere facon de parler, or does it
have some kind of ontological import? How can we be sure that this way of speaking
doesn’t involve any contradictions?” What follows from this terminological shift for
our conception of mathematical language? For example, does the sentence “Each pair
of lines determines a unique intersection point” express a unique proposition or do
we have to live with the fact that some mathematical sentences do not express unique
propositions?

Different proposals have been made to put projective geometry and its use of ele-
ments at infinity on a solid footing. For example, Theodor Reye notes in his widely
used textbook that “the statements ‘parallel lines have the same direction’ and ‘they
contain the same infinitely distant point’ mean the very same thing [bedeuten das
Néamliche]” (Reye 1866, p. 16), which seems to indicate that talk about elements at
infinity may somehow be reduced to talk about ordinary lines and their directions.
Similar proposals that rely on some kind of ‘abstraction’ have been made throughout
the nineteenth century.® Sometime around the Thirties of the nineteenth century, Julius
Pliicker and others had also introduced homogeneous coordinates, which enabled the
study of projective geometry (including elements at infinity) by analytic means similar
to those used in Euclidean geometry.” Still, the foundations of projective geometry

Footnote 6 continued

would have to be mentioned, and many seemingly different propositions can now be covered by a single
proposition” (Reye 1866, p. 15, transl. by author), similarly Von Staudt (1847, p. 25). Arthur Cayley, having
discovered that a metric can be defined in a purely projective setting if we fix some conic as ‘absolute’,
notes that “[m]etrical geometry is thus a part of descriptive [i.e. projective, G.E.] geometry, and descriptive
geometry is all geometry and reciprocally” (Cayley 1859, p. 90). See Gray (2007, ch.22) for further
discussion.

7 Points at infinity had often been referred to as ‘infinitely distant points’. This triggers the idea that
somehow these points have an ‘infinite distance’ from each ordinary point, which certainly sounds odd. See
e.g. Reye (1866, p. 15) or the discussion in Von Staudt (1847, 23 ff.).

8 An excellent discussion of ‘abstractionist’ proposals in nineteenth century geometry in connection with
elements at infinity can be found in Mancosu (2015), where Mancosu discusses the mathematical context
of Frege’s celebrated definition of numbers in his Frege (1884). We will return to this issue in Sect. 4.

9 See Gray (2007, chs. 13-16) for a discussion of this algebraic approach to projective geometry.
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and the treatment of elements at infinity remained a matter of contention throughout
the nineteenth century.

With hindsight, it might seem obvious to conceptualize the transition from
Euclidean to projective geometry in terms of reinterpretable languages. On such a
view, words like “point” and “line” are schematic terms that are open to reinterpreta-
tion and a sentence like “Every pair of lines determines a unique intersection point”
may be true with respect to some interpretations, but false with respect to others. In
particular, it is false when evaluated with respect to (some model of) the Euclidean
plane, but true when evaluated with respect to (some model of), say, the extended
Euclidean plane. It is hard to tell who was the first to articulate such a view explicitly
in the context of projective geometry in connection with elements at infinity. Traces of
such a view can be found already in Moritz Pasch’s famous Vorlesungen iiber Neuere
Geometrie from 1882.10 Still, it took some time before this point of view found its way
into mainstream mathematics. It was certainly accepted though around the turn of the
twentieth century, at a time when a number of geometers had been working on axiom
systems for both Euclidean and projective geometry, including people like Hilbert
in Germany or Peano, Pieri, and Fano in Italy. One clear-cut example is Veblen and
Young’s Projective Geometry (Veblen and Young 1910). In their axiomatic treatment
of projective geometry, words like “point” or “line” are no longer tied to a particular
interpretation, and sentences that contain these words are no longer tied to a particu-
lar truth value. Indeed, according to Veblen and Young, geometrical terms “are to be
regarded as mere symbols devoid of content, except as implied by the fundamental
propositions” (Veblen and Young 1910, p. 1). And while Veblen and Young use a
particular “concrete representation” in terms of numerical coordinates to establish the
consistency of the axioms of projective geometry, others are not ruled out. Since in
this analytic representation all ‘points’ are on equal terms, there really is no further
mystery about ‘points at infinity’.

3.2 The principle of duality

The second issue I want to discuss in connection with the emergence of the concept of
a reinterpretable language is the principle of duality in projective geometry. Actually,
there are several duality principles, all of them instances of an even more encompassing
class of principles that are sometimes referred to as transfer principles, i.e. principles
that state a systematic correlation of truths about one domain of objects with truths
about some other domain of objects. Duality principles had been discovered sometime
around the turn of the nineteenth century. The simplest version states that for every
theorem in plane projective geometry we get another theorem by simply interchanging
the terms “point” and “line” and, accordingly, the basic relation of a point lying on a

10 pasch notes with respect to the transition from Euclidean to projective geometry that “from now on the
expression ‘proper point” will mean exactly what was hitherto meant by ‘point’; in this way the unspecified
word ‘point” will be made available for a more general application” (Pasch 1882, p. 40). See Schlimm
(2010) for more on Pasch’s philosophy of mathematics.
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line by the relation of a line passing through a point.!! To see duality in action, let’s
look again at Desargues’ theorem.

Desargues’ theorem, remember, states that if the lines that join corresponding ver-
tices of two triangles meet in a point, then corresponding sides of the triangle meet
in points that lie on a line. The only geometric terms occurring in this theorem are
“point”, “line”, “lies on”, “meet in”, and terms that can be defined by means of these
terms, such as “being a triangle”. According to the principle of duality, then, for each
of these terms there is a dual term: the dual of “point” is “line” and vice versa and the
dual of “lies on” is “meet in” and vice versa. Given this translation manual, we can
also dualize defined terms, such as “being a triangle” (which is effectively self-dual),
and even entire statements, always replacing a term by its dual. Following this recipe,
what we end up with in the case of Desargues’ theorem is this:

Desargues’ theorem Dual of Desargues’ theorem

If corresponding vertices of two triangles lie If corresponding sides of two triangles meet
on three lines that meet in a point, then in three points that lie on a line, then
corresponding sides of the triangles meet corresponding vertices of the triangles lie
in three points that lie on a line on three lines that meet in a point

So the dual of Desargues theorem is its converse and it is a theorem about the real
projective plane just like Desargues theorem itself.

The principle of duality is interesting for a variety of reasons. First, unlike other
geometrical theorems it is not directly about points or lines. It is a ‘meta-theorem’ in
that it says something about how theorems can be obtained from others by system-
atically replacing certain terms by others. Second, the principle of duality provides
for more economy because for each theorem we get another one for free by simply
dualizing. Finally, the principle provides a powerful tool in finding new theorems.
Indeed, the latter two points were emphasized by nineteenth century geometers as the
main virtues of duality.!?

Perhaps because of the special status of the principle, there was a debate during the
first third of the nineteenth century over both its content and proper justification.'? Two
general approaches can be distinguished that will be particularly relevant for our later
discussion. The first can be traced to Poncelet and is based on mappings. The other

U Thereisa corresponding principle for solid projective geometry. Here, for every theorem there is another
theorem which results from the first by replacing the term “point” with “plane” and vice versa. The term
“line” is its own dual. The importance of duality for the development of modern logic is especially empha-
sized in Nagel (1939). See also Tappenden (2005, pp. 190-194) for further discussion of duality and transfer
principles more generally.

12 1 a discussion of the principle of duality, Otto Hesse notes in (1866, p. 32, transl. by author) that for
these reasons “transfer principles are of much greater importance in geometry than single theorems”. For
further discussion see again (Tappenden 2005, p. 193).

