Skip to main content

Advertisement

Log in

Happily entangled: prediction, emotion, and the embodied mind

  • S.I.: Predictive Brains
  • Published:
Synthese Aims and scope Submit manuscript

A Correction to this article was published on 20 June 2019

This article has been updated

Abstract

Recent work in cognitive and computational neuroscience depicts the human cortex as a multi-level prediction engine. This ‘predictive processing’ framework shows great promise as a means of both understanding and integrating the core information processing strategies underlying perception, reasoning, and action. But how, if at all, do emotions and sub-cortical contributions fit into this emerging picture? The fit, we shall argue, is both profound and potentially transformative. In the picture we develop, online cognitive function cannot be assigned to either the cortical or the sub-cortical component, but instead emerges from their tight co-ordination. This tight co-ordination involves processes of continuous reciprocal causation that weave together bodily information and ‘top-down’ predictions, generating a unified sense of what’s out there and why it matters. The upshot is a more truly ‘embodied’ vision of the predictive brain in action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 20 June 2019

    In the original publication, funding information was missing: Andy Clark was supported by ERC Advanced Grant 692739 (XSPECT���Expecting Ourselves���Embodied Prediction and the Construction of Conscious Experience).

Notes

  1. There is a large and growing literature here. Good places to start include Friston (2005, 2010), Clark (2013), Hohwy (2013) and Clark (2016).

  2. For this usage, see Clark (2013).

  3. This helps make sense of recent work showing that top-down effects (expectation and context) impact processing even in early visual processing areas such as V1—see Petro et al. (2014) and Petro and Muckli (2016). Recent work in cognitive neuroscience has begun to suggest some of the detailed ways in which biological brains might implement such multi-level prediction machines—see Bastos et al. (2012).

  4. See Clark (2014, chapter 7).

  5. A driver is traditionally distinguished from a modulator. Drivers, as the name suggests, are seen as primary transmitters of information whereas modulators alter the impact of that information. Driver inputs to a thalamic relay are thus diagnostic of the function of that relay, whereas modulator inputs are not—see Sherman and Guillery (2011). Within PP, precision-weighting acts a kind of universal modulator.

  6. This is a contemporary version of the profoundly ‘motocentric’ vision of the brain suggested in the classic work by Churchland et al. (1994).

  7. Such a perceptual realm is constructed in a fashion that is deeply ‘narcissistic’ in exactly the sense of Akins (2006).

References

  • Akins, K. (2006). Of sensory systems and the “aboutness” of mental states. Journal of Philosophy, 93(7), 337–372.

    Article  Google Scholar 

  • Arnsten, A. F., & Li, B. M. (2005). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57(11), 1377–1384.

    Article  Google Scholar 

  • Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and explorative behavior of autonomous robots. The European Physical Journal B-Condensed Matter and Complex Systems, 63(3), 329–339.

    Article  Google Scholar 

  • Bard, P. (1928). A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. American Journal of Physiology, 84, 490–515.

    Google Scholar 

  • Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Theme issue: Predictions in the brain: Using our past to generate a future (M. Bar Ed.). Philosophical Transactions of the Royal Society B, 364, 1325–1334.

  • Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419–429.

    Article  Google Scholar 

  • Barton, R. (2012). Embodied cognitive evolution and the cerebellum. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 2097–2107.

    Article  Google Scholar 

  • Barton, R., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.

    Article  Google Scholar 

  • Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–711.

    Article  Google Scholar 

  • Bialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. Neural Computation, 13(11), 2409–2463.

    Article  Google Scholar 

  • Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage (2nd ed.). New York: Appleton.

    Google Scholar 

  • Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3(7), 264–271.

    Article  Google Scholar 

  • Chanes, L., & Barrett, L. F. (2016). Refining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20(2), 96–106.

    Article  Google Scholar 

  • Chareyron, L. J., Banta, Lavenex P., Amaral, D. G., & Lavenex, P. (2011). Stereological analysis of the rat and monkey amygdala. Journal of Comparative Neurology, 519, 3218–3239.

    Article  Google Scholar 

  • Churchland, P. S., Ramachandran, V., et al. (1994). A critique of pure vision. In C. Koch & J. Davis (Eds.), Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1585–1599.

    Article  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 2010(33), 269–298.

    Article  Google Scholar 

  • Clark, A. (1997). Being there: Putting brain, body and world together again. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

  • Clark, A. (2014). Mindware: An introduction to the philosophy of cognitive science (2nd ed.). Oxford, NY: Oxford University Press.