13 For a discussion of the main mathematical points see Gray (2007, pp. 53—-62). The polemical nature of
the controversy is discussed in Lorenat (2015).
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can be loosely traced to Gergonne, who favoured a more proof-oriented approach.'#
Let’s start with the latter first. Although Gergonne had no clear view, there is evidence
indicating that he thought that the principle of duality was essentially a matter of the
symmetric nature of certain basic laws on which projective geometry is ultimately
based, which in turn is guaranteed by the presence of elements at infinity. Thus, to
prove the dual of a theorem, we may simply use the dualized basic laws. The formal
nature of deductive proof then ensures that for any theorem, its dual will be a theorem as
well. To emphasize this procedure, Gergonne introduced the convention, later copied
by many others, of writing dual theorems as well as their proofs in parallel columns.
However, it took some time and more advanced tools, especially explicitly formulated
axioms and a clearer conception of proof, before geometers were eventually able to
formulate this version of the principle in full clarity. Moritz Pasch seems to have been
among the first to do so in his Pasch (1882), where he spends an entire section on the
discussion of duality.!

Poncelet had a different view on duality. His was based on the theory of poles and
polars. The twin concepts of a pole of a line and the polar of a point had been in use
long before Poncelet made the connection to duality.'® The idea is this: suppose that
we are given some conic section, say, a circle. With each point P in the real projective
plane, we can then correlate a certain line, called the polar of P, and with each line [ a
certain point, the pole of [, relative to the given circle. Specifically, if the point P lies
outside the circle, construct the tangents on the circle, join the tangency points and you
get the polar of P. If P lies inside the circle, take any two different lines through P
and construct the tangents of the points where each line intersects the circle. The line
determined by the intersection points of corresponding tangents will be the polar of P.
If P lies on the circle, simply take the tangent in P as polar. Finally, if P is the center
of the circle, its polar will be the line at infinity. By reversing these constructions, we
can associate with each line a unique point, its pole.

Why is this relevant to duality? By the constructions just described, every point
can be correlated with a certain line and every line with a certain point. Moreover,
the correlation guarantees that a point P lies on a line / if and only if the pole of /
lies on the polar of P. More abstractly, the construction thus defines a mapping w
from points to lines and lines to points such that a point P lies on a line / just in
case 7 (P) passes through  (I). Poncelet’s idea, then, was that the possibility of such a

14 See Poncelet (1822), Gergonne (1825), and Nagel (1939, 179 ff.) for discussion. Specker (1958) discusses
both versions from a contemporary viewpoint which is informed by modern formal logic. A third ‘algebraic’
approach to duality in terms of coordinates had been developed by Julius Pliicker in his Pliicker (1831).

15 pasch discusses this proof-oriented conception and justification of duality in section 12 of his Pasch
(1882), where he also stresses the purely formal nature of deductive proof in geometry, noting that “if
geometry is to be genuinely deductive, the process of inferring must everywhere be independent of the
sense of the geometrical concepts, just as it has to be independent of the figures” (Pasch 1882, p. 98).
However, he also notes that the justification in terms of basic laws (“Grundsitze”) is of limited scope (Pasch
1882, p. 94) and that the principle of duality is established by this procedure for the geometry of position only
“insofar as it can be developed from [the] basic laws [in §§7, 8, 9]” (Pasch 1882, p. 95). Thirty years later,
Veblen and Young, referring to this proof-oriented conception, note that the “method of formal inference
from explicitly stated assumptions” makes duality “almost self-evident” (Veblen and Young 1910, p. 29).
See also Eder and Schiemer (2018) for a discussion of duality in nineteenth century geometry.

16 See Gray (2007, ch. 2, 5) and Kline (1972, ch. 35) for further discussion of the theory of poles and polars.

@ Springer



5556 Synthese (2021) 198:5547-5575

correlation guarantees that the principle of duality holds because, via r, every theorem
about points and lines can be transformed into a theorem about the poles and polars
corresponding to the lines and points in the theorem.

Both conceptions of duality are important and have precise counterparts in con-
temporary mathematics. For current purposes, however, we want to focus on the
mapping-based conception that goes back to Poncelet and try to understand how it
relates to the idea of a reinterpretable language. First, note that if we think of projective
geometry as being formulated in a reinterpretable language, then sentences may not
only be evaluated with respect to their intended (projective) interpretation, i.e. the real
projective plane P, but also with respect to alternative interpretations of its primitive
terms. In particular, we may consider the dual projective plane PP where the term
“point” applies to projective lines, “line” applies to projective points and the relation
“lying on” applies to a pair consisting of a line and a point just in case the former
passes through the latter. The substance of Poncelet’s argument, then, is that the exis-
tence of a function that maps points to lines and lines to points as described earlier
guarantees that P and PP are isomorphic. But then, making use of the informal idea
that isomorphic structures satisfy the same sentences, it follows that every sentence S
that is true of P must be true of PP and vice versa. By definition of the dual projective
plane PP and the dual S? of a sentence S, this entails that a sentence S is true of P if
and only if S? is true of P, just as the principle of duality says.!”

Now, to be sure, we won’t be able to find such a streamlined version of the con-
tent and justification of duality in terms of reinterpretable languages, structures, and
isomorphisms in the writings of geometers of the nineteenth century. But geometers
had been invoking the idea of reinterpretation in connection with duality at times even
in the nineteenth century. Arthur Cayley, for example, comments on the principle
of duality (or “reciprocity”) in 1854 as follows: “we have only to say that the word
‘point’ shall mean ‘line’, and the word ‘line’ shall mean ‘point’ [...] and any theo-
rem [...] relating to points and lines will become a corresponding theorem relating
to lines and points” (Cayley 1854, p. 246). Cayley’s explicit use of quotation marks
and the ‘semantic’ terminology suggests that he thought that the terms “point” and
“line” are not tied to their ‘ordinary’ (projective) interpretation, but could be applied
to their dual interpretation as well.'8 In any case, the core of the justification of duality
as described earlier seems to have been in place by the turn of the twentieth century.
Although Veblen and Young don’t give an explicit proof, given what we’ve said earlier
about their conception of axioms as uninterpreted schemas etc., their remark that “the
principle of duality may be regarded as a consequence of the presence of correlations”
(Veblen and Young 1910, p. 268), is likely intended as an expression of the justification

17 1 the context of projective geometry, an isomorphism between a projective plane and its dual is also
called a correlation. A correlation 7 with the additional property that 7 (7 (P)) = P and w (7 (l)) = [ (such
as the function 7 mentioned above) is called a polarity. The argument just sketched can be made precise by
making use of the isomorphism lemma, which is a basic result in model theory that states that isomorphic
structures are elementary equivalent, i.e. satisfy the same sentences.

18 Cayley did not, however, provide a rigorous proof of duality there. Given his strong background in the
analytic tradition of projective geometry, it seems likely that he thought of duality in terms of coordinates
in a way that is similar to the one proposed by Pliicker (1831, pp. v—ix).
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of duality we’ve just described. Another example can be found in a notorious letter
written to Frege by David Hilbert, where Hilbert notes that

it is surely obvious that every theory is only a scoffolding or schema of concepts
together with their necessary relations to one another, and that the basic elements
can be thought of in any way one likes. [...] In other words: any theory can
always be applied to infinitely many systems of basic elements. One only needs
to apply a reversible one-one transformation and lay it down that the axioms
shall be correspondingly the same for the transformed things. This circumstance
is in fact frequently made use of, e.g. in the principle of duality, etc., and I have
made use of it in my independence proofs. (Frege 1980, pp. 40-41)

On a common reading of the first two sentences of this paragraph, they are a clear
expression of the idea that mathematical language is reinterpretable. What is striking
about this passage is that Hilbert explicitly draws a connection between this idea of
reinterpretation, one-to-one transformations and the principle of duality. Even though
we can’t be entirely sure from this passage in isolation, it seems plausible to assume
that he had in mind a justification of duality along the lines described earlier.'”

3.3 Counterexamples and independence arguments

The last topic I want to discuss, perhaps the most important in connection with the
emergence of the notion of a reinterpretable language, is the use of counterexamples or
‘models’ in independence arguments. Since much of this is well-known, the following
is intended to provide an outline of the bits that are relevant to the discussion of Frege’s
views in the next section.

The basic issue here is to establish rigorously that a certain geometrical proposition
cannot be proved from a group of propositions. Nineteenth century geometry is full of
interesting questions of that kind. The most important problem of that sort concerns the
axiom of parallels.*® The axiom of parallels is a planar axiom which says that for each
line / and each point P in the same plane that does not lie on that line, there is a unique
line I’ through P that is parallel to /. For centuries geometers had tried to prove the
parallel postulate from the remaining ones, without success. By the eighteenth century,
several mathematicians therefore started to explore the consequences of negating the
parallel postulate, often in an attempt to prove the postulate by reductio.>' One of
them, Johann Heinrich Lambert, had already set out the problem in clear terms in a
book posthumously published in 1786. He notes that “the question itself concerns
firstly neither the truth nor the conceivability of the Euclidean principle”. Rather,

19 Unfortunately, in the edition of Hilbert’s lectures on geometry (Hilbert 2004), the passages where he
discusses duality have been left out. Ralf Haubrich reports in his introduction to the lectures on projective
geometry from 1891 that Hilbert adopted his proof of duality from Reye’s Geometrie der Lage, which is
based on the theory of poles and polars. See his discussion in Hallett (2004, pp. 19-20).

20 See Gray (2007, ch.7-10) and Kline (1972, ch.36) for more on the historical and mathematical back-
ground relating to the axiom of parallels and the emergence of Non-Euclidean geometries.

21 There are two ways to negate the parallel postulate. Given some line, there may be no parallels through
a point not on that line, or more than one. The former leads to ‘elliptic geometry’, the latter to ‘hyperbolic
geometry’.
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he continues, “the question is merely if this principle can be derived correctly from
Euclid’s postulates and remaining principles?” (Lambert 1895, p. 160, 162).%2 In the
first half of the nineteenth century Gauss, Bolyai and Lobachevsky eventually came
to accept that the parallel postulate cannot be derived from the remaining axioms,
that ‘non-Euclidean geometry’ is actually consistent. Yet all of them were lacking a
rigorous proof of this. After all, contradiction might still be lurking somewhere further
down the line.

Towards the end of the nineteenth century, more sophisticated attempts to provide
axiomatic foundations for geometry had led to further independence questions, and
new questions in turn made it necessary to be even more careful about the axioms.>3
Now, we can show that a proposition S is provable from propositions A by simply
proving it. But how do we show that it cannot be proved from them? Well, what people
would do was to devise counterexamples, that is, certain constructions in which the
propositions in .4 were in some informal sense ‘satisfied’ or ‘realized’ or ‘represented’,
but S was not. For example, to prove that the parallel postulate is independent of the
remaining Euclidean principles, various constructions had been devised by Beltrami
(1868) and Felix Klein in the Sixties and Seventies of the nineteenth century. Klein
referred to such constructions as “realizations” (“Versinnlichungen’) which would
be “interpretations of said geometries” (Klein 1871, p. 424, 425). Similar to Lambert
before, Klein emphasized that these investigations “do not have the purpose of deciding
upon the validity of the axiom of parallels”. Instead, they are “solely meant to address
this question: is the axiom of parallels a mathematical consequence of the other axioms
mentioned in Euclid; to this question these investigations provide a definite no.” (Klein
1873, p. 113).24

Once again, with hindsight it is easy to understand the use of counterexamples in
nineteenth century independence arguments in terms of reinterpretable languages. We
think of the proposition S to be proved independent and the group of propositions A
which S is to be proved independent of, as sentences that are formulated in some rein-
terpretable language. Counterexamples are simply interpretations of such a language
for which the statements in A become true, but S becomes false. Then, assuming that
provability preserves truth in an interpretation, if S were provable from A, then §

22 Lambertis quite explicitin that in dealing with this question “we may wholly ignore . . . the representation
of the subject matter. Since Euclid’s postulates and remaining axioms are stated in words, we can and should
demand that no appeal be made anywhere in the proof of the matter itself, but that the proof be carried out
... in a thoroughly symbolic fashion” (Lambert 1895, p. 162). See Webb (1995, p. 3) for discussion of this
passage (with minor differences in the translation).

23 For example, during the 1890s, Hilbert had become interested in Desargues’ theorem, making the
observation that even though it is a planar incidence theorem, all of its standard proofs were relying on
either spatial or metrical notions. Hilbert’s observation naturally lead him to ask whether Desargues’ theorem
could be proved using only basic planar truths. As it turned out, the answer is ‘no’. Independence arguments
related to Desargues’ theorem had been put forward even before Hilbert in work by Peano. See Arana and
Mancosu (2012), Dawson (2015, 107 ff.), and Hallett (2008) for further discussion. Further independence
problems were studied in an axiomatic setting by various Italian geometers in the 1890s which also led to
the consideration of finite geometries. A discussion of the Italians and their contributions to the foundations
of (projective) geometry can be found in chapters 24 and 27 of Gray (2007).

24 For a historical discussion of the use of ‘models’ in geometry and their role in the development of modern
formal logic see also Blanchette (2017), Nagel (1939), and Webb (1995). Arana and Mancosu (2012, §3)
provide a detailed discussion of independence arguments relating to Desargues’ theorem.
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would have to be true in any interpretation in which all the statements in A are true.
Hence, the existence of an interpretation in which all statements in .4 are true but S is
false shows that S cannot be provable from the statements in A.

This understanding of the use of counterexamples in independence proofs was well
entrenched in the mathematical community at the beginning of the twentieth cen-
tury. We have already mentioned Hilbert, who used reinterpretations of geometrical
terms very consciously and on a large scale in his celebrated (Hilbert 1899) to estab-
lish various independence results. Even before Hilbert, others were (almost) equally
forthright in using the idea of reinterpretation.”> To be sure, people at the time did
not yet have a clear conception of logical consequence and related concepts and they
were typically relying on an informal notion of proof (like, for example, Hilbert in his
(1899)). Despite the growing interest in the foundations of logic and the emergence
of the first formal systems of logic by the end of the nineteenth century (like Frege’s
Begriffsschrift), the concept of proof as a purely syntactic notion had not yet been
adopted by many mathematicians. Even the informal notion of proof was not always
clearly separated from ‘semantic’ conceptions of logical consequence and, in contrast
to nowadays, people were often using terms like “satisfiability” and “consistency”
interchangeably. It took a couple of decades until these notions and their mutual rela-
tions had been further clarified by Tarski and others. In any case, what matters for our
purposes is that at least some geometers at the turn of the century had thought about
the use of counterexamples in independence arguments in terms of reinterpreting parts
of mathematical language.

4 Frege and reinterpretable languages in nineteenth century
geometry

In the previous section we’ve discussed several issues in nineteenth century geometry
that gradually came to be understood in terms of reinterpretable languages. In this
section I will try to determine how Frege reflected about these matters.

As a reminder, Frege was a trained mathematician and it is apparent from the list
of his courses at Jena as well as his published articles where his main fields of interest
in non-foundational matters were lying, namely complex analysis and geometry.”0
So Frege was certainly familiar with the main trends in geometrical research of his
time. Indeed, as noted by others, some of Frege’s most celebrated ideas seem to be

25 Once again, the Italians seem to have been the first. See, for example, Fano 1892 and Peano (1894)
and Freudenthal (1962) for discussion. It should also be mentioned that, in spite of passages like the one
quoted earlier, there is still room for disagreement about how Hilbert understood his method of proving
independence and consistency in detail at various times. See Eder and Schiemer (2018) for further discussion.

26 Frege held introductory courses in complex analysis and seminars on advanced topics such as elliptic
functions and Abelian integrals, and in geometry he lectured on both synthetic and analytic geometry. See
Kreiser (2001, p. 280). His non-foundational articles too were mainly concerned with geometry. Among
the published writings on geometry, we find his dissertation On a Geometrical Representation of Imaginary
Forms in the Plane (1873), Lecture on a Way of Conceiving the Shape of a Triangle as a Complex Quantity
(1878), Lecture on the Geometry of Points in the Plane (1884), as well as several reviews. All these works
are reprinted in Frege (1984).