    Google Scholar 

  • Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford, NY: Oxford University Press.

    Book  Google Scholar 

  • Clarke, H. F., et al. (2008). Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. Journal of Neuroscience, 28, 10972–10982.

    Article  Google Scholar 

  • Colombetti, G. (2013). The feeling body: Affective science meets the enactive mind. Cambridge: MIT Press.

    Google Scholar 

  • Dunnett, S. B., et al. (1991). The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions. Trends in Neurosciences, 14, 494–501.

    Article  Google Scholar 

  • Frijda, N. H. (1986). The emotions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Frijda, N. H. (2007). The laws of emotion. Mahwah, New Jersey: Lawrence Erlbaum Associate Publishers.

  • Friston K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society London B: Biological Sciences, 360(1456), 815–836.

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.

    Article  Google Scholar 

  • Friston, K. (2011). What is optimal about motor control? Neuron, 72, 488–498.

    Article  Google Scholar 

  • Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 151.

    Google Scholar 

  • Friston, K., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological Cybernetics, 102(3), 227–260.

    Article  Google Scholar 

  • Fuster, J. M. (2004). Upper processing stages of the perception-action cycle. Trends in Cognitive Sciences, 8(4), 143–145.

    Article  Google Scholar 

  • Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 290(1038), 181–197.

    Article  Google Scholar 

  • Guillery, R. W. (2003). Branching thalamic afferents link action and perception. Journal of Neurophysiology, 90, 539–548.

    Article  Google Scholar 

  • Guillery, R. W. (2005). Anatomical pathways that link perception and action. Progress in Brain Research, 149, 235–256.

    Article  Google Scholar 

  • Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Helmholtz, H. (1860/1962). Handbuch der physiologischen optik (J. P. C. Southall, Ed., English trans.), Vol. 3. New York: Dover.

  • Herrick, C. J. (1933). The functions of the olfactory parts of the cerebral cortex. Proceedings of the National Academy of Sciences, USA, 19, 7–14.

    Article  Google Scholar 

  • Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11, 428–434.

    Article  Google Scholar 

  • Hinton, G. E. (2010). Learning to represent visual input. Philosophical Transactions of the Royal Society B, 365, 177–184.

    Article  Google Scholar 

  • Hoshi E, Tanji J. (2007). Distinctions between dorsal and ventral premotor areas: Anatomical connectivity and functional properties. Current Opinion in Neurobiology, 17(2), 234–242.

  • Hohwy, J. (2013). The predictive mind. Oxford, NY: Oxford University Press.

    Book  Google Scholar 

  • Humphreys, G. W., & Riddoch, J. M. (2000). One more cup of coffee for the road: Object-action assemblies, response blocking and response capture after frontal lobe damage. Experimental Brain Research, 133, 81–93.

    Article  Google Scholar 

  • Jackson, J. H. (1884). The coronian lecture on evolution and dissolution of the nervous system. British Medical Journal, 1, 660–663. doi:10.1136/bmj.1.1214.660.

  • Joels, M., Pu, Z., Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: How does it work? Trends in Cognitive Sciences, 10(4), 152–158.

    Article  Google Scholar 

  • Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58, 697–720.

    Article  Google Scholar 

  • Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: Predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1668) 1–13.

  • Kiverstein, J., & Miller, M. (2015). The embodied brain: Towards a radical embodied cognitive neuroscience. Frontiers in Human Neuroscience, 9, 237.

    Article  Google Scholar 

  • LeDoux, J. (1987). Emotion. In F. Plum (Ed.), Handbook of physiology. 1: The nervous system. Higher functions of the brain (Vol. V, pp. 419–460). Bethesda: American Physiological Society.

    Google Scholar 

  • Leiner, H. C., et al. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.

    Article  Google Scholar 

  • Lewis, M. (2005). Bridging emotion theory and neurobiology through dynamic systems modelling. Behavioral and Brain Sciences, 28, 169–245.

    Google Scholar 

  • Lewis, M., & Todd, R. (2005). Getting emotional: A neural perspective on emotion, intention, and consciousness. Journal of Consciousness Studies, 12(8–10), 210–235.

    Google Scholar 

  • MacKay, D. (1956). The epistemological problem for automata. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 235–251). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.

    Google Scholar 

  • Markovic, J., Anderson, A. K., & Todd, R. M. (2015). Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research, 259, 41–229.

    Google Scholar 

  • Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2015). Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 1, 1–100.

    Google Scholar 

  • Maturana, H. R., & Varela, F. (1980). Autopoiesis: The organization of the living. In F. V & H. R. Maturana (Eds.), Autopoiesis and cognition. Dordrecht: Reidel.