@ Springer



5560 Synthese (2021) 198:5547-5575

inspired by his engagement with geometry, particularly projective geometry.”’ As a
trained geometer, then, how did Frege think about the issues discussed in the previous
section?

4.1 Frege and elements at infinity

The matter of elements at infinity is discussed by Frege as early as 1873 in his doc-
toral dissertation titled On a Geometrical Representation of the Imaginary Forms of
the Plane. Imaginary forms are yet another kind of ‘ideal elements’ that had been intro-
duced into geometry sometime at the turn of the nineteenth century. They naturally
arise when we look at geometry from an analytic point of view.

To illustrate, take a circle and a straight line. There are three possible positions the
circle and the line can have relative to each other. The line can intersect the circle
in two points, they can touch each other in one point, or they may not meet at all.
Given a suitable coordinate system, we can describe the line and the circle by means
of equations, and the problem of determining their relative position comes down to
solving a certain quadratic equation that results from substituting the equation of the
line into the equation of the circle. If this quadratic equation has two real solutions, the
circle and line intersect in two points; if there is one double solution, the line touches
the circle at a point; and if there is no real solution, then they are disjoint. Now, the
important bit here is that even if there is no real solution, there are still two complex
solutions. So, even in the case where the line and the circle are apparently disjoint,
there are still two ‘intersection points’, albeit ones with complex coordinates. In a
sense, then, points with real numbers as coordinates form only the visible part of a
more inclusive domain.

Of course, imaginary forms are fairly unintuitive creatures. The main aim of Frege’s
dissertation is therefore to set up a correlation of imaginary forms of the plane with
objects of intuitive, three-dimensional Euclidean space.”® Before getting to the main
business of the dissertation, Frege makes a few general remarks about ideal elements,
comparing imaginary forms with elements at infinity. He writes:

Taken literally, a ‘point at infinity’ is even a contradiction in terms; [...] The
expression is therefore an improper one, and it designates the fact that parallel
lines behave projectively like straight lines passing through the same point.
‘Point at infinity’ is therefore only another expression for what is common to all

27 See Mancosu (2015), Tappenden (2005, 2006), and Wilson (1992, 2010) for more on Frege’s mathe-
matical setting and its influence on his foundational work on logic and arithmetic.

28 The problem here is that if complex numbers are identified with pairs of real numbers (the real and
imaginary parts), then the two-dimensional complex plane will be four-dimensional. To overcome this
problem, Frege introduces two distinguished planes in three-dimensional Euclidean space, the plane of the
real and the plane of the imaginary, which are assumed to be parallel, say, the xy-plane and some parallel
plane above the xy-plane. Given some imaginary point P with coordinates & +i&’ and n +in’, we can then
identify the pair (£, n) consisting of the real parts and the pair (¢/, n’) consisting of the imaginary parts
with a point on the plane of the real and a point on the plane of the imaginary respectively. Since these two
points will determine a straight line, the imaginary point P can be ‘represented’ in three-dimensional space
by this straight line. After describing the basic setup, Frege goes on to investigate what imaginary curves
(including straight lines) will look like according to this basic construction (and given the way in which
these curves are defined algebraically). See Shipley (2015) for further discussion of Frege’s dissertation.
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parallels, which is what we commonly call ‘direction’. [. .. ] By designating the
direction as a point at infinity, we forestall a difficulty which would otherwise
arise because of the need to distinguish a frequently unsurveyable set of cases
according to whether two or more of the straight lines in the set were parallel or
not. But once the principle of the equivalence of direction and point is established,
all these cases are disposed at one blow. (Frege 1984, p. 1)

Just like most geometers in the nineteenth century, Frege here emphasizes the useful-
ness of points at infinity for the organization of Euclidean geometry (see Sect. 3.1).
Frege particularly stresses that the expression “point at infinity” is an “improper” one.
It might even seem as if Frege thinks of this kind of talk as a mere manner of speaking,
having no particular ontological import. But that doesn’t seem to be the case either. A
few sentences later Frege notes that points at infinity can be visualized by projecting
the plane on a sphere. According to Frege, this would establish a correlation between
points of the projective plane and ordinary points on the sphere which has the advan-
tage of bringing the former “before our eyes” (Frege 1984, p. 2). But then again: what is
actually visualized by such a “representation”, as Frege calls such correlations? So the
question remains: what are points at infinity, or, to use Frege’s preferred terminology,
what are directions?

Frege gives an answer to this question ten years later at a somewhat unexpected
place, namely in his Foundations of Arithmetic (Frege 1884). Frege’s main concern
there is to sketch his logicist project of reducing arithmetic to logic. At a certain point,
he contemplates introducing cardinal numbers by means of what is today called an
‘abstraction principle’. The principle of numerical abstraction (or ‘Hume’s principle’)
may be stated as follows:

Numerical Abstraction (NA). For all concepts F and G, the number of F’s is
identical with the number of G’s iff the F’s and G’s are equinumerous.

Here “the number of” is a term-forming operator that attaches to concept terms to form
singular terms, and equinumerosity is an equivalence relation between two concepts
that is defined in terms of the existence of a bijective mapping between them. Before
discussing NA, Frege actually considers various similar principles in paragraphs 64—
68, all of them related to geometry. He focuses on one principle in particular, which
we might call the principle of directional abstraction:

Directional Abstraction (DA). For all lines f and g, the direction of f is
identical with the direction of g iff f and g are parallel.

Just as in NA, we have again a term-forming operator “the direction of”” and an equiva-
lence relation between straight lines, the relation of parallelism. Now, bearing in mind
that for Frege points at infinity just are directions, what Frege is contemplating here is
to introduce points at infinity by way of an abstraction principle. As we noted earlier
(and as (Mancosu 2015) has shown in some detail), similar proposals had been made
by Theodor Reye and other nineteenth century geometers. However, Frege eventually
rejects the idea of introducing abstract objects such as numbers or directions by means
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of abstraction principles like NA and DA because of what came to be known as the
‘Julius-Caesar problem’.?? He describes his alternative strategy in §68:

Seeing that we cannot by these methods [abstraction, G.E.] obtain any concept
of direction with sharp limits to its application, nor therefore, for the same
reasons, any satisfactory concept of Number either, let us try another way. If
line a is parallel to line b, then the extension of the concept “line parallel to line
a” is identical with the extension of the concept “line parallel to line »”; and
conversely, if the extensions of the two concepts just named are identical, then
a is parallel to b. Let us try, therefore, the following type of definition:

the direction of line a is the extension of the concept “parallel to line a”; (Frege
1884, p. 79)

So just as Frege eventually settles for the introduction of cardinal numbers by way
of an explicit definition of the number operator in terms of classes (or extensions)
of equinumerous concepts, he settles for the introduction of points at infinity by way
of an explicit definition of the direction operator in terms of classes (or extensions)
of parallel Euclidean lines. Indeed, Frege’s correspondence with Pasch from around
1905 seems to confirm that this was his view throughout most of his career."

What can we learn from this about Frege’s views on reinterpretable languages?
The textual evidence seems to suggest that Frege’s views on elements at infinity are
plainly at odds with a view on this matter in terms of reinterpretable languages. His
view may be summarized as follows: There are Euclidean points, Euclidean straight
lines, and certain relations between these entities which are somehow given to us in
intuition. We can then introduce further entities by means of certain logical operations,
in particular, by forming classes. We may decide to call some of those classes “points
at infinity” and group them together with ordinary points. But they are what they
are. Frege thus seems to identify the real projective plane with a particular model of
the real projective plane. We can visualize or ‘represent’ this particular structure by
means of other structures (say, by a sphere) or describe it by means of coordinates.
But there is only one real projective plane, and so the question of associating different
interpretations with words like “point” or “line” does not arise. In fact, Frege seems to
deliberately avoid referring to points at infinity as ‘points’ and instead prefers to call
them ‘directions’. Presumably, this wording is meant to avoid the impression that we
have to associate different interpretations with words like “point” in different contexts.

Some of Pasch’s remarks during his correspondence with Frege indicate that Frege
indeed rejected the notion that words may refer to different objects in different con-
texts. In his Pasch (1882), Pasch had formulated basic laws for geometry in which

2 Roughly, the problem is that principles like NA and DA do not settle the truth values of all identity
statements. Specifically, if Num represents the number-of-operator, then identity statements of the form
“Num(F) = ¢” are not settled unless c itself is of the form Num(G) for some concept G. An analogous
problem obviously arises for directions. See Heck (1997) for a more detailed discussion of the Caesar
problem.

30 Unfortunately, most of Frege’s letters to Pasch are lost. According to the editors of Frege’s correspon-
dence, a fragmentary draft of a letter to Pasch survived in which Frege essentially describes the position
sketched here. See footnote 1 in Frege (1980, p. 106). However, we can also reconstruct Frege’s position
from Pasch’s replies. See Frege (1980, p. 106).
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geometrical concepts like “point”, “line”, “between”, etc. were initially used in their
Euclidean meaning. However, later in the book he extends the range of application
of these terms to accommodate elements at infinity, noting, for example, that “from
now on, the expression ‘proper point’ will mean exactly what was hitherto meant by
‘point’; in this way the unspecified word ‘point’ will be made available for a more
general application” (Pasch 1882, p. 40). Similarly for the other primitive notions.?!
Apparently, Frege had objected to this procedure in an earlier letter to Pasch, which is
indicated by Pasch’s remark that “[y]ou will not allow one to talk first about ‘points’
because a ‘point’ is later to be understood as something broader, not just as a Euclidean
point” (Frege 1980, p. 106).

Now, we can’t be sure about what Frege’s concerns were exactly. One worry might
have been that he thought that Pasch’s procedure was an instance of what Frege
criticised under the label piecemeal definitions.>> By this Frege means the practice
of defining a concept on a certain domain of objects (say, the natural numbers) and
later redefining it on a broader domain of objects (say, the integers). According to
Frege, one of the problems with this procedure is that we can’t be sure that the new
definition might not introduce a contradiction. In the case at hand, Frege might have
been concerned that some of the definitions introduced for the Euclidean domain may
no longer make sense in the wider, projective domain. And, as Frege notes, even if
there is in fact no contradiction, “they are not ruled out in principle by this method”
(Frege 1903, §57).3% A related, but more general, worry that Frege might have had
is that in using the term “point” differently in different contexts, Pasch is violating
a central requirement on scientific language, the requirement that concepts need to
have ‘sharp boundaries’. By this Frege means that a concept has to be definitely either
true or false of any given object. Part of the point of this requirement is to rule out
ambiguous concepts in scientific language. Hence, since Pasch is using terms like
“point” or “line” with different meanings in different contexts, he seems to violate
this methodological principle and introduces ambiguity into mathematics. I will come
back to this later on. For now, let’s just note that Frege avoids any reference to the
notion of a reinterpretable language in the context of the introduction of elements at
infinity.

4.2 Frege and the principle of duality

To state the obvious, Frege, as a trained geometer, was aware of the significance of
the principle of duality and transfer principles more generally. After the passage from
his doctoral dissertation quoted earlier, Frege notes:

31 The situation in Pasch (1882) is actually more complex since Pasch usually reformulates statements that
involve points at infinity in terms of “bundles of lines”. Still, the general point stands.

32 See Frege (1903, §§56-58), English translation in Frege (2016) and Blanchette (2012, 62 ff.) for a
discussion of piecemeal definition. I am grateful to Jeremy Heis for calling my attention to the issue of
piecemeal definitions as a possible source for Frege’s troubles in the Pasch correspondence.

33 This reading seems to be indicated also by Pasch’s remark that “I think your intention, which I find
perfectly evident, will also be fulfilled if one talks first about ‘points’ without qualification and then extends
the application of the word ‘point” while stating that in all preceding propositions and definitions the word
‘point’ is to be understood only in the original sense”.
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By a geometrical representation of imaginary forms in the plane we understand
accordingly a kind of correlation in virtue of which every real or imaginary
element of the plane has a real, intuitive element corresponding to it. The first
advantage to be gained by this is one common to all cases where there is a
one-one relation between two domains of elements: that we can arrive at new
truths by mere transfer [“Ubertragung”] of known propositions. But there is
another advantage peculiar to this case: that the non-intuitive relations between
imaginary forms are replaced by intuitive ones.>*

As Jamie Tappenden has observed, it is likely that Frege chose his words with care:
the use of the word “Ubertragung” is presumably meant to be reminiscent of transfer
principles like Hesse’s Ubertragungsprinzip, a principle that was well-known and rec-
ognized to be similar to the principle of duality in relevant respects.>> Frege mentions
the first advantage, that one-one transformations between two domains of elements
give rise to systematic correlations between truths about these domains, almost in
passing.

But while Frege apparently appreciates transfer principles and their underlying
justification in terms of one-one mappings, there is not much evidence as to how Frege
thought about this issue in detail, and there is a only a handful of passages where he
mentions duality. There is a passage in his dissertation where he contemplates the
idea of generalizing his representation of imaginary forms to cover the projective case
as well (Frege 1984, p. 46), and another in a review from 1877, where he briefly
discusses the relationship between projective and metrical geometry (Frege 1984, p.
95). There is also a somewhat longer passage in the Foundations of Arithmetic where
Frege invokes duality in a thought experiment which is supposed to support his view
that the meaning of an expression is not to be identified with the subjective ideas
associated with that expression (Frege 1884, pp. 35-36). But none of these passages
are specific enough to be helpful in understanding how Frege thought about duality
more precisely, let alone transfer principles in general.

Interestingly, there is one further episode where Frege was invited to elaborate
on his views on duality, one-one mappings, and related issues, but where he didnt.
The episode is particularly significant in connection with our main issue because
it took place in the course of Frege’s famous debate with Hilbert, where the idea
of reinterpreting parts of mathematical language was a central issue (more on that
shortly). During that debate, Hilbert had written his famous letter to Frege where he
states his ‘model-theoretic credo’, noting that

any theory can always be applied to infinitely many systems of basic elements.
One only needs to apply a reversible one-one transformation and lay it down that

34 See Frege (1984, pp. 2-3). I am following Jamie Tappenden’s translation of “bloBe Ubertragung” by
“mere transfer of” instead of “merely carrying over”, and for the same reasons. See footnote 5 in his
Tappenden (2005, p. 222).

35 Hesse had introduced the principle in an article titled “Ein Ubertragungsprincip” (“A transfer princi-
ple”). See Hesse (1897, 531-538). The principle states a correlation between truths about the complex
projective plane and truths about point pairs on the complex projective line. Hesse explicitly compares his
Ubertragungsprinzip to the principle of duality (Hesse 1866, 31 ff.). For further discussion, see Tappenden
(2000, 2005, pp. 190-194).
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the axioms shall be correspondingly the same for the transformed things. This
circumstance is in fact frequently made use of, e.g. in the principle of duality,
etc., and I have made use of it in my independence proofs. (Frege 1980, pp.
40-41)

As mentioned earlier, Hilbert here explicitly connects the principle of duality with
one-one transformations and the notion of reinterpretation. Hilbert’s remark can be
understood as a challenge which may be paraphrased as follows: Look, Gottlob, what [
am doing in my independence proofs—reinterpreting geometrical terms—is something
that mathematicians have been doing all along, though perhaps unconsciously. Just
look at the the justification of the principle of duality in terms of mappings between dual
interpretations, where precisely the same idea is used. So it’s up to you, dear Gottlob,
to make sense of practices like these without invoking the notion of reinterpretation.
So what does Frege say in reply to this challenge? He says: “I will reserve the right
to reply to what you say about the applicability of a theory and the reversible one-one
transformation.” (Frege 1980, p. 48) That’s it.