    Chapter  Google Scholar 

  • McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748.

    Article  Google Scholar 

  • Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

  • Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.

    Google Scholar 

  • Papez, J. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 79, 217–224.

    Google Scholar 

  • Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences, 13(8), 9–354.

    Article  Google Scholar 

  • Parvizi, J., & Damasio, A. R. (2000). Consciousness and the brainstem. Cognition, 79, 135–160.

    Article  Google Scholar 

  • Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158.

    Article  Google Scholar 

  • Pessoa, L. (2013). The cognitive emotional brain: From interactions to integration. Cambridge: MIT Press.

    Book  Google Scholar 

  • Pessoa, L. (2014). Understanding brain networks and brain organization. Physics of Life Reviews, 11, 400–435.

    Article  Google Scholar 

  • Pessoa, L. (2015). Précis on the cognitive-emotional brain. Behavioral and Brain Sciences, 38, e71. doi:10.1017/S0140525X14000120.

  • Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neurosciences, 11(11), 773–783.

    Article  Google Scholar 

  • Petro, L. S., & Muckli, L. (2016). The brain’s predictive prowess revealed in primary visual cortex. Proceedings of the National Academy of Sciences, 113(5) , 1124–1125.

  • Petro, L. S., Vizioli, L., & Muckli, L. (2014). Contributions of cortical feedback to sensory processing in primary visual cortex. Frontiers in Psychology, 5, 1223.

    Article  Google Scholar 

  • Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active Inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35.

    Article  Google Scholar 

  • Powell, K. D., & Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. Journal of Neurophysiology, 84(1), 301–310.

    Article  Google Scholar 

  • Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223.

    Article  Google Scholar 

  • Risold, P. Y., Thompson, R. H., & Swanson, L. W. (1997). The structural organization of connections between hypothalamus and cerebral cortex. Brain Research Reviews, 24(2–3), 197–254.

    Article  Google Scholar 

  • Semendeferi, K., Lu, A., Schenker, N., & Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–276.

    Article  Google Scholar 

  • Sherman, S. M. (2007). The thalamus is more than just a relay. Current Opinion in Neurobiology, 17, 417–422.

    Article  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2011). Distinct functions for direct and transthalamic corticocortical connections. Journal of Neurophysiol, 106, 1068–1077.

    Article  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2013). Thalamocortical processing: Understanding the messages that link the cortex to the world. Cambridge: MIT Press.

    Google Scholar 

  • Sherwood, C., Bauernfein, A. L., Bianchi, S., Raghanti, M. A., & Hof, P. R. (2012). Human brain evolution writ large and small. In M. A. Hofman & D. Falk (Eds.), Evolution of the primate brain: From neuron to behavior (pp. 237–257). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Shipp, S. (2003). The functional logic of cortico-pulvinar connections. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1605–1624.

    Article  Google Scholar 

  • Soodak, H., & Iberall, A. (1978). omeokinetics: A hysical Science r Complex Systems. Science, 201, 18.

    Article  Google Scholar 

  • Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavorial and Brain Sciences, 23, 645–726.

    Article  Google Scholar 

  • Stapleton, M. (2013). Steps to a “Properly Embodied” cognitive science. Cognitive Systems Research, 22–23, 1–11.

    Article  Google Scholar 

  • Swanson, L. W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain Research, 886, 113–164.

    Article  Google Scholar 

  • Theyel, B., Llano, D., & Sherman, S. (2010). The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience, 13, 84–88.

    Article  Google Scholar 

  • Tishby, N., & Polani, D. (2011). Information theory of decisions and actions. In V. Cutsuridis, A. Hussain & J. G. Taylor (Eds.), Perception-action cycle (pp. 601–636). New York: Springer.

  • van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(15), 775–786.

    Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2013a). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696.

    Article  Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2013b). An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience, 33(14), 489–500.

    Google Scholar 

  • Winston, P. H. (2012). The next 50 years: A personal view. Biologically Inspired Cognitive Architectures, 1, 92–99.

    Article  Google Scholar 

  • Wurtz, R. H., McAlonan, K., Cavanaugh, J., & Berman, R. A. (2011). Thalamic pathways for active vision. Trends in Cognitive Sciences, 15(4), 177–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Clark, A. Happily entangled: prediction, emotion, and the embodied mind. Synthese 195, 2559–2575 (2018). https://doi.org/10.1007/s11229-017-1399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-017-1399-7

Keywords

Navigation