Earlier, when writing his dissertation, it may have been obvious to Frege that one-
one transformations between domains of elements give rise to systematic correlations
between truths about these domains. It may not have occurred to him that this might
stand in need of further clarification. But here, almost 30 years later, the situation
is different. Frege’s reaction to Hilbert comes down to an admission that there was
something to be explained. Frege simply doesn’t know how to do that. Even later Frege
never made use of his “right to reply” and he never took up the issue in his writings.3¢
So while Frege recognized and appreciated the idea that one-one transformations give
rise to transfer principles, he had no idea of how to make sense of this more precisely.
And even though Frege did not outright reject Hilbert’s views on the particular issue
of duality, Frege certainly had his doubts about invoking the notion of a reinterpretable
language in this respect.

4.3 Frege and independence arguments

The last topic discussed in Sect. 3 was the use of counterexamples in independence
arguments. Because of Frege’s controversial debate with Hilbert, there is plenty of
textual evidence on Frege’s views on this matter in the form of several letters and
articles. The following is intended to give an outline of some of the important points
of the debate that are related to our main topic.>’

Immediately after publication of Hilbert’s Foundations of Geometry in 1899, Frege
had contacted Hilbert, asking for clarification of several points he considered to be

36 On this point I disagree with Jamie Tappenden, who seems to think that Frege indeed took up the issue
in his article series on geometry in 1906. See Tappenden (2000, p. 273). I will come back to this in Sect. 4.3.

37 Since Hilbert refused to agree to publish their correspondence, Frege put forth his views in an article
series in 1903 and another series in 1906. The 1906 series is partly addressed to Alwin Korselt, who had
been defending Hilbert’s approach. The articles can be found in Frege (1984). They are also reprinted in
Kluge (1971), together with Korselt’s article and the relevant correspondence between Frege and Hilbert.
The locus classicus in the secondary literature concerning the Frege—Hilbert controversy is Resnik (1974).
More recent studies are e.g. Blanchette (1996), Blanchette (2012, 108 ff.), Demopoulos (1994), Hallett
(2010), and Wehmeier (1997).
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problematic. Hilbert had claimed in his Foundations that his geometrical axioms would
‘define’ the primitive terms occurring in them. For Frege, this is just plain confusion.
The purpose of a definition is to fix the reference of a newly introduced term. Geo-
metrical axioms, on the other hand, are supposed to state certain basic facts about the
space of intuition, where it is assumed that the basic terms occurring in them have a
reference. Frege’s impression got even worse over the course of the correspondence
with Hilbert. In the notorious letter to Frege cited earlier, Hilbert famously claims that
“if the arbitrarily given axioms do not contradict one another, then they are true, and
the things defined by the axioms exist” (Frege 1980, p. 42). Again, for Frege this is
turning the true state of affairs upside down.

One of the central reasons for Frege’s unfavourable impression of Hilbert’s Foun-
dations was his feeling that Hilbert had spent too little effort on making precise his
underlying methodology, and this impression was reinforced by remarks during their
correspondence like the one quoted earlier. Now, Frege acknowledges in the correspon-
dence that in order to prove independence one must “show that the non-satisfaction
of one of these axioms does not contradict the satisfaction of the others” by providing
counterexamples. “Indeed”, so Frege, “the mutual independence of axioms, if it can
be proved at all, can only be proved in this way” (Frege 1980, p. 43).3® But while
Frege and Hilbert are in agreement about the basic strategy of using counterexamples
of some sort to prove independence, this still leaves room for disagreement about how
this is to be understood more precisely.

Frege’s final view may be summarized as follows. There are two ways to conceive of
axioms, the ‘traditional” and the ‘Hilbertian’ conception. On the traditional conception,
axioms are propositions that express true thoughts about a certain domain which
form the basis for all further inferences. Typically these propositions are taken as a
basis for a systematization of that domain because they are simpler or more obvious
than others.>® Hilbertian axioms, on the other hand, are neither propositions nor the
thoughts expressed by them. Instead, Frege refers to them as “pseudo-propositions”
(“uneigentliche Sitze”) because the primitive terms “point”, “line”, etc. that occur in
them appear to designate specific concepts without actually doing so. Really, on Frege’s
view, these words merely “indicate”, that is, they function as variables. Hilbertian
pseudo-propositions are therefore expressions of higher-order concepts which become
genuine propositions only once the variables are instantiated by meaningful terms
(Frege 1984, 309 ff.).

38 As Frege is quick to point out, though, he is adopting to Hilbert’s terminology concerning ‘axioms’ in
these passages. This is important because in his later published writings Frege strictly distinguishes between
the Hilbertian conception of axioms as conditions or higher-order concepts and axioms in the ‘traditional’
sense.

39 Frege is somewhat ambiguous in his use of the term “proposition” (“Satz”) in his articles on the foun-
dations of geometry. He says, for example, that “[w]hat I call a proposition tout court or a real proposition
[“Satz schlechtweg oder eigentlichen Satz”] is a group of signs that expresses a thought; however, whatever
has only the grammatical form of a proposition I call a pseudo-proposition [“uneigentlichen Satz”]” (Frege
1984, p. 308), indicating that a real proposition is something like a sentence-thought pair. In another passage
of the same article series, he says “When one uses the phrase ‘prove a proposition’ in mathematics, then
by the word ‘proposition” one clearly means not a sequence of words or a group of signs, but a thought”
(Frege 1984, p. 332), indicating that the thought itself is indeed all that’s relevant. Frege comes back to this
issue in an unpublished manuscript from 1914 (Frege 1979, p. 206).
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Now, since proving something about Hilbertian axioms does not obviously tell us
anything about the real axioms to which they correspond, the question remains how
independence is to be proved in the case of axioms in the traditional sense. So has
Frege something constructive to say on this question?

Frege provides a sketch of his approach in the last part of the series from 1906. He
first emphasizes once again that the objects of independence are thoughts, i.e. what is
expressed by sentences. He then goes on to elucidate what he means by “independence”
in the realm of thoughts: a thought G is independent of a group of thoughts €2 just
in case G cannot be reached through a sequence of logical inferences (Frege 1984, p.
339). Frege’s further procedure is curious. He contends that we have to lay down “basic
truths” which are supposed to legitimize certain inferences that he deems indispensible
if independence is to be proved in a rigorous way. One of them is the basic law that
whatever is provable from true premises is itself true (Frege 1984, p. 336). Another is
only elucidated informally, but it is critical. Frege calls it an “emanation of the formal
nature of logical laws” (Frege 1984, p. 337). Frege describes his approach in Frege
(1984, pp. 337-339) as follows: Suppose we want to prove that a certain thought G,
expressed by a sentence S, is independent of a group of thoughts €2, expressed by a
group of sentences .A. Frege’s idea is that we “translate” all the relevant sentences into
other sentences. He illustrates his proposal by way of two columns of expressions.
To each simple expression in the first column there corresponds an expression in the
second column. Furthermore, it is assumed that logical expressions are paired with
themselves. Sentences in the first column then correspond to sentences in the second
column when non-logical expressions are replaced by the corresponding expressions
in the second. In this way, a set of sentences .A will be translated into a set AT
each sentence in A’ having the same logical form as its corresponding member in
A (remember that logical expressions are not affected by substitution), and S will
be translated to a sentence S”. Moreover, sequences of sentences will correspond
to sequences of sentences. Importantly, since all expressions that are involved are
assumed to have both a fixed sense and reference, each sentence will express a specific
thought with a particular truth value. Sequences of thoughts expressed by sentences
of the first column will therefore correspond to sequences of thoughts expressed by
sentences of the other. Frege’s “new law” then amounts to the requirement that proof
sequences will correspond to proof sequences, and independence may be proved as
follows:

Let us now consider whether a thought G is dependent upon a group of thoughts
Q. We can give a negative answer to this question if, according to our vocabulary,
to the thoughts of group €2 there corresponds a group of true thoughts €', while to
the thought G there corresponds a false thought G’. For if G were dependent upon
Q, then, since the thoughts of Q" are true, G’ would also have to be dependent
upon €’ and consequently G’ would be true. (Frege 1984, p. 339)

Frege expresses some reservations about his own proposal, mainly because of the
difficulty of determining “what is proper to logic” and the question of which terms are
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logical (Frege 1984, p. 339). Indeed, Frege did not take up his proposal again in his
later writings.*°

Frege’s proposal is in many ways idiosyncratic, some might even say confused.
As noted by Patricia Blanchette, Frege’s proposal seems to suffer from a pecu-
liar imbalance between his concept of independence and the proposed method of
proving independence. While Frege’s concept of independence is conceived as a rela-
tion between thoughts, which on Frege’s view are language-independent entities, his
method for proving independence is based on the syntactic operation of substitution
of expressions. As Blanchette has argued, this seems to have the effect that, in general,
Frege’s method is not fit to serve its intended purpose.*! Still, Frege’s discussion of
Hilbert’s independence proofs as well as his own proposal contain several interesting
ideas. I have to confine myself to two points that are relevant to our main topic.*?

First, Frege’s proposal provides an understanding of the use of counterexamples
which, as far as I can see, is fully compatible with most mathematician’s actual prac-
tices regarding independence arguments in the late nineteenth century. In particular,
on Frege’s account (perhaps against his own intentions) the question of independence
becomes a matter of purely formal features of the sentences involved, just as on the
Hilbertian conception. Butin spite of this, Frege’s proposal is still an alternative. Rather
than reinterpretation, the effective notion in Frege’s approach is that of substitution
of fully interpreted terms. Moreover, the two accounts may even differ extensionally,
depending on how the use of substitutions is understood more precisely.** In any case,
it seems appropriate to me to treat Frege’s approach as a genuine, informal alternative

40 In his notes on an article by Jourdain, Frege even claims that the “indemonstrability of the axiom of
parallels cannot be proved. If we do this apparently, we use the word ‘axiom’ in a sense quite different from
that which is handed down to us” (Frege 1980, p. 183). Some scholars think that this shows that Frege’s
1906 sketch of independence proofs was merely a slip of the pen. See, for example, Ricketts (1997). An
alternative view is defended by Jamie Tappenden (2000).

41 Since formal derivability is purely a matter of the formal properties of sentences, Frege’s substitution-
based method guarantees that a sentence S cannot be derived (in some sound formal calculus) from a group
of sentences A whenever there is a suitable sequence of terms that translates the sentences in A into true
sentences A7 and S into a false sentence ST . However, this does not guarantee that the thought expressed
by S cannot be proved from the thoughts expressed by the sentences in .A. In general, a thought can be
expressed in a number of different ways, and different sentences may reveal different derivability-relations.
See Blanchette (1996, 2007), and chapter 5 in Blanchette (2012) for a detailed discussion.

42 See Antonelli and May (2000) and Ricketts (1997) for more on Frege’s ‘new science’ and Eder (2016)
for a discussion with a particular focus on the ‘axiomatic’ aspect of Frege’s approach to independence
proofs.

43 If substitution sequences are assumed to be drawn from some fixed language, then, no matter how rich
the language, there will always be interpretations that do not correspond to sequences of expressions from
this language. (This is due to the elementary fact that there are more interpretations than expressions of
some fixed language.) Thus, it might happen that there is a set of sentences A and a sentence S, such that
S is declared independent of A by Hilbert’s account, but not by Frege’s, because there are no expressions
available that correspond to the interpretation that witnesses the Hilbertian independence of S from .A.
In connection with Frege’s proposal concerning independence proofs, this has been mentioned already by
Michael Resnik in his (1974). More recently, Patricia Blanchette notes in Blanchette (2012, p. 126) that
“as long as the language in question contains names for all of the objects and relations (or their extensions)
to which Hilbert has recourse in constructing interpretations, Hilbert’s independence-test and [Frege’s]
proposed 1906 independence-test will have exactly the same results”. Note that the equivalence between
Hilbert’s and Frege’s method follows if the underlying assumption is that for every Hilbertian interpretation
we can find a language in which this interpretation can be expressed, just as Blanchette claims. However,
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to Hilbert’s. It certainly is with respect to the use of the notion of a reinterpretable
language.

The second point I want to mention is related to an issue we’ve touched on earlier. As
Jamie Tappenden has first pointed out (Tappenden 2005), Frege’s presentation of his
method in terms of two columns, where each term of one column corresponds to a term
in the other, sentences correspond to sentences, and so on, bears a striking resemblance
to standard presentations of the principle of duality in nineteenth century projective
geometry. As we saw (see Sect. 3.2), on one understanding of the principle of duality,
loosely dating back to Gergonne, it is understood as a principle about dual theorems
whose justification is based on the fact that each basic truth of projective geometry
has a dual, and that logical deduction is purely formal. So even though Frege nowhere
mentions duality explicitly in his articles on the foundations of geometry, Tappenden
may well be right when he notes that “Frege could not have failed to be aware that
projective duality was an evident realization of the ‘new basic law’ he was describing”
(Tappenden 2005, p. 214). In fact, Tappenden suggests in Tappenden (2000, p. 273)
that Frege’s 1906 proposal contains something like an oblique (and somewhat delayed)
response to the challenge posed by Hilbert in his letter to Frege from six years earlier
(see Sect. 4.2).* Note though that, on their most natural reading, Hilbert’s remarks are
concerned with the second understanding of the principle of duality we have discussed,
the one that dates back to Poncelet, where duality is explained in terms of one-one
mappings between points and lines. So even if we take it for granted that Frege’s
1906 proposal contains an implicit account of duality, the issue raised by Hilbert
concerning the mapping-based conception of duality is not addressed. Ironically, then,
if Tappenden is right with his observation that there is a close connection between
Frege’s proposal concerning independence proofs and the principle of duality, then
this actually provides evidence against (parts of) his general narrative, because then
the only way for Frege to make sense of duality is in terms of formal proofs, not in
terms of (however informal) ‘model theoretic’ reasoning.

There is much more to be said on Frege’s proposal concerning independence
proofs, which lack of space prevents me from doing. What the discussion should
have established is that in the case of independence proofs too, Frege clearly avoids
the idea of reinterpretation. As he says quite explicitly in the 1906 series to Alwin
Korselt, Hilbert’s proxy: “The word ‘interpretation’ is objectionable, for when prop-
erly expressed, a thought leaves no room for different interpretations.” (Frege 1984,
p. 315)

Footnote 43 continued

the equivalence does not follow if the underlying assumption is that there is a fixed language in which every
Hilbertian interpretation can be expressed, because such a language plainly does not exist (if we assume
that Hilbert has recourse to every set-theoretical interpretation). Now, I am not suggesting that Frege’s
account necessarily relies on a fixed language from which substitution sequences are drawn. But I can’t see
anything to the contrary in Frege’s suggestions either.

44 Tappenden writes that “[i]n response to Hilbert’s direct question [about one-one transformations and
duality], Frege indicates that he hasn’t addressed this issue but he reserves the right to do so”” and he notes
in brackets that “Frege indicates no answer before 19067, suggesting that Frege did indicate an answer in
1906.
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5 Discussion

We have seen that for a variety of issues in nineteenth century geometry that can
be conceptualized in terms of reinterpretable languages, and that have been concep-
tualized in such a way by some by the turn of the twentieth century, Frege did not
do so. In fact, at several points he explicitly rejects the idea of associating different
interpretations with a term. Why is that?

It seems to me that the main ingredients of an answer to this question are fairly
transparent (although they raise further questions). First of all, Frege apparently did
not feel any need to invoke the notion of a reinterpretable language in any of the issues
we’ve discussed. Although he did not have fully worked out accounts, he thought that
issues like the ones discussed in Sect. 3 can be dealt with within the confines of a
‘traditional’, fixed-interpretation conception of mathematical language. No appeal to
a reinterpretable language has fo be made, and therefore no appeal should be made.*>

A second minor reason for Frege’s resistance to the notion of reinterpretation,
which comes out most pointedly during his debate with Hilbert, may be traced to the
choice of words of his opponents. Frege certainly felt offended by Hilbert’s sweeping
remarks about mathematical theories being “schemas” that “can be applied to infinitely
many systems of things”. Hilbert’s defender Korselt also tends to speak of Hilbert-
style axiom systems as “formal theories” or “purely formal systems” (Kluge 1971, p.
40). Presumably, this way of talking triggered Frege’s notorious aversion to formalist
conceptions of mathematics.*® Ultimately, I don’t think that Frege took Hilbert to
be a follower of the crude kind of formalism that Frege was opposing so vigorously
throughout his career (mathematical statements as meaningless marks, mathematics as
amere game, etc.). Still, although most of Frege’s objections to Hilbert are not directed
against formalism as such, Frege might have sensed some sort of spiritual connection
between the notion of a reinterpretable language and formalist philosophies.

I think the ultimate reason why Frege rejected the notion of a reinterpretable lan-
guage is fairly mundane. He rejects it because the only way he can make sense of
it is in terms of ambiguity, which is a defect that has to be avoided. From Frege’s
perspective, to reinterpret a mathematical term is to deliberately introduce ambiguity
into mathematics. Given that Frege spent much of his career on developing an artificial
language intended precisely to avoid ambiguity, it shouldn’t come as a surprise, then,
that he rejects this notion. Frege is quite frank about the connection he sees between
the method of reinterpretation and ambiguity on a number of occasions throughout his
articles on the foundations of geometry. To give just a few examples, in Frege (1984,
p- 306) he notes that “the appearance that ambiguous signs are necessary arises from
unclear thinking and insufficient logical insight”. The same point is made when he

45 Similar remarks apply to other developments in nineteenth century mathematics that seem to require a
point of view that allows for reinterpretability, like the emergence of abstract algebra. In a letter to Edward
V. Huntington from around 1902, Frege talks about his take on ‘algebraic’ axiom systems (Frege 1980, pp.
58-59) and proposes a reconstruction of such systems similar to the higher-order reconstruction that was
proposed in connection with Hilbert.

46 This connection is also made e. g. by Eike-Henner Kluge in the introductory remarks of the compilation
(Kluge 1971), in which Frege’s articles on the foundations of geometry are published together with his
articles on formalist conceptions of arithmetic.
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writes that “[t]he word ‘interpretation’ is objectionable, for when properly expressed,
a thought leaves no room for different interpretations. We have seen that ambiguity
simply has to be rejected and how it may appear to be necessary because of insufficient
logical insight” (Frege 1984, pp. 315-316). In the same piece he writes that “there
must be no ambiguity” (Frege 1984, p. 311), and that “the univocity of signs—which
we must retain at all cost-excludes different interpretations” (Frege 1984, p. 318). The
list could be continued. As we saw in Sect. 4.1, worries about ambiguity may have
also been among the reasons for rejecting the notion of a reinterpretable language in
connection with elements at infinity.

It is worth stressing that nothing that Frege says indicates that he thinks that it is
somehow ‘impossible’ to think of an expression as having another sense (or refer-
ence, interpretation) than the one it actually has. After all, which sense (or reference,
interpretation) is attached to an expression is a complicated human affair and to a
large degree a matter of conventions. Rather, Frege’s point is a normative one: we
should not deliberately attach different interpretations to a word, certainly not in a
language that is supposed to be adequate for scientific purposes. So even if the notion
of a reinterpretable language would somehow bear an advantage of allowing a kind of
‘useful ambiguity’ that may be beneficial for certain purposes, it would still remain a
defect.*’

Let me in conclusion make a few tentative remarks concerning the controversy over
Frege’s stance towards ‘metatheoretic’ questions. As mentioned in the introduction,
there is a real danger of anachronism in speculating about Frege’s views on ‘metathe-
oretical’ questions, and ‘semantics’ in particular. ‘Metatheory’ as we understand it
today is the result of various developments that Frege could not have foreseen, like,
for instance, the development of set theory as an independent discipline, the emer-
gence of first-order logic as a distinguished system, or the discovery of limitative results
such as Tarski’s or Godel’s.*8 Still, the discussion in the previous sections should have
confirmed what people like Patricia Blanchette, Aldo Antonelli, Robert May, Jamie
Tappenden, and others have emphasized before: that Frege was very much interested
in a variety of questions that ought to be considered as ‘metatheoretic’ on any reason-
able, non-anachronistic, understanding of this term. He was certainly familiar with,
and making use of, transfer principles like duality; he was interested in methodologi-
cal questions concerning the foundations of projective geometry, including the proper
treatment of elements at infinity; and he made a serious attempt to explicate the use
of counterexamples in independence proofs.

However, the discussion should have also established (or confirmed) that Frege had
serious qualms with forms of reasoning that involve the notion of a reinterpretable

47 Antonell and May (2000) have claimed that Frege’s ‘fixed interpretation conception of language’ would
be a consequence of his doctrine of sense and reference. Since a proper language is understood by Frege as
a system of signs, and a sign consists of an expression together with a sense, it would follow from Frege’s
doctrine that sense determines reference that an expression of a proper language is ‘immutably equipped’
with a fixed reference or interpretation. Thus, changing the sense (and hence the reference) attached to an
expression, would amount to changing the entire language. While this seems to be a fair description of
Frege’s views, it doesn’t explain why reinterpretation, understood as a systematic ‘change of language’ that
may be useful for certain purposes, should be ruled out.

48 See Awodey and Reck (2002) and Badesa et al. (2009) for a discussion of the development of logic at
the beginning of the twentieth century.
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language. So if this notion is taken to be central to informal model-theoretic reason-
ing, then people like James Conant, Tom Ricketts, or Jaakko Hintikka are right. But
while I think that this is a significant point, it also requires qualification. First, semantic
reasoning is not necessarily model-theoretic reasoning. Even if Frege rejected ‘model-
theoretic reasoning’, this does not rule out semantics altogether, understood as the
scientific study of concepts like truth, reference, etc. Second, while Frege might have
rejected informal model-theoretic reasoning in the narrow sense that involves reinter-
pretation, this does not entail that Frege had problems with model-theoretic reasoning
on any plausible, non-anachronistic conception of that term. Indeed, there are more lib-
eral conceptions of this notion that are arguably more useful if we want to understand
the actual history of model theory. Much of the work on formal axiomatics within a
type-theoretical framework that was done during the Twenties and Thirties of the twen-
tieth century would not qualify as being concerned with informal model theory if the
idea of reinterpretation was strictly required for this, despite the fact that this work was
certainly significant for the actual development of model theory. A broader conception
of model-theoretic reasoning that includes such developments will presumably have
to include some of Frege’s ideas as being concerned with ‘informal model-theoretic
reasoning’ as well. As indicated in Sect. 4.3, Frege did, for example, provide a recon-
struction of Hilbert’s methodology relating to independence proofs (primitive terms
as variables, axiom systems as higher-order concepts, etc.) that comes quite close to
the type-theoretical reconstructions proposed later, e.g. by Carnap.*’ Furthermore, as
we saw in Sect. 4.2, Frege was familiar with the notion that one-to-one mappings
between domains of elements induce systematic correlations between truths about
these domains. And while Frege had no clear conception of how this works in detail
and certainly did not invoke the notion of reinterpretation in this respect, it is also not
hard to make out connections to later developments in model theory.’® Now, Frege
may not have played a prominent role in the development of model theory. But I think
that it’s fair to say that, at the very least, he wasn’t totally cut off from the developments
that eventually led to the emergence of model theory either. However, fleshing this out
is work for another paper.
